1
|
Zou Y, Jin Y, Yang Y, Zhang L, Feng Y, Long Y, Xu Z, He Y, Zheng W, Wang S, He Y, Li J, Li H, Luo Z, Hu C, Xiao L. Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development. Glia 2025; 73:840-856. [PMID: 39743758 DOI: 10.1002/glia.24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown. Here, we report that GAS2L1 is expressed in both OPCs and mature OLs, and that overexpression or knockdown of Gas2l1 in cultured OPCs in vitro impaired or enhanced their differentiation, respectively, while both inhibited their proliferation. We generated a Gas2l1 fl/fl mouse line and found that mice with conditional knockout of Gas2l1 in OL lineage cells (Olig1-Cre;Gas2l1 fl/fl , cKO) showed an increased number of mature OLs and enhanced myelination, as well as a reduction in the branching complexity of OPCs. In addition, an alternative mouse line with postnatally induced Gas2l1 ablation specifically in OPCs (Pdfgra-CreER T2 ;Gas2l1 fl/fl , iKO) recapitulated the acceleration of OL and myelin development as well as the inhibition of OPC process branching. Furthermore, EdU tracking in Gas2l1 iKO mice in vivo and in their OPC cultures in vitro showed both a reduction in OPC proliferation and an increase in OL maturation. Finally, cultured OPCs from iKO mice showed an increase in filopodia extension. Taken together, our results demonstrate an effect of GAS2L1 on the regulation of OL/myelin development and may provide a novel potential therapeutic target for various diseases involving OL/myelin pathology.
Collapse
Affiliation(s)
- Yanping Zou
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yili Jin
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuqian Yang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Liuning Zhang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuanyu Feng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yu Long
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - ZhengTao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Wei Zheng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zhigang Luo
- Department of Experimental Medicine, The Third People's Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Stork L, Stephan S, Kutllovci A, Brück W, Metz I. Impaired remyelination in late-onset multiple sclerosis. Acta Neuropathol 2025; 149:30. [PMID: 40167776 PMCID: PMC11961469 DOI: 10.1007/s00401-025-02868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
A reduced regenerative capacity may contribute to faster disease progression and poorer relapse recovery in multiple sclerosis patients with disease onset after the age of 50, a condition known as late-onset multiple sclerosis (LOMS). We hypothesized that lesions in LOMS patients show more pronounced axonal damage, less remyelination and an altered inflammatory composition, and performed a detailed histopathological analysis of MS biopsies in patients with early-stage LOMS. The number of T cells, B cells, plasma cells, microglia/macrophages, different oligodendrocyte populations as well as the axonal density and acute axonal damage were assessed in 31 LOMS and 30 normal-onset MS (NOMS, 20-40 years old) patients. No major differences in the inflammatory infiltrate or axonal damage were found. BCAS1-positive oligodendrocytes indicating early myelinating oligodendrocytes, and mature oligodendrocytes were significantly lower in the normal-appearing white matter of LOMS compared to NOMS patients (p = 0.05; p = 0.01), with a negative correlation with age (r = - 0.5, p = 0.01). In active demyelinating lesions, the number of BCAS1-positive oligodendrocytes did not differ between LOMS and NOMS, but NOMS lesions showed a higher proportion of ramified cells indicating active remyelination. In LOMS, BCAS1-positive oligodendrocytes decreased with increasing lesion age, with the lowest numbers found in inactive demyelinated lesions. In contrast, NOMS patients showed high numbers of BCAS1-positive cells with an activated morphology, even in inactive demyelinated lesions. At the last follow-up, LOMS patients had a significantly higher EDSS score (median 3.5) than NOMS patients (median 3.0, p = 0.05). A higher EDSS score correlated with fewer mature and oligodendrocyte precursor cells in active demyelinating lesions (r = - 0.4, p = 0.01 and r = - 0.6, p = 0.003). These findings suggest a clinically relevant impaired oligodendrocyte differentiation and remyelination in LOMS. Since remyelination is essential for axonal protection, it will be necessary to consider the complex and dynamic tissue environment when researching therapeutics aimed at fostering the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Lidia Stork
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str, 40, 37075, Göttingen, Germany
| | - Schirin Stephan
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str, 40, 37075, Göttingen, Germany
| | - Adriane Kutllovci
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str, 40, 37075, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str, 40, 37075, Göttingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str, 40, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Zacher AC, Grabinski M, Console-Meyer L, Felmy F, Pätz-Warncke C. Oligodendrocyte arrangement, identification and morphology in the developing superior olivary complex. Front Cell Neurosci 2025; 19:1561312. [PMID: 40226299 PMCID: PMC11985757 DOI: 10.3389/fncel.2025.1561312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oligodendrocytes provide myelination, metabolic and developmental support for neurons and circuits. Within the auditory superior olivary complex (SOC), relevant for sound localization and spectro-temporal integration, oligodendrocytes are fundamental for fast neuronal communication and accurate timing of sound signals. Despite their important role in function and development, an assessment of their developmental arrangement and morphology is missing for the SOC. Here, immunofluorescence labeling and single cell electroporation was used to quantify their distribution, identification and morphology between postnatal day (P) 5 and ~ P54 in the SOC of Mongolian gerbils (Meriones unguiculatus). Oligodendrocytes show developmental, region-specific accumulations, redistributions and density profiles. Their identification by Olig2 and SOX10 appears age specific, while myelinating oligodendrocytes are detected by co-labeling with S100 irrespective of age. Comparison of oligodendrocyte density and identification between mature gerbil and Etruscan shrew (Suncus etruscus), revealed species-specific differences. Morphologically, the number of myelinating processes decreased, while process length, diameter and coverage area of oligodendrocytes increased during development. Together, oligodendrocyte developmental alterations occur at moments of SOC circuit refinement supporting functions beyond myelination.
Collapse
Affiliation(s)
- Alina Carola Zacher
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Melissa Grabinski
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Laura Console-Meyer
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | | |
Collapse
|
4
|
Kamen Y, Chapman TW, Piedra ET, Ciolkowski ME, Hill RA. Transient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions. J Neurosci 2025; 45:e2066242025. [PMID: 39837665 PMCID: PMC11924999 DOI: 10.1523/jneurosci.2066-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025] Open
Abstract
Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes. Here, we discovered that differentiating oligodendrocytes transiently upregulate the zymogen procaspase-3 in both female and male mice, equipping these cells to make a survival decision during differentiation. Pharmacological inhibition of caspase-3 decreases oligodendrocyte density, indicating that procaspase-3 upregulation is linked to successful oligodendrocyte generation. Moreover, using procaspase-3 as a marker, we show that oligodendrocyte differentiation continues in the aging cortex and white matter. Taken together, our data establish procaspase-3 as a differentiating oligodendrocyte marker and provide insight into the underlying mechanisms occurring during the decision to integrate or die.
Collapse
Affiliation(s)
- Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Matthew E Ciolkowski
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
5
|
Yokoyama K, Hiraoka Y, Abe Y, Tanaka KF. Visualization of myelin-forming oligodendrocytes in the adult mouse brain. J Neurochem 2025; 169:e16218. [PMID: 39233334 PMCID: PMC11657928 DOI: 10.1111/jnc.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.
Collapse
Affiliation(s)
- Kiichi Yokoyama
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Yuichi Hiraoka
- Laboratory of Molecular NeuroscienceMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshifumi Abe
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Kenji F. Tanaka
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Bhambri A, Thai P, Wei S, Bae HG, Barbosa D, Sharma T, Yu Z, Xing C, Kim JH, Yu G, Sun LO. Genetically Labeled Premyelinating Oligodendrocytes: Bridging Oligodendrogenesis and Neuronal Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630559. [PMID: 39763780 PMCID: PMC11703227 DOI: 10.1101/2024.12.27.630559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
To myelinate axons, oligodendrocyte precursor cells (OPCs) must stop dividing and differentiate into premyelinating oligodendrocytes (preOLs). PreOLs are thought to survey and begin ensheathing nearby axons, and their maturation is often stalled at human demyelinating lesions. Lack of genetic tools to visualize and manipulate preOLs has left this critical differentiation stage woefully understudied. Here, we generated a knock-in mouse line that specifically labels preOLs across the central nervous system. Genetically labeled preOLs exhibit distinct morphology, unique transcriptomic and electrophysiological features, and do not overlap with OPCs. PreOL lineage tracing revealed that subsets of them undergo prolonged maturation and that different brain regions initiate oligodendrogenesis with the spatiotemporal specificity. Lastly, by fate mapping preOLs under sensory deprivation, we find that neuronal activity functions within a narrow time window of preOL maturation to promote their survival and successful integration. Our work provides a new tool to probe this critical cell stage during axon ensheathment, allowing for fine dissection of axon-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phu Thai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Han-Gyu Bae
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children’s Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hilla Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hilla Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Hee Kim
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lu O. Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
7
|
Kamen Y, Chapman TW, Piedra ET, Ciolkowski ME, Hill RA. Transient upregulation of procaspase-3 during oligodendrocyte fate decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623446. [PMID: 39605489 PMCID: PMC11601457 DOI: 10.1101/2024.11.13.623446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes. Here, we discovered that differentiating oligodendrocytes transiently upregulate the zymogen procaspase-3, equipping these cells to make a survival decision during differentiation. Pharmacological inhibition of caspase-3 decreases oligodendrocyte density, indicating that procaspase-3 upregulation promotes differentiation. Moreover, using procaspase-3 as a marker, we show that oligodendrocyte differentiation continues in the aging cortex and white matter. Taken together, our data establish procaspase-3 as a differentiating oligodendrocyte marker and provide insight into the underlying mechanisms occurring during the decision to integrate or die.
Collapse
Affiliation(s)
- Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Timothy W. Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Enrique T. Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
9
|
Schenck JK, Karl MT, Clarkson-Paredes C, Bastin A, Pushkarsky T, Brichacek B, Miller RH, Bukrinsky MI. Extracellular vesicles produced by HIV-1 Nef-expressing cells induce myelin impairment and oligodendrocyte damage in the mouse central nervous system. J Neuroinflammation 2024; 21:127. [PMID: 38741181 PMCID: PMC11090814 DOI: 10.1186/s12974-024-03124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive impairments that continue to affect approximately half of all HIV-positive individuals despite effective viral suppression through antiretroviral therapy (ART). White matter pathologies have persisted in the ART era, and the degree of white matter damage correlates with the degree of neurocognitive impairment in patients with HAND. The HIV protein Nef has been implicated in HAND pathogenesis, but its effect on white matter damage has not been well characterized. Here, utilizing in vivo, ex vivo, and in vitro methods, we demonstrate that Nef-containing extracellular vesicles (Nef EVs) disrupt myelin sheaths and inflict damage upon oligodendrocytes within the murine central nervous system. Intracranial injection of Nef EVs leads to reduced myelin basic protein (MBP) staining and a decreased number of CC1 + oligodendrocytes in the corpus callosum. Moreover, cerebellar slice cultures treated with Nef EVs exhibit diminished MBP expression and increased presence of unmyelinated axons. Primary mixed brain cultures and enriched oligodendrocyte precursor cell cultures exposed to Nef EVs display a decreased number of O4 + cells, indicative of oligodendrocyte impairment. These findings underscore the potential contribution of Nef EV-mediated damage to oligodendrocytes and myelin maintenance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Molly T Karl
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Ashley Bastin
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Beda Brichacek
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA.
| |
Collapse
|
10
|
Chapman TW, Kamen Y, Piedra ET, Hill RA. Oligodendrocyte Maturation Alters the Cell Death Mechanisms That Cause Demyelination. J Neurosci 2024; 44:e1794232024. [PMID: 38395617 PMCID: PMC10977033 DOI: 10.1523/jneurosci.1794-23.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
11
|
Hill RA, Nishiyama A, Hughes EG. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harb Perspect Biol 2024; 16:a041425. [PMID: 38052500 PMCID: PMC10910408 DOI: 10.1101/cshperspect.a041425] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the life span in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial cells in brain physiology and pathology.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
12
|
Bouchard EL, Meireles AM, Talbot WS. Oligodendrocyte development and myelin sheath formation are regulated by the antagonistic interaction between the Rag-Ragulator complex and TFEB. Glia 2024; 72:289-299. [PMID: 37767930 PMCID: PMC10841052 DOI: 10.1002/glia.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.
Collapse
Affiliation(s)
- Ellen L. Bouchard
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana M. Meireles
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci 2024; 17:1322813. [PMID: 38273973 PMCID: PMC10808804 DOI: 10.3389/fncel.2023.1322813] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.
Collapse
Affiliation(s)
- Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Alejandra I. Romero-Morales
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Srinidhi R. Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Fiore F, Alhalaseh K, Dereddi RR, Bodaleo Torres F, Çoban I, Harb A, Agarwal A. Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nat Commun 2023; 14:8122. [PMID: 38065932 PMCID: PMC10709653 DOI: 10.1038/s41467-023-43920-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, contributing to myelination and myelin repair. OPCs contact axons and respond to neuronal activity, but how the information relayed by the neuronal activity translates into OPC Ca2+ signals, which in turn influence their fate, remains unknown. We generated transgenic mice for concomitant monitoring of OPCs Ca2+ signals and cell fate using 2-photon microscopy in the somatosensory cortex of awake-behaving mice. Ca2+ signals in OPCs mainly occur within processes and confine to Ca2+ microdomains. A subpopulation of OPCs enhances Ca2+ transients while mice engaged in exploratory locomotion. We found that OPCs responsive to locomotion preferentially differentiate into oligodendrocytes, and locomotion-non-responsive OPCs divide. Norepinephrine mediates locomotion-evoked Ca2+ increases in OPCs by activating α1 adrenergic receptors, and chemogenetic activation of OPCs or noradrenergic neurons promotes OPC differentiation. Hence, we uncovered that for fate decisions OPCs integrate Ca2+ signals, and norepinephrine is a potent regulator of OPC fate.
Collapse
Affiliation(s)
- Frederic Fiore
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Khaleel Alhalaseh
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ram R Dereddi
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Felipe Bodaleo Torres
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ilknur Çoban
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ali Harb
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
15
|
Fekete CD, Horning RZ, Doron MS, Nishiyama A. Cleavage of VAMP2/3 Affects Oligodendrocyte Lineage Development in the Developing Mouse Spinal Cord. J Neurosci 2023; 43:6592-6608. [PMID: 37620160 PMCID: PMC10538588 DOI: 10.1523/jneurosci.2206-21.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/20/2022] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
In the developing and adult CNS, new oligodendrocytes (OLs) are generated from a population of cells known as oligodendrocyte precursor cells (OPCs). As they begin to differentiate, OPCs undergo a series of highly regulated changes to morphology, gene expression, and membrane organization. This stage represents a critical bottleneck in oligodendrogliogenesis, and the regulatory program that guides it is still not fully understood. Here, we show that in vivo toxin-mediated cleavage of the vesicle associated SNARE proteins VAMP2/3 in the OL lineage of both male and female mice impairs the ability of early OLs to mature into functional, myelinating OLs. In the developing mouse spinal cord, many VAMP2/3-cleaved OLs appeared to stall in the premyelinating, early OL stage, resulting in an overall loss of both myelin density and OL number. The Src kinase Fyn, a key regulator of oligodendrogliogenesis and myelination, is highly expressed among premyelinating OLs, but its expression decreases as OLs mature. We found that OLs with cleaved VAMP2/3 in the spinal cord white matter showed significantly higher expression of Fyn compared with neighboring control cells, potentially because of an extended premyelinating stage. Overall, our results show that functional VAMP2/3 in OL lineage cells is essential for proper myelin formation and plays a major role in controlling the maturation and terminal differentiation of premyelinating OLs.SIGNIFICANCE STATEMENT The production of mature oligodendrocytes (OLs) is essential for CNS myelination during development, myelin remodeling in adulthood, and remyelination following injury or in demyelinating disease. Before myelin sheath formation, newly formed OLs undergo a series of highly regulated changes during a stage of their development known as the premyelinating, or early OL stage. This stage acts as a critical checkpoint in OL development, and much is still unknown about the dynamic regulatory processes involved. In this study, we show that VAMP2/3, SNARE proteins involved in vesicular trafficking and secretion play an essential role in regulating premyelinating OL development and are required for healthy myelination in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Robert Z Horning
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Matan S Doron
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
16
|
Zhang T, Bhambri A, Zhang Y, Barbosa D, Bae HG, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control oligodendrocyte number. Cell Rep 2023; 42:112943. [PMID: 37543947 PMCID: PMC10529879 DOI: 10.1016/j.celrep.2023.112943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.
Collapse
Affiliation(s)
- Tingxin Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Gyu Bae
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabeen Wazir
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Ramírez-Rodríguez GB, Meneses San-Juan D, Rico-Becerra AI, González-Olvera JJ, Reyes-Galindo V. Repetitive transcranial magnetic stimulation and fluoxetine reverse depressive-like behavior but with differential effects on Olig2-positive cells in chronically stressed mice. Neuropharmacology 2023; 236:109567. [PMID: 37209812 DOI: 10.1016/j.neuropharm.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| | - David Meneses San-Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Allan Irasek Rico-Becerra
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico; Licenciatura en Neurociencias, Facultad de Medicina. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101. Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Verónica Reyes-Galindo
- Instituto de Ecología. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria. Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| |
Collapse
|
19
|
Sobierajski E, Lauer G, Czubay K, Grabietz H, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct 2023; 228:947-966. [PMID: 37000250 PMCID: PMC10147765 DOI: 10.1007/s00429-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - German Lauer
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Katrin Czubay
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Hannah Grabietz
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
20
|
Gil M, Gama V. Emerging mitochondrial-mediated mechanisms involved in oligodendrocyte development. J Neurosci Res 2023; 101:354-366. [PMID: 36461887 PMCID: PMC9851982 DOI: 10.1002/jnr.25151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system and are generated after oligodendrocyte progenitor cells (OPCs) transition into pre-oligodendrocytes and then into myelinating oligodendrocytes. Myelin is essential for proper signal transmission within the nervous system and axonal metabolic support. Although the intrinsic and extrinsic factors that support the differentiation, survival, integration, and subsequent myelination of appropriate axons have been well investigated, little is known about how mitochondria-related pathways such as mitochondrial dynamics, bioenergetics, and apoptosis finely tune these developmental events. Previous findings suggest that changes to mitochondrial morphology act as an upstream regulatory mechanism of neural stem cell (NSC) fate decisions. Whether a similar mechanism is engaged during OPC differentiation has yet to be elucidated. Maintenance of mitochondrial dynamics is vital for regulating cellular bioenergetics, functional mitochondrial networks, and the ability of cells to distribute mitochondria to subcellular locations, such as the growing processes of oligodendrocytes. Myelination is an energy-consuming event, thus, understanding the interplay between mitochondrial dynamics, metabolism, and apoptosis will provide further insight into mechanisms that mediate oligodendrocyte development in healthy and disease states. Here we will provide a concise overview of oligodendrocyte development and discuss the potential contribution of mitochondrial mitochondrial-mediated mechanisms to oligodendrocyte bioenergetics and development.
Collapse
Affiliation(s)
- M Gil
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - V Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Oishi M, Passlick S, Yamazaki Y, Unekawa M, Adachi R, Yamada M, Imayoshi I, Abe Y, Steinhäuser C, Tanaka KF. Separate optogenetic manipulation of Nerve/glial antigen 2 (NG2) glia and mural cells using the NG2 promoter. Glia 2023; 71:317-333. [PMID: 36165697 DOI: 10.1002/glia.24273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.
Collapse
Affiliation(s)
- Mitsuhiro Oishi
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ruka Adachi
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Yamada
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshifumi Abe
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenji F Tanaka
- Division of Brain Sciences, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Zhang T, Bae HG, Bhambri A, Zhang Y, Barbosa D, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control myelination specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522394. [PMID: 36712125 PMCID: PMC9881874 DOI: 10.1101/2022.12.31.522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.
Collapse
|
23
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
24
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
25
|
Zhang L, Si Q, Yang K, Zhang W, Okita TW, Tian L. mRNA Localization to the Endoplasmic Reticulum in Plant Endosperm Cells. Int J Mol Sci 2022; 23:13511. [PMID: 36362297 PMCID: PMC9656906 DOI: 10.3390/ijms232113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.
Collapse
Affiliation(s)
- Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Qidong Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Kejie Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Wenwei Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| |
Collapse
|
26
|
Hilscher MM, Langseth CM, Kukanja P, Yokota C, Nilsson M, Castelo-Branco G. Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes. BMC Biol 2022; 20:122. [PMID: 35610641 PMCID: PMC9131697 DOI: 10.1186/s12915-022-01325-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations. Results We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS. Conclusions Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01325-z.
Collapse
Affiliation(s)
- Markus M Hilscher
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden.
| | | | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177, Stockholm, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177, Stockholm, Sweden.
| |
Collapse
|
27
|
Turner NL, Macrina T, Bae JA, Yang R, Wilson AM, Schneider-Mizell C, Lee K, Lu R, Wu J, Bodor AL, Bleckert AA, Brittain D, Froudarakis E, Dorkenwald S, Collman F, Kemnitz N, Ih D, Silversmith WM, Zung J, Zlateski A, Tartavull I, Yu SC, Popovych S, Mu S, Wong W, Jordan CS, Castro M, Buchanan J, Bumbarger DJ, Takeno M, Torres R, Mahalingam G, Elabbady L, Li Y, Cobos E, Zhou P, Suckow S, Becker L, Paninski L, Polleux F, Reimer J, Tolias AS, Reid RC, da Costa NM, Seung HS. Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell 2022; 185:1082-1100.e24. [PMID: 35216674 PMCID: PMC9337909 DOI: 10.1016/j.cell.2022.01.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/26/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 μm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.
Collapse
Affiliation(s)
- Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Electrical and Computer Engineering Department, Princeton University, Princeton, NJ 08544, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Alyssa M Wilson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Agnes L Bodor
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Jonathan Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Aleksandar Zlateski
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Russel Torres
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yang Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Erick Cobos
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengcheng Zhou
- Department of Statistics, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Shelby Suckow
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lynne Becker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Liam Paninski
- Department of Statistics, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science at Columbia University, New York, NY 10027, USA
| | - Franck Polleux
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science at Columbia University, New York, NY 10027, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
28
|
Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022; 70:1009-1026. [PMID: 35142399 PMCID: PMC9305589 DOI: 10.1002/glia.24145] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan.,GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Manjally AV, Tay TL. Attack of the Clones: Microglia in Health and Disease. Front Cell Neurosci 2022; 16:831747. [PMID: 35173585 PMCID: PMC8841846 DOI: 10.3389/fncel.2022.831747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amritha Vinayak Manjally
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
- Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Tuan Leng Tay
| |
Collapse
|
30
|
Santos EN, Fields RD. Regulation of myelination by microglia. SCIENCE ADVANCES 2021; 7:eabk1131. [PMID: 34890221 PMCID: PMC8664250 DOI: 10.1126/sciadv.abk1131] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 05/03/2023]
Abstract
Interactions between microglia, the resident macrophages of the central nervous system (CNS), and myelin, the glial sheath on nerve fibers essential for rapid neural impulse transmission, are commonly studied in the context of neurotrauma and disease. However, interactions between microglia and myelin under normal physiological conditions have been largely overlooked. This review summarizes recent research indicating that the unique properties of microglia evident in disease states also enable microglia to regulate myelination during development and throughout life. This includes phagocytosis of cells and myelin membrane as well as the release of trophic factors, cytokines, and chemokines. The ability of microglia to sense neuronal activity and molecular features of the microenvironment enables them to optimize myelination by influencing early oligodendrogenesis, myelin formation, and removal of aberrantly targeted myelin. Understanding how microglia participate in myelination under normal conditions provides a new perspective that will increase understanding of developmental abnormalities.
Collapse
Affiliation(s)
- Erin N. Santos
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Faw TD, Lakhani B, Schmalbrock P, Knopp MV, Lohse KR, Kramer JLK, Liu H, Nguyen HT, Phillips EG, Bratasz A, Fisher LC, Deibert RJ, Boyd LA, McTigue DM, Basso DM. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury. Exp Neurol 2021; 346:113853. [PMID: 34464653 PMCID: PMC10084731 DOI: 10.1016/j.expneurol.2021.113853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Experience-dependent white matter plasticity offers new potential for rehabilitation-induced recovery after neurotrauma. This first-in-human translational experiment combined myelin water imaging in humans and genetic fate-mapping of oligodendrocyte lineage cells in mice to investigate whether downhill locomotor rehabilitation that emphasizes eccentric muscle actions promotes white matter plasticity and recovery in chronic, incomplete spinal cord injury (SCI). In humans, of 20 individuals with SCI that enrolled, four passed the imaging screen and had myelin water imaging before and after a 12-week (3 times/week) downhill locomotor treadmill training program (SCI + DH). One individual was excluded for imaging artifacts. Uninjured control participants (n = 7) had two myelin water imaging sessions within the same day. Changes in myelin water fraction (MWF), a histopathologically-validated myelin biomarker, were analyzed in a priori motor learning and non-motor learning brain regions and the cervical spinal cord using statistical approaches appropriate for small sample sizes. PDGFRα-CreERT2:mT/mG mice, that express green fluorescent protein on oligodendrocyte precursor cells and subsequent newly-differentiated oligodendrocytes upon tamoxifen-induced recombination, were either naive (n = 6) or received a moderate (75 kilodyne), contusive SCI at T9 and were randomized to downhill training (n = 6) or unexercised groups (n = 6). We initiated recombination 29 days post-injury, seven days prior to downhill training. Mice underwent two weeks of daily downhill training on the same 10% decline grade used in humans. Between-group comparison of functional (motor and sensory) and histological (oligodendrogenesis, oligodendroglial/axon interaction, paranodal structure) outcomes occurred post-training. In humans with SCI, downhill training increased MWF in brain motor learning regions (postcentral, precuneus) and mixed motor and sensory tracts of the ventral cervical spinal cord compared to control participants (P < 0.05). In mice with thoracic SCI, downhill training induced oligodendrogenesis in cervical dorsal and lateral white matter, increased axon-oligodendroglial interactions, and normalized paranodal structure in dorsal column sensory tracts (P < 0.05). Downhill training improved sensorimotor recovery in mice by normalizing hip and knee motor control and reducing hyperalgesia, both of which were associated with new oligodendrocytes in the cervical dorsal columns (P < 0.05). Our findings indicate that eccentric-focused, downhill rehabilitation promotes white matter plasticity and improved function in chronic SCI, likely via oligodendrogenesis in nervous system regions activated by the training paradigm. Together, these data reveal an exciting role for eccentric training in white matter plasticity and sensorimotor recovery after SCI.
Collapse
Affiliation(s)
- Timothy D Faw
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - Bimal Lakhani
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Petra Schmalbrock
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael V Knopp
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Keith R Lohse
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT 84112, USA; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108, USA
| | - John L K Kramer
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hanwen Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Huyen T Nguyen
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen G Phillips
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Small Animal Imaging Shared Resources, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Lesley C Fisher
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Rochelle J Deibert
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Dana M McTigue
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - D Michele Basso
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Sustained ErbB Activation Causes Demyelination and Hypomyelination by Driving Necroptosis of Mature Oligodendrocytes and Apoptosis of Oligodendrocyte Precursor Cells. J Neurosci 2021; 41:9872-9890. [PMID: 34725188 PMCID: PMC8638686 DOI: 10.1523/jneurosci.2922-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target. SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Collapse
|
33
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
34
|
Defective myelination in an RNA polymerase III mutant leukodystrophic mouse. Proc Natl Acad Sci U S A 2021; 118:2024378118. [PMID: 34583988 DOI: 10.1073/pnas.2024378118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase (Pol) III synthesizes abundant short noncoding RNAs that have essential functions in protein synthesis, secretion, and other processes. Despite the ubiquitous functions of these RNAs, mutations in Pol III subunits cause Pol III-related leukodystrophy, an early-onset neurodegenerative disease. The basis of this neural sensitivity and the mechanisms of disease pathogenesis are unknown. Here we show that mice expressing pathogenic mutations in the largest Pol III subunit, Polr3a, specifically in Olig2-expressing cells, have impaired growth and developmental delay, deficits in cognitive, sensory, and fine sensorimotor function, and hypomyelination in multiple regions of the cerebrum and spinal cord. These phenotypes reflect a subset of clinical features seen in patients. In contrast, the gross motor defects and cerebellar hypomyelination that are common features of severely affected patients are absent in the mice, suggesting a relatively mild form of the disease in this conditional model. Our results show that disease pathogenesis in the mice involves defects that reduce both the number of mature myelinating oligodendrocytes and the ability of these cells to produce a myelin sheath of normal thickness. The findings suggest unique sensitivities of oligodendrogenesis and myelination to perturbations of Pol III transcription.
Collapse
|
35
|
Irfan M, Evonuk KS, DeSilva TM. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS J 2021; 289:2110-2127. [PMID: 34496137 DOI: 10.1111/febs.16190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Emerging roles for microglia in modifying normal brain development continue to provide new perspectives on the functions of this resident immune cell in the brain. While the molecular underpinnings driving microglia's position in regulating developmental programs remain largely an unchartered territory, innate immune signaling lies at the forefront. At least three innate immune receptors expressed on microglia-fractalkine, complement, and triggering receptor expressed on microglia (TREM2)-modulate developmental synaptic pruning to refine brain circuitry. Our laboratory recently published that microglia with a unique amoeboid morphology invade the corpus callosum and engulf oligodendrocyte progenitor cells (OPCs) during early postnatal development before myelination in a fractalkine receptor (CX3CR1)-dependent manner to modulate ensheathment of axons. Amoeboid microglia are observed in the corpus callosum but not cerebral cortex, and lose their amoeboid shape at the commencement of myelination assuming a resting phenotype. Furthermore, OPCs contacted or engulfed by microglia do not express markers of cell death suggesting a novel homeostatic mechanism facilitating an appropriate OPC:axon ratio for proper myelin ensheathment. The unique morphology of microglia and the restricted window for phagocytic engulfment of OPCs suggest a critical period for OPC engulfment important for action potential propagation during development when activity-dependent mechanisms regulate synaptic pruning. In this review, we summarize the role of activity-dependent mechanisms in sculpting brain circuitry, how myelin ensheathment influences action potential propagation, the spatial and temporal relationship of microglia-dependent elimination of OPCs and synapses, and implications for the synergistic role of microglial phagocytosis in shaping the architecture for neuronal function.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kirsten S Evonuk
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
36
|
Yamazaki Y, Abe Y, Fujii S, Tanaka KF. Oligodendrocytic Na +-K +-Cl - co-transporter 1 activity facilitates axonal conduction and restores plasticity in the adult mouse brain. Nat Commun 2021; 12:5146. [PMID: 34446732 PMCID: PMC8390751 DOI: 10.1038/s41467-021-25488-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
The juvenile brain presents plasticity. Oligodendrocytes are the myelinating cells of the central nervous system and myelination can be adaptive. Plasticity decreases from juvenile to adulthood. The mechanisms involving oligodendrocytes underlying plasticity are unclear. Here, we show Na+-K+-Cl– co-transporter 1 (NKCC1), highly expressed in the juvenile mouse brain, regulates the oligodendrocyte activity from juvenile to adulthood in mice, as shown by optogenetic manipulation of oligodendrocytes. The reduced neuronal activity in adults was restored by Nkcc1 overexpression in oligodendrocytes. Moreover, in adult mice overexpressing Nkcc1, long-term potentiation and learning were facilitated compared to age-matched controls. These findings demonstrate that NKCC1 plays a regulatory role in the age-dependent activity of oligodendrocytes, furthermore inducing activation of NKCC1 in oligodendrocytes can restore neuronal plasticity in the adult mouse brain. Brain plasticity declines with age. Here, the authors show that NKCC1 regulates oligodendrocyte activity, facilitating neuronal plasticity during juvenile. Inducing activation of oligodendrocytic NKCC1 results in restoration of neuronal plasticity in the adult mouse brain.
Collapse
Affiliation(s)
- Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Hughes EG, Stockton ME. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front Cell Dev Biol 2021; 9:714169. [PMID: 34368163 PMCID: PMC8335399 DOI: 10.3389/fcell.2021.714169] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
In the central nervous system, oligodendrocytes produce myelin sheaths that enwrap neuronal axons to provide trophic support and increase conduction velocity. New oligodendrocytes are produced throughout life through a process referred to as oligodendrogenesis. Oligodendrogenesis consists of three canonical stages: the oligodendrocyte precursor cell (OPC), the premyelinating oligodendrocyte (preOL), and the mature oligodendrocyte (OL). However, the generation of oligodendrocytes is inherently an inefficient process. Following precursor differentiation, a majority of premyelinating oligodendrocytes are lost, likely due to apoptosis. If premyelinating oligodendrocytes progress through this survival checkpoint, they generate new myelinating oligodendrocytes in a process we have termed integration. In this review, we will explore the intrinsic and extrinsic signaling pathways that influence preOL survival and integration by examining the intrinsic apoptotic pathways, metabolic demands, and the interactions between neurons, astrocytes, microglia, and premyelinating oligodendrocytes. Additionally, we will discuss similarities between the maturation of newly generated neurons and premyelinating oligodendrocytes. Finally, we will consider how increasing survival and integration of preOLs has the potential to increase remyelination in multiple sclerosis. Deepening our understanding of premyelinating oligodendrocyte biology may open the door for new treatments for demyelinating disease and will help paint a clearer picture of how new oligodendrocytes are produced throughout life to facilitate brain function.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael E Stockton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
38
|
Abstract
Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons upon demyelinating injury. However, mode of cell division and differentiation dynamics of individual OPCs in deep brain structures, such as the corpus callosum, remains unknown. Using in vivo two-photon imaging in a focal model of demyelination, we show that OPCs undergo several rounds of symmetric and asymmetric cell divisions before producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. The data presented here characterize the behavior of OPC clones and delineate the cellular principles that lead to remyelination. Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons in the corpus callosum (CC) upon demyelination. However, the dynamics of OPC activation, mode of cell division, migration, and differentiation on a single-cell level remain poorly understood due to the lack of longitudinal observations of individual cells within the injured brain. After inducing focal demyelination with lysophosphatidylcholin in the CC of adult mice, we used two-photon microscopy to follow for up to 2 mo OPCs and their differentiating progeny, genetically labeled through conditional recombination driven by the regulatory elements of the gene Achaete-scute homolog 1. OPCs underwent several rounds of symmetric and asymmetric cell divisions, producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. While OPCs continue to proliferate, differentiation into myelinating oligodendrocytes declines with time, and death of OPC-derived daughter cells increases. Thus, chronic in vivo imaging delineates the cellular principles leading to remyelination in the adult brain, providing a framework for the development of strategies to enhance endogenous brain repair in acute and chronic demyelinating disease.
Collapse
|
39
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
40
|
Choi BR, Cave C, Na CH, Sockanathan S. GDE2-Dependent Activation of Canonical Wnt Signaling in Neurons Regulates Oligodendrocyte Maturation. Cell Rep 2021; 31:107540. [PMID: 32375055 PMCID: PMC7254694 DOI: 10.1016/j.celrep.2020.107540] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Neurons and oligodendrocytes communicate to regulate oligodendrocyte development and ensure appropriate axonal myelination. Here, we show that Glycerophosphodiester phosphodiesterase 2 (GDE2) signaling underlies a neuronal pathway that promotes oligodendrocyte maturation through the release of soluble neuronally derived factors. Mice lacking global or neuronal GDE2 expression have reduced mature oligodendrocytes and myelin proteins but retain normal numbers of oligodendrocyte precursor cells (OPCs). Wild-type (WT) OPCs cultured in conditioned medium (CM) from Gde2-null (Gde2KO) neurons exhibit delayed maturation, recapitulating in vivo phenotypes. Gde2KO neurons show robust reduction in canonical Wnt signaling, and genetic activation of Wnt signaling in Gde2KO neurons rescues in vivo and in vitro oligodendrocyte maturation. Phosphacan, a known stimulant of oligodendrocyte maturation, is reduced in CM from Gde2KO neurons but is restored when Wnt signaling is activated. These studies identify GDE2 control of Wnt signaling as a neuronal pathway that signals to oligodendroglia to promote oligodendrocyte maturation.
Collapse
Affiliation(s)
- Bo-Ran Choi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA
| | - Clinton Cave
- Neuroscience Program, Middlebury College, 276 Bicentennial Way, MBH 351, Middlebury, VT 05753, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 753, Baltimore, MD 21205, USA
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, PCTB 1004, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Nemes-Baran AD, White DR, DeSilva TM. Fractalkine-Dependent Microglial Pruning of Viable Oligodendrocyte Progenitor Cells Regulates Myelination. Cell Rep 2021; 32:108047. [PMID: 32814050 PMCID: PMC7478853 DOI: 10.1016/j.celrep.2020.108047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrogenesis occurs during early postnatal development, coincident with neurogenesis and synaptogenesis, raising the possibility that microglia-dependent pruning mechanisms that modulate neurons regulate myelin sheath formation. Here we show a population of ameboid microglia migrating from the ventricular zone into the corpus callosum during early postnatal development, termed “the fountain of microglia,” phagocytosing viable oligodendrocyte progenitor cells (OPCs) before onset of myelination. Fractalkine receptor-deficient mice exhibit a reduction in microglial engulfment of viable OPCs, increased numbers of oligodendrocytes, and reduced myelin thickness but no change in axon number. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism for proper myelination. A hallmark of hypomyelinating developmental disorders such as periventricular leukomalacia and of adult demyelinating diseases such as multiple sclerosis is increased numbers of oligodendrocytes but failure to myelinate, suggesting that microglial pruning of OPCs may be impaired in pathological states and hinder myelination. Nemes-Baran et al. show that ameboid microglia engulf living oligodendrocyte progenitor cells (OPCs) during brain development. Fractalkine receptor-deficient microglia exhibit a reduction in engulfment of OPCs, resulting in a surplus of oligodendrocytes and impaired myelination. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism required for normal myelination.
Collapse
Affiliation(s)
- Ashley D Nemes-Baran
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Donovan R White
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
42
|
Smallwood TB, Clark RJ. Advances in venom peptide drug discovery: where are we at and where are we heading? Expert Opin Drug Discov 2021; 16:1163-1173. [PMID: 33914674 DOI: 10.1080/17460441.2021.1922386] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Animal venoms are a complex mixture of bioactive molecules that have evolved over millions of years for prey capture and defense from predators. Venom consists of many different types of molecules, with disulfide-rich peptides being a major component in most venoms. The study of these potent and highly selective molecules has led to the development of venom-derived drugs for diseases such as type 2 diabetes mellitus and chronic pain. As technologies have improved, more bioactive peptides have been discovered from venomous animals. Many of these molecules may have applications as tools for understanding normal and disease physiology, therapeutics, cosmetics or in agriculture.Areas covered: This article reviews venom-derived drugs approved by the FDA and venom-derived peptides currently in development. It discusses the challenges faced by venom-derived peptide drugs during drug development and the future for venom-derived peptides.Expert opinion: New techniques such as toxin driven discovery are expanding the pipeline of venom-derived peptides. There are many venom-derived peptides currently in preclinical and clinical trials that would have remained undiscovered using traditional approaches. A renewed focus on venoms, with advances in technology, will broaden the diversity of venom-derived peptide therapeutics and expand our knowledge of their molecular targets.
Collapse
Affiliation(s)
- Taylor B Smallwood
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
43
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
44
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Lotun A, Gessler DJ, Gao G. Canavan Disease as a Model for Gene Therapy-Mediated Myelin Repair. Front Cell Neurosci 2021; 15:661928. [PMID: 33967698 PMCID: PMC8102781 DOI: 10.3389/fncel.2021.661928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, the scientific and therapeutic fields for rare, genetic central nervous system (CNS) diseases such as leukodystrophies, or white matter disorders, have expanded significantly in part due to technological advancements in cellular and clinical screenings as well as remedial therapies using novel techniques such as gene therapy. However, treatments aimed at normalizing the pathological changes associated with leukodystrophies have especially been complicated due to the innate and variable effects of glial abnormalities, which can cause large-scale functional deficits in developmental myelination and thus lead to downstream neuronal impairment. Emerging research in the past two decades have depicted glial cells, particularly oligodendrocytes and astrocytes, as key, regulatory modulators in constructing and maintaining myelin function and neuronal viability. Given the significance of myelin formation in the developing brain, myelin repair in a time-dependent fashion is critical in restoring homeostatic functionality to the CNS of patients diagnosed with white matter disorders. Using Canavan Disease (CD) as a leukodystrophy model, here we review the hypothetical roles of N-acetylaspartate (NAA), one of the brain's most abundant amino acid derivatives, in Canavan disease's CNS myelinating pathology, as well as discuss the possible functions astrocytes serve in both CD and other leukodystrophies' time-sensitive disease correction. Through this analysis, we also highlight the potential remyelinating benefits of gene therapy for other leukodystrophies in which alternative CNS cell targeting for white matter disorders may be an applicable path for reparative treatment.
Collapse
Affiliation(s)
- Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
46
|
Pease-Raissi SE, Chan JR. Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron 2021; 109:1258-1273. [PMID: 33621477 PMCID: PMC8068592 DOI: 10.1016/j.neuron.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022]
Abstract
Myelin, multilayered lipid-rich membrane extensions formed by oligodendrocytes around neuronal axons, is essential for fast and efficient action potential propagation in the central nervous system. Initially thought to be a static and immutable process, myelination is now appreciated to be a dynamic process capable of responding to and modulating neuronal function throughout life. While the importance of this type of plasticity, called adaptive myelination, is now well accepted, we are only beginning to understand the underlying cellular and molecular mechanisms by which neurons communicate experience-driven circuit activation to oligodendroglia and precisely how changes in oligodendrocytes and their myelin refine neuronal function. Here, we review recent findings addressing this reciprocal relationship in which neurons alter oligodendroglial form and oligodendrocytes conversely modulate neuronal function.
Collapse
Affiliation(s)
- Sarah E Pease-Raissi
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 2021; 118:14-23. [PMID: 33863642 DOI: 10.1016/j.semcdb.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
48
|
Islam R, Kaffman A. White-Matter Repair as a Novel Therapeutic Target for Early Adversity. Front Neurosci 2021; 15:657693. [PMID: 33897364 PMCID: PMC8062784 DOI: 10.3389/fnins.2021.657693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Early adversity (EA) impairs myelin development in a manner that persists later in life across diverse mammalian species including humans, non-human primates, and rodents. These observations, coupled with the highly conserved nature of myelin development suggest that animal models can provide important insights into the molecular mechanisms by which EA impairs myelin development later in life and the impact of these changes on network connectivity, cognition, and behavior. However, this area of translational research has received relatively little attention and no comprehensive review is currently available to address these issues. This is particularly important given some recent mechanistic studies in rodents and the availability of new agents to increase myelination. The goals of this review are to highlight the need for additional pre-clinical work in this area and to provide specific examples that demonstrate the potential of this work to generate novel therapeutic interventions that are highly needed.
Collapse
Affiliation(s)
- Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
49
|
Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 2021; 116:25-37. [PMID: 33741250 PMCID: PMC8292179 DOI: 10.1016/j.semcdb.2021.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) originate in localized germinal zones in the embryonic neural tube, then migrate and proliferate to populate the entire central nervous system, both white and gray matter. They divide and generate myelinating oligodendrocytes (OLs) throughout postnatal and adult life. OPCs express NG2 and platelet-derived growth factor receptor alpha subunit (PDGFRα), two functionally important cell surface proteins, which are also widely used as markers for OPCs. The proliferation of OPCs, their terminal differentiation into OLs, survival of new OLs, and myelin synthesis are orchestrated by signals in the local microenvironment. We discuss advances in our mechanistic understanding of paracrine effects, including those mediated through PDGFRα and neuronal activity-dependent signals such as those mediated through AMPA receptors in OL survival and myelination. Finally, we review recent studies supporting the role of new OL production and “adaptive myelination” in specific behaviours and cognitive processes contributing to learning and long-term memory formation. Our article is not intended to be comprehensive but reflects the authors’ past and present interests.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
50
|
Chaudhary P, Marracci GH, Calkins E, Pocius E, Bensen AL, Scanlan TS, Emery B, Bourdette DN. Thyroid hormone and thyromimetics inhibit myelin and axonal degeneration and oligodendrocyte loss in EAE. J Neuroimmunol 2021; 352:577468. [PMID: 33422763 PMCID: PMC8748188 DOI: 10.1016/j.jneuroim.2020.577468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that thyromimetics stimulate oligodendrocyte precursor cell differentiation and promote remyelination in murine demyelination models. We investigated whether a thyroid receptor-beta selective thyromimetic, sobetirome (Sob), and its CNS-targeted prodrug, Sob-AM2, could prevent myelin and axonal degeneration in experimental autoimmune encephalomyelitis (EAE). Compared to controls, EAE mice receiving triiodothyronine (T3, 0.4 mg/kg), Sob (5 mg/kg) or Sob-AM2 (5 mg/kg) had reduced clinical disease and, within the spinal cord, less tissue damage, more normally myelinated axons, fewer degenerating axons and more oligodendrocytes. T3 and Sob also protected cultured oligodendrocytes against cell death. Thyromimetics thus might protect against oligodendrocyte death, demyelination and axonal degeneration as well as stimulate remyelination in multiple sclerosis.
Collapse
Affiliation(s)
- P Chaudhary
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America.
| | - G H Marracci
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America
| | - E Calkins
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America
| | - E Pocius
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America
| | - A L Bensen
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; Jungers Center for Neurosciences Research, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - T S Scanlan
- Department of Chemical Physiology & Biochemistry and Program in Chemical Biology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - B Emery
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; Jungers Center for Neurosciences Research, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America
| | - D N Bourdette
- Department of Neurology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States of America; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, United States of America
| |
Collapse
|