1
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Almohdar D, Ratcliffe J, Gulkis M, Çağlayan M. Probing the mechanism of nick searching by LIG1 at the single-molecule level. Nucleic Acids Res 2024; 52:12604-12615. [PMID: 39404052 PMCID: PMC11551761 DOI: 10.1093/nar/gkae865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
DNA ligase 1 (LIG1) joins Okazaki fragments during the nuclear replication and completes DNA repair pathways by joining 3'-OH and 5'-PO4 ends of nick at the final step. Yet, the mechanism of how LIG1 searches for a nick at single-molecule level is unknown. Here, we combine single-molecule fluorescence microscopy approaches, C-Trap and total internal reflection fluorescence (TIRF), to investigate the dynamics of LIG1-nick DNA binding. Our C-Trap data reveal that DNA binding by LIG1 full-length is enriched near the nick sites and the protein exhibits diffusive behavior to form a long-lived ligase/nick complex after binding to a non-nick region. However, LIG1 C-terminal mutant, containing the catalytic core and DNA-binding domain, predominantly binds throughout DNA non-specifically to the regions lacking nick site for shorter time. These results are further supported by TIRF data for LIG1 binding to DNA with a single nick site and demonstrate that a fraction of LIG1 full-length binds significantly longer period compared to the C-terminal mutant. Overall comparison of DNA binding modes provides a mechanistic model where the N-terminal domain promotes 1D diffusion and the enrichment of LIG1 binding at nick sites with longer binding lifetime, thereby facilitating an efficient nick search process.
Collapse
Affiliation(s)
- Surajit Chatterjee
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Loïc Chaubet
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | | | - Ann Mukhortava
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Almohdar D, Murcia D, Tang Q, Ortiz A, Martinez E, Parwal T, Kamble P, Çağlayan M. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps. J Biol Chem 2024; 300:107355. [PMID: 38718860 PMCID: PMC11176775 DOI: 10.1016/j.jbc.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polβ during BER. We previously reported that the interruptions in the functional interplay between polβ and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polβ and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polβ nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polβ coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - David Murcia
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Abigail Ortiz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Ernesto Martinez
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Tanay Parwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Pradnya Kamble
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
4
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Gulkis M, Çağlayan M. Uncovering nick DNA binding by LIG1 at the single-molecule level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587287. [PMID: 38586032 PMCID: PMC10996606 DOI: 10.1101/2024.03.28.587287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
DNA ligases repair the strand breaks are made continually and naturally throughout the genome, if left unrepaired and allowed to persist, they can lead to genome instability in the forms of lethal double-strand (ds) breaks, deletions, and duplications. DNA ligase 1 (LIG1) joins Okazaki fragments during the replication machinery and seals nicks at the end of most DNA repair pathways. Yet, how LIG1 recognizes its target substrate is entirely missing. Here, we uncover the dynamics of nick DNA binding by LIG1 at the single-molecule level. Our findings reveal that LIG1 binds to dsDNA both specifically and non-specifically and exhibits diffusive behavior to form a stable complex at the nick. Furthermore, by comparing with the LIG1 C-terminal protein, we demonstrate that the N-terminal non-catalytic region promotes binding enriched at nick sites and facilitates an efficient nick search process by promoting 1D diffusion along the DNA. Our findings provide a novel single-molecule insight into the nick binding by LIG1, which is critical to repair broken phosphodiester bonds in the DNA backbone to maintain genome integrity.
Collapse
|
5
|
Liu X, Yan J, Kirschner MW. Cell size homeostasis is tightly controlled throughout the cell cycle. PLoS Biol 2024; 22:e3002453. [PMID: 38180950 PMCID: PMC10769027 DOI: 10.1371/journal.pbio.3002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
To achieve a stable size distribution over multiple generations, proliferating cells require a means of counteracting stochastic noise in the rate of growth, the time spent in various phases of the cell cycle, and the imprecision in the placement of the plane of cell division. In the most widely accepted model, cell size is thought to be regulated at the G1/S transition, such that cells smaller than a critical size pause at the end of G1 phase until they have accumulated mass to a predetermined size threshold, at which point the cells proceed through the rest of the cell cycle. However, a model, based solely on a specific size checkpoint at G1/S, cannot readily explain why cells with deficient G1/S control mechanisms are still able to maintain a very stable cell size distribution. Furthermore, such a model would not easily account for stochastic variation in cell size during the subsequent phases of the cell cycle, which cannot be anticipated at G1/S. To address such questions, we applied computationally enhanced quantitative phase microscopy (ceQPM) to populations of cultured human cell lines, which enables highly accurate measurement of cell dry mass of individual cells throughout the cell cycle. From these measurements, we have evaluated the factors that contribute to maintaining cell mass homeostasis at any point in the cell cycle. Our findings reveal that cell mass homeostasis is accurately maintained, despite disruptions to the normal G1/S machinery or perturbations in the rate of cell growth. Control of cell mass is generally not confined to regulation of the G1 length. Instead mass homeostasis is imposed throughout the cell cycle. In the cell lines examined, we find that the coefficient of variation (CV) in dry mass of cells in the population begins to decline well before the G1/S transition and continues to decline throughout S and G2 phases. Among the different cell types tested, the detailed response of cell growth rate to cell mass differs. However, in general, when it falls below that for exponential growth, the natural increase in the CV of cell mass is effectively constrained. We find that both mass-dependent cell cycle regulation and mass-dependent growth rate modulation contribute to reducing cell mass variation within the population. Through the interplay and coordination of these 2 processes, accurate cell mass homeostasis emerges. Such findings reveal previously unappreciated and very general principles of cell size control in proliferating cells. These same regulatory processes might also be operative in terminally differentiated cells. Further quantitative dynamical studies should lead to a better understanding of the underlying molecular mechanisms of cell size control.
Collapse
Affiliation(s)
- Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford KE, Hendrickson EA, Baird DM. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res 2019; 47:2402-2424. [PMID: 30590694 PMCID: PMC6411840 DOI: 10.1093/nar/gky1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Fusion of critically short or damaged telomeres is associated with the genomic rearrangements that support malignant transformation. We have demonstrated the fundamental contribution of DNA ligase 4-dependent classical non-homologous end-joining to long-range inter-chromosomal telomere fusions. In contrast, localized genomic recombinations initiated by sister chromatid fusion are predominantly mediated by alternative non-homologous end-joining activity that may employ either DNA ligase 3 or DNA ligase 1. In this study, we sought to discriminate the relative involvement of these ligases in sister chromatid telomere fusion through a precise genetic dissociation of functional activity. We have resolved an essential and non-redundant role for DNA ligase 1 in the fusion of sister chromatids bearing targeted double strand DNA breaks that is entirely uncoupled from its requisite engagement in DNA replication. Importantly, this fusogenic repair occurs in cells fully proficient for non-homologous end-joining and is not compensated by DNA ligases 3 or 4. The dual functions of DNA ligase 1 in replication and non-homologous end-joining uniquely position and capacitate this ligase for DNA repair at stalled replication forks, facilitating mitotic progression.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kevin E Ashelford
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
9
|
Ginzberg MB, Chang N, D'Souza H, Patel N, Kafri R, Kirschner MW. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 2018; 7:26957. [PMID: 29889021 PMCID: PMC6031432 DOI: 10.7554/elife.26957] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cell size uniformity in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether cellular growth rates depend on cell size, by monitoring how variance in size changes as cells grow. Our data revealed that, twice during the cell cycle, growth rates are selectively increased in small cells and reduced in large cells, ensuring cell size uniformity. This regulation was also observed directly by monitoring nuclear growth in live cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical/genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size. Additionally, although Rb signaling is not required for these regulatory behaviors, perturbing Cdk4 activity still influences cell size, suggesting that the Cdk4 pathway may play a role in designating the cell’s target size. Animal cells come in many different sizes. In humans, for example, egg cells are thousands of times larger than sperm cells. Yet cells of any given type are often strikingly similar in size. The cells that line the surface of organs including the skin and kidneys are especially uniform; in fact a loss of size uniformity in certain tumors is a sign of malignancy. What kind of regulation could enable separate cells within a tissue to have the same size? One possibility is that each type of cell is programmed with a specific target size, and that a cell can sense if it strays from its target and take steps to compensate. Animal cells sensing their own size was first reported in the 1960s, and now Ginzberg et al. confirm that human cells grown in the laboratory do indeed monitor their size and correct deviations from their target. It turns out that two separate and independent processes help to keep all the cells in the population roughly uniform in size. Firstly, proliferating human cells that are smaller than their target size spend longer growing before they divide. Secondly, at two time points between cell divisions, large cells adjust their growth rate such that they grow slower than small cells. To show these processes in action, Ginzberg et al. introduced mutations or chemicals that perturbed the length of time between cell divisions or the rate of a cell’s growth. As expected, most of these perturbations had only a modest influence on cell size, due to the cell’s compensatory strategies. Cells that had less time to grow compensated by more quickly making new protein molecules, meaning that they still had enough material to build two new cells by the time they had to divide. In contrast, if a cell’s division was artificially delayed, it reduced its growth rate to stop it from becoming too large. Similarly, cells grown in conditions that slow the production of proteins extended the time between their cell divisions to give them enough time to accumulate the material required for two new cells. In a recent related study, Liu, Ginzberg et al. identified some of the molecules that a human cell uses to sense its own size. Together these two studies now pave the road to answering a fundamental question in cell biology: what is the elusive cell size sensor? Understanding how cells sense their size will open a window onto how quantitative information is programmed, sensed and communicated within living cells. These findings will shed also new light onto how cells specialize into cell types of different sizes, and what happens when cells lose the ability to sense or regulate their size in diseases like cancers.
Collapse
Affiliation(s)
- Miriam Bracha Ginzberg
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Nancy Chang
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Heather D'Souza
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Nish Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
10
|
Howes TRL, Sallmyr A, Brooks R, Greco GE, Jones DE, Matsumoto Y, Tomkinson AE. Structure-activity relationships among DNA ligase inhibitors: Characterization of a selective uncompetitive DNA ligase I inhibitor. DNA Repair (Amst) 2017; 60:29-39. [PMID: 29078112 DOI: 10.1016/j.dnarep.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
In human cells, there are three genes that encode DNA ligase polypeptides with distinct but overlapping functions. Previously small molecule inhibitors of human DNA ligases were identified using a structure-based approach. Three of these inhibitors, L82, a DNA ligase I (LigI)-selective inhibitor, and L67, an inhibitor of LigI and DNA ligases III (LigIII), and L189, an inhibitor of all three human DNA ligases, have related structures that are composed of two 6-member aromatic rings separated by different linkers. Here we have performed a structure-activity analysis to identify determinants of activity and selectivity. The majority of the LigI-selective inhibitors had a pyridazine ring whereas the LigI/III- and LigIII-selective inhibitors did not. In addition, the aromatic rings in LigI-selective inhibitors had either arylhydrazone or acylhydrazone, but not vinyl linkers. Among the LigI-selective inhibitors, L82-G17 exhibited increased activity against and selectivity for LigI compared with L82. Notably. L82-G17 is an uncompetitive inhibitor of the third step of the ligation reaction, phosphodiester bond formation. Cells expressing LigI were more sensitive to L82-G17 than isogenic LIG1 null cells. Furthermore, cells lacking nuclear LigIIIα, which can substitute for LigI in DNA replication, were also more sensitive to L82-G17 than isogenic parental cells. Together, our results demonstrate that L82-G17 is a LigI-selective inhibitor with utility as a probe of the catalytic activity and cellular functions of LigI and provide a framework for the future design of DNA ligase inhibitors.
Collapse
Affiliation(s)
- Timothy R L Howes
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Annahita Sallmyr
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Rhys Brooks
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - George E Greco
- Department of Chemistry, Goucher College, Baltimore, MD 21204, United States
| | - Darin E Jones
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
11
|
Reinhart M, Cardoso MC. A journey through the microscopic ages of DNA replication. PROTOPLASMA 2017; 254:1151-1162. [PMID: 27943022 PMCID: PMC5376393 DOI: 10.1007/s00709-016-1058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Scientific discoveries and technological advancements are inseparable but not always take place in a coherent chronological manner. In the next, we will provide a seemingly unconnected and serendipitous series of scientific facts that, in the whole, converged to unveil DNA and its duplication. We will not cover here the many and fundamental contributions from microbial genetics and in vitro biochemistry. Rather, in this journey, we will emphasize the interplay between microscopy development culminating on super resolution fluorescence microscopy (i.e., nanoscopy) and digital image analysis and its impact on our understanding of DNA duplication. We will interlace the journey with landmark concepts and experiments that have brought the cellular DNA replication field to its present state.
Collapse
Affiliation(s)
- Marius Reinhart
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
12
|
Martin RM, Ter-Avetisyan G, Herce HD, Ludwig AK, Lättig-Tünnemann G, Cardoso MC. Principles of protein targeting to the nucleolus. Nucleus 2016; 6:314-25. [PMID: 26280391 PMCID: PMC4615656 DOI: 10.1080/19491034.2015.1079680] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert M Martin
- a Instituto de Medicina Molecular ; Faculdade de Medicina ; Universidade de Lisboa ; Lisboa , Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Chagin VO, Reinhart M, Cardoso MC. High-resolution analysis of Mammalian DNA replication units. Methods Mol Biol 2016; 1300:43-65. [PMID: 25916704 DOI: 10.1007/978-1-4939-2596-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genomic DNA of a eukaryotic cell is replicated once during the S-phase of the cell cycle to precisely maintain the complete genetic information. In the course of S-phase, semiconservative DNA synthesis is sequentially initiated and performed at thousands of discrete patches of the DNA helix termed replicons. At any given moment of S-phase, multiple replicons are active in parallel in different parts of the genome. In the last decades, tools and methods to visualize DNA synthesis inside cells have been developed. Pulse labeling with nucleotides as well as detecting components of the replication machinery yielded an overall picture of multiple discrete sites of active DNA synthesis termed replication foci (RFi) and forming spatiotemporal patterns within the cell nucleus. Recent advances in fluorescence microscopy and digital imaging in combination with computational image analysis allow a comprehensive quantitative analysis of RFi and provide valuable insights into the organization of the genomic DNA replication process and also of the genome itself. In this chapter, we describe in detail protocols for the visualization and quantification of RFi at different levels of optical and physical resolution.
Collapse
Affiliation(s)
- Vadim O Chagin
- Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia
| | | | | |
Collapse
|
14
|
From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:267570. [PMID: 26508902 PMCID: PMC4609770 DOI: 10.1155/2015/267570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/03/2023]
Abstract
DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.
Collapse
|
15
|
Arakawa H, Iliakis G. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III. Genes (Basel) 2015; 6:385-98. [PMID: 26110316 PMCID: PMC4488670 DOI: 10.3390/genes6020385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023] Open
Abstract
Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a universal DNA ligase, which can potentially substitute or backup the repair and replication functions of all other DNA ligases in the cell nucleus. Thus, the old model of functionally dedicated DNA ligases is now replaced by one in which only Lig4 remains dedicated to C-NHEJ, with Lig1 and Lig3 showing an astounding functional flexibility and interchangeability for practically all nuclear ligation functions. The underlying mechanisms of Lig3 versus Lig1 utilization in DNA repair and replication are expected to be partly different and remain to be elucidated.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- IFOM-FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, Milano 20139, Italy.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen 45122, Germany.
| |
Collapse
|
16
|
Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC. A novel cell permeable DNA replication and repair marker. Nucleus 2014; 5:590-600. [PMID: 25484186 PMCID: PMC4615156 DOI: 10.4161/nucl.36290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells.
Collapse
Affiliation(s)
- Henry D Herce
- a Department of Biology , Technische Universität Darmstadt ; Darmstadt , Germany
| | | | | | | | | |
Collapse
|
17
|
Nakagawa C, Kawakita A, Fukada T, Sugimoto K. Live-cell imaging of HP1α throughout the cell cycle of mouse C3H10T1/2 cells and rhythmical flickering of heterochromatin dots in interphase. Biosci Biotechnol Biochem 2014; 78:556-64. [PMID: 25036950 DOI: 10.1080/09168451.2014.893184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heterochromatin protein 1 alpha (HP1α) localizes to heterochromatin in interphase and shows dynamic molecular behavior in living cells. We previously reported that during mitosis, the majority of HP1α diffused into the cytoplasm but some remained in centromere heterochromatin. Here, we further characterize the molecular behavior of HP1α throughout the cell cycle. Time-lapse imaging of DsRed-HP1α through two successive cell divisions indicated that interphase can be divided into four phases. HP1α forms heterochromatin dots in early G1, which are maintained without any apparent changes (Phase 1). However, the HP1α dots begin to diffuse into the nucleoplasm and start flickering with a rhythmical cycle (Phase 2). Then, the HP1α dots diffuse further towards the periphery of the nucleus (Phase 3), and uniformly diffuse throughout the entire nucleus (Phase 4). Rhythmical flickering of HP1α dots in the middle of interphase may be useful for following cell cycle progression in mouse living cells.
Collapse
Affiliation(s)
- Chika Nakagawa
- a Laboratory of Molecular Biology and Cell Informatics, Division of Bioscience and Informatics , Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka , Japan
| | | | | | | |
Collapse
|
18
|
DNA Repair and Cell Differentiation—Does Getting Older Means Getting Wiser as Well? BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0039-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol 2013; 33:4166-80. [PMID: 23979597 DOI: 10.1128/mcb.00689-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monomethylated histone H4 lysine 20 (H4K20me1) is tightly regulated during the cell cycle. The H4K20me1 demethylase PHF8 transcriptionally regulates many cell cycle genes and is therefore predicted to play key roles in the cell cycle. Here, we show that PHF8 protein levels are the highest during G2 phase and mitosis, and we found PHF8 protein stability to be regulated by the ubiquitin-proteasome system. Purification of the PHF8 complex led to the identification of many subunits of the anaphase-promoting complex (APC) associated with PHF8. We showed that PHF8 interacts with the CDC20-containing APC (APC(cdc20)) primarily during mitosis. In addition, we defined a novel, KEN- and D-box-independent, LXPKXLF motif on PHF8 that is required for binding to CDC20. Through various in vivo and in vitro assays, we demonstrate that mutations of the LXPKXLF motif abrogate polyubiquitylation of PHF8 by the APC. APC substrates are typically cell cycle regulators, and consistent with this, the loss of PHF8 leads to prolonged G2 phase and defective mitosis. Furthermore, we provide evidence that PHF8 plays an important role in transcriptional activation of key G2/M genes during G2 phase. Taken together, these findings suggest that PHF8 is regulated by APC(cdc20) and plays an important role in the G2/M transition.
Collapse
|
20
|
Reinhart M, Casas-Delucchi CS, Cardoso MC. Spatiotemporal visualization of DNA replication dynamics. Methods Mol Biol 2013; 1042:213-225. [PMID: 23980010 DOI: 10.1007/978-1-62703-526-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability of cells to copy their DNA allows them to transmit their genetic information to their progeny. In such, this central biological process preserves the instructions that direct the entire development of a cell. Earlier biochemical analysis in vitro and genetic analysis in yeast laid the basis of our understanding of the highly conserved mechanism of DNA replication. Recent advances on labeling and live-cell microscopy permit now the dissection of this fundamental process in vivo within the context of intact cells. In this chapter, we describe in detail how to perform multiple DNA replication labeling and detection allowing high spatial resolution imaging, as well as how to follow DNA replication in living cells allowing high temporal resolution imaging.
Collapse
Affiliation(s)
- Marius Reinhart
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | |
Collapse
|
21
|
Tanabe M, Ishino S, Yohda M, Morikawa K, Ishino Y, Nishida H. Structure-based mutational study of an archaeal DNA ligase towards improvement of ligation activity. Chembiochem 2012; 13:2575-82. [PMID: 23132734 DOI: 10.1002/cbic.201200336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 12/18/2022]
Abstract
DNA ligases catalyze the joining of strand breaks in duplex DNA. The DNA ligase of Pyrococcus furiosus (PfuLig), which architecturally resembles the human DNA ligase I (hLigI), comprises an N-terminal DNA-binding domain, a middle adenylylation domain, and a C-terminal oligonucleotide-binding (OB)-fold domain. Here we addressed the C-terminal helix in the OB-fold domain of PfuLig by mutational analysis. The crystal structure of PfuLig revealed that this helix stabilizes a closed conformation of the enzyme by forming several ionic interactions with the adenylylation domain. The C-terminal helix is oriented differently in hLigI when DNA is bound; this suggested that disruption of its interaction with the adenylylation domain might facilitate the binding of DNA substrates. We indeed identified one of its residues, Asp540, as being critical for ligation efficiency. The D540R mutation improved the overall ligation activity relative to the wild-type enzyme, and at lower temperatures; this is relevant to applications such as ligation amplification reactions. Physical and biochemical analyses indicated that the improved ligation activity of the D540R variant arises from effects on the ligase adenylylation step and on substrate DNA binding in particular.
Collapse
Affiliation(s)
- Maiko Tanabe
- Central Research Laboratory, Hitachi Ltd., 1-280 Higashi-koigakubo, Kokubunji, 185-8601, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ. Regulation and spatial organization of PCNA in Trypanosoma brucei. Biochem Biophys Res Commun 2012; 419:698-702. [PMID: 22387477 DOI: 10.1016/j.bbrc.2012.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
Abstract
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.
Collapse
Affiliation(s)
- Doris Kaufmann
- University of Munich (LMU), Department Biology I, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.
Collapse
Affiliation(s)
- Timothy R L Howes
- Biomedical Sciences Graduate Program, University of New Mexico, Cancer Research Facility MSC08 4640, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | |
Collapse
|
24
|
Arakawa H, Bednar T, Wang M, Paul K, Mladenov E, Bencsik-Theilen AA, Iliakis G. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells. Nucleic Acids Res 2011; 40:2599-610. [PMID: 22127868 PMCID: PMC3315315 DOI: 10.1093/nar/gkr1024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Institute for Radiocytogenetics, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Casas-Delucchi CS, Brero A, Rahn HP, Solovei I, Wutz A, Cremer T, Leonhardt H, Cardoso MC. Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun 2011; 2:222. [PMID: 21364561 PMCID: PMC3072080 DOI: 10.1038/ncomms1218] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/27/2011] [Indexed: 12/20/2022] Open
Abstract
In mammals, dosage compensation between male and female cells is achieved by inactivating one female X chromosome (Xi). Late replication of Xi was proposed to be involved in the maintenance of its silenced state. Here, we show a highly synchronous replication of the Xi within 1 to 2 h during early-mid S-phase by following DNA replication in living mammalian cells with green fluorescent protein-tagged replication proteins. The Xi was replicated before or concomitant with perinuclear or perinucleolar facultative heterochromatin and before constitutive heterochromatin. Ectopic expression of the X-inactive-specific transcript (Xist) gene from an autosome imposed the same synchronous replication pattern. We used mutations and chemical inhibition affecting different epigenetic marks as well as inducible Xist expression and we demonstrate that histone hypoacetylation has a key role in controlling Xi replication. The epigenetically controlled, highly coordinated replication of the Xi is reminiscent of embryonic genome replication in flies and frogs before genome activation and might be a common feature of transcriptionally silent chromatin.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To highlight the significance of the abnormal DNA repair mechanism in male infertility. RECENT FINDINGS DNA repair defects cause a variety of spermatogenic defects in mouse models. Evidence is accumulating to demonstrate the importance of DNA repair defects in human nonobstructive azoospermia. Epigenetic changes may also play a crucial role in infertility. SUMMARY The DNA in the cell needs to be constantly repaired to ensure fidelity of DNA replication, to maintain genome stability and to ensure propagation of species. The DNA repair and recombination machineries are highly conserved across the species and inactivation of these pathways may lead to replication and recombination errors. This review summarizes the different types of DNA lesions and DNA repair pathways, particularly focusing on highly conserved meiotic regulators, the DNA mismatch repair proteins. Targeted deletions of some of these proteins result in infertility and predisposes to tumor in mutant mouse models. There is evidence for loss of some of these proteins in human male infertility. Because defective DNA repair is associated with a mutator phenotype, the risk of transmission to the offspring of these otherwise infertile men conceived using an assisted reproductive technology needs further evaluation.
Collapse
|
27
|
Zhu Y, Wu Z, Cardoso MC, Parris DS. Processing of lagging-strand intermediates in vitro by herpes simplex virus type 1 DNA polymerase. J Virol 2010; 84:7459-72. [PMID: 20444887 PMCID: PMC2897638 DOI: 10.1128/jvi.01875-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 04/28/2010] [Indexed: 12/14/2022] Open
Abstract
The processing of lagging-strand intermediates has not been demonstrated in vitro for herpes simplex virus type 1 (HSV-1). Human flap endonuclease-1 (Fen-1) was examined for its ability to produce ligatable products with model lagging-strand intermediates in the presence of the wild-type or exonuclease-deficient (exo(-)) HSV-1 DNA polymerase (pol). Primer/templates were composed of a minicircle single-stranded DNA template annealed to primers that contained 5' DNA flaps or 5' annealed DNA or RNA sequences. Gapped DNA primer/templates were extended but not significantly strand displaced by the wild-type HSV-1 pol, although significant strand displacement was observed with exo(-) HSV-1 pol. Nevertheless, the incubation of primer/templates containing 5' flaps with either wild-type or exo(-) HSV-1 pol and Fen-1 led to the efficient production of nicks that could be sealed with DNA ligase I. Both polymerases stimulated the nick translation activity of Fen-1 on DNA- or RNA-containing primer/templates, indicating that the activities were coordinated. Further evidence for Fen-1 involvement in HSV-1 DNA synthesis is suggested by the ability of a transiently expressed green fluorescent protein fusion with Fen-1 to accumulate in viral DNA replication compartments in infected cells and by the ability of endogenous Fen-1 to coimmunoprecipitate with an essential viral DNA replication protein in HSV-1-infected cells.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Zetang Wu
- Department of Molecular Virology, Immunology, and Medical Genetics, Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Department of Molecular Virology, Immunology, and Medical Genetics, Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Deborah S. Parris
- Department of Molecular Virology, Immunology, and Medical Genetics, Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, Ohio 43210, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
28
|
Abstract
The discovery of the DNA double helix structure half a century ago immediately suggested a mechanism for its duplication by semi-conservative copying of the nucleotide sequence into two DNA daughter strands. Shortly after, a second fundamental step toward the elucidation of the mechanism of DNA replication was taken with the isolation of the first enzyme able to polymerize DNA from a template. In the subsequent years, the basic mechanism of DNA replication and its enzymatic machinery components were elucidated, mostly through genetic approaches and in vitro biochemistry. Most recently, the spatial and temporal organization of the DNA replication process in vivo within the context of chromatin and inside the intact cell are finally beginning to be elucidated. On the one hand, recent advances in genome-wide high throughput techniques are providing a new wave of information on the progression of genome replication at high spatial resolution. On the other hand, novel super-resolution microscopy techniques are just starting to give us the first glimpses of how DNA replication is organized within the context of single intact cells with high spatial resolution. The integration of these data with time lapse microscopy analysis will give us the ability to film and dissect the replication of the genome in situ and in real time.
Collapse
Affiliation(s)
- Vadim O Chagin
- Department of Biology, Technische Universität Darmstadt, Germany
| | | | | |
Collapse
|
29
|
Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biol 2009; 10:88. [PMID: 20015367 PMCID: PMC2803164 DOI: 10.1186/1471-2121-10-88] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/16/2009] [Indexed: 11/21/2022] Open
Abstract
Background DNA replication in human cells is performed in discrete sub-nuclear locations known as replication foci or factories. These factories form in the nucleus during S phase and are sites of DNA synthesis and high local concentrations of enzymes required for chromatin replication. Why these structures are required, and how they are organised internally has yet to be identified. It has been difficult to analyse the structure of these factories as they are small in size and thus below the resolution limit of the standard confocal microscope. We have used stimulated emission depletion (STED) microscopy, which improves on the resolving power of the confocal microscope, to probe the structure of these factories at sub-diffraction limit resolution. Results Using immunofluorescent imaging of PCNA (proliferating cell nuclear antigen) and RPA (replication protein A) we show that factories are smaller in size (approximately 150 nm diameter), and greater in number (up to 1400 in an early S- phase nucleus), than is determined by confocal imaging. The replication inhibitor hydroxyurea caused an approximately 40% reduction in number and a 30% increase in diameter of replication factories, changes that were not clearly identified by standard confocal imaging. Conclusions These measurements for replication factory size now approach the dimensions suggested by electron microscopy. This agreement between these two methods, that use very different sample preparation and imaging conditions, suggests that we have arrived at a true measurement for the size of these structures. The number of individual factories present in a single nucleus that we measure using this system is greater than has been previously reported. This analysis therefore suggests that each replication factory contains fewer active replication forks than previously envisaged.
Collapse
|
30
|
Martin RM, Cardoso MC. Chromatin condensation modulates access and binding of nuclear proteins. FASEB J 2009; 24:1066-72. [PMID: 19897663 PMCID: PMC2845425 DOI: 10.1096/fj.08-128959] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The condensation level of chromatin is controlled by epigenetic modifications and associated regulatory factors and changes throughout differentiation and cell cycle progression. To test whether changes of chromatin condensation levels per se affect access and binding of proteins, we used a hypertonic cell treatment. This shift to hyperosmolar medium increased nuclear calcium concentrations and induced a reversible chromatin condensation comparable to the levels in mitosis. However, this condensation was independent of mitotic histone H3 serine 10 phosphorylation. Photobleaching and photoactivation experiments with chromatin proteins—histone H2B-GFP and GFP-HP1α—before and after induced chromatin condensation demonstrated that hypercondensation reduced their dissociation rate and stabilized their chromatin binding. Finally, measuring the distribution of nucleoplasmic proteins in the size range from 30 to 230 kDa, we found that even relatively small proteins like GFP were excluded from highly condensed chromatin in living cells. These results suggest that structural changes in condensed chromatin by themselves affect chromatin access and binding of chromatin proteins independent of regulatory histone modifications.—Martin, R. M., Cardoso, M. C. Chromatin condensation modulates access and binding of nuclear proteins.
Collapse
|
31
|
Two fundamentally distinct PCNA interaction peptides contribute to chromatin assembly factor 1 function. Mol Cell Biol 2009; 29:6353-65. [PMID: 19822659 DOI: 10.1128/mcb.01051-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes.
Collapse
|
32
|
Knudsen NØ, Andersen SD, Lützen A, Nielsen FC, Rasmussen LJ. Nuclear translocation contributes to regulation of DNA excision repair activities. DNA Repair (Amst) 2009; 8:682-9. [PMID: 19376751 DOI: 10.1016/j.dnarep.2009.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022]
Abstract
DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import, co-import of proteins, and alternative transport pathways. Most excision repair proteins appear to contain classical NLS sequences directing their nuclear import, however, additional import mechanisms add alternative regulatory levels to protein import, indirectly affecting protein function. Protein co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair.
Collapse
Affiliation(s)
- Nina Østergaard Knudsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
33
|
Abstract
DNA replication takes place at discrete sites in the cell nucleus, named replication foci. The spatial arrangements of these foci change in the course of S phase in a temporally regulated and reproducible fashion forming five distinct and highly conserved replication patterns. The organization of nuclear replication sites can be studied by electron and light microscopy techniques. This chapter describes several procedures for detection of replication foci in mammalian nuclei via indirect immunofluorescence microscopy.
Collapse
|
34
|
Lys-110 is essential for targeting PCNA to replication and repair foci, and the K110A mutant activates apoptosis. Biol Cell 2008; 100:675-86. [PMID: 18498247 DOI: 10.1042/bc20070158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION PCNA (proliferating cell nuclear antigen) is required for a wide range of cellular functions, including DNA replication and damage repair. To be functional, PCNA must associate with the replication and repair foci. In addition, PCNA also mediates targeting of certain replication and repair proteins to these foci. However, the mechanism is not yet known by which PCNA is imported into the nucleus, and then localized to the replication and repair foci. RESULTS We have found that an NLS (nuclear localization sequence) is present within the amino acid 101-120 segment of PCNA. An NLS-deleted PCNA was localized in the cytoplasm and showed 5-fold lower affinity for importin-beta than wild-type, suggesting that PCNA may be imported into the nucleus by importin-beta via its NLS. We previously reported that the functional unit of PCNA is a double trimer (as opposed to single homotrimer), and Lys-110 is essential for the formation of the double trimer complex [Naryzhny, Zhao and Lee (2005) J. Biol. Chem. 280, 13888-13894]. The present study shows that the substitution of Lys-110 within the NLS to an alanine residue did not affect its nuclear localization. However, the double-trimer-defective PCNA(K110A) was not localized at replication or repair foci. In contrast, the double-trimer-intact PCNA(K117A) mutant was targeted normally to replication and repair foci. Interestingly, in cells transfected with PCNA(K110A), but not PCNA(K117A), caspase-3-mediated chromosome fragmentation was activated. CONCLUSIONS The present study suggests that the regulation of PCNA is intimately connected with that of DNA replication, repair and cell death signals, and raises the possibility that defects in the formation of the PCNA double-trimer complex can cause apoptosis.
Collapse
|
35
|
Abstract
DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encircles nicked DNA with each of the domains contacting the DNA duplex. The unique segments adjacent to the catalytic region of eukaryotic DNA ligases are involved in specific protein-protein interactions with a growing number of DNA replication and repair proteins. These interactions determine the specific cellular functions of the DNA ligase isozymes. In mammals, defects in DNA ligation have been linked with an increased incidence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
36
|
Zolghadr K, Mortusewicz O, Rothbauer U, Kleinhans R, Goehler H, Wanker EE, Cardoso MC, Leonhardt H. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol Cell Proteomics 2008; 7:2279-87. [PMID: 18622019 DOI: 10.1074/mcp.m700548-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic high throughput screens have yielded large sets of potential protein-protein interactions now to be verified and further investigated. Here we present a simple assay to directly visualize protein-protein interactions in single living cells. Using a modified lac repressor system, we tethered a fluorescent bait at a chromosomal lac operator array and assayed for co-localization of fluorescent prey fusion proteins. With this fluorescent two-hybrid assay we successfully investigated the interaction of proteins from different subcellular compartments including nucleus, cytoplasm, and mitochondria. In combination with an S phase marker we also studied the cell cycle dependence of protein-protein interactions. These results indicate that the fluorescent two-hybrid assay is a powerful tool to investigate protein-protein interactions within their cellular environment and to monitor the response to external stimuli in real time.
Collapse
Affiliation(s)
- Kourosh Zolghadr
- Munich Center for Integrated Protein Science (CiPSM) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hepperger C, Mannes A, Merz J, Peters J, Dietzel S. Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma 2008; 117:535-51. [DOI: 10.1007/s00412-008-0168-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/24/2022]
|
38
|
Rottach A, Kremmer E, Nowak D, Boisguerin P, Volkmer R, Cardoso MC, Leonhardt H, Rothbauer U. Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma (Larchmt) 2008; 27:91-8. [DOI: 10.1089/hyb.2007.0555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrea Rottach
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Molecular Immunology, Munich, Germany
| | - Danny Nowak
- Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Rudolf Volkmer
- Institute of Medical Immunology, Charité-Berlin, Berlin, Germany
| | | | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Ulrich Rothbauer
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
39
|
Abstract
Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites.
Collapse
|
40
|
Easwaran HP, Leonhardt H, Cardoso MC. Distribution of DNA replication proteins in Drosophila cells. BMC Cell Biol 2007; 8:42. [PMID: 17937809 PMCID: PMC2104529 DOI: 10.1186/1471-2121-8-42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022] Open
Abstract
Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very transient interactions at the RF.
Collapse
|
41
|
Buguliskis JS, Casta LJ, Butz CE, Matsumoto Y, Taraschi TF. Expression and biochemical characterization of Plasmodium falciparum DNA ligase I. Mol Biochem Parasitol 2007; 155:128-37. [PMID: 17688957 PMCID: PMC2692355 DOI: 10.1016/j.molbiopara.2007.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 11/18/2022]
Abstract
We report that Plasmodium falciparum (Pf) encodes a 912 amino acid ATP-dependent DNA ligase. Protein sequence analysis of Pf DNA ligase I indicates a strong sequence similarity, particularly in the C-terminal region, to DNA ligase I homologues. The activity of recombinant Pf DNA ligase I (PfLigI) was investigated using protein expressed in HEK293 cells. The PfLigI gene product is approximately 94kDa and catalyzes phosphodiester bond formation on a singly nicked DNA substrate. The enzyme is most active at alkaline pH (8.5) and with Mg(2+) or Mn(2+) and ATP as cofactors. Kinetic studies of PfLigI revealed that the enzyme has similar substrate affinity (K(m) 2.6nM) as compared to human DNA ligase I and k(cat) (2.3x10(-3)s(-1)) and k(cat)/K(m) (8.8x10(5)M(-1)s(-1)) which are similar to other ATP-dependent DNA ligases. PfLigI was able to join RNA-DNA substrates only when the RNA sequence was upstream of the nick, confirming that it is DNA ligase I and has no associated DNA ligase III like activity.
Collapse
Affiliation(s)
- Jeffrey S. Buguliskis
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Louis J. Casta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Charles E. Butz
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yoshihiro Matsumoto
- Medical Science Division, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111
| | - Theodore F. Taraschi
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Address Correspondence: Theodore F. Taraschi, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania, 19107-6731, Tel. 215-503-5020 Fax. 215-503-0206 E-mail:
| |
Collapse
|
42
|
Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, Cardoso MC, Leonhardt H. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res 2007; 35:4301-12. [PMID: 17576694 PMCID: PMC1934996 DOI: 10.1093/nar/gkm432] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Postreplicative maintenance of genomic methylation patterns was proposed to depend largely on the binding of DNA methyltransferase 1 (Dnmt1) to PCNA, a core component of the replication machinery. We investigated how the slow and discontinuous DNA methylation could be mechanistically linked with fast and processive DNA replication. Using photobleaching and quantitative live cell imaging we show that Dnmt1 binding to PCNA is highly dynamic. Activity measurements of a PCNA-binding-deficient mutant with an enzyme-trapping assay in living cells showed that this interaction accounts for a 2-fold increase in methylation efficiency. Expression of this mutant in mouse dnmt1-/- embryonic stem (ES) cells restored CpG island methylation. Thus association of Dnmt1 with the replication machinery enhances methylation efficiency, but is not strictly required for maintaining global methylation. The transient nature of this interaction accommodates the different kinetics of DNA replication and methylation while contributing to faithful propagation of epigenetic information.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Andrea Haemmer
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Fabio Spada
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Nicole Rösing
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Daniela Meilinger
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Ulrich Rothbauer
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - M. Cristina Cardoso
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Heinrich Leonhardt
- Ludwig Maximilians University Munich (LMU), Department of Biology II, 82152 Martinsried, Germany and Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
- *To whom correspondence should be addressed. +49-89-2180-74232+49-89-2180-74236
| |
Collapse
|
43
|
Martin RM, Tünnemann G, Leonhardt H, Cardoso MC. Nucleolar marker for living cells. Histochem Cell Biol 2007; 127:243-51. [PMID: 17205309 DOI: 10.1007/s00418-006-0256-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2006] [Indexed: 12/26/2022]
Abstract
In the recent molecular and cell biological research, there is an increasing need for labeling of subcellular structures in living cells. Here, we present the use of a fluorescently labeled cell penetrating peptide for fast labeling of nucleoli in living cells of different species and origin. We show that the short peptide with ten amino acids was able to cross cellular membranes and reach the nucleolar target sites, thereby marking this subnuclear structure in living cells. The treatment of cells with actinomycin D and labeling of B23 protein and fibrillarin provided evidence for a localization to the granular component of the nucleolus. The fluorescently conjugated nucleolar marker could be used in combination with different fluorophores like fluorescent proteins or DNA dyes, and nucleolar labeling was also preserved during fixation and staining of the cells. Furthermore, we observed a high stability of the label in long-term studies over 24 h as well as no effect on the cellular viability and proliferation and on rDNA transcription. The transducible nucleolar marker is therefore a valuable molecular tool for cell biology that allows a fast and easy labeling of this structure in living cells.
Collapse
Affiliation(s)
- Robert M Martin
- Max Delbrück Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC. Cargo‐dependent mode of uptake and bioavailability of TAT‐containing proteins and peptides in living cells. FASEB J 2006; 20:1775-84. [PMID: 16940149 DOI: 10.1096/fj.05-5523com] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are capable of introducing a wide range of cargoes into living cells. Descriptions of the internalization process vary from energy-independent cell penetration of membranes to endocytic uptake. To elucidate whether the mechanism of entry of CPP constructs might be influenced by the properties of the cargo, we used time lapse confocal microscopy analysis of living mammalian cells to directly compare the uptake of the well-studied CPP TAT fused to a protein (>50 amino acids) or peptide (<50 amino acids) cargo. We also analyzed various constructs for their subcellular distribution and mobility after the internalization event. TAT fusion proteins were taken up largely into cytoplasmic vesicles whereas peptides fused to TAT entered the cell in a rapid manner that was dependent on membrane potential. Despite their accumulation in the nucleolus, photobleaching of TAT fusion peptides revealed their mobility. The bioavailability of internalized TAT peptides was tested and confirmed by the strong inhibitory effect on cell cycle progression of two TAT fusion peptides derived from the tumor suppressor p21(WAF/Cip) and DNA Ligase I measured in living cells.
Collapse
Affiliation(s)
- Gisela Tünnemann
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Mortusewicz O, Rothbauer U, Cardoso MC, Leonhardt H. Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Res 2006; 34:3523-32. [PMID: 16855289 PMCID: PMC1524911 DOI: 10.1093/nar/gkl492] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/22/2006] [Accepted: 06/27/2006] [Indexed: 12/30/2022] Open
Abstract
DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair.
Collapse
Affiliation(s)
- Oliver Mortusewicz
- Department of Biology II, Ludwig Maximilians University Munich82152 Planegg-Martinsried, Germany
- Max Delbrück Center for Molecular Medicine13125 Berlin, Germany
| | - Ulrich Rothbauer
- Department of Biology II, Ludwig Maximilians University Munich82152 Planegg-Martinsried, Germany
- Max Delbrück Center for Molecular Medicine13125 Berlin, Germany
| | | | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236; E-mail:
| |
Collapse
|
46
|
Hirano M, Furiya Y, Asai H, Yasui A, Ueno S. ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome. Proc Natl Acad Sci U S A 2006; 103:2298-303. [PMID: 16467144 PMCID: PMC1413683 DOI: 10.1073/pnas.0505598103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triple A syndrome is an autosomal recessive neuroendocrinological disease caused by mutations in a gene that encodes 546 amino acid residues. The encoded protein is the nucleoporin ALADIN, a component of nuclear pore complex (NPC). We identified a mutant ALADIN(I482S) that fails to target NPC and investigated the consequences of mistargeting using cultured fibroblasts (I482Sf) from a patient with triple A syndrome. ALADIN(I482S) affected a karyopherin-alpha/beta-mediated import pathway and decreased nuclear accumulations of aprataxin (APTX), a repair protein for DNA single-strand breaks (SSBs), and of DNA ligase I in I482Sf. This decrease was restored by wild-type ALADIN. ALADIN(I482S) had no effect on imports of M9/kap-beta2, BIB/kap-beta3, histone H1/importin 7, the ubiquitin conjugating enzyme UbcM2/importin 11, or the spliceosome protein U1A, indicating that ALADIN(I482S) selectively impaired transport of discrete import complexes through NPC. Cell survival assay showed hypersensitivity of I482Sf to l-buthionine-(S,R)-sulfoximine (BSO), a glutathione-depleting agent. BSO decreased nuclear APTX and ligase I levels in I482Sf and normal control fibroblasts, but increased SSBs only in I482Sf. These observations implied that I482Sf are hypersensitive to BSO and no longer sufficiently repair SSBs. Consistent with this notion, I482Sf transfected with both APTX and ligase I had increased resistance to BSO, whereas I482Sf transfected with LacZ vector remained hypersensitive to BSO. We propose that oxidative stress aggravates nuclear import failure, which is already compromised in patient cells. Consequent DNA damage, beyond the limited capacity of DNA repair proteins, i.e., APTX and ligase I, may participate in triggering cell death.
Collapse
Affiliation(s)
- Makito Hirano
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Yoshiko Furiya
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Hirohide Asai
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Ueno
- *Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 2005; 6:44. [PMID: 16336643 PMCID: PMC1325247 DOI: 10.1186/1471-2121-6-44] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.
Collapse
Affiliation(s)
- Robert Mayer
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str 2, 82152 Planegg-Martinsried, Germany
| | - Alessandro Brero
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str 2, 82152 Planegg-Martinsried, Germany
| | - Johann von Hase
- Kirchhoff Institut für Physik, Universität Heidelberg, Germany
| | - Timm Schroeder
- Institute of Stem Cell Research, GSF – National Research Center for Environment and Health, Neuherberg, Germany
| | - Thomas Cremer
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str 2, 82152 Planegg-Martinsried, Germany
| | - Steffen Dietzel
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
48
|
Philimonenko AA, Hodný Z, Jackson DA, Hozák P. The microarchitecture of DNA replication domains. Histochem Cell Biol 2005; 125:103-17. [PMID: 16247614 DOI: 10.1007/s00418-005-0090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2005] [Indexed: 02/07/2023]
Abstract
Most DNA synthesis in HeLa cell nucleus is concentrated in discrete foci. These synthetic sites can be identified by electron microscopy after allowing permeabilized cells to elongate nascent DNA in the presence of biotin-dUTP. Biotin incorporated into nascent DNA can be then immunolabeled with gold particles. Two types of DNA synthetic sites/replication factories can be distinguished at ultrastructural level: (1) electron-dense structures--replication bodies (RB), and (2) focal replication sites with no distinct underlying structure--replication foci (RF). The protein composition of these synthetic sites was studied using double immunogold labeling. We have found that both structures contain (a) proteins involved in DNA replication (DNA polymerase alpha, PCNA), (b) regulators of the cell cycle (cyclin A, cdk2), and (c) RNA processing components like Sm and SS-B/La auto antigens, p80-coilin, hnRNPs A1 and C1/C2. However, at least four regulatory and structural proteins (Cdk1, cyclin B1, PML and lamin B1) differ in their presence in RB and RF. Moreover, in contrast to RF, RB have structural organization. For example, while DNA polymerase alpha, PCNA and hnRNP A1 were diffusely spread throughout RB, hnRNP C1/C2 was found only at the very outside. Surprisingly, RB contained only small amounts of DNA. In conclusion, synthetic sites of both types contain similar but not the same sets of proteins. RB, however, have more developed microarchitecture, apparently with specific functional zones. This data suggest possible differences in genome regions replicated by these two types of replication factories.
Collapse
Affiliation(s)
- Anatoly A Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20, Prague 4-Krc, Czech Republic
| | | | | | | |
Collapse
|
49
|
Weidtkamp-Peters S, Rahn HP, Cardoso MC, Hemmerich P. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 2005; 125:91-102. [PMID: 16231189 DOI: 10.1007/s00418-005-0063-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
The replication of eukaryotic chromosomes takes place throughout S phase, but little is known how this process is organized in space and time. Early and late replicating chromosomal domains appear to localize to distinct spatial compartments of the nucleus where DNA synthesis can take place at defined times during S phase. In general, transcriptionally active chromatin replicates early in S phase whereas transcriptionally inactive chromatin replicates later. Here we provide evidence for significant deviation from this dogma in mouse NIH3T3 cells. While the bulk pericentromeric heterochromatin replicates exclusively during mid to late S phase, centromeric DNA domains associated with constitutive kinetochore proteins are replicated throughout all stages of S phase. On an average, 12+/-4% of centromeres replicate in early S phase. Early replication of a subset of centromeres was also detected in living C2C12 murine cells. Thus, in contrast to expectation, late replication is not an obligatory feature of centromeric heterochromatin in murine cells and it does not determine their 'heterochromatic state'.
Collapse
|
50
|
Schermelleh L, Spada F, Easwaran HP, Zolghadr K, Margot JB, Cardoso MC, Leonhardt H. Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2005; 2:751-6. [PMID: 16179921 DOI: 10.1038/nmeth794] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/12/2005] [Indexed: 12/31/2022]
Abstract
DNA methyltransferases have a central role in the complex regulatory network of epigenetic modifications controlling gene expression in mammalian cells. To study the regulation of DNA methylation in living cells, we developed a trapping assay using transiently expressed fluorescent DNA methyltransferase 1 (Dnmt1) fusions and mechanism-based inhibitors 5-azacytidine (5-aza-C) or 5-aza-2'-deoxycytidine (5-aza-dC). These nucleotide analogs are incorporated into the newly synthesized DNA at nuclear replication sites and cause irreversible immobilization, that is, trapping of Dnmt1 fusions at these sites. We measured trapping by either fluorescence bleaching assays or photoactivation of photoactivatable green fluorescent protein fused to Dnmt1 (paGFP-Dnmt1) in mouse and human cells; mutations affecting the catalytic center of Dnmt1 prevented trapping. This trapping assay monitors kinetic properties and activity-dependent immobilization of DNA methyltransferases in their native environment, and makes it possible to directly compare mutations and inhibitors that affect regulation and catalytic activity of DNA methyltransferases in single living cells.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Ludwig Maximilians University Munich, Department of Biology II, Planegg-Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|