1
|
Maguire B, Kisakol B, Prehn JHM, Burke JP. SATB2 Expression Affects Chemotherapy Metabolism and Immune Checkpoint Gene Expression in Colorectal Cancer. Clin Colorectal Cancer 2025; 24:129-134.e7. [PMID: 39794188 DOI: 10.1016/j.clcc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Special AT-rich binding protein-2 (SATB2) is a nuclear matrix associated protein regulating gene expression which is normally expressed in colonic tissue. Loss of SATB2 expression in colorectal cancer (CRC) has negative implications for prognosis and has been associated with chemotherapy resistance. Furthermore, recent evidence suggests SATB2 may influence immune checkpoint (IC) expression. We hypothesized that SATB2 expression may be associated with altered expression of chemotherapy resistance associated and IC genes. METHODS Clinicopathologic and gene expression data were extracted from The Cancer Genome Atlas PanCancer Atlas. SATB2 expression was compared by clinicopathologic characteristic and by using multivariate regression analysis to explore associations with chemotherapy and IC gene expression. RESULTS About 553 patients were included for analysis. Lower quartile SATB2 expression was associated with worse disease specific survival (P = .04). MSI (P < .001) and mucinous (P < .001) tumors were associated with reduced SATB2 expression independently. SATB2 varied by consensus molecular subtype (P < .001) and was lowest in CMS1. On multivariate analysis, SATB2 was negatively associated with 5-FU related metabolism genes, while more complex but significant relationships were seen with oxaliplatin and irinotecan related genes. Low SATB2 expression was associated with increased expression of PD-1, PD-L1, TIM-3 and CTLA-4 IC genes. CONCLUSION The positive prognostic influence of SATB2 expression is reaffirmed in this study. This effect may be explained by the negative association between SATB2 and 5-FU-resistance related gene expression. Enhanced IC gene expression in SATB2 low cases suggests a potential role for IC inhibition in this setting, but further study is required.
Collapse
Affiliation(s)
- Barry Maguire
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland; Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Garrido VE, Outlaw WG, Powell AM, Ables ET. SR Protein Kinase is expressed in Drosophila ovarian germline stem cells but is not essential for their self-renewal. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001550. [PMID: 40171240 PMCID: PMC11959418 DOI: 10.17912/micropub.biology.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025]
Abstract
Germline stem cells (GSCs) are necessary for oocyte production in Drosophila . GSC maintenance is regulated by intrinsic factors that promote their self-renewal. One such factor, the beta-importin, Transportin-Serine/Arginine rich , mediates nuclear import of serine/arginine-rich (SR) proteins, which are phosphorylated by SR protein kinases. Here, we investigate whether the kinase encoded by SR protein kinase ( SRPK ) is essential for GSC self-renewal. We find that SRPK is expressed in GSCs and their mitotically-dividing daughters, but is not necessary for GSC establishment or maintenance. We conclude that SRPK is dispensable for GSC self-renewal, and postulate that other protein kinases can compensate for its absence.
Collapse
Affiliation(s)
- Victoria E. Garrido
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - William G. Outlaw
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - Amanda M. Powell
- Biology, East Carolina University, Greenville, North Carolina, United States
| | - Elizabeth T. Ables
- Biology, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
3
|
Wu Y, Wang J, Zhao J, Su Y, Li X, Chen Z, Wu X, Huang S, He X, Liang L. LTR retrotransposon-derived LncRNA LINC01446 promotes hepatocellular carcinoma progression and angiogenesis by regulating the SRPK2/SRSF1/VEGF axis. Cancer Lett 2024; 598:217088. [PMID: 38945203 DOI: 10.1016/j.canlet.2024.217088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The causal link between long terminal repeat (LTR) retrotransposon-derived lncRNAs and hepatocellular carcinoma (HCC) remains elusive and whether these cancer-exclusive lncRNAs contribute to the effectiveness of current HCC therapies is yet to explore. Here, we investigated the activation of LTR retrotransposon-derived lncRNAs in a broad range of liver diseases. We found that LTR retrotransposon-derived lncRNAs are mainly activated in HCC and is correlated with the proliferation status of HCC. Furthermore, we discovered that an LTR retrotransposon-derived lncRNA, LINC01446, exhibits specific expression in HCC. HCC patients with higher LINC01446 expression had shorter overall survival times. In vitro and in vivo assays showed that LINC01446 promoted HCC growth and angiogenesis. Mechanistically, LINC01446 bound to serine/arginine protein kinase 2 (SRPK2) and activated its downstream target, serine/arginine splicing factor 1 (SRSF1). Furthermore, activation of the SRPK2-SRSF1 axis increased the splicing and expression of VEGF isoform A165 (VEGFA165). Notably, inhibiting LINC01446 expression dramatically impaired tumor growth in vivo and resulted in better therapeutic outcomes when combined with antiangiogenic agents. In addition, we found that the transcription factor MESI2 bound to the cryptic MLT2B3 LTR promoter and drove LINC01446 transcription in HCC cells. Taken together, our findings demonstrate that LTR retrotransposon-derived LINC01446 promotes the progression of HCC by activating the SRPK2/SRSF1/VEGFA165 axis and highlight targeting LINC01446 as a potential therapeutic strategy for HCC patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Retroelements/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Serine-Arginine Splicing Factors/genetics
- Serine-Arginine Splicing Factors/metabolism
- Signal Transduction
- Terminal Repeat Sequences/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yangjun Wu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Su
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Linhui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Yi X, Wen B, Ji S, Saltzman AB, Jaehnig EJ, Lei JT, Gao Q, Zhang B. Deep Learning Prediction Boosts Phosphoproteomics-Based Discoveries Through Improved Phosphopeptide Identification. Mol Cell Proteomics 2024; 23:100707. [PMID: 38154692 PMCID: PMC10831110 DOI: 10.1016/j.mcpro.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.
Collapse
Affiliation(s)
- Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, Shanghai, China
| | - Alexander B Saltzman
- Mass Spectrometry Proteomics Core, Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, Shanghai, China
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
5
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
6
|
Cho S, Chun Y, He L, Ramirez CB, Ganesh KS, Jeong K, Song J, Cheong JG, Li Z, Choi J, Kim J, Koundouros N, Ding F, Dephoure N, Jang C, Blenis J, Lee G. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell 2023; 83:3010-3026.e8. [PMID: 37595559 PMCID: PMC10494788 DOI: 10.1016/j.molcel.2023.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/23/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.
Collapse
Affiliation(s)
- Sungyun Cho
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Long He
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cuauhtemoc B Ramirez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kripa S Ganesh
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kyungjo Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Junho Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhongchi Li
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea; Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nikos Koundouros
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, Center for Synthetic Biology, and Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - John Blenis
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Yi X, Wen B, Ji S, Saltzman A, Jaehnig EJ, Lei JT, Gao Q, Zhang B. Deep learning prediction boosts phosphoproteomics-based discoveries through improved phosphopeptide identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523329. [PMID: 36711982 PMCID: PMC9882090 DOI: 10.1101/2023.01.11.523329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples, but low phosphopeptide identification rate in data analysis limits the potential of this technology. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19%-46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.
Collapse
|
8
|
Dahal S, Clayton K, Been T, Fernet-Brochu R, Ocando AV, Balachandran A, Poirier M, Maldonado RK, Shkreta L, Boligan KF, Guvenc F, Rahman F, Branch D, Bell B, Chabot B, Gray-Owen SD, Parent LJ, Cochrane A. Opposing roles of CLK SR kinases in controlling HIV-1 gene expression and latency. Retrovirology 2022; 19:18. [PMID: 35986377 PMCID: PMC9389714 DOI: 10.1186/s12977-022-00605-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.
Collapse
Affiliation(s)
- Subha Dahal
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Kiera Clayton
- grid.168645.80000 0001 0742 0364Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Terek Been
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Raphaële Fernet-Brochu
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Alonso Villasmil Ocando
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139 USA
| | - Ahalya Balachandran
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Mikaël Poirier
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Rebecca Kaddis Maldonado
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lulzim Shkreta
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Kayluz Frias Boligan
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Furkan Guvenc
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Fariha Rahman
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Donald Branch
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Brendan Bell
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Benoit Chabot
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Scott D. Gray-Owen
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Leslie J. Parent
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Alan Cochrane
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| |
Collapse
|
9
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
10
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
11
|
Kundinger SR, Dammer EB, Yin L, Hurst C, Shapley S, Ping L, Khoshnevis S, Ghalei H, Duong DM, Seyfried NT. Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization. J Biol Chem 2021; 297:101306. [PMID: 34673031 PMCID: PMC8569591 DOI: 10.1016/j.jbc.2021.101306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.
Collapse
Affiliation(s)
- Sean R Kundinger
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Luming Yin
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Sarah Shapley
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Lingyan Ping
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | | | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
O'Connell E, Reynolds IS, Salvucci M, McNamara DA, Burke JP, Prehn JHM. Mucinous and non-mucinous colorectal cancers show differential expression of chemotherapy metabolism and resistance genes. THE PHARMACOGENOMICS JOURNAL 2021; 21:510-519. [PMID: 33731881 DOI: 10.1038/s41397-021-00229-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Previous research has identified differences in mutation frequency in genes implicated in chemotherapy resistance between mucinous and non-mucinous colorectal cancers (CRC). We hypothesized that outcomes in mucinous and non-mucinous CRC may be influenced by expression of genes responsible for chemotherapy resistance. Gene expression data from primary tumor samples were extracted from The Cancer Genome Atlas PanCancer Atlas. The distribution of clinical, pathological, and gene expression variables was compared between 74 mucinous and 521 non-mucinous CRCs. Predictors of overall survival (OS) were assessed in a multivariate analysis. Kaplan-Meier curves were constructed to compare survival according to gene expression using the log rank test. The median expression of 5-FU-related genes TYMS, TYMP, and DYPD was significantly higher in mucinous CRC compared to non-mucinous CRC (p < 0.001, p = 0.003, p < 0.001, respectively). The median expression of oxaliplatin-related genes ATP7B and SRPK1 was significantly reduced in mucinous versus non-mucinous CRC (p = 0.004, p = 0.007, respectively). At multivariate analysis, age (odds ratio (OR) = 0.96, p < 0.001), node positive disease (OR = 0.49, p = 0.005), and metastatic disease (OR = 0.32, p < 0.001) remained significant negative predictors of OS, while high SRPK1 remained a significant positive predictor of OS (OR = 1.59, p = 0.037). Subgroup analysis of rectal cancers demonstrated high SRPK1 expression was associated with significantly longer OS compared to low SRPK1 expression (p = 0.011). This study highlights that the molecular differences in mucinous CRC and non-mucinous CRC extend to chemotherapy resistance gene expression. SRPK1 gene expression was associated with OS, with a prognostic role identified in rectal cancers.
Collapse
Affiliation(s)
- E O'Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - I S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Salvucci
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - J H M Prehn
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
13
|
Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ, Toth R, Hastie CJ, Moran J, Gourlay R, Varghese J, Soares RF, Montecino M, Findlay GM. Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 2020; 55:629-647.e7. [PMID: 33080171 PMCID: PMC7725506 DOI: 10.1016/j.devcel.2020.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Odetta Antico
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - C James Hastie
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Moran
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
14
|
Emenecker RJ, Holehouse AS, Strader LC. Emerging Roles for Phase Separation in Plants. Dev Cell 2020; 55:69-83. [PMID: 33049212 PMCID: PMC7577370 DOI: 10.1016/j.devcel.2020.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The plant cell internal environment is a dynamic, intricate landscape composed of many intracellular compartments. Cells organize some cellular components through formation of biomolecular condensates-non-stoichiometric assemblies of protein and/or nucleic acids. In many cases, phase separation appears to either underly or contribute to the formation of biomolecular condensates. Many canonical membraneless compartments within animal cells form in a manner that is at least consistent with phase separation, including nucleoli, stress granules, Cajal bodies, and numerous additional bodies, regulated by developmental and environmental stimuli. In this Review, we examine the emerging roles for phase separation in plants. Further, drawing on studies carried out in other organisms, we identify cellular phenomenon in plants that might also arise via phase separation. We propose that plants make use of phase separation to a much greater extent than has been previously appreciated, implicating phase separation as an evolutionarily ancient mechanism for cellular organization.
Collapse
Affiliation(s)
- Ryan J Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Reynolds IS, O’Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Furney SJ, Burke JP. Mucinous adenocarcinoma is a pharmacogenomically distinct subtype of colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2019; 20:524-532. [DOI: 10.1038/s41397-019-0137-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
|
16
|
Jang S, Cook NJ, Pye VE, Bedwell GJ, Dudek AM, Singh PK, Cherepanov P, Engelman AN. Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Res 2019; 47:4663-4683. [PMID: 30916345 PMCID: PMC6511849 DOI: 10.1093/nar/gkz206] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor 5 (CPSF5) and serine/arginine-like protein CPSF6, regulates alternative polyadenylation (APA). Loss of CFIm function results in proximal polyadenylation site usage, shortening mRNA 3' untranslated regions (UTRs). Although CPSF6 plays additional roles in human disease, its nuclear translocation mechanism remains unresolved. Two β-karyopherins, transportin (TNPO) 1 and TNPO3, can bind CPSF6 in vitro, and we demonstrate here that while the TNPO1 binding site is dispensable for CPSF6 nuclear import, the arginine/serine (RS)-like domain (RSLD) that mediates TNPO3 binding is critical. The crystal structure of the RSLD-TNPO3 complex revealed potential CPSF6 interaction residues, which were confirmed to mediate TNPO3 binding and CPSF6 nuclear import. Both binding and nuclear import were independent of RSLD phosphorylation, though a hyperphosphorylated mimetic mutant failed to bind TNPO3 and mislocalized to the cell cytoplasm. Although hypophosphorylated CPSF6 largely supported normal polyadenylation site usage, a significant number of mRNAs harbored unnaturally extended 3' UTRs, similar to what is observed when other APA regulators, such as CFIIm component proteins, are depleted. Our results clarify the mechanism of CPSF6 nuclear import and highlight differential roles for RSLD phosphorylation in nuclear translocation versus regulation of APA.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA, The Francis Crick Institute, London, NW1 1AT, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA, The Francis Crick Institute, London, NW1 1AT, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda M Dudek
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Imperial College London, St-Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy. Front Mol Biosci 2018; 5:105. [PMID: 30547036 PMCID: PMC6279932 DOI: 10.3389/fmolb.2018.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
RBM20 is a vertebrate-specific RNA-binding protein with two zinc finger (ZnF) domains, one RNA-recognition motif (RRM)-type RNA-binding domain and an arginine/serine (RS)-rich region. RBM20 has initially been identified as one of dilated cardiomyopathy (DCM)-linked genes. RBM20 is a regulator of heart-specific alternative splicing and Rbm20ΔRRM mice lacking the RRM domain are defective in the splicing regulation. The Rbm20ΔRRM mice, however, do not exhibit a characteristic DCM-like phenotype such as dilatation of left ventricles or systolic dysfunction. Considering that most of the RBM20 mutations identified in familial DCM cases were heterozygous missense mutations in an arginine-serine-arginine-serine-proline (RSRSP) stretch whose phosphorylation is crucial for nuclear localization of RBM20, characterization of a knock-in animal model is awaited. One of the major targets for RBM20 is the TTN gene, which is comprised of the largest number of exons in mammals. Alternative splicing of the TTN gene is exceptionally complicated and RBM20 represses >160 of its consecutive exons, yet detailed mechanisms for such extraordinary regulation are to be elucidated. The TTN gene encodes the largest known protein titin, a multi-functional sarcomeric structural protein specific to striated muscles. As titin is the most important factor for passive tension of cardiomyocytes, extensive heart-specific and developmentally regulated alternative splicing of the TTN pre-mRNA by RBM20 plays a critical role in passive stiffness and diastolic function of the heart. In disease models with diastolic dysfunctions, the phenotypes were rescued by increasing titin compliance through manipulation of the Ttn pre-mRNA splicing, raising RBM20 as a potential therapeutic target.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akinori Kimura
- Division of Pathology, Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20 (RBM20) through nuclear localization. Sci Rep 2018; 8:8970. [PMID: 29895960 PMCID: PMC5997748 DOI: 10.1038/s41598-018-26624-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/14/2018] [Indexed: 11/08/2022] Open
Abstract
RBM20 is a major regulator of heart-specific alternative pre-mRNA splicing of TTN encoding a giant sarcomeric protein titin. Mutation in RBM20 is linked to autosomal-dominant familial dilated cardiomyopathy (DCM), yet most of the RBM20 missense mutations in familial and sporadic cases were mapped to an RSRSP stretch in an arginine/serine-rich region of which function remains unknown. In the present study, we identified an R634W missense mutation within the stretch and a G1031X nonsense mutation in cohorts of DCM patients. We demonstrate that the two serine residues in the RSRSP stretch are constitutively phosphorylated and mutations in the stretch disturb nuclear localization of RBM20. Rbm20S637A knock-in mouse mimicking an S635A mutation reported in a familial case showed a remarkable effect on titin isoform expression like in a patient carrying the mutation. These results revealed the function of the RSRSP stretch as a critical part of a nuclear localization signal and offer the Rbm20S637A mouse as a good model for in vivo study.
Collapse
|
19
|
Mobilization of a splicing factor through a nuclear kinase-kinase complex. Biochem J 2018; 475:677-690. [PMID: 29335301 DOI: 10.1042/bcj20170672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
The splicing of mRNA is dependent on serine-arginine (SR) proteins that are mobilized from membrane-free, nuclear speckles to the nucleoplasm by the Cdc2-like kinases (CLKs). This movement is critical for SR protein-dependent assembly of the macromolecular spliceosome. Although CLK1 facilitates such trafficking through the phosphorylation of serine-proline dipeptides in the prototype SR protein SRSF1, an unrelated enzyme known as SR protein kinase 1 (SRPK1) performs the same function but does not efficiently modify these dipeptides in SRSF1. We now show that the ability of SRPK1 to mobilize SRSF1 from speckles to the nucleoplasm is dependent on active CLK1. Diffusion from speckles is promoted by the formation of an SRPK1-CLK1 complex that facilitates dissociation of SRSF1 from CLK1 and enhances the phosphorylation of several serine-proline dipeptides in this SR protein. Down-regulation of either kinase blocks EGF-stimulated mobilization of nuclear SRSF1. These findings establish a signaling pathway that connects SRPKs to SR protein activation through the associated CLK family of kinases.
Collapse
|
20
|
Preußner M, Goldammer G, Neumann A, Haltenhof T, Rautenstrauch P, Müller-McNicoll M, Heyd F. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals. Mol Cell 2017; 67:433-446.e4. [DOI: 10.1016/j.molcel.2017.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
|
21
|
Abstract
The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these 'spliceosomal mutations' suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic and biological effects of spliceosomal mutations are crucial for the development of cancer therapies targeted at these mutations.
Collapse
Affiliation(s)
- Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eunhee Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Nuclear protein kinase CLK1 uses a non-traditional docking mechanism to select physiological substrates. Biochem J 2015; 472:329-38. [PMID: 26443864 DOI: 10.1042/bj20150903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/06/2015] [Indexed: 01/22/2023]
Abstract
Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce 'off pathway' targeting. We now provide evidence that the nuclear protein kinase CLK1 (cell division cycle2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates the SR protein (splicing factor containing a C-terminal RS domain) family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 (SR protein splicing factor 1) compared with the general substrate myelin basic protein (MBP). In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in sub-nuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against non-physiological targets.
Collapse
|
23
|
Rice BL, Kaddis RJ, Stake MS, Lochmann TL, Parent LJ. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus. Front Microbiol 2015; 6:925. [PMID: 26441864 PMCID: PMC4562304 DOI: 10.3389/fmicb.2015.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/21/2015] [Indexed: 01/27/2023] Open
Abstract
Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.
Collapse
Affiliation(s)
- Breanna L Rice
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Rebecca J Kaddis
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Matthew S Stake
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA ; Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
24
|
Splicing Regulators and Their Roles in Cancer Biology and Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:150514. [PMID: 26273588 PMCID: PMC4529883 DOI: 10.1155/2015/150514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/10/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
Abstract
Alternative splicing allows cells to expand the encoding potential of their genomes. In this elegant mechanism, a single gene can yield protein isoforms with even antagonistic functions depending on the cellular physiological context. Alterations in splicing regulatory factors activity in cancer cells, however, can generate an abnormal protein expression pattern that promotes growth, survival, and other processes, which are relevant to tumor biology. In this review, we discuss dysregulated alternative splicing events and regulatory factors that impact pathways related to cancer. The SR proteins and their regulatory kinases SRPKs and CLKs have been frequently found altered in tumors and are examined in more detail. Finally, perspectives that support splicing machinery as target for the development of novel anticancer therapies are discussed.
Collapse
|
25
|
Vakilian H, Mirzaei M, Sharifi Tabar M, Pooyan P, Habibi Rezaee L, Parker L, Haynes PA, Gourabi H, Baharvand H, Salekdeh GH. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation. J Proteome Res 2015; 14:3474-83. [PMID: 26144214 DOI: 10.1021/acs.jproteome.5b00512] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, PCDH11Y, UTY, RPS4Y1, USP9Y, SRY, PRY, and ZFY. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after DDX3Y knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following DDX3Y siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that DDX3Y could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Haghighat Vakilian
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Mehdi Sharifi Tabar
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Paria Pooyan
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Lida Habibi Rezaee
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Lindsay Parker
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture , Sharif Esfahani Blvd, Park Street, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran.,Seed and Plant Improvement Institute's Campus, Agricultural Biotechnology Research Institute of Iran , Mahdasht Road, Karaj, Iran
| |
Collapse
|
26
|
Lipp JJ, Marvin MC, Shokat KM, Guthrie C. SR protein kinases promote splicing of nonconsensus introns. Nat Struct Mol Biol 2015; 22:611-7. [PMID: 26167880 DOI: 10.1038/nsmb.3057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Phosphorylation of the spliceosome is essential for RNA splicing, yet how and to what extent kinase signaling affects splicing have not been defined on a genome-wide basis. Using a chemical genetic approach, we show in Schizosaccharomyces pombe that the SR protein kinase Dsk1 is required for efficient splicing of introns with suboptimal splice sites. Systematic substrate mapping in fission yeast and human cells revealed that SRPKs target evolutionarily conserved spliceosomal proteins, including the branchpoint-binding protein Bpb1 (SF1 in humans), by using an RXXSP consensus motif for substrate recognition. Phosphorylation of SF1 increases SF1 binding to introns with nonconsensus splice sites in vitro, and mutation of such sites to consensus relieves the requirement for Dsk1 and phosphorylated Bpb1 in vivo. Modulation of splicing efficiency through kinase signaling pathways may allow tuning of gene expression in response to environmental and developmental cues.
Collapse
Affiliation(s)
- Jesse J Lipp
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael C Marvin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Kong L, Lv W, Huang Y, Liu Z, Yang Y, Zhao Y. Cloning, expression and localization of the Daphnia carinata transformer gene DcarTra during different reproductive stages. Gene 2015; 566:248-56. [PMID: 25917617 DOI: 10.1016/j.gene.2015.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/29/2022]
Abstract
In this study, the full-length cDNA of the Transformer (Tra) gene from the common freshwater species Daphnia carinata (DcarTra; GenBank accession no. KJ735445) was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). The relative expression and localization of DcarTra and the cellular abundance of the DcarTra protein during different sexual phases were subsequently investigated. The full-length DcarTra cDNA was 1620 bp with an ORF of 1143 bp encoding a 380 amino acid polypeptide. Phylogenetic analysis identified closely related genes in Daphnia magna and Daphnia pulex, and more distantly related genes in other insects. Quantitative PCR showed that DcarTra expression was highest in males, followed by sexual females, and lowest in parthenogenetic females. Whole-mount in situ hybridization showed that DcarTra was mainly expressed in the thoracic limbs, ovaries and rectum in parthenogenetic females, and in the joints of second antennae, ovaries, rectum and ventral processes in sexual females. Western blotting showed two differently phosphorylated forms of the Tra protein. When Tra is phosphorylated, DcarTra protein levels were much higher in males than in two females. Otherwise, when Tra is dephosphorylated, the highest Tra protein levels were in sexual females, which revealed that D. carinata can control the sexual transition via these two forms. Together these results suggest that DcarTra plays significant roles in the reproductive transformation of D. carinata and dephosphorylation of DcarTra may be the trigger for females to transform into males.
Collapse
Affiliation(s)
- Ling Kong
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Weiwei Lv
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yang Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
28
|
Prescott EL, Brimacombe CL, Hartley M, Bell I, Graham S, Roberts S. Human papillomavirus type 1 E1^E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2. J Virol 2014; 88:12599-611. [PMID: 25142587 PMCID: PMC4248925 DOI: 10.1128/jvi.02029-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The serine-arginine-specific protein kinase SRPK1 is a common binding partner of the E1^E4 protein of diverse human papillomavirus types. We show here for the first time that the interaction between HPV1 E1^E4 and SRPK1 leads to potent inhibition of SRPK1 phosphorylation of host serine-arginine (SR) proteins that have critical roles in mRNA metabolism, including pre-mRNA processing, mRNA export, and translation. Furthermore, we show that SRPK1 phosphorylates serine residues of SR/RS dipeptides in the hinge region of the HPV1 E2 protein in in vitro kinase assays and that HPV1 E1^E4 inhibits this phosphorylation. After mutation of the putative phosphoacceptor serine residues, the localization of the E2 protein was altered in primary human keratinocytes; with a significant increase in the cell population showing intense E2 staining of the nucleolus. A similar effect was observed following coexpression of E2 and E1^E4 that is competent for inhibition of SRPK1 activity, suggesting that the nuclear localization of E2 is sensitive to E1^E4-mediated SRPK1 inhibition. Collectively, these data suggest that E1^E4-mediated inhibition of SRPK1 could affect the functions of host SR proteins and those of the virus transcription/replication regulator E2. We speculate that the novel E4 function identified here is involved in the regulation of E2 and SR protein function in posttranscriptional processing of viral transcripts. IMPORTANCE The HPV life cycle is tightly linked to the epithelial terminal differentiation program, with the virion-producing phase restricted to differentiating cells. While the most abundant HPV protein expressed in this phase is the E4 protein, we do not fully understand the role of this protein. Few E4 interaction partners have been identified, but we had previously shown that E4 proteins from diverse papillomaviruses interact with the serine-arginine-specific protein kinase SRPK1, a kinase important in the replication cycles of a diverse range of DNA and RNA viruses. We show that HPV1 E4 is a potent inhibitor of this host cell kinase. We show that E4 inhibits SRPK1 phosphorylation, not only of cellular SR proteins involved in regulating alternative splicing of RNA but also the viral transcription/replication regulator E2. Our findings reveal a potential E4 function in regulation of viral late gene expression through the inhibition of a host cell kinase.
Collapse
Affiliation(s)
- Emma L Prescott
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire L Brimacombe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Hartley
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ian Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sheila Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sally Roberts
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Primary structural features of SR-like protein acinusS govern the phosphorylation mechanism by SRPK2. Biochem J 2014; 459:181-91. [PMID: 24444330 DOI: 10.1042/bj20131091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SRPKs (serine/arginine protein kinases) are highly specific kinases that recognize and phosphorylate RS (Arg-Ser) dipeptide repeats. It has been shown previously that SRPK1 phosphorylates the RS domain of SRSF1 (serine/arginine splicing factor 1) at multiple sites using a directional and processive mechanism. Such ability to processively phosphorylate substrates is proposed to be an inherent characteristic of SRPKs. SRPK2 is highly related to SRPK1 in sequence and in vitro properties, yet it has been shown to have distinct substrate specificity and physiological function in vivo. To study the molecular basis for substrate specificity of SRPK2, we investigated the roles of the non-kinase regions and a conserved docking groove of SRPK2 in the recognition and phosphorylation of different substrates: SRSF1 and acinusS. Our results reveal that a conserved electronegative docking groove in SRPK2, but not its non-kinase regions, is responsible for substrate binding regardless of their identities. Although SRPK2 phosphorylates SRSF1 in a processive manner as predicted, an electronegative region on acinusS restricts SRPK2 phosphorylation to a single specific site despite the presence of multiple RS dipeptides. These results suggest that primary structural elements on the substrates serve as key regulatory roles in determining the phosphorylation mechanism of SRPK2.
Collapse
|
30
|
Early developmental toxicity of saxitoxin on medaka (Oryzias melastigma) embryos. Toxicon 2014; 77:16-25. [DOI: 10.1016/j.toxicon.2013.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023]
|
31
|
Kamoun M, Filali M, Murray MV, Awasthi S, Wadzinski BE. Protein phosphatase 2A family members (PP2A and PP6) associate with U1 snRNP and the spliceosome during pre-mRNA splicing. Biochem Biophys Res Commun 2013; 440:306-11. [PMID: 24064353 PMCID: PMC3891829 DOI: 10.1016/j.bbrc.2013.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 11/23/2022]
Abstract
Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homolog of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear. Here we show that PP2A family members physically associate with the spliceosome throughout the splicing reaction. PP2A holoenzyme and PP6 were found stably associated with U1 snRNP. Together our findings indicate that these phosphatases regulate splicing catalysis involving U1 snRNP and suggest an important evolutionary conserved role of PP2A family phosphatases in pre-mRNA splicing.
Collapse
Affiliation(s)
- Malek Kamoun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
32
|
Aubol BE, Jamros MA, McGlone ML, Adams JA. Splicing kinase SRPK1 conforms to the landscape of its SR protein substrate. Biochemistry 2013; 52:7595-605. [PMID: 24074032 DOI: 10.1021/bi4010864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The splicing function of SR proteins is regulated by multisite phosphorylation of their C-terminal RS (arginine-serine rich) domains. SRPK1 has been shown to phosphorylate the prototype SR protein SRSF1 using a directional mechanism in which 11 serines flanked by arginines are sequentially fed from a docking groove in the large lobe of the kinase domain to the active site. Although this process is expected to operate on lengthy arginine-serine repeats (≥8), many SR proteins contain smaller repeats of only 1-4 dipeptides, raising the question of how alternate RS domain configurations are phosphorylated. To address this, we studied a splice variant of Tra2β that contains a C-terminal RS domain with short arginine-serine repeats [Tra2β(ΔN)]. We showed that SRPK1 selectively phosphorylates several serines near the C-terminus of the RS domain. SRPK1 uses a distributive mechanism for Tra2β(ΔN) where the rate-limiting step is the dissociation of the protein substrate rather than nucleotide exchange as in the case of SRSF1. Although a functioning docking groove is required for efficient SRSF1 phosphorylation, this conserved structural element is dispensable for Tra2β(ΔN) phosphorylation. These large shifts in mechanism are likely to account for the slower net turnover rate of Tra2β(ΔN) compared to SRSF1 and may signal fundamental differences in phosphorylation among SR proteins with distinctive arginine-serine profiles. Overall, these data indicate that SRPK1 conforms to changes in RS domain architecture using a flexible kinetic mechanism and selective usage of a conserved docking groove.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California-San Diego , La Jolla, California 92093-0636, United States
| | | | | | | |
Collapse
|
33
|
Shimoni-Sebag A, Lebenthal-Loinger I, Zender L, Karni R. RRM1 domain of the splicing oncoprotein SRSF1 is required for MEK1-MAPK-ERK activation and cellular transformation. Carcinogenesis 2013; 34:2498-504. [PMID: 23843040 DOI: 10.1093/carcin/bgt247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing regulators have emerged as new players in cancer development, modulating the activities of many tumor suppressors and oncogenes and regulating the signaling pathways. However, little is known about the mechanisms by which these oncogenic splicing factors lead to cellular transformation. We have shown previously that the splicing factor serine and arginine splicing factor 1 (SRSF1; SF2/ASF) is a proto-oncogene, which is amplified in breast cancer and transforms immortal cells when overexpressed. In this study, we performed a structure-function analysis of SRSF1 and found that the RNA recognition motif 1 (RRM1) domain is required for its oncogenic activity. Deletion of RRM1 eliminated the splicing activity of SRSF1 on some of its endogenous targets. Moreover, we found that SRSF1 elevates the expression of B-Raf and activates the mitogen-activated protein kinase kinase (MEK) extracellular signal-regulated kinase (ERK) pathway and that RRM1 is required for this activation as well. B-Raf-MEK-ERK activation by SRSF1 contributes to transformation as pharmacological inhibition of MEK1 inhibits SRSF1-mediated transformation. In conclusion, RRM1 of SRSF1 is both required (and when tethered to the RS domain) also sufficient to activate the Raf-MEK-ERK pathway and to promote cellular transformation.
Collapse
Affiliation(s)
- Ariel Shimoni-Sebag
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem 91120, Israel and
| | | | | | | |
Collapse
|
34
|
Quiros M, Alarcón L, Ponce A, Giannakouros T, González-Mariscal L. The intracellular fate of zonula occludens 2 is regulated by the phosphorylation of SR repeats and the phosphorylation/O-GlcNAcylation of S257. Mol Biol Cell 2013; 24:2528-43. [PMID: 23804652 PMCID: PMC3744950 DOI: 10.1091/mbc.e13-04-0224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ZO-2 nuclear import and accumulation in speckles is regulated by phosphorylation of its SR repeats by SRPK1 in a process initiated by EGF activation of AKT. ZO-2 nuclear exportation is favored by O-GlcNAc of S257 at the nucleus, whereas maturation of tight junctions is accompanied by ZO-2 phosphorylation at S257 by PKCζ. Zona occludens 2 (ZO-2) has a dual localization. In confluent epithelia, ZO-2 is present at tight junctions (TJs), whereas in sparse proliferating cells it is also found at the nucleus. Previously we demonstrated that in sparse cultures, newly synthesized ZO-2 travels to the nucleus before reaching the plasma membrane. Now we find that in confluent cultures newly synthesized ZO-2 goes directly to the plasma membrane. Epidermal growth factor induces through AKT activation the phosphorylation of the kinase for SR repeats, serine arginine protein kinase 1, which in turn phosphorylates ZO-2, which contains 16 SR repeats. This phosphorylation induces ZO-2 entry into the nucleus and accumulation in speckles. ZO-2 departure from the nucleus requires intact S257, and stabilizing the β-O-linked N-acetylglucosylation (O-GlcNAc) of S257 with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase, triggers nuclear exportation and proteosomal degradation of ZO-2. At the plasma membrane ZO-2 is not O-GlcNAc, and instead, as TJs mature, it becomes phosphorylated at S257 by protein kinase Cζ. This late phosphorylation of S257 is required for the correct cytoarchitecture to develop, as cells transfected with ZO-2 mutant S257A or S257E form aberrant cysts with multiple lumens. These results reveal novel posttranslational modifications of ZO-2 that regulate the intracellular fate of this protein.
Collapse
Affiliation(s)
- Miguel Quiros
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies Cinvestav, Mexico City 07000, Mexico Department of Chemistry, Aristotele University of Thessaloniki, Thessaloniki 54621, Greece
| | | | | | | | | |
Collapse
|
35
|
Partitioning RS domain phosphorylation in an SR protein through the CLK and SRPK protein kinases. J Mol Biol 2013; 425:2894-909. [PMID: 23707382 DOI: 10.1016/j.jmb.2013.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/20/2013] [Indexed: 11/21/2022]
Abstract
SR proteins are essential splicing factors whose biological function is regulated through phosphorylation of their C-terminal RS domains. Prior studies have shown that cytoplasmic-nuclear translocalization of the SR protein SRSF1 is regulated by multisite phosphorylation of a long Arg-Ser repeat in the N-terminus of the RS domain while subnuclear localization is controlled by phosphorylation of a shorter Arg-Ser repeat along with several Ser-Pro dipeptides in the C-terminus of the RS domain. To better understand how these two kinases partition Arg-Ser versus Ser-Pro specificities, we monitored the phosphorylation of SRSF1 by CLK1 and SRPK1. Although SRPK1 initially binds at the center of the RS domain phosphorylating in an orderly, N-terminal direction, CLK1 makes widespread contacts in the RS domain and generates multiple enzyme-substrate complexes that induce a random addition mechanism. While SRPK1 rapidly phosphorylates N-terminal serines, SRPK1 and CLK1 display similar activities toward Arg-Ser repeats in the C-terminus, suggesting that these kinases may not separate function in a strict linear manner along the RS domain. CLK1 induces a unique gel shift in SRSF1 that is not the result of enhanced Arg-Ser phosphorylation but rather is the direct result of the phosphorylation of several Ser-Pro dipeptides. These prolines are important for binding and phosphorylation of the SR protein by CLK1 but not for the SRPK1-dependent reaction. The data establish a new view of SR protein regulation in which SRPK1 and CLK1 partition activities based on Ser-Pro versus Arg-Ser placement rather than on N- and C-terminal preferences along the RS domain.
Collapse
|
36
|
Zhou B, Li Y, Deng Q, Wang H, Wang Y, Cai B, Han ZG. SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt. Mol Cell Biochem 2013; 379:191-9. [PMID: 23644876 DOI: 10.1007/s11010-013-1641-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Protein kinases are important regulators in biologic processes. Aberrant expression of protein kinases often causes diseases including cancer. In the present study, we found that the serine-arginine protein kinase 1 (SRPK1) might be involved in hepatocellular carcinoma (HCC) proliferation from a kinome screen using a loss-of-function approach. In clinical samples, SRPK1 was frequently up-regulated in HCCs as compared with adjacent non-tumor tissues at both mRNA and protein levels. Functional studies indicated that overexpression of wild-type SRPK1 promoted HCC cell proliferation, while forced expression of the kinase-dead mutant of SRPK1 or RNA interference against SRPK1 suppressed cell growth and malignancy as measured in soft agar assay. The kinase-dead mutant of SRPK1 also inhibited subcutaneous xenografts' growth of HCC cells in nude mice. Furthermore, western bolt analysis showed overexpression of wild-type SRPK1 enhanced Akt phosphorylation and knockdown of SRPK1 by RNA interference attenuated Akt phosphorylation induced by epidermal growth factor. Meanwhile, overexpression of wild-type SRPK1 also induced a concurrent increase in the total tyrosine phosphorylation of phosphotidylinositol-3 kinase p110α subunit, indicating a functional link between SRPK1 and PI3K/Akt signaling. Our findings suggest that SRPK1 plays an oncogenic role and could be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Bo Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
38
|
Walsh CM, Suchanek AL, Cyphert TJ, Kohan AB, Szeszel-Fedorowicz W, Salati LM. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6-phosphate dehydrogenase RNA in response to nutrients and hormones in liver. J Biol Chem 2012; 288:2816-28. [PMID: 23233666 DOI: 10.1074/jbc.m112.410803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of G6PD is controlled by changes in the degree of splicing of the G6PD mRNA in response to nutrients in the diet. This regulation involves an exonic splicing enhancer (ESE) in exon 12 of the mRNA. Using the G6PD model, we demonstrate that nutrients and hormones control the activity of serine-arginine-rich (SR) proteins, a family of splicing co-activators, and thereby regulate the splicing of G6PD mRNA. In primary rat hepatocyte cultures, insulin increased the amount of phosphorylated SR proteins, and this effect was counteracted by arachidonic acid. The results of RNA affinity analysis with nuclear extracts from intact liver demonstrated that the SR splicing factor proteins SRSF3 and SRSF4 bound to the G6PD ESE. Consequently, siRNA-mediated depletion of SRSF3, but not SRSF4, in liver cells inhibited accumulation of both mRNA expressed from a minigene containing exon 12 and the endogenous G6PD mRNA. Consistent with the functional role of SRSF3 in regulating splicing, SRSF3 was observed to bind to the ESE in both intact cells and in animals using RNA immunoprecipitation analysis. Furthermore, refeeding significantly increased the binding of SRSF3 coincident with increased splicing and expression of G6PD. Together, these data establish that nutritional regulation of SRSF3 activity is involved in the differential splicing of the G6PD transcript in response to nutrients. Nutritional regulation of other SR proteins presents a regulatory mechanism that could cause widespread changes in mRNA splicing. Nutrients are therefore novel regulators of mRNA splicing.
Collapse
Affiliation(s)
- Callee M Walsh
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wong R, Balachandran A, Mao AY, Dobson W, Gray-Owen S, Cochrane A. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy. Retrovirology 2011; 8:47. [PMID: 21682887 PMCID: PMC3148977 DOI: 10.1186/1742-4690-8-47] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK) family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.
Collapse
Affiliation(s)
- Raymond Wong
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Názer E, Verdún RE, Sánchez DO. Nucleolar localization of RNA binding proteins induced by actinomycin D and heat shock in Trypanosoma cruzi. PLoS One 2011; 6:e19920. [PMID: 21629693 PMCID: PMC3101214 DOI: 10.1371/journal.pone.0019920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
In this work we show that under Actinomycin D (ActD) treatment, several RNA Binding Proteins (RBPs) involved in mRNA metabolism are relocalized into the nucleolus in Trypanosoma cruzi as a specific stress response. ATP depletion as well as kinase inhibition markedly reduced the nucleolar localization response, suggesting that an energy-dependent transport modulated by the phosphorylation status of the parasite might be required. Deletion analyses in one of such proteins, TcSR62, showed that a domain bearing basic amino acids located in the COOH terminal region was sufficient to promote its nucleolar relocalization. Interestingly, we showed that in addition to RBPs, poly(A)+ RNA is also accumulated into the nucleolus in response to ActD treatment. Finally, we found out that nucleolar relocalization of RBPs is also triggered by severe heat shock in a reversible way. Together, these results suggest that the nucleolus of an early divergent eukaryote is either able to sequester key factors related to mRNA metabolism in response to transcriptional stress or behaves as a RBP processing center, arguing in favour to the hypothesis that the non-traditional features of the nucleolus could be acquired early during evolution.
Collapse
Affiliation(s)
- Ezequiel Názer
- Instituto de Investigaciones Biotecnólogicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Ramiro E. Verdún
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnólogicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 2011; 108:8233-8. [PMID: 21536904 DOI: 10.1073/pnas.1017700108] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been widely accepted that the early spliceosome assembly begins with U1 small nuclear ribonucleoprotein (U1 snRNP) binding to the 5' splice site (5'SS), which is assisted by the Ser/Arg (SR)-rich proteins in mammalian cells. In this process, the RS domain of SR proteins is thought to directly interact with the RS motif of U1-70K, which is subject to regulation by RS domain phosphorylation. Here we report that the early spliceosome assembly event is mediated by the RNA recognition domains (RRM) of serine/arginine-rich splicing factor 1 (SRSF1), which bridges the RRM of U1-70K to pre-mRNA by using the surface opposite to the RNA binding site. Specific mutation in the RRM of SRSF1 that disrupted the RRM-RRM interaction also inhibits the formation of spliceosomal E complex and splicing. We further demonstrate that the hypo-phosphorylated RS domain of SRSF1 interacts with its own RRM, thus competing with U1-70K binding, whereas the hyper-phosphorylated RS domain permits the formation of a ternary complex containing ESE, an SR protein, and U1 snRNP. Therefore, phosphorylation of the RS domain in SRSF1 appears to induce a key molecular switch from intra- to intermolecular interactions, suggesting a plausible mechanism for the documented requirement for the phosphorylation/dephosphorylation cycle during pre-mRNA splicing.
Collapse
|
42
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J 2010; 30:510-23. [PMID: 21157427 DOI: 10.1038/emboj.2010.333] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 11/17/2010] [Indexed: 01/27/2023] Open
Abstract
SRSF2 is a serine/arginine-rich protein belonging to the family of SR proteins that are crucial regulators of constitutive and alternative pre-mRNA splicing. Although it is well known that phosphorylation inside RS domain controls activity of SR proteins, other post-translational modifications regulating SRSF2 functions have not been described to date. In this study, we provide the first evidence that the acetyltransferase Tip60 acetylates SRSF2 on its lysine 52 residue inside the RNA recognition motif, and promotes its proteasomal degradation. We also demonstrate that the deacetylase HDAC6 counters this acetylation and acts as a positive regulator of SRSF2 protein level. In addition, we show that Tip60 downregulates SRSF2 phosphorylation by inhibiting the nuclear translocation of both SRPK1 and SRPK2 kinases. Finally, we demonstrate that this acetylation/phosphorylation signalling network controls SRSF2 accumulation as well as caspase-8 pre-mRNA splicing in response to cisplatin and determines whether cells undergo apoptosis or G(2)/M cell cycle arrest. Taken together, these results unravel lysine acetylation as a crucial post-translational modification regulating SRSF2 protein level and activity in response to genotoxic stress.
Collapse
|
44
|
Ma CT, Ghosh G, Fu XD, Adams JA. Mechanism of dephosphorylation of the SR protein ASF/SF2 by protein phosphatase 1. J Mol Biol 2010; 403:386-404. [PMID: 20826166 DOI: 10.1016/j.jmb.2010.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, we monitored region-specific mapping of phosphorylation sites in ASF/SF2 as a function of the protein phosphatase PP1. We showed that 10 phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RNA recognition motifs protects against dephosphorylation, suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.
Collapse
Affiliation(s)
- Chen-Ting Ma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
45
|
Sharma A, Takata H, Shibahara KI, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell 2010; 21:650-63. [PMID: 20053686 PMCID: PMC2820428 DOI: 10.1091/mbc.e09-02-0126] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.
Collapse
Affiliation(s)
- Alok Sharma
- *Biomedical Sciences Ph.D. Program
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Athanasios Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Paula A. Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| |
Collapse
|
46
|
Tannukit S, Crabb TL, Hertel KJ, Wen X, Jans DA, Paine ML. Identification of a novel nuclear localization signal and speckle-targeting sequence of tuftelin-interacting protein 11, a splicing factor involved in spliceosome disassembly. Biochem Biophys Res Commun 2009; 390:1044-50. [PMID: 19857462 DOI: 10.1016/j.bbrc.2009.10.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 10/21/2009] [Indexed: 11/18/2022]
Abstract
Tuftelin-interacting protein 11 (TFIP11) is a protein component of the spliceosome complex that promotes the release of the lariat-intron during late-stage splicing through a direct recruitment and interaction with DHX15/PRP43. Expression of TFIP11 is essential for cell and organismal survival. TFIP11 contains a G-patch domain, a signature motif of RNA-processing proteins that is responsible for TFIP11-DHX15 interactions. No other functional domains within TFIP11 have been described. TFIP11 is localized to distinct speckled regions within the cell nucleus, although excluded from the nucleolus. In this study sequential C-terminal deletions and mutational analyses have identified two novel protein elements in mouse TFIP11. The first domain covers amino acids 701-706 (VKDKFN) and is an atypical nuclear localization signal (NLS). The second domain is contained within amino acids 711-735 and defines TFIP11's distinct speckled nuclear localization. The identification of a novel TFIP11 nuclear speckle-targeting sequence (TFIP11-STS) suggests that this domain directly interacts with additional spliceosomal components. These data help define the mechanism of nuclear/nuclear speckle localization of the splicing factor TFIP11, with implications for it's function.
Collapse
Affiliation(s)
- Sissada Tannukit
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Rm103, Los Angeles, CA 90033-1004, USA
| | | | | | | | | | | |
Collapse
|
47
|
Johnson EL, Fetter RD, Davis GW. Negative regulation of active zone assembly by a newly identified SR protein kinase. PLoS Biol 2009; 7:e1000193. [PMID: 19771148 PMCID: PMC2737616 DOI: 10.1371/journal.pbio.1000193] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 07/31/2009] [Indexed: 11/19/2022] Open
Abstract
Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila) or ribbon (vertebrates) are believed to facilitate vesicle movement to the active zone (AZ) of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc) that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D). This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp) in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.
Collapse
Affiliation(s)
- Ervin L. Johnson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Richard D. Fetter
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Liu S, Zhou Z, Lin Z, Ouyang Q, Zhang J, Tian S, Xing M. Identification of a nuclear localization motif in the serine/arginine protein kinase PSRPK of physarum polycephalum. BMC BIOCHEMISTRY 2009; 10:22. [PMID: 19703313 PMCID: PMC2754491 DOI: 10.1186/1471-2091-10-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 08/25/2009] [Indexed: 11/13/2022]
Abstract
Background Serine/arginine (SR) protein-specific kinases (SRPKs) are conserved in a wide range of organisms, from humans to yeast. Studies showed that SRPKs can regulate the nuclear import of SR proteins in cytoplasm, and regulate the sub-localization of SR proteins in the nucleus. But no nuclear localization signal (NLS) of SRPKs was found. We isolated an SRPK-like protein PSRPK (GenBank accession No. DQ140379) from Physarum polycephalum previously, and identified a NLS of PSRPK in this study. Results We carried out a thorough molecular dissection of the different domains of the PSRPK protein involved in its nuclear localization. By truncation of PSRPK protein, deletion of and single amino acid substitution in a putative NLS and transfection of mammalian cells, we observed the distribution of PSRPK fluorescent fusion protein in mammalian cells using confocal microscopy and found that the protein was mainly accumulated in the nucleus; this indicated that the motif contained a nuclear localization signal (NLS). Further investigation with truncated PSPRK peptides showed that the NLS (318PKKGDKYDKTD328) was localized in the alkaline Ω-loop of a helix-loop-helix motif (HLHM) of the C-terminal conserved domain. If the 318PKKGDK322 sequence was deleted from the loop or K320 was mutated to T320, the PSRPK fluorescent fusion protein could not enter and accumulate in the nucleus. Conclusion This study demonstrated that the 318PKKGDKYDKTD328 peptides localized in the C-terminal conserved domain of PSRPK with the Ω-loop structure could play a crucial role in the NLS function of PSRPK.
Collapse
Affiliation(s)
- Shide Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering and College of Life Science, Shenzhen University, Shenzhen, PR China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhong XY, Ding JH, Adams JA, Ghosh G, Fu XD. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev 2009; 23:482-95. [PMID: 19240134 DOI: 10.1101/gad.1752109] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation is essential for the SR family of splicing factors/regulators to function in constitutive and regulated pre-mRNA splicing; yet both hypo- and hyperphosphorylation of SR proteins are known to inhibit splicing, indicating that SR protein phosphorylation must be tightly regulated in the cell. However, little is known how SR protein phosphorylation might be regulated during development or in response to specific signaling events. Here, we report that SRPK1, a ubiquitously expressed SR protein-specific kinase, directly binds to the cochaperones Hsp40/DNAjc8 and Aha1, which mediate dynamic interactions of the kinase with the major molecular chaperones Hsp70 and Hsp90 in mammalian cells. Inhibition of the Hsp90 ATPase activity induces dissociation of SRPK1 from the chaperone complexes, which can also be triggered by a stress signal (osmotic shock), resulting in translocation of the kinase from the cytoplasm to the nucleus, differential phosphorylation of SR proteins, and alteration of splice site selection. These findings connect the SRPK to the molecular chaperone system that has been implicated in numerous signal transduction pathways and provide mechanistic insights into complex regulation of SR protein phosphorylation and alternative splicing in response to developmental cues and cellular signaling.
Collapse
Affiliation(s)
- Xiang-Yang Zhong
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
50
|
Analysis of influenza B Virus NS1 protein trafficking reveals a novel interaction with nuclear speckle domains. J Virol 2008; 83:701-11. [PMID: 18987144 DOI: 10.1128/jvi.01858-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many proteins that function in the transcription, maturation, and export of metazoan mRNAs are concentrated in nuclear speckle domains, indicating that the compartment is important for gene expression. Here, we show that the NS1 protein of influenza B virus (B/NS1) accumulates in nuclear speckles and causes rounding and morphological changes of the domains, indicating a disturbance in their normal functions. This property was located within the N-terminal 90 amino acids of the B/NS1 protein and was shown to be independent of any other viral gene product. Within this protein domain, we identified a monopartite importin alpha binding nuclear localization signal. Reverse-genetic analysis of this motif indicated that nuclear import and speckle association of the B/NS1 protein are required for the full replication capacity of the virus. In the late phase of virus infection, the B/NS1 protein relocated to the cytoplasm, which occurred in a CRM1-independent manner. The interaction of the B/NS1 protein with nuclear speckles may reflect a recruitment function to promote viral-gene expression. To our knowledge, this is the first functional description of a speckle-associated protein that is encoded by a negative-strand RNA virus.
Collapse
|