1
|
Ouyang H, Wu S, Li W, Grey MJ, Wu W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor-suppressor function mediated by p190A RhoGAP. Cell Rep 2023; 42:113486. [PMID: 37995182 PMCID: PMC10809936 DOI: 10.1016/j.celrep.2023.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
ARHGAP35, which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that interaction of p190A with the tight-junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate large tumor-suppressor (LATS) kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation, and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor-suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which, despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Shuang Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wangji Li
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Grey
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenchao Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Srivastava K, Mishra R. Pax6 affects Ras-Raf-ERK1/2 in mouse aging brain. Biogerontology 2023; 24:901-912. [PMID: 37436500 DOI: 10.1007/s10522-023-10044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023]
Abstract
Pax6, a transcription factor and multifunctional protein, changes during aging. It also interacts with regulator proteins involved in cell metabolism and survival signalling pathways including Ras-GAP. Many forms of Ras, Raf and ERK1/2 are known but information on their region-specific expression patterns are unavailable from brain during aging. Therefore, it has been intended to evaluate expressions of Pax6 and forms of Ras, Raf, ERK1/2 in hippocampus, caudate nucleus, amygdale, cerebral cortex, cerebellum and olfactory lobe. Association of Pax6 with Ras, Raf and ERK1/2 was evaluated in co-culture (PC-12, C6-glia, U-87 MG) of neuroglia cell lines. Impacts of Pax6 were evaluated by siRNA mediated knockdown and expression patterns Ras-Raf-Erk1/2. Analysis of activities of Pax6 and impacts of 5'AMP, wild-type and mutant ERK were done by RT-PCR and luciferase reporter assay. Results indicate age-dependent changes of Pax6, Ras, Raf, ERK1/2 in different regions of brain of young and old mice. Erk1/2 shows synergistic activities to Pax6.
Collapse
Affiliation(s)
- Khushboo Srivastava
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Kulkarni S, Li Q, Singhi AD, Liu S, Monga SP, Feranchak AP. TMEM16A partners with mTOR to influence pathways of cell survival, proliferation, and migration in cholangiocarcinoma. Am J Physiol Gastrointest Liver Physiol 2023; 325:G122-G134. [PMID: 37219012 PMCID: PMC10390053 DOI: 10.1152/ajpgi.00270.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.
Collapse
Affiliation(s)
- Sucheta Kulkarni
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Qin Li
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Aatur D Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew P Feranchak
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Ouyang H, Li W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor suppressor function mediated by p190A RhoGAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541483. [PMID: 37292741 PMCID: PMC10245842 DOI: 10.1101/2023.05.22.541483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ARHGAP35 , which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that a novel interaction of p190A with the tight junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate LATS kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
|
5
|
Jiang LN, Ji X, Liu W, Qi C, Zhai X. Identification of the circ_PRKDC/miR-20a-3p/RASA1 axis in regulating HaCaT keratinocyte migration. Wound Repair Regen 2021; 30:282-291. [PMID: 34897876 DOI: 10.1111/wrr.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Migration of keratinocytes plays a crucial role in the re-epithelialization phase during wound healing. Circular RNA (circRNA) protein kinase, DNA-activated, catalytic subunit (circ_PRKDC, hsa_circ_0084443) has been identified as a regulator of keratinocyte migration. However, the molecular basis governing it remains unclear. The levels of circ_PRKDC, microRNA (miR)-20a-3p, and RAS p21 protein activator 1 (RASA1) were assessed by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular localization, Actinomycin D, and Ribonuclease (RNase) R assays were performed to characterise circ_PRKDC. Cell migration was gauged by transwell and wound-healing assays. A direct relationship between miR-20a-3p and circ_PRKDC or RASA1 was verified by dual-luciferase reporter and RNA pull-down assays. Circ_PRKDC expression was reduced in wound skin during wound healing. Circ_PRKDC modulated migration of HaCaT keratinocytes. Mechanistically, circ_PRKDC directly targeted miR-20a-3p. The regulation of circ_PRKDC on HaCaT keratinocyte migration was mediated by miR-20a-3p. RASA1 was identified as a direct and functional target of miR-20a-3p, and miR-20a-3p-mediated inhibition of RASA1 impacted HaCaT keratinocyte migration. Circ_PRKDC acted as a post-transcriptional modulator of RASA1 expression through miR-20a-3p. Moreover, circ_PRKDC modulated migration of HaCaT keratinocytes by RASA1. Our findings demonstrated a novel molecular basis, the miR-20a-3p/RASA1 axis, for the regulation of circ_PRKDC on HaCaT keratinocyte migration.
Collapse
Affiliation(s)
- Li-Na Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Ji
- Department of Pathology, The People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Wei Liu
- Department of Breast Surgery, The People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Chuanchuan Qi
- Department of Breast Surgery, The People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xiaomei Zhai
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
7
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Tumor suppressor gene DLC1: Its modifications, interactive molecules, and potential prospects for clinical cancer application. Int J Biol Macromol 2021; 182:264-275. [PMID: 33836193 DOI: 10.1016/j.ijbiomac.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Deleted in liver cancer 1 (DLC1) is a recognized tumor suppressor gene that negatively regulates Rho family proteins by hydrolyzing the active GTP-bound state to its inactive GDP-bound state. Active Rho proteins play a positive role in tumorigenesis. Numerous in vitro and in vivo experiments have shown that DLC1 is downregulated or inactivated in various solid tumors, which may be due to the following five reasons: genomic deletion, epigenetic modification and ubiquitin-dependent proteasomal degradation may cause DLC1 underexpression; phosphorylation at the post-translation level may cause DLC1 inactivation; and failure to localize at focal adhesions (FAs) may prevent DLC1 from exerting full activity. All of the causes could be attributed to molecular binding. Experimental evidence suggests that direct or indirect targeting of DLC1 is feasible for cancer treatment. Therefore, elucidating the interaction of DLC1 with its binding partners might provide novel targeted therapies for cancer. In this review, we summarized the binding partners of DLC1 at both the gene and protein levels and expounded a variety of anticancer drugs targeting DLC1 to provide information about DLC1 as a cancer diagnostic indicator or therapeutic target.
Collapse
|
9
|
Xiao WR, Wu M, Bi XR. Ozone oil promotes wound healing via increasing miR-21-5p-mediated inhibition of RASA1. Wound Repair Regen 2021; 29:406-416. [PMID: 33783943 DOI: 10.1111/wrr.12907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
Skin wound is a very common type of injury and the healing process greatly affects the life quality of individuals. Ozone has been shown beneficial to wound healing with unclear mechanisms. Here, we tested the effect of ozone oil (OZ) on wound healing and investigated the underlying mechanisms. Mouse skin wound model and Masson staining were used to evaluate the effect of OZ on wound healing. Primary fibroblast culture was employed to assess the functions of OZ, miR-21-5p, and RASA1. QRT-PCR and western blot were used to determine expression levels of miR-21-5p, RASA1, α-SMA, and collagen I. CCK-8 assay and scratch wound healing assay were used to measure viability and migration of fibroblasts. Dual luciferase activity assay was performed to validate miR-21-5p/RASA1 interaction. OZ accelerated wound healing in mice and promoted proliferation and migration abilities of fibroblasts. miR-21-5p was increased while RASA1 was reduced during the wound healing and OZ treatment augmented those changes, as well as increased levels of α-SMA and collagen I. Knockdown of miR-21-5p suppressed those effects of OZ on fibroblasts. Furthermore, miR-21-5p directly targeted RASA1 mRNA and negatively regulated its expression. Overexpression of RASA1 inhibited fibroblast proliferation and migration as well as diminished α-SMA and collagen I protein expression. Additionally, RASA1 overexpression blocked the promotion of miR-21-5p overexpression on fibroblast viability and migration. In vivo, miR-21-5p facilitated wound healing while overexpression of RASA1 reversed the effect. OZ promoted wound healing by enhancing miR-21-5p-mediated RASA1 inhibition to increase fibroblast proliferation and migration.
Collapse
Affiliation(s)
- Wei-Rong Xiao
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Meng Wu
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Xiang-Rong Bi
- The 2nd Operation Room Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Ouyang H, Luong P, Frödin M, Hansen SH. p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene 2020; 39:5570-5587. [PMID: 32641858 PMCID: PMC7426264 DOI: 10.1038/s41388-020-1385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The ARHGAP35 gene encoding p190A RhoGAP (p190A) is significantly altered by both mutation and allelic deletion in human cancer, but the functional implications of such alterations are not known. Here, we demonstrate for the first time that p190A is a tumor suppressor using a xenograft mouse model with carcinoma cells harboring defined ARHGAP35 alterations. In vitro, restoration of p190A expression in carcinoma cells promotes contact inhibition of proliferation (CIP) through activation of LATS kinases and phosphorylation of the proto-oncogenic transcriptional co-activator YAP. In contrast, p190A forms harboring recurrent cancer mutations exhibit loss of function in modulating the Hippo pathway, inducing CIP, as well as attenuated suppression of tumor growth in mice. We determine that p190A promotes mesenchymal to epithelial transition (MET) and elicits expression of a cassette of epithelial adherens junction-associated genes in a cell density-dependent manner. This cassette includes CDH1 encoding E-cadherin, which amplifies p190A-mediated LATS activation and is necessary for CIP. Oppositely, we establish that p190A is obligatory for E-cadherin to activate LATS kinases and induce CIP. Collectively, this work defines a novel mechanism by which p190A and E-cadherin cooperate in modulating Hippo signaling to suppress tumor cell growth.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Phi Luong
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morten Frödin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Jaber Chehayeb R, Wang J, Stiegler AL, Boggon TJ. The GTPase-activating protein p120RasGAP has an evolutionarily conserved "FLVR-unique" SH2 domain. J Biol Chem 2020; 295:10511-10521. [PMID: 32540970 PMCID: PMC7397115 DOI: 10.1074/jbc.ra120.013976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Indexed: 01/07/2023] Open
Abstract
The Src homology 2 (SH2) domain has a highly conserved architecture that recognizes linear phosphotyrosine motifs and is present in a wide range of signaling pathways across different evolutionary taxa. A hallmark of SH2 domains is the arginine residue in the conserved FLVR motif that forms a direct salt bridge with bound phosphotyrosine. Here, we solve the X-ray crystal structures of the C-terminal SH2 domain of p120RasGAP (RASA1) in its apo and peptide-bound form. We find that the arginine residue in the FLVR motif does not directly contact pTyr1087 of a bound phosphopeptide derived from p190RhoGAP; rather, it makes an intramolecular salt bridge to an aspartic acid. Unexpectedly, coordination of phosphotyrosine is achieved by a modified binding pocket that appears early in evolution. Using isothermal titration calorimetry, we find that substitution of the FLVR arginine R377A does not cause a significant loss of phosphopeptide binding, but rather a tandem substitution of R398A (SH2 position βD4) and K400A (SH2 position βD6) is required to disrupt the binding. These results indicate a hitherto unrecognized diversity in SH2 domain interactions with phosphotyrosine and classify the C-terminal SH2 domain of p120RasGAP as "FLVR-unique."
Collapse
Affiliation(s)
- Rachel Jaber Chehayeb
- Yale College, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jessica Wang
- Yale College, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Zhang RL, Aimudula A, Dai JH, Bao YX. RASA1 inhibits the progression of renal cell carcinoma by decreasing the expression of miR-223-3p and promoting the expression of FBXW7. Biosci Rep 2020; 40:BSR20194143. [PMID: 32588875 PMCID: PMC7350892 DOI: 10.1042/bsr20194143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
RAS p21 protein activator 1 (RASA1), also known as p120-RasGAP, is a RasGAP protein that functions as a signaling scaffold protein, regulating pivotal signal cascades. However, its biological mechanism in renal cell carcinoma (RCC) remains unknown. In the present study, RASA1, F-box/WD repeat-containing protein 7 (FBXW7), and miR-223-3p expression were assessed via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Then, the targeted correlations of miR-223-3p with FBXW7 and RASA1 were verified via a dual-luciferase reporter gene assay. CCK-8, flow cytometry, and Transwell assays were implemented independently to explore the impact of RASA1 on cell proliferation, apoptosis, migration, and cell cycle progression. Finally, the influence of RASA1 on tumor formation in RCC was assessed in vivo through the analysis of tumor growth in nude mice. Results showed that FBXW7 and RASA1 expression were decreased in RCC tissues and cell lines, while miR-223-3p was expressed at a higher level. Additionally, FBXW7 and RASA1 inhibited cell proliferation but facilitated the population of RCC cells in the G0/G1 phase. Altogether, RASA1 may play a key role in the progression of RCC by decreasing miR-223-3p and subsequently increasing FBXW7 expression.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Postdoctoral Workstation, Changji Branch Hospital of The First Affiliated Hospital of Xinjiang Medical University, Changji, China
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ainiwaer Aimudula
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang-Hong Dai
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yong-Xing Bao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
14
|
Qiao C, Richter GT, Pan W, Jin Y, Lin X. Extracranial arteriovenous malformations: from bedside to bench. Mutagenesis 2020; 34:299-306. [PMID: 31613971 DOI: 10.1093/mutage/gez028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/14/2019] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformation (AVM) is defined as a fast-flow vascular anomaly that shunts blood from arteries directly to veins. This short circuit of blood flow contributes to progressive expansion of draining veins, resulting in ischaemia, tissue deformation and in some severe cases, congestive heart failure. Various medical interventions have been employed to treat AVM, however, management of which remains a huge challenge because of its high recurrence rate and lethal complications. Thus, understanding the underlying mechanisms of AVM development and progression will help direct discovery and a potential cure. Here, we summarize current findings in the field of extracranial AVMs with the aim to provide insight into their aetiology and molecular influences, in the hope to pave the way for future treatment.
Collapse
Affiliation(s)
- Congzhen Qiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gresham T Richter
- Center for Investigation of Congenital Anomalies of Vascular Development, Arkansas Vascular Biology Program, Arkansas Children's Hospital, Little Rock, AR, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Division of Pediatric Otolaryngology, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunbo Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ustaszewski A, Janowska-Głowacka J, Wołyńska K, Pietrzak A, Badura-Stronka M. Genetic syndromes with vascular malformations - update on molecular background and diagnostics. Arch Med Sci 2020; 17:965-991. [PMID: 34336026 PMCID: PMC8314420 DOI: 10.5114/aoms.2020.93260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pietrzak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
16
|
Jaber Chehayeb R, Stiegler AL, Boggon TJ. Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLoS One 2019; 14:e0226113. [PMID: 31891593 PMCID: PMC6938330 DOI: 10.1371/journal.pone.0226113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023] Open
Abstract
The Rho and Ras pathways play vital roles in cell growth, division and motility. Cross-talk between the pathways amplifies their roles in cell proliferation and motility and its dysregulation is involved in disease pathogenesis. One important interaction for cross-talk occurs between p120RasGAP (RASA1), a GTPase activating protein (GAP) for Ras, and p190RhoGAP (p190RhoGAP-A, ARHGAP35), a GAP for Rho. The binding of these proteins is primarily mediated by two SH2 domains within p120RasGAP engaging phosphorylated tyrosines of p190RhoGAP, of which the best studied is pTyr-1105. To better understand the interaction between p120RasGAP and p190RhoGAP, we determined the 1.75 Å X-ray crystal structure of the N-terminal SH2 domain of p120RasGAP in the unliganded form, and its 1.6 Å co-crystal structure in complex with a synthesized phosphotyrosine peptide, EEENI(p-Tyr)SVPHDST, corresponding to residues 1100–1112 of p190RhoGAP. We find that the N-terminal SH2 domain of p120RhoGAP has the characteristic SH2 fold encompassing a central beta-sheet flanked by two alpha-helices, and that peptide binding stabilizes specific conformations of the βE-βF loop and arginine residues R212 and R231. Site-directed mutagenesis and native gel shifts confirm phosphotyrosine binding through the conserved FLVR motif arginine residue R207, and isothermal titration calorimetry finds a dissociation constant of 0.3 ± 0.1 μM between the phosphopeptide and SH2 domain. These results demonstrate that the major interaction between two important GAP proteins, p120RasGAP and p190RhoGAP, is mediated by a canonical SH2-pTyr interaction.
Collapse
Affiliation(s)
- Rachel Jaber Chehayeb
- Yale College, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Amy L. Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Reynolds IS, O'Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Furney SJ, Burke JP. Mucinous adenocarcinoma of the colon and rectum: A genomic analysis. J Surg Oncol 2019; 120:1427-1435. [PMID: 31729037 DOI: 10.1002/jso.25764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Mucinous adenocarcinoma is a distinct subtype of colorectal cancer (CRC) with a worse prognosis when compared with non-mucinous adenocarcinoma. The aim of this study was to compare somatic mutations and copy number alteration (CNA) between mucinous and non-mucinous CRC. METHODS Data from The Cancer Genome Atlas-colon adenocarcinoma and rectum adenocarcinoma projects were utilized. Mucinous and non-mucinous CRC were compared with regard to microsatellite status, overall mutation rate, the most frequently mutated genes, mutations in genes coding for mismatch repair (MMR) proteins and genes coding for mucin glycoproteins. CNA analysis and pathway analysis was undertaken. RESULTS Mucinous CRC was more likely to be microsatellite instability-high (MSI-H) and hypermutated. When corrected for microsatellite status the single-nucleotide variation and insertion-deletion rate was similar between the two cohorts. Mucinous adenocarcinoma was more likely to have mutations in genes coding for MMR proteins and mucin glycoproteins. Pathway analysis revealed further differences between the two histological subtypes in the cell cycle, RTK-RAS, transforming growth factor-β, and TP53 pathways. CONCLUSIONS Mucinous CRC has some distinct genomic aberrations when compared with non-mucinous adenocarcinoma, many of which are driven by the increased frequency of MSI-H tumors. These genomic aberrations may play an important part in the difference seen in response to treatment and prognosis in mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emer O'Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Genomic Oncology Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
18
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
19
|
Koh HR, Lee YK, Ko SY, Shin SM, Han BH. RASA1-Related Parkes Weber Syndrome in a Neonate. NEONATAL MEDICINE 2018. [DOI: 10.5385/nm.2018.25.3.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Choi Y, Kwon CH, Lee SJ, Park J, Shin JY, Park DY. Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br J Cancer 2018; 119:230-240. [PMID: 29955133 PMCID: PMC6048111 DOI: 10.1038/s41416-018-0153-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fusion genes are good candidates of molecular targets for cancer therapy. However, there is insufficient research on the clinical implications and functional characteristics of fusion genes in colorectal cancer (CRC). Methods In this study, we analysed RNA sequencing data of CRC patients (147 tumour and 47 matched normal tissues) to identify oncogenic fusion genes and evaluated their role in CRC. Results We validated 24 fusion genes, including novel fusions, by three algorithms and Sanger sequencing. Fusions from most patients were mutually exclusive CRC oncogenes and included tumour suppressor gene mutations. Eleven fusion genes from 13 patients (8.8%) were determined as oncogenic fusion genes by analysing their gene expression and function. To investigate their oncogenic impact, we performed proliferation and migration assays of CRC cell lines expressing fusion genes of GTF3A-CDK8, NAGLU- IKZF3, RNF121- FOLR2, and STRN-ALK. Overexpression of these fusion genes increased cell proliferation except GTF3A-CDK8. In addition, overexpression of NAGLU-IKZF3 enhanced migration of CRC cells. We demonstrated that NAGLU-IKZF3, RNF121-FOLR2, and STRN-ALK had tumourigenic effects in CRC. Conclusion In summary, we identified and characterised oncogenic fusion genes and their function in CRC, and implicated NAGLU-IKZF3 and RNF121-FOLR2 as novel molecular targets for personalised medicine development.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Pathology, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-Gu, Busan, 49241, Republic of Korea
| | - Chae Hwa Kwon
- Department of Pathology, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-Gu, Busan, 49241, Republic of Korea
| | - Seon Jin Lee
- Department of Pathology, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-Gu, Busan, 49241, Republic of Korea
| | - Joonghoon Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 232-916, Republic of Korea
| | - Jong-Yeon Shin
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, 159-781, Republic of Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-Gu, Busan, 49241, Republic of Korea.
| |
Collapse
|
21
|
Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 2018; 7:23885-96. [PMID: 26993606 PMCID: PMC5029671 DOI: 10.18632/oncotarget.8127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
Inactivation of Ras GTPase activating proteins (RasGAPs) can activate Ras, increasing the risk for tumor development. Utilizing a melanoma whole genome sequencing (WGS) data from 13 patients, we identified two novel, clustered somatic missense mutations (Y472H and L481F) in RASA1 (RAS p21 protein activator 1, also called p120RasGAP). We have shown that wild type RASA1, but not identified mutants, suppresses soft agar colony formation and tumor growth of BRAF mutated melanoma cell lines via its RasGAP activity toward R-Ras (related RAS viral (r-ras) oncogene homolog) isoform. Moreover, R-Ras increased and RASA1 suppressed Ral-A activation among Ras downstream effectors. In addition to mutations, loss of RASA1 expression was frequently observed in metastatic melanoma samples on melanoma tissue microarray (TMA) and a low level of RASA1 mRNA expression was associated with decreased overall survival in melanoma patients with BRAF mutations. Thus, these data support that RASA1 is inactivated by mutation or by suppressed expression in melanoma and that RASA1 plays a tumor suppressive role by inhibiting R-Ras, a previously less appreciated member of the Ras small GTPases.
Collapse
|
22
|
Gosavi P, Gleeson PA. The Function of the Golgi Ribbon Structure - An Enduring Mystery Unfolds! Bioessays 2017; 39. [PMID: 28984991 DOI: 10.1002/bies.201700063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The Golgi apparatus in vertebrate cells consists of individual Golgi stacks fused together in a continuous ribbon structure. The ribbon structure per se is not required to mediate the classical functions of this organelle and the relevance of the "ribbon" structure has been a mystery since first identified ultrastructurally in the 1950s. Recent advances recognize a role for the Golgi apparatus in a range of cellular processes, some mediated by signaling networks which are regulated at the Golgi. Here we review the cellular processes and signaling events regulated by the Golgi apparatus and, in particular, explore an emerging theme that the ribbon structure of the Golgi contributes directly to the regulation of these higher order functions.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
23
|
MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Sci Rep 2017; 7:7797. [PMID: 28798331 PMCID: PMC5552762 DOI: 10.1038/s41598-017-07513-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miR)-132 has been identified as a top up-regulated miRNA during skin wound healing and its inhibition impairs wound repair. In a human in vivo surgical wound model, we showed that miR-132 was induced in epidermal as well as in dermal wound-edge compartments during healing. Moreover, in a panel of cells isolated from human skin wounds, miR-132 was found highly expressed in human dermal fibroblasts (HDFs). In HDFs, miR-132 expression was upregulated by TGF-β1. By overexpression or inhibition of miR-132, we showed that miR-132 promoted HDF migration. Mechanistically, global transcriptome analysis revealed that RAS signaling pathway was regulated by miR-132 in HDFs. We found that RAS p21 protein activator 1 (RASA1), a known target of miR-132, was downregulated in HDFs upon miR-132 overexpression. Silencing of RASA1 phenocopied the pro-migratory effect of miR-132. Collectively, our study reveals an important role for miR-132 in HDFs during wound healing and indicates a therapeutic potential of miR-132 in hard-to-heal skin wounds.
Collapse
|
24
|
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ, King PD. RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 2017; 127:2569-2585. [PMID: 28530642 DOI: 10.1172/jci89607] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood and lymphatic vessel (LV) disorder that is caused by inherited inactivating mutations of the RASA1 gene, which encodes p120 RasGAP (RASA1), a negative regulator of the Ras small GTP-binding protein. How RASA1 mutations lead to the LV leakage defects that occur in CM-AVM is not understood. Here, we report that disruption of the Rasa1 gene in adult mice resulted in loss of LV endothelial cells (LECs) specifically from the leaflets of intraluminal valves in collecting LVs. As a result, valves were unable to prevent fluid backflow and the vessels were ineffective pumps. Furthermore, disruption of Rasa1 in midgestation resulted in LEC apoptosis in developing LV valves and consequently failed LV valvulogenesis. Similar phenotypes were observed in induced RASA1-deficient adult mice and embryos expressing a catalytically inactive RASA1R780Q mutation. Thus, RASA1 catalytic activity is essential for the function and development of LV valves. These data provide a partial explanation for LV leakage defects and potentially other LV abnormalities observed in CM-AVM.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
26
|
Li L, Li YM, Zhou P, Wang XS, Wang GY, Zhao XH, Cui BB, Ren YL, Dong XS, Chen ZQ. Abnormal expression of p190RhoGAP in colorectal cancer patients with poor survival. Am J Transl Res 2016; 8:4405-4414. [PMID: 27830024 PMCID: PMC5095333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE This study aims to investigate the expression and clinical significance of p190RhoGAP, a member of the RhoGAP family, in colorectal cancer (CRC). METHODS The expression p190RhoGAP was detected by RT-PCR, western blot (WB) and immunohistochemistry (IHC) in 14 paired CRCs and matched non-cancerous mucosal tissues. The protein content of p190RhoGAP was identified in 114 CRCs by IHC. In addition, the association of the expression of p190RhoGAP with carcinogenesis, distant metastasis and prognosis was further evaluated. RESULTS In 14 paired fresh tissues, the mRNA (P<0.0001) and protein (P = 0.003) expression levels of p190RhoGAP were significantly higher in primary CRCs than in paired non-cancerous mucosal tissues; and was consistent with WB results. The expression of p190RhoGAP increased from normal mucosa to adenoma, and became even greater in primary carcinoma (P = 0.001). The expression level of p190RhoGAP was highest in liver metastasis compared to primary carcinoma (P = 0.028). The incidence of p190RhoGAP expression-positive cases was 58.77% in 114 CRC tissues. Furthermore, the enhanced expression of p190RhoGAP was significantly associated with shorter disease-specific survival (P<0.001) and shorter disease-free survival (P<0.001). Cox regression analysis indicated that p190RhoGAP was an independent prognostic parameter for CRC. CONCLUSION p190RhoGAP may be an independent predictive factor for the prognosis of CRC, and the abnormal expression of p190RhoGAP may play a crucial role in colorectal carcinogenesis and distant metastasis.
Collapse
Affiliation(s)
- Li Li
- Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Yong-Min Li
- Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Ping Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Xi-Shan Wang
- Colorectal Surgery, Cancer Hospital Chinese Academy of Medical SciencesBeijing, China
| | - Gui-Yu Wang
- Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Xu-Hai Zhao
- Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Bin-Bin Cui
- Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Yan-Lu Ren
- Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Xin-Shu Dong
- Department of General Surgery, The No.4 Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Zhi-Qi Chen
- Department of General Surgery, Daqing Oilfield General HospitalDaqing, Heilongjiang, China
| |
Collapse
|
27
|
Antoine-Bertrand J, Duquette PM, Alchini R, Kennedy TE, Fournier AE, Lamarche-Vane N. p120RasGAP Protein Mediates Netrin-1 Protein-induced Cortical Axon Outgrowth and Guidance. J Biol Chem 2015; 291:4589-602. [PMID: 26710849 DOI: 10.1074/jbc.m115.674846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/23/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.
Collapse
Affiliation(s)
- Judith Antoine-Bertrand
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| | - Philippe M Duquette
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| | - Ricardo Alchini
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Timothy E Kennedy
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Alyson E Fournier
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Nathalie Lamarche-Vane
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| |
Collapse
|
28
|
Franzoni M, Cattaneo I, Longaretti L, Figliuzzi M, Ene-Iordache B, Remuzzi A. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. Am J Physiol Heart Circ Physiol 2015; 310:H49-59. [PMID: 26497959 DOI: 10.1152/ajpheart.00098.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Intimal hyperplasia (IH) is the first cause of failure of an arteriovenous fistula (AVF). The aim of the present study was to investigate the effects on endothelial cells (ECs) of shear stress waveforms derived from AVF areas prone to develop IH. We used a cone-and-plate device to obtain real-time control of shear stress acting on EC cultures. We exposed human umbilical vein ECs for 48 h to different shear stimulations calculated in a side-to-end AVF model. Pulsatile unidirectional flow, representative of low-risk stenosis areas, induced alignment of ECs and actin fiber orientation with flow. Shear stress patterns of reciprocating flow, derived from high-risk stenosis areas, did not affect EC shape or cytoskeleton organization, which remained similar to static cultures. We also evaluated flow-induced EC expression of genes known to be involved in cytoskeletal remodeling and expression of cell adhesion molecules. Unidirectional flow induced a significant increase in Kruppel-like factor 2 mRNA expression, whereas it significantly reduced phospholipase D1, α4-integrin, and Ras p21 protein activator 1 mRNA expression. Reciprocating flow did not increase Kruppel-like factor 2 mRNA expression compared with static controls but significantly increased mRNA expression of phospholipase D1, α4-integrin, and Ras p21 protein activator 1. Reciprocating flow selectively increased monocyte chemoattractant protein-1 and IL-8 production. Furthermore, culture medium conditioned by ECs exposed to reciprocating flows selectively increased smooth muscle cell proliferation compared with unidirectional flow. Our results indicate that protective vascular effects induced in ECs by unidirectional pulsatile flow are not induced by reciprocating shear forces, suggesting a mechanism by which oscillating flow conditions may induce the development of IH in AVF and vascular access dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Irene Cattaneo
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Lorena Longaretti
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, Be rgamo, Italy; and
| | - Marina Figliuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
29
|
Feng M, Bao Y, Li Z, Li J, Gong M, Lam S, Wang J, Marzese DM, Donovan N, Tan EY, Hoon DSB, Yu Q. RASAL2 activates RAC1 to promote triple-negative breast cancer progression. J Clin Invest 2014; 124:5291-304. [PMID: 25384218 DOI: 10.1172/jci76711] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have a high incidence of early relapse and metastasis; however, the molecular basis for recurrence in these individuals remains poorly understood. Here, we demonstrate that RASAL2, which encodes a RAS-GTPase-activating protein (RAS-GAP), is a functional target of anti-invasive microRNA-203 and is overexpressed in a subset of triple-negative or estrogen receptor-negative (ER-negative) breast tumors. As opposed to luminal B ER-positive breast cancers, in which RASAL2 has been shown to act as a RAS-GAP tumor suppressor, we found that RASAL2 is oncogenic in TNBC and drives mesenchymal invasion and metastasis. Moreover, high RASAL2 expression was predictive of poor disease outcomes in patients with TNBC. RASAL2 acted independently of its RAS-GAP catalytic activity in TNBC; however, RASAL2 promoted small GTPase RAC1 signaling, which promotes mesenchymal invasion, through binding and antagonizing the RAC1-GAP protein ARHGAP24. Together, these results indicate that activation of a RASAL2/ARHGAP24/RAC1 module contributes to TNBC tumorigenesis and identify a context-dependent role of RASAL2 in breast cancer.
Collapse
|
30
|
Lubeck BA, Lapinski PE, Bauler TJ, Oliver JA, Hughes ED, Saunders TL, King PD. Blood vascular abnormalities in Rasa1(R780Q) knockin mice: implications for the pathogenesis of capillary malformation-arteriovenous malformation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3163-9. [PMID: 25283357 DOI: 10.1016/j.ajpath.2014.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant blood vascular (BV) disorder characterized by CM and fast flow BV lesions. Inactivating mutations of the RASA1 gene are the cause of CM-AVM in most cases. RASA1 is a GTPase-activating protein that acts as a negative regulator of the Ras small GTP-binding protein. In addition, RASA1 performs Ras-independent functions in intracellular signal transduction. Whether CM-AVM results from loss of an ability of RASA1 to regulate Ras or loss of a Ras-independent function of RASA1 is unknown. To address this, we generated Rasa1 knockin mice with an R780Q point mutation that abrogates RASA1 catalytic activity specifically. Homozygous Rasa1(R780Q/R780Q) mice showed the same severe BV abnormalities as Rasa1-null mice and died midgestation. This finding indicates that BV abnormalities in CM-AVM develop as a result of loss of an ability of RASA1 to control Ras activation and not loss of a Ras-independent function of this molecule. More important, findings indicate that inhibition of Ras signaling is likely to represent an effective means of therapy for this disease.
Collapse
Affiliation(s)
- Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Timothy J Bauler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer A Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth D Hughes
- Biomedical Research Core Facility Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas L Saunders
- Biomedical Research Core Facility Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
31
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The majority of these occur sporadically, yet a few are reported to be familial. The identification of genes mutated in the different malformations provides insight into their etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The importance of utilizing Next-Generating Sequencing (NGS) for high-throughput and "deep" screening of both blood and lesional DNA and RNA is thus emphasized, as the somatic changes are present in low quantities. There are several examples where NGS has already accomplished discovering these changes. The identification of all the causative genes and unraveling of a holistic overview of the pathogenic mechanisms should enable generation of in vitro and in vivo models and lead to development of more effective treatments, not only targeted on symptoms.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
32
|
Barras D, Lorusso G, Lhermitte B, Viertl D, Rüegg C, Widmann C. Fragment N2, a caspase-3-generated RasGAP fragment, inhibits breast cancer metastatic progression. Int J Cancer 2014; 135:242-7. [PMID: 24347041 DOI: 10.1002/ijc.28674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
The p120 RasGAP protein negatively regulates Ras via its GAP domain. RasGAP carries several other domains that modulate several signaling molecules such as Rho. RasGAP is also a caspase-3 substrate. One of the caspase-3-generated RasGAP fragments, corresponding to amino acids 158-455 and called fragment N2, was previously reported to specifically sensitize cancer cells to death induced by various anticancer agents. Here, we show that fragment N2 inhibits migration in vitro and that it impairs metastatic progression of breast cancer to the lung. Hence, stress-activated caspase-3 might contribute to the suppression of metastasis through the generation of fragment N2. These results indicate that the activity borne by fragment N2 has a potential therapeutic relevance to counteract the metastatic process.
Collapse
Affiliation(s)
- David Barras
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, Tsao MS. p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One 2014; 9:e86103. [PMID: 24465899 PMCID: PMC3897622 DOI: 10.1371/journal.pone.0086103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
Collapse
Affiliation(s)
- Shawna L. Organ
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Hai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lisa Leung
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takehiko Sasazuki
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene 2013; 33:5163-72. [PMID: 24213569 DOI: 10.1038/onc.2013.465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/30/2013] [Indexed: 01/03/2023]
Abstract
TAT-RasGAP(317-326), a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP(317-326). In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP(317-326) to promote cell adherence and inhibit migration. These results show that TAT-RasGAP(317-326), besides its ability to favor tumor cell death, hampers cell migration and invasion.
Collapse
|
35
|
Atri D, Larrivée B, Eichmann A, Simons M. Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci 2013; 71:10.1007/s00018-013-1475-1. [PMID: 24077895 PMCID: PMC3969452 DOI: 10.1007/s00018-013-1475-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022]
Abstract
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.
Collapse
Affiliation(s)
- Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
| | - Bruno Larrivée
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Centre, University of Montreal, Montreal, Canada
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
36
|
Yadav P, De Castro DK, Waner M, Meyer L, Fay A. Vascular Anomalies of the Head and Neck: A Review of Genetics. Semin Ophthalmol 2013; 28:257-66. [DOI: 10.3109/08820538.2013.825279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends Cell Biol 2013; 24:83-9. [PMID: 24007977 DOI: 10.1016/j.tcb.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Collapse
|
38
|
Orme CM, Boyden LM, Choate KA, Antaya RJ, King BA. Capillary malformation--arteriovenous malformation syndrome: review of the literature, proposed diagnostic criteria, and recommendations for management. Pediatr Dermatol 2013; 30:409-15. [PMID: 23662773 DOI: 10.1111/pde.12112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Capillary malformation-arteriovenous malformation syndrome is an autosomal dominant disorder caused by mutations in the RASA1 gene and characterized by multiple small, round to oval capillary malformations with or without arteriovenous malformations. Ateriovenous malformations occur in up to one-third of patients and may involve the brain and spine. Although making the diagnosis is straightforward in some patients, there are other patients for whom diagnostic criteria may be helpful in their evaluation. Here we review the literature regarding capillary malformation-arteriovenous malformation syndrome, propose diagnostic criteria, and discuss the care of patients with this condition.
Collapse
Affiliation(s)
- Charisse M Orme
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
39
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Uebelhoer M, Boon LM, Vikkula M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a009688. [PMID: 22908197 DOI: 10.1101/cshperspect.a009688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular anomalies are localized abnormalities that occur during vascular development. Several causative genes have been identified not only for inherited but also for some sporadic forms, and the molecular pathways involved are becoming understood. This gives us the opportunity to generate animals carrying the causative genetic defects, which we hope model the phenotype seen in human patients. These models would enable us not only to test known antiangiogenic drugs, but also to develop novel approaches for treatment, directly targeting the mutated protein or molecules implicated in the pathophysiological signaling pathways.
Collapse
Affiliation(s)
- Melanie Uebelhoer
- Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
42
|
Holeiter G, Bischoff A, Braun AC, Huck B, Erlmann P, Schmid S, Herr R, Brummer T, Olayioye MA. The RhoGAP protein Deleted in Liver Cancer 3 (DLC3) is essential for adherens junctions integrity. Oncogenesis 2012; 1:e13. [PMID: 23552697 PMCID: PMC3412646 DOI: 10.1038/oncsis.2012.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial cell-cell contacts are mediated by E-cadherin interactions, which are regulated by the balanced local activity of Rho GTPases. Despite the known function of Rho at adherens junctions (AJs), little is known about the spatial control of Rho activity at these sites. Here we provide evidence that in breast epithelial cells the Deleted in Liver Cancer 3 (DLC3) protein localizes to AJs and is essential for E-cadherin function. DLC3 is a still poorly characterized RhoA-specific GTPase-activating protein that is frequently downregulated in various types of cancer. We demonstrate that DLC3 depletion leads to mislocalization of E-cadherin and catenins, which was associated with impaired cell aggregation and increased migration. This is explained by aberrant local Rho signaling because ROCK inhibition restored cell-cell contacts in DLC3 knockdown cells. We thus identify DLC3 as a novel negative regulator of junctional Rho and propose that DLC3 loss contributes to carcinogenesis by compromising epithelial integrity.
Collapse
Affiliation(s)
- G Holeiter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Millarte V, Farhan H. The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. ScientificWorldJournal 2012; 2012:498278. [PMID: 22623902 PMCID: PMC3353474 DOI: 10.1100/2012/498278] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/18/2011] [Indexed: 01/17/2023] Open
Abstract
Migration and invasion are fundamental features of metastatic cancer cells. The Golgi apparatus, an organelle involved in posttranslational modification and sorting of proteins, is widely accepted to regulate directional cell migration. In addition, mounting evidence suggests that the Golgi is a hub for different signaling pathways. In this paper we will give an overview on how polarized secretion and microtubule nucleation at the Golgi regulate directional cell migration. We will review different signaling pathways that signal to and from the Golgi. Finally, we will discuss how these signaling pathways regulate the role of the Golgi in cell migration and invasion. We propose that by identifying regulators of the Golgi, we might be able to uncover unappreciated modulators of cell migration. Uncovering the regulatory network that orchestrates cell migration is of fundamental importance for the development of new therapeutic strategies against cancer cell metastasis.
Collapse
Affiliation(s)
- Valentina Millarte
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | | |
Collapse
|
44
|
de Wijn RS, Oduber CE, Breugem CC, Alders M, Hennekam RC, van der Horst CM. Phenotypic variability in a family with capillary malformations caused by a mutation in the RASA1 gene. Eur J Med Genet 2012; 55:191-5. [DOI: 10.1016/j.ejmg.2012.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
|
45
|
Lapinski PE, Kwon S, Lubeck BA, Wilkinson JE, Srinivasan RS, Sevick-Muraca E, King PD. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J Clin Invest 2012; 122:733-47. [PMID: 22232212 DOI: 10.1172/jci46116] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 11/30/2011] [Indexed: 01/08/2023] Open
Abstract
RASA1 (also known as p120 RasGAP) is a Ras GTPase-activating protein that functions as a regulator of blood vessel growth in adult mice and humans. In humans, RASA1 mutations cause capillary malformation-arteriovenous malformation (CM-AVM); whether it also functions as a regulator of the lymphatic vasculature is unknown. We investigated this issue using mice in which Rasa1 could be inducibly deleted by administration of tamoxifen. Systemic loss of RASA1 resulted in a lymphatic vessel disorder characterized by extensive lymphatic vessel hyperplasia and leakage and early lethality caused by chylothorax (lymphatic fluid accumulation in the pleural cavity). Lymphatic vessel hyperplasia was a consequence of increased proliferation of lymphatic endothelial cells (LECs) and was also observed in mice in which induced deletion of Rasa1 was restricted to LECs. RASA1-deficient LECs showed evidence of constitutive activation of Ras in situ. Furthermore, in isolated RASA1-deficient LECs, activation of the Ras signaling pathway was prolonged and cellular proliferation was enhanced after ligand binding to different growth factor receptors, including VEGFR-3. Blockade of VEGFR-3 was sufficient to inhibit the development of lymphatic vessel hyperplasia after loss of RASA1 in vivo. These findings reveal a role for RASA1 as a physiological negative regulator of LEC growth that maintains the lymphatic vasculature in a quiescent functional state through its ability to inhibit Ras signal transduction initiated through LEC-expressed growth factor receptors such as VEGFR-3.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
47
|
Cornely R, Rentero C, Enrich C, Grewal T, Gaus K. Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life 2011; 63:1009-17. [PMID: 21990038 DOI: 10.1002/iub.540] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.
Collapse
Affiliation(s)
- Rhea Cornely
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
48
|
Mai A, Veltel S, Pellinen T, Padzik A, Coffey E, Marjomäki V, Ivaska J. Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration. J Cell Biol 2011; 194:291-306. [PMID: 21768288 PMCID: PMC3144408 DOI: 10.1083/jcb.201012126] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/21/2011] [Indexed: 12/22/2022] Open
Abstract
Integrin trafficking from and to the plasma membrane controls many aspects of cell behavior including cell motility, invasion, and cytokinesis. Recruitment of integrin cargo to the endocytic machinery is regulated by the small GTPase Rab21, but the detailed molecular mechanisms underlying integrin cargo recruitment are yet unknown. Here we identify an important role for p120RasGAP (RASA1) in the recycling of endocytosed α/β1-integrin heterodimers to the plasma membrane. Silencing of p120RasGAP attenuated integrin recycling and augmented cell motility. Mechanistically, p120RasGAP interacted with the cytoplasmic domain of integrin α-subunits via its GAP domain and competed with Rab21 for binding to endocytosed integrins. This in turn facilitated exit of the integrin from Rab21- and EEA1-positive endosomes to drive recycling. Our results assign an unexpected role for p120RasGAP in the regulation of integrin traffic in cancer cells and reveal a new concept of competitive binding of Rab GTPases and GAP proteins to receptors as a regulatory mechanism in trafficking.
Collapse
Affiliation(s)
- Anja Mai
- Turku Centre for Biotechnology, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku 20521, Finland
| | - Stefan Veltel
- Turku Centre for Biotechnology, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
| | - Teijo Pellinen
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
| | - Artur Padzik
- Turku Centre for Biotechnology, Turku 20521, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40500, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, Turku 20521, Finland
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku 20521, Finland
| |
Collapse
|
49
|
Ger M, Zitkus Z, Valius M. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity. Cell Signal 2011; 23:1651-8. [PMID: 21664272 DOI: 10.1016/j.cellsig.2011.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/25/2022]
Abstract
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.
Collapse
Affiliation(s)
- Marija Ger
- Proteomics Centre, Vilnius University Institute of Biochemistry, Lithuania.
| | | | | |
Collapse
|
50
|
RasGAP-derived peptide 38GAP potentiates the cytotoxicity of cisplatin through inhibitions of Akt, ERK and NF-κB in colon carcinoma HCT116 cells. Cancer Lett 2011; 308:62-70. [PMID: 21570766 DOI: 10.1016/j.canlet.2011.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 01/05/2023]
Abstract
To increase the efficacy of currently used anti-cancer genotoxins, a combination use of different drugs is a potential new therapeutical tool. Here, we reported that a synthetic RasGAP-derived peptide 38GAP with RasGAP(301-326) and TAT penetration sequences could enhance the effect of chemotherapeutic agent CDDP in human colon carcinoma HCT116 cells. Our results showed that 38GAP significantly increased the CDDP-induced apoptosis in HCT116 cells. This synergistic effect was associated with abrogation of CDDP-induced G2/M arrest by down-regulations of phospho-Cdc2 and p21, and inhibitions of phospho-AKT, phospho-ERK and NF-κB. In animal models, 38GAP combined with CDDP significantly suppressed CT26 tumor growth, while 38GAP alone showed slight inhibitory effect. Our data suggest that 38GAP in combination with chemotherapeutics will become a potential therapeutic strategy for colon cancers.
Collapse
|