1
|
Kanuparthy M, Manthana R, Kaushik H, Xiang K, Hamze J, Marimekala D, Feng J, Sellke FW. Microvascular Dysfunction Following Cardioplegic Arrest and Cardiopulmonary Bypass: Impacts of Diabetes and Hypertension. Biomedicines 2025; 13:409. [PMID: 40002822 PMCID: PMC11853148 DOI: 10.3390/biomedicines13020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cardioplegic arrest and cardiopulmonary bypass (CP/CPB) are known to engender microvascular dysfunction in patients undergoing cardiac surgery. These effects are significantly varied by patient comorbidities including diabetes and hypertension. Both diabetes and hypertension are associated with worse outcomes after cardiac surgery, partly related to increased microvascular complications. In this review, we examine several key facets of microvascular dysfunction after CP/CPB: microvascular endothelial and vasomotor dysfunction, altered gene and protein expression, endothelial adherens junction dysfunction, and programmed cell death as they relate to diabetes and hypertension. This review examines both classical techniques, including microvessel reactivity assays, and modern multiomic approaches to characterizing these microvascular changes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (M.K.); (R.M.); (H.K.); (K.X.); (J.H.); (D.M.); (J.F.)
| |
Collapse
|
2
|
Zhang L, Wei X. The Lego hypothesis of tissue morphogenesis: stereotypic organization of parallel orientational cell adhesions for epithelial self-assembly. Biol Rev Camb Philos Soc 2025; 100:445-460. [PMID: 39308450 PMCID: PMC11718597 DOI: 10.1111/brv.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of PsychologyDalian Medical University9 Lvshun South Road WestDalian116044Liaoning ProvinceChina
| | - Xiangyun Wei
- Departments of Ophthalmology and Microbiology & Molecular GeneticsUniversity of Pittsburgh1622 Locust StreetPittsburgh15219PAUSA
| |
Collapse
|
3
|
Lin YC, Chang YJ, Gau SS, Lo CM, Yang RB. SCUBE2 regulates adherens junction dynamics and vascular barrier function during inflammation. Cardiovasc Res 2024; 120:1636-1649. [PMID: 38870316 DOI: 10.1093/cvr/cvae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS SCUBE2 (signal peptide-CUB-epidermal growth factor-like domain-containing protein 2) is a secreted or membrane-bound protein originally identified from endothelial cells (ECs). Our previous work showed that SCUBE2 forms a complex with E-cadherin and stabilizes epithelial adherens junctions (AJs) to promote epithelial phenotypes. However, it remains unclear whether SCUBE2 also interacts with vascular endothelial (VE)-cadherin and modulates EC barrier function. In this study, we investigated whether and how SCUBE2 in ECs regulates vascular barrier maintenance. METHODS AND RESULTS We showed that SCUBE2 colocalized and interacted with VE-cadherin and VE-protein tyrosine phosphatase (VE-PTP) within EC AJs. Furthermore, SCUBE2 knockdown disrupted EC AJs and increased EC permeability. Expression of EC SCUBE2 was suppressed at both mRNA and protein levels via the nuclear factor-κB signalling pathway in response to pro-inflammatory cytokines or permeability-inducing agents. In line with these findings, EC-specific deletion of Scube2 (EC-KO) in mice impaired baseline barrier function and worsened vascular leakiness of peripheral capillaries after local injection of histamine or vascular endothelial growth factor. EC-KO mice were also sensitive to pulmonary vascular hyperpermeability and leucocyte infiltration in response to acute endotoxin- or influenza virus-induced systemic inflammation. Meanwhile, EC-specific SCUBE2-overexpressing mice were protected from these effects. Molecular studies suggested that SCUBE2 acts as a scaffold molecule enabling VE-PTP to dephosphorylate VE-cadherin, which prevents VE-cadherin internalization and stabilizes EC AJs. As such, loss of SCUBE2 resulted in hyperphosphorylation of VE-cadherin at tyrosine 685, which led to its endocytosis, thus destabilizing EC AJs and reducing barrier function. All of these effects were exacerbated by inflammatory insults. CONCLUSION We found that SCUBE2 contributes to vascular integrity by recruiting VE-PTP to dephosphorylate VE-cadherin and stabilize AJs, thereby promoting EC barrier function. Moreover, our data suggest that genetic overexpression or pharmacological up-regulation of SCUBE2 may help to prevent vascular leakage and oedema in inflammatory diseases.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Graduate School of Biostudies, Kyoto University, Kyoto 6068501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 6068501, Japan
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Biomedical Translation Research Center, Academia Sinica, 99, Ln. 130, Academia Rd., Sec. 1, Taipei 115201, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110301, Taiwan
| |
Collapse
|
4
|
Wilkens M, Holtermann L, Stahl AK, Stegmeyer RI, Nottebaum AF, Vestweber D. Ubiquitination of VE-cadherin regulates inflammation-induced vascular permeability in vivo. EMBO Rep 2024; 25:4013-4032. [PMID: 39112792 PMCID: PMC11387630 DOI: 10.1038/s44319-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
VE-cadherin is a major component of the cell adhesion machinery which provides integrity and plasticity of the barrier function of endothelial junctions. Here, we analyze whether ubiquitination of VE-cadherin is involved in the regulation of the endothelial barrier in inflammation in vivo. We show that histamine and thrombin stimulate ubiquitination of VE-cadherin in HUVEC, which is completely blocked if the two lysine residues K626 and K633 are replaced by arginine. Similarly, these mutations block histamine-induced endocytosis of VE-cadherin. We describe two knock-in mouse lines with endogenous VE-cadherin being replaced by either a VE-cadherin K626/633R or a VE-cadherin KallR mutant, where all seven lysine residues are mutated. Mutant mice are viable, healthy and fertile with normal expression levels of junctional VE-cadherin. Histamine- or LPS-induced vascular permeability in the skin or lung of both of these mutant mice are clearly and similarly reduced in comparison to WT mice. Additionally, we detect a role of K626/633 for lysosomal targeting. Collectively, our findings identify ubiquitination of VE-cadherin as important for the induction of vascular permeability in the inflamed skin and lung.
Collapse
Affiliation(s)
- Markus Wilkens
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Leonie Holtermann
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Ann-Kathrin Stahl
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | | | - Astrid F Nottebaum
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany.
| |
Collapse
|
5
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. PLoS One 2024; 19:e0290485. [PMID: 38722959 PMCID: PMC11081302 DOI: 10.1371/journal.pone.0290485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
6
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
7
|
Chikh A, Raimondi C. Endothelial Neuropilin-1: a multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis. Biochem Soc Trans 2024; 52:137-150. [PMID: 38323651 PMCID: PMC10903451 DOI: 10.1042/bst20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor β signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.
Collapse
Affiliation(s)
- Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, U.K
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| |
Collapse
|
8
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
9
|
Naser AN, Lu Q, Chen YH. Trans-Compartmental Regulation of Tight Junction Barrier Function. Tissue Barriers 2023; 11:2133880. [PMID: 36220768 PMCID: PMC10606786 DOI: 10.1080/21688370.2022.2133880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/17/2022] Open
Abstract
Tight junctions (TJs) are the most apical components of junctional complexes in epithelial and endothelial cells. Barrier function is one of the major functions of TJ, which restricts the ions and small water-soluble molecules from passing through the paracellular pathway. Adherens junctions (AJs) play an important role in cell-cell adhesion and cell signaling. Gap junctions (GJs) are intercellular channels regulating electrical and metabolic signals between cells. It is well known that TJ integral membrane proteins, such as claudins and occludins, are the molecular building blocks responsible for TJ barrier function. However, recent studies demonstrate that proteins of other junctional complexes can influence and regulate TJ barrier function. Therefore, the crosstalk between different cell junctions represents a common means to modulate cellular activities. In this review, we will discuss the interactions among TJ, AJ, and GJ by focusing on how AJ and GJ proteins regulate TJ barrier function in different biological systems.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| |
Collapse
|
10
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552739. [PMID: 37609155 PMCID: PMC10441400 DOI: 10.1101/2023.08.10.552739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
11
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
12
|
Bosseboeuf E, Chikh A, Chaker AB, Mitchell TP, Vignaraja D, Rajendrakumar R, Khambata RS, Nightingale TD, Mason JC, Randi AM, Ahluwalia A, Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16:eabo4863. [PMID: 37220183 PMCID: PMC7614756 DOI: 10.1126/scisignal.abo4863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-β (TGF-β) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-β signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-β signaling and inflammation.
Collapse
Affiliation(s)
- Emy Bosseboeuf
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Ahmed Bey Chaker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tom P. Mitchell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dhilakshani Vignaraja
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Ridhi Rajendrakumar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Thomas D. Nightingale
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Justin C. Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Anna M. Randi
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
13
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
14
|
Lugano R, Vemuri K, Barbera S, Orlandini M, Dejana E, Claesson‐Welsh L, Dimberg A. CD93 maintains endothelial barrier function by limiting the phosphorylation and turnover of VE-cadherin. FASEB J 2023; 37:e22894. [PMID: 36961390 PMCID: PMC11977521 DOI: 10.1096/fj.202201623rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Regulation of vascular permeability to plasma is essential for tissue and organ homeostasis and is mediated by endothelial cell-to-cell junctions that tightly regulate the trafficking of molecules between blood and tissue. The single-pass transmembrane glycoprotein CD93 is upregulated in endothelial cells during angiogenesis and controls cytoskeletal dynamics. However, its role in maintaining homeostasis by regulating endothelial barrier function has not been elucidated yet. Here, we demonstrate that CD93 interacts with vascular endothelial (VE)-cadherin and limits its phosphorylation and turnover. CD93 deficiency in vitro and in vivo induces phosphorylation of VE-cadherin under basal conditions, displacing it from endothelial cell-cell contacts. Consistent with this, endothelial junctions are defective in CD93-/- mice, and the blood-brain barrier permeability is enhanced. Mechanistically, CD93 regulates VE-cadherin phosphorylation and turnover at endothelial junctions through the Rho/Rho kinase-dependent pathway. In conclusion, our results identify CD93 as a key regulator of VE-cadherin stability at endothelial junctions, opening up possibilities for therapeutic strategies directed to control vascular permeability.
Collapse
Affiliation(s)
- Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia A. Moro, 253100SienaItaly
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
- Vascular Biology UnitFIRC Institute of Molecular OncologyMilan20129Italy
| | - Lena Claesson‐Welsh
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| |
Collapse
|
15
|
Garnier O, Vilgrain I. Dialogue between VE-Cadherin and Sphingosine 1 Phosphate Receptor1 (S1PR1) for Protecting Endothelial Functions. Int J Mol Sci 2023; 24:ijms24044018. [PMID: 36835432 PMCID: PMC9959973 DOI: 10.3390/ijms24044018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The endothelial cells (EC) of established blood vessels in adults remain extraordinarily quiescent in the sense that they are not actively proliferating, but they fulfill the necessary role to control the permeability of their monolayer that lines the interior of blood vessels. The cell-cell junctions between ECs in the endothelium comprise tight junctions and adherens homotypic junctions, which are ubiquitous along the vascular tree. Adherens junctions are adhesive intercellular contacts that are crucial for the organization of the EC monolayer and its maintenance and regulation of normal microvascular function. The molecular components and underlying signaling pathways that control the association of adherens junctions have been described in the last few years. In contrast, the role that dysfunction of these adherens junctions has in contributing to human vascular disease remains an important open issue. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator found at high concentrations in blood which has important roles in the control of the vascular permeability, cell recruitment, and clotting that follow inflammatory processes. This role of S1P is achieved through a signaling pathway mediated through a family of G protein-coupled receptors designated as S1PR1. This review highlights novel evidence for a direct linkage between S1PR1 signaling and the mediation of EC cohesive properties that are controlled by VE-cadherin.
Collapse
|
16
|
Li XL, Feng QM, Yang HN, Ruan JW, Kang YF, Yu ZE, Liu JX, Chen AN, Cui YH, Liu Z, Lu X. p120 regulates E-cadherin expression in nasal epithelial cells in chronic rhinosinusitis. Rhinology 2022; 60:270-281. [PMID: 35934314 DOI: 10.4193/rhin21.276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The epithelial barrier plays an important role in the regulation of immune homeostasis. The effect of the immune environment on E-cadherin has been demonstrated in previous studies. This discovery prompted new research on the targeting mechanism of E-cadherin in chronic rhinosinusitis (CRS). METHODS E-cadherin and p120 expression was determined by quantitative RT-PCR, and western blot. The interaction between E-cadherin and p120 was assessed by immunofluorescence staining and coimmunoprecipitation assays. Human nasal epithelial cells (HNECs) were cultured with submerged methods and transfected with p120-specific small interfering RNA. In other experiments, HNECs differentiated with the air-liquid interface (ALI) method were stimulated with various cytokines and Toll-like receptor (TLR) agonists. The barrier properties of differentiated HNECs were determined by assessing fluorescent dextran permeability. RESULTS E-cadherin and p120 expression was decreased in HNECs from patients with CRS, and the p120 protein expression level was positively correlated with that of E-cadherin. Two isoforms of p120 (p120-1 and p120-3) were expressed in HNECs, with p120-3 being the main isoform. Knocking down p120 in HNECs cultured under submerged conditions significantly reduced the E-cadherin protein expression. The Rac1 inhibitor NSC23766 reversed the protein expression of E-cadherin in p120 knockdown experiments. Inflammatory mediators, including IL-4, TNF-α, TGF- β, LPS and IFN-Î, reduced E-cadherin and p120 protein expression and increased paracellular permeability. Dexamethasone abolished the downregulation of E-cadherin and p120 caused by inflammatory mediators. CONCLUSIONS p120 is involved in regulating E-cadherin protein expression in CRS. Dexamethasone may alleviate the reduction in E-cadherin and p120 protein expression caused by inflammatory mediators.
Collapse
Affiliation(s)
- X-L Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Q-M Feng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - H-N Yang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - J-W Ruan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Y-F Kang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Z-E Yu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - J-X Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - A-N Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Y-H Cui
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Z Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - X Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
17
|
Yang C, Shi Y, Li X, Guan L, Li H, Lin J. Cadherins and the pathogenesis of epilepsy. Cell Biochem Funct 2022; 40:336-348. [PMID: 35393670 DOI: 10.1002/cbf.3699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
Epilepsy is a nervous system disease caused by abnormal discharge of brain neurons, which is characterized by recurrent seizures. The factors that induce epilepsy include genetic and environmental factors. Genetic factors are important pathogenic factors of epilepsy, such as epilepsy caused by protocadherin-19 (PCDH-19) mutation, which is an X-linked genetic disease. It is more common in female heterozygotes, which are caused by mutations in the PCDH-19 gene. Epilepsy caused by environmental factors is mainly caused by brain injury, which is commonly caused by brain tumors, brain surgery, or trauma to the brain. In addition, the pathogenesis of epilepsy is closely related to abnormalities in some signaling pathways. The Wnt/β-catenin signaling pathway is considered a new target for the treatment of epilepsy. This review summarizes these factors inducing epilepsy and the research hypotheses regarding the pathogenesis of epilepsy. The focus of this review centers on cadherins and the pathogenesis of epilepsy. We analyzed the pathogenesis of epilepsy induced by N-cadherin and PCDH-19 in the cadherin family members. Finally, we expect that in the future, new breakthroughs will be made in the study of the pathogenesis and mechanism of epilepsy at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| |
Collapse
|
18
|
Antiguas A, DeMali KA, Dunnwald M. IRF6 Regulates the Delivery of E-Cadherin to the Plasma Membrane. J Invest Dermatol 2022; 142:314-322. [PMID: 34310950 PMCID: PMC8784568 DOI: 10.1016/j.jid.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
IRF6 is a transcription factor that is required for craniofacial development and epidermal morphogenesis. Specifically, Irf6-deficient mice lack the terminally differentiated epidermal layers, leading to an absence of barrier function. This phenotype also includes intraoral adhesions due to the absence of the oral periderm, leading to the mislocalization of E-cadherin and other cell‒cell adhesion proteins of the oral epithelium. However, the mechanisms by which IRF6 controls the localization of cell adhesion proteins are not understood. In this study, we show that in human and murine keratinocytes, loss of IRF6 leads to a breakdown of epidermal sheets after mechanical stress. This defect is due to a reduction of adhesion proteins at the plasma membrane. Dynamin inhibitors rescued the IRF6-dependent resistance of epidermal sheets to mechanical stress, but only inhibition of clathrin-mediated endocytosis rescued the localization of junctional proteins at the membrane. Our data show that E-cadherin recycling but not its endocytosis is affected by loss of IRF6. Overall, we demonstrate a role for IRF6 in the delivery of adhesion proteins to the cell membrane.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| | - Kris A. DeMali
- Department of Biochemistry and Dermatology, The University of Iowa, IA, 52242
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, IA, 52242
| |
Collapse
|
19
|
Seo H, Lee HW, Yoon SY, Chang SH, Park SH, Hwang JH, Park TI, Park KS. Effect of Cadherin-11 Expression on the Prognosis of a Newly Diagnosed Primary Glioblastoma. Brain Tumor Res Treat 2021; 9:63-69. [PMID: 34725986 PMCID: PMC8561220 DOI: 10.14791/btrt.2021.9.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cadherin-11, a cell-to-cell adhesion molecule, is associated with higher tumor grade and decreased patient survival. The purpose of this study was to investigate the clinical significance of cadherin-11 expression in the progression and prognosis of a newly diagnosed primary glioblastoma (GBL). Methods Between 2007 and 2016, 52 out of 178 patients diagnosed with a GBL and satisfied the following criteria: 1) a new primary GBL, 2) gross-total resection, 3) immunohistochemically-available tissue, and 4) standardized adjuvant treatment. Results In terms of staining intensity, the low-intensity cadherin-11 group showed longer progression-free survival (PFS) than the high-intensity cadherin-11 group (median PFS, 12.0 months [95% CI, 11.1–12.9] vs. median PFS, 6.0 months [95% CI, 3.7–8.3]; p<0.001). The low-intensity cadherin-11 group revealed longer overall survival (OS) than the high-intensity cadherin-11 group (median OS, 20.0 months [95% CI, 11.8–16.6] vs. median OS, 15.0 months [95% CI, 11.8–18.2]; p=0.003). The staining intensity of cadherin-11 was a statistically significant factor in PFS and OS in terms of univariate and multivariate analyses (univariate analysis: p<0.001 and p=0.005; multivariate analysis: p<0.001 and p=0.005). Conclusion Our clinical study demonstrates high cadherin-11 expression may be associated with poor PFS and OS for a newly diagnosed primary GBL.
Collapse
Affiliation(s)
- Hyunwoo Seo
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sang-Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sung Hyun Chang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae In Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki-Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
20
|
Martin NJ, Chami B, Vallejo A, Mojadadi AA, Witting PK, Ahmad G. Efficacy of the Piperidine Nitroxide 4-MethoxyTEMPO in Ameliorating Serum Amyloid A-Mediated Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22094549. [PMID: 33925294 PMCID: PMC8123591 DOI: 10.3390/ijms22094549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular redox imbalance in endothelial cells (EC) can lead to endothelial dysfunction, which underpins cardiovascular diseases (CVD). The acute phase serum amyloid A (SAA) elicits inflammation through stimulating production of reactive oxygen species (ROS). The cyclic nitroxide 4-MethoxyTEMPO (4-MetT) is a superoxide dismutase mimetic that suppresses oxidant formation and inflammation. The aim of this study was to investigate whether 4-MetT inhibits SAA-mediated activation of cultured primary human aortic EC (HAEC). Co-incubating cells with 4-MetT inhibited SAA-mediated increases in adhesion molecules (VCAM-1, ICAM-1, E-selectin, and JAM-C). Pre-treatment of cells with 4-MetT mitigated SAA-mediated increases in transcriptionally activated NF-κB-p65 and P120 Catenin (a stabilizer of Cadherin expression). Mitochondrial respiration and ROS generation (mtROS) were adversely affected by SAA with decreased respiratory reserve capacity, elevated maximal respiration and proton leakage all characteristic of SAA-treated HAEC. This altered respiration manifested as a loss of mitochondrial membrane potential (confirmed by a decrease in TMRM fluorescence), and increased mtROS production as assessed with MitoSox Red. These SAA-linked impacts on mitochondria were mitigated by 4-MetT resulting in restoration of HAEC nitric oxide bioavailability as confirmed by assessing cyclic guanosine monophosphate (cGMP) levels. Thus, 4-MetT ameliorates SAA-mediated endothelial dysfunction through normalising EC redox homeostasis. Subject to further validation in in vivo settings; these outcomes suggest its potential as a therapeutic in the setting of cardiovascular pathologies where elevated SAA and endothelial dysfunction is linked to enhanced CVD.
Collapse
|
21
|
Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antiviral Res 2021; 190:105077. [PMID: 33864843 DOI: 10.1016/j.antiviral.2021.105077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Broad-spectrum antivirals are more needed than ever to provide treatment options for novel emerging viruses and for viruses that lack therapeutic options or have developed resistance. A large number of viruses rely on charge-dependent non-specific interactions with heparan sulfate (HS), a highly sulfated glycosaminoglycan (GAG), for attachment to cell surfaces to initiate cell entry. As such, inhibitors targeting virion-HS interactions have potential to have broad-spectrum antiviral activity. Previous research has explored organic and inorganic small molecules, peptides, and GAG mimetics to disrupt virion-HS interactions. Here we report antiviral activities against both enveloped (the herpesvirus human cytomegalovirus) and non-enveloped (adenovirus) DNA viruses for four defined marine sulfated glycans: a sulfated galactan from the red alga Botryocladia occidentalis; a sulfated fucan from the sea urchin Lytechinus variegatus, and a sulfated fucan and a fucosylated chondroitin sulfate from the sea cucumber Isostichopus badionotus. As evidenced by gene expression, time of addition, and treatment/removal assays, all four novel glycans inhibited viral attachment and entry, most likely through interactions with virions. The sulfated fucans, which both lack anticoagulant activity, had similar antiviral profiles, suggesting that their activities are not only due to sulfation content or negative charge density but also due to other physicochemical factors such as the potential conformational shapes of these carbohydrates in solution and upon interaction with virion proteins. The structural and chemical properties of these marine sulfated glycans provide unique opportunities to explore relationships between glycan structure and their antiviral activities.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Maggie C Taylor
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA.
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298-0163, USA.
| |
Collapse
|
22
|
Su K, Wang J, Lv Y, Tian M, Zhao YY, Minshall RD, Hu G. YAP expression in endothelial cells prevents ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L568-L582. [PMID: 33565367 PMCID: PMC8238153 DOI: 10.1152/ajplung.00472.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.
Collapse
Affiliation(s)
- Kai Su
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianguo Wang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - Ming Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
24
|
Yu Z, Zeng J, Wang J, Cui Y, Song X, Zhang Y, Cheng X, Hou N, Teng Y, Lan Y, Chen Y, Yang X. Hepatocyte growth factor-regulated tyrosine kinase substrate is essential for endothelial cell polarity and cerebrovascular stability. Cardiovasc Res 2021; 117:533-546. [PMID: 32044971 PMCID: PMC7820882 DOI: 10.1093/cvr/cvaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs), a key component of the endosomal sorting complex required for transport (ESCRT), has been implicated in many essential biological processes. However, the physiological role of endogenous Hgs in the vascular system has not previously been explored. Here, we have generated brain endothelial cell (EC) specific Hgs knockout mice to uncover the function of Hgs in EC polarity and cerebrovascular stability. METHODS AND RESULTS Knockout of Hgs in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse in mice. We determined that Hgs is essential for recycling of vascular endothelial (VE)-cadherin to the plasma membrane, since loss of Hgs blocked trafficking of endocytosed VE-cadherin from early endosomes to recycling endosomes, and impaired the motility of recycling endosomes. Supportively, overexpression of the motor kinesin family member 13A (KIF13A) restored endosomal recycling and rescued abrogated polarized trafficking and distribution of VE-cadherin in Hgs knockdown ECs. CONCLUSION These data uncover a novel physiological function of Hgs and support an essential role for the ESCRT machinery in the maintenance of EC polarity and cerebrovascular stability.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zeng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yu Lan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeguang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
25
|
Rademakers T, Goedhart M, Hoogenboezem M, Ponce AG, van Rijssel J, Samus M, Schnoor M, Butz S, Huveneers S, Vestweber D, Nolte MA, Voermans C, van Buul JD. Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica 2020; 105:2746-2756. [PMID: 33256374 PMCID: PMC7716366 DOI: 10.3324/haematol.2018.196329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
Bone marrow endothelium plays an important role in the homing of hematopoietic stem and progenitor cells upon transplantation, but surprisingly little is known on how the bone marrow endothelial cells regulate local permeability and hematopoietic stem and progenitor cells transmigration. We show that temporal loss of vascular endothelial-cadherin function promotes vascular permeability in BM, even upon low-dose irradiation. Loss of vascular endothelial-cadherin function also enhances homing of transplanted hematopoietic stem and progenitor cells to the bone marrow of irradiated mice although engraftment is not increased. Intriguingly, stabilizing junctional vascular endothelial-cadherin in vivo reduced bone marrow permeability, but did not prevent hematopoietic stem and progenitor cells migration into the bone marrow, suggesting that hematopoietic stem and progenitor cells use the transcellular migration route to enter the bone marrow. Indeed, using an in vitro migration assay, we show that human hematopoietic stem and progenitor cells predominantly cross bone marrow endothelium in a transcellular manner in homeostasis by inducing podosome-like structures. Taken together, vascular endothelial-cadherin is crucial for BM vascular homeostasis but dispensable for the homing of hematopoietic stem and progenitor cells. These findings are important in the development of potential therapeutic targets to improve hematopoietic stem and progenitor cell homing strategies.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Marieke Goedhart
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Mark Hoogenboezem
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Alexander García Ponce
- Department of Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico-City, Mexico
| | - Jos van Rijssel
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Maryna Samus
- Max Planck Institute for Molecular Biomedicine, Munster, Germany
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico-City, Mexico
| | - Stefan Butz
- Max Planck Institute for Molecular Biomedicine, Munster, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Martijn A. Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Jaap D. van Buul
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Hassani Nia F, Woike D, Martens V, Klüssendorf M, Hönck HH, Harder S, Kreienkamp HJ. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Mol Autism 2020; 11:85. [PMID: 33115499 PMCID: PMC7592556 DOI: 10.1186/s13229-020-00385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown. METHODS We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites. RESULTS We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites. LIMITATIONS Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin. CONCLUSIONS Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniel Woike
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Klüssendorf
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institut für Osteologie Und Biomechanik, Zellbiologie seltener Erkrankungen, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sönke Harder
- Massenspektrometrische Proteomanalytik, Institut für Klinische Chemie Und Laboratoriumsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
27
|
Harwood MC, Dupzyk AJ, Inoue T, DiMaio D, Tsai B. p120 catenin recruits HPV to γ-secretase to promote virus infection. PLoS Pathog 2020; 16:e1008946. [PMID: 33085724 PMCID: PMC7577436 DOI: 10.1371/journal.ppat.1008946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
During internalization and trafficking, human papillomavirus (HPV) moves from the cell surface to the endosome where the transmembrane protease γ-secretase promotes insertion of the viral L2 capsid protein into the endosome membrane. Protrusion of L2 through the endosome membrane into the cytosol allows the recruitment of cytosolic host factors that target the virus to the Golgi en route for productive infection. How endosome-localized HPV is delivered to γ-secretase, a decisive infection step, is unclear. Here we demonstrate that cytosolic p120 catenin, likely via an unidentified transmembrane protein, interacts with HPV at early time-points during viral internalization and trafficking. In the endosome, p120 is not required for low pH-dependent disassembly of the HPV L1 capsid protein from the incoming virion. Rather, p120 is required for HPV to interact with γ-secretase-an interaction that ensures the virus is transported along a productive route. Our findings clarify an enigmatic HPV infection step and provide critical insights into HPV infection that may lead to new therapeutic strategies against HPV-induced diseases.
Collapse
Affiliation(s)
- Mara Calypso Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Allison Jade Dupzyk
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takamasa Inoue
- Pathogen Research Section, Central Research Laboratory, Research and Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
28
|
Greig J, Bulgakova NA. Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis. J Cell Sci 2020; 133:jcs242321. [PMID: 32665321 DOI: 10.1242/jcs.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms - p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
29
|
Unfractionated heparin attenuates endothelial barrier dysfunction via the phosphatidylinositol-3 kinase/serine/threonine kinase/nuclear factor kappa-B pathway. Chin Med J (Engl) 2020; 133:1815-1823. [PMID: 32649510 PMCID: PMC7470014 DOI: 10.1097/cm9.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Vascular endothelial dysfunction is considered a key pathophysiologic process for the development of acute lung injury. In this study, we aimed at investigating the effects of unfractionated heparin (UFH) on the lipopolysaccharide (LPS)-induced changes of vascular endothelial-cadherin (VE-cadherin) and the potential underlying mechanisms. Methods Male C57BL/6 J mice were randomized into three groups: vehicle, LPS, and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received subcutaneous injection of 8 U UFH 0.5 h before LPS injection. The lung tissue of the mice was collected for assessing lung injury by measuring the lung wet/dry (W/D) weight ratio and observing histological changes. Human pulmonary microvascular endothelial cells (HPMECs) were cultured and used to analyze the effects of UFH on LPS- or tumor necrosis factor-alpha (TNF-α)-induced vascular hyperpermeability, membrane expression of VE-cadherin, p120-catenin, and phosphorylated myosin light chain (p-MLC), and F-actin remodeling, and on the LPS-induced activation of the phosphatidylinositol-3 kinase (PI3K)/serine/threonine kinase (Akt)/nuclear factor kappa-B (NF-κB) signaling pathway. Results In vivo, UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes (neutrophil infiltration and erythrocyte effusion, alveolus pulmonis collapse, and thicker septum), decreased the lung W/D, and increased protein concentration (LPS vs. LPS + UFH: 0.57 ± 0.04 vs. 0.32 ± 0.04 mg/mL, P = 0.0092), total cell count (LPS vs. LPS + UFH: 9.57 ± 1.23 vs. 3.65 ± 0.78 × 105/mL, P = 0.0155), polymorphonuclear neutrophil percentage (LPS vs. LPS + UFH: 88.05% ± 2.88% vs. 22.20% ± 3.92%, P = 0.0002), and TNF-α (460.33 ± 23.48 vs. 189.33 ± 14.19 pg/mL, P = 0.0006) in the bronchoalveolar lavage fluid. In vitro, UFH pre-treatment prevented the LPS-induced decrease in the membrane expression of VE-cadherin (LPS vs. LPS + UFH: 0.368 ± 0.044 vs. 0.716 ± 0.064, P = 0.0114) and p120-catenin (LPS vs. LPS + UFH: 0.208 ± 0.018 vs. 0.924 ± 0.092, P = 0.0016), and the LPS-induced increase in the expression of p-MLC (LPS vs. LPS + UFH: 0.972 ± 0.092 vs. 0.293 ± 0.025, P = 0.0021). Furthermore, UFH attenuated LPS- and TNF-α-induced hyperpermeability of HPMECs (LPS vs. LPS + UFH: 8.90 ± 0.66 vs. 15.84 ± 1.09 Ω·cm2, P = 0.0056; TNF-α vs. TNF-α + UFH: 11.28 ± 0.64 vs. 18.15 ± 0.98 Ω·cm2, P = 0.0042) and F-actin remodeling (LPS vs. LPS + UFH: 56.25 ± 1.51 vs. 39.70 ± 1.98, P = 0.0027; TNF-α vs. TNF-α + UFH: 55.42 ± 1.42 vs. 36.51 ± 1.20, P = 0.0005) in vitro. Additionally, UFH decreased the phosphorylation of Akt (LPS vs. LPS + UFH: 0.977 ± 0.081 vs. 0.466 ± 0.035, P = 0.0045) and I kappa B Kinase (IKK) (LPS vs. LPS + UFH: 1.023 ± 0.070 vs. 0.578 ± 0.044, P = 0.0060), and the nuclear translocation of NF-κB (LPS vs. LPS + UFH: 1.003 ± 0.077 vs. 0.503 ± 0.065, P = 0.0078) in HPMECs, which was similar to the effect of the PI3K inhibitor, wortmannin. Conclusions The protective effect of UFH against LPS-induced pulmonary endothelial barrier dysfunction involves VE-cadherin stabilization and PI3K/Akt/NF-κB signaling.
Collapse
|
30
|
Pieters T, Sanders E, Tian H, van Hengel J, van Roy F. Neural defects caused by total and Wnt1-Cre mediated ablation of p120ctn in mice. BMC DEVELOPMENTAL BIOLOGY 2020; 20:17. [PMID: 32741376 PMCID: PMC7398255 DOI: 10.1186/s12861-020-00222-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 03/11/2023]
Abstract
Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. Results We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin. Conclusions These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.
Collapse
Affiliation(s)
- Tim Pieters
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ellen Sanders
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Huiyu Tian
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Ministry of Education, College of Life Sciences, Shandong University, Jinan, People's Republic of China
| | - Jolanda van Hengel
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Frans van Roy
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
31
|
Li L, Ji S, Shrestha C, Jiang Y, Liao L, Xu F, Liu Z, Bikle DD, Xie Z. p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. J Cell Physiol 2020; 235:9399-9413. [PMID: 32356317 DOI: 10.1002/jcp.29744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
p120-catenin (p120) serves as a stabilizer of the calcium-dependent cadherin-catenin complex and loss of p120 expression has been observed in several types of human cancers. The p120-dependent E-cadherin-β-catenin complex has been shown to mediate calcium-induced keratinocyte differentiation via inducing activation of plasma membrane phospholipase C-γ1 (PLC-γ1). On the other hand, PLC-γ1 has been shown to interact with phosphatidylinositol 3-kinase enhancer in the nucleus and plays a critical role in epidermal growth factor-induced proliferation of oral squamous cell carcinoma (OSCC) cells. To determine whether p120 suppresses OSCC proliferation and tumor growth via inhibiting PLC-γ1, we examined effects of p120 knockdown or p120 and PLC-γ1 double knockdown on proliferation of cultured OSCC cells and tumor growth in xenograft OSCC in mice. The results showed that knockdown of p120 reduced levels of PLC-γ1 in the plasma membrane and increased levels of PLC-γ1 and its signaling in the nucleus in OSCC cells and OSCC cell proliferation as well as xenograft OSCC tumor growth. However, double knockdown of p120 and PLC-γ1 or knockdown of PLC-γ1 alone did not have any effect. Immunohistochemical analysis of OSCC tissue from patients showed a lower expression level of p120 and a higher expression level of PLC-γ1 compared with that of adjacent noncancerous tissue. These data indicate that p120 suppresses OSCC cell proliferation and tumor growth by inhibiting signaling mediated by nuclear PLC-γ1.
Collapse
Affiliation(s)
- Lusha Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shangli Ji
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chandrama Shrestha
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liyan Liao
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenming Liu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daniel D Bikle
- Endocrine Unit, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Institute of Metabolism and Endocrinology, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Badu-Nkansah KA, Lechler T. Proteomic analysis of desmosomes reveals novel components required for epidermal integrity. Mol Biol Cell 2020; 31:1140-1153. [PMID: 32238101 PMCID: PMC7353166 DOI: 10.1091/mbc.e19-09-0542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Desmosomes are cell–cell adhesions necessary for the maintenance of tissue integrity in the skin and heart. While the core components of desmosomes have been identified, peripheral components that modulate canonical or noncanonical desmosome functions still remain largely unexplored. Here we used targeted proximity labeling approaches to further elaborate the desmosome proteome in epidermal keratinocytes. Quantitative mass spectrometry analysis identified all core desmosomal proteins while uncovering a diverse array of new constituents with broad molecular functions. By individually targeting the inner and outer dense plaques, we defined proteins enriched within these subcompartments. We validated a number of these novel desmosome-associated proteins and find that many are membrane proximal proteins that show a dependence on functional desmosomes for their cortical localization. We further explored the mechanism of localization and function of two novel desmosome-associated adaptor proteins enriched in the desmosome proteome, Crk and Crk-like (CrkL). These proteins interacted with Dsg1 and rely on Dsg1 and desmoplakin for robust cortical localization. Epidermal deletion of both Crk and CrkL resulted in perinatal lethality with defects in desmosome morphology and keratin organization, thus demonstrating the utility of this dataset in identifying novel proteins required for desmosome-dependent epidermal integrity.
Collapse
Affiliation(s)
- Kwabena A Badu-Nkansah
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| |
Collapse
|
33
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
34
|
Zhao YY, Huang SX, Hao Z, Zhu HX, Xing ZL, Li MH. Fluid Shear Stress Induces Endothelial Cell Injury via Protein Kinase C Alpha-Mediated Repression of p120-Catenin and Vascular Endothelial Cadherin In Vitro. World Neurosurg 2020; 136:e469-e475. [PMID: 31953100 DOI: 10.1016/j.wneu.2020.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The present study aimed to characterize the mechanism of fluid shear stress (FSS)-induced endothelial cell (EC) injury via protein kinase C alpha (PKCα)-mediated vascular endothelial cadherin (VE-cadherin) and p120-catenin (p120ctn) expression. METHODS We designed a T chamber system that produced stable FSS on ECs in vitro. Human umbilical vein endothelial cells (HUVECs) in which PKCα was knocked down and normal HUVECs were cultured on the coverslips. FSS was impinged on these 2 types of ECs for 0 hours and 6 hours. The morphology and density of HUVECs were evaluated, and expression levels of phosphorylated PKCα, p120-catenin (p120ctn), VE-cadherin, phosphorylated p120ctn at S879 (p-S879p120ctn), and nuclear factor kappa B (NF-κB) were analyzed by Western blot. RESULTS HUVECs exposed to FSS were characterized by a polygonal shape and decreased cell density. The phosphorylated PKCα level was increased under FSS at 6 hours (P < 0.05). In normal HUVECs during FSS, p120ctn and VE-cadherin were decreased, whereas p-S879p120ctn and NF-κB were increased, at 6 hours (P < 0.05). In HUVECs after PKCα knockdown, p120ctn and VE-cadherin were not significantly changed (P > 0.05), p-S879p120ctn was undetectable, but NF-κB was decreased (P < 0.05) at 6 hours. CONCLUSIONS The possible mechanism of FSS-induced EC injury may be as follows: 1) PKCα induces low expression of p120ctn, which leads to activation of NF-κB and degradation of VE-cadherin; 2) PKCα-mediated phosphorylation of p120ctn at S879 disrupts p120ctn binding to VE-cadherin.
Collapse
Affiliation(s)
- Ye-Yu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao-Xin Huang
- College of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zheng Hao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xin Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Long Xing
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Hua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
35
|
Yang Y, Dong X, Zheng S, Sun J, Ye J, Chen J, Fang Y, Zhao B, Yin Z, Cao P, Luo L. GSTpi regulates VE-cadherin stabilization through promoting S-glutathionylation of Src. Redox Biol 2019; 30:101416. [PMID: 31927409 PMCID: PMC6957793 DOI: 10.1016/j.redox.2019.101416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
GSTpi is a Phase II metabolic enzyme which is originally considered as an important facilitator of cellular detoxification. Here, we found that GSTpi stabilized VE-cadherin in endothelial cell membrane through inhibiting VE-cadherin phosphorylation and VE-cadherin/catenin complex dissociation, and consequently maintained endothelial barrier function. Our findings demonstrated a novel mechanism that GSTpi inhibited VE-cadherin phosphorylation through suppressing the activation of Src/VE-cadherin pathway. Mass spectrometry analysis and molecular docking showed that GSTpi enhanced Src S-glutathionylation at Cys185, Cys245, and Cys400 of Src. More important, we found that GSTpi promoted S-glutathionylation of Src was essential for GSTpi to inhibit Src phosphorylation and activation. Furthermore, in vivo experiments indicated that AAV-GSTpi exerted the protective effect on pulmonary vessel permeability in the animal model of acute lung injury. This study revealed a novel regulatory effect of GSTpi on vascular endothelial barrier function and the importance of S-glutathionylation of Src induced by GSTpi in the activation of Src/VE-cadherin pathway. GSTpi regulates endothelial barrier function in response to pro-inflammatory stress. GSTpi inhibits the destabilization of membrane VE-cadherin through suppressing the activation of Src/VE-cadherin pathway. GSTpi selectively inhibits Src phosphorylation by S-glutathionylating novel cysteines of Src. GSTpi exerts the protective effect on pulmonary vessel permeability in the animal model of acute lung injury.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuangning Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuan Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
36
|
Akin R, Hannibal D, Loida M, Stevens EM, Grunz-Borgmann EA, Parrish AR. Cadmium and Lead Decrease Cell-Cell Aggregation and Increase Migration and Invasion in Renca Mouse Renal Cell Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20246315. [PMID: 31847310 PMCID: PMC6940727 DOI: 10.3390/ijms20246315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Metastatic renal cell carcinoma (RCC) remains an important clinical issue; the 5-year survival rate of patients with metastasis is approximately 12%, while it is 93% in those with localized disease. There is evidence that blood cadmium and lead levels are elevated in RCC. The current studies were designed to assess the impact of cadmium and lead on the progression of RCC. The disruption of homotypic cell-cell adhesion is an essential step in epithelial-to-mesenchymal transition and tumor metastasis. Therefore, we examined the impact of cadmium and lead on the cadherin/catenin complex in Renca cells-a mouse RCC cell line. Lead, but not cadmium, induced a concentration-dependent loss of E-cadherin, while cadmium, but not lead, increased p120-catenin expression, specifically isoform 1 expression. Lead also induced a substantial increase in matrix metalloproteinase-9 levels. Both cadmium and lead significantly decreased the number of Renca cell aggregates, consistent with the disruption of the cadherin/catenin complex. Both metals enhanced wound healing in a scratch assay, and increased cell migration and invasion. These data suggest that cadmium and lead promote RCC progression.
Collapse
|
37
|
Priest AV, Koirala R, Sivasankar S. Single-molecule studies of classical and desmosomal cadherin adhesion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:43-50. [PMID: 31742239 DOI: 10.1016/j.cobme.2019.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classical cadherin and desmosomal cadherin cell-cell adhesion proteins play essential roles in tissue morphogenesis and in maintaining tissue integrity. Deficiencies in cadherin adhesion are hallmarks of diseases like cancers, skin diseases and cardiomyopathies. Structural studies and single molecule biophysical measurements have revealed critical similarities and surprising differences between these key adhesion proteins. This review summarizes our current understanding of the biophysics of classical and desmosomal cadherin adhesion and the molecular basis for their cross-talk. We focus on recent single molecule measurements, highlight key insights into the adhesion of cadherin extracellular regions and their relation to associated diseases, and identify major open questions in this exciting area of research.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| |
Collapse
|
38
|
Niño CA, Sala S, Polo S. When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Semin Cell Dev Biol 2019; 93:136-144. [DOI: 10.1016/j.semcdb.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
|
39
|
Li R, Liu Y, Li L, Zhang R, Tang Y. p120 inhibits LPS/TNFα-induced endothelial Ang2 synthesis and release in an NF-κB independent fashion. Cytokine 2019; 123:154786. [PMID: 31352174 DOI: 10.1016/j.cyto.2019.154786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
Adherens junction protein p120 is thought to be crucial for maintaining vascular integrity, which is important in many pathologies and diseases including atherosclerosis, vascular malformations, hemorrhagic stroke, sepsis and others. However, the mechanisms responsible for this is not completely understood. In this study, using an unbiased proteomics approach, followed by other experimental techniques, we identified that in HUVECs p120 overexpression inhibits LPS/TNFα-induced angiopoietin-2 (Ang2) expression, a key switch of endothelial destabilization. Interestingly, p120 overexpression did not inhibit LPS/TNFα-induced expression of adhesion molecules/cytokines including VCAM-1, ICAM-1, E-selectin, MCP-1, IL-8 and IL-6 in our experimental system. Furthermore, this p120-mediated repression of Ang2 is in an NF-κB independent manner, possibly via transcription factor Ets1. Our results demonstrate that p120 influences vascular integrity by secreted signals, providing new insights into the mechanisms of p120-mediated vascular stability.
Collapse
Affiliation(s)
- Ranran Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Liu
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruyuan Zhang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaoqing Tang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
41
|
Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci U S A 2019; 116:12980-12985. [PMID: 31186359 PMCID: PMC6600969 DOI: 10.1073/pnas.1902165116] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased hydrostatic pressure in lung capillaries experienced during high altitude, head trauma, and left heart failure can lead to disruption of lung endothelial barrier and edema formation. We identified Piezo1 as a mechanical sensor responsible for endothelial barrier breakdown (barotrauma) secondary to reduced expression of the endothelial adherens junction proteins VE-cadherin, β-catenin, and p120-catenin. Endothelial-specific deletion or pharmacological inhibition of Piezo1 prevented lung capillary leakage, suggesting a therapeutic approach for preventing edema and associated lung failure. Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary “stress failure” that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, β-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.
Collapse
|
42
|
Chen J, Sun L, Ding GB, Chen L, Jiang L, Wang J, Wu J. Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability Via VE-Cadherin Internalization: Roles of RhoA/ROCK2. J Mol Neurosci 2019; 69:49-59. [PMID: 31187440 DOI: 10.1007/s12031-019-01326-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The destruction of the blood-brain barrier (BBB) contributes to a spectrum of neurological diseases such as stroke, and the hyperpermeability of endothelial cells is one of the characters of stroke, which is possibly exacerbated after reperfusion. However, the underlying mechanisms involving hyperpermeability after reperfusion between the endothelial cells remain poorly understood. Therefore, in the present study, the human microvascular endothelial cells (HBMECs) were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic ischemic stroke condition in vitro with the aim to investigate the potential mechanisms induced by OGD/R. The permeability of cultured HBMECs was measured using FITC-labeled dextran in a Transwell system and transendothelial electrical resistance (TEER), while the RhoA activity was detected by pull-down assay. In addition, the phosphorylation of MYPT1, which reflects the activation of ROCK and the internalization of VE-cadherin, was detected by Western blot. It showed that OGD/R treatment significantly increased the permeability of HBMEC monolayers and facilitated the internalization of VE-cadherin in HBMEC monolayers. Pull-down assay showed that RhoA activation was obviously enhanced after OGD/R treatment, while RhoA and ROCK inhibitor significantly reversed OGD/R-induced HBMEC monolayers hyperpermeability and the internalization of VE-cadherin. Meanwhile, the knockdown assay showed that RhoA small interfering RNA (siRNA) led to similar effects. The inactivation of the downstream effector protein ROCK was also examined. Intriguingly, ROCK2 rather than ROCK1 exerted its adverse effects on HBMEC monolayer integrity, since ROCK2 knockdown markedly reverses the injury of OGD/R in HBMEC monolayers. In conclusion, the present study provides evidence that OGD/R may induce HBMEC monolayer hyperpermeability via RhoA/ROCK2-mediated VE-cadherin internalization, which may provide an impetus for the development of therapeutics targeting BBB damage in ischemic stroke.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Bing Ding
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- The Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jin Wu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Santacreu BJ, Pescio LG, Romero DJ, Corradi GR, Sterin-Speziale N, Favale NO. Sphingosine kinase and sphingosine-1-phosphate regulate epithelial cell architecture by the modulation of de novo sphingolipid synthesis. PLoS One 2019; 14:e0213917. [PMID: 30897151 PMCID: PMC6428330 DOI: 10.1371/journal.pone.0213917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis. The aim of the present study was to evaluate the participation of SK/S1P pathway in the triggering of cell differentiation by external hypertonicity. We found that hypertonicity evoked a sharp decrease in SK expression, thus activating the de novo sphingolipid synthesis pathway. Furthermore, the inhibition of SK activity evoked a relaxation of cell-cell adherens junction (AJ) with accumulation of the AJ complex (E-cadherin/β-catenin/α-catenin) in the Golgi complex, preventing the acquisition of the differentiated cell phenotype. This phenotype alteration was a consequence of a sphingolipid misbalance with an increase in ceramide levels. Moreover, we found that SNAI1 and SNAI2 were located in the cell nucleus with impairment of cell differentiation induced by SK inhibition, a fact that is considered a biochemical marker of epithelial to mesenchymal transition. So, we suggest that the expression and activity of SK1, but not SK2, act as a control system, allowing epithelial cells to synchronize the various branches of sphingolipid metabolism for an adequate cell differentiation program.
Collapse
Affiliation(s)
- Bruno Jaime Santacreu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Daniela Judith Romero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Gerardo Raúl Corradi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Argentina
| | - Norma Sterin-Speziale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas—Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
- * E-mail: (NOF); (NSS)
| | - Nicolás Octavio Favale
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
- * E-mail: (NOF); (NSS)
| |
Collapse
|
44
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
47
|
Chen L, He X, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y. Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells. Sci Rep 2018; 8:15543. [PMID: 30341388 PMCID: PMC6195555 DOI: 10.1038/s41598-018-33913-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) contributes to epithelial-mesenchymal transition (EMT) of cancer, but the pathological roles of miRNAs in airway EMT of lung diseases remains largely unknown. We performed sequencing and real-time PCR analysis of the miRNA expression profile of human airway epithelial cells undergoing EMT, and revealed miR-133a to be one of the most common up-regulated miRNAs. MiR-133a was previously reported to be persistently up-regulated in airway epithelial cells of smokers. We found that mice exposed to cigarette smoke (CS) showed airway hyper-responsiveness, a typical symptom occurring in CS-related lung diseases, up-regulation of miR-133a and EMT marker protein N-cadherin in airway epithelium. Importantly, miR-133a overexpression induces airway epithelial cells to undergo spontaneous EMT via down-regulation of grainyhead-like 2 (GRHL2), an epithelial specific transcriptional factor. Loss of GRHL2 causes down-regulation of epithelial splicing regulatory protein 1 (ESRP1), a central coordinator of alternative splicing processes that are critical in the regulation of EMT. Down-regulation of ESRP1 induces isoform switching of adherens junction-associated protein p120-catenin, and leads to the loss of E-cadherin. Our study is the first to demonstrate that up-regulated miR-133a orchestrates airway EMT via alternative splicing processes, which points to novel therapeutic possibilities for the treatment of CS-related lung disease.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yapei Huang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, USA
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
48
|
Zhang J, Huang J, Qi T, Huang Y, Lu Y, Zhan T, Gong H, Zhu Z, Shi Y, Zhou J, Yu L, Zhang X, Cheng H, Ke Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1. FASEB J 2018; 33:1124-1137. [PMID: 30102570 DOI: 10.1096/fj.201800284r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vascular endothelial (VE)-cadherin junctional localization is known to play a central role in vascular development, endothelial barrier integrity, and homeostasis. The sarcoma homology domain containing protein tyrosine phosphatase (SHP)2 has been shown to be involved in regulating endothelial barrier function; however, the mechanisms remain largely unknown. In this work SHP2 knockdown in an HUVEC monolayer increased VE-cadherin internalization and endothelial barrier permeability. Loss of SHP2 specifically augmented the GTPase activity of ADP-ribosylation factor (ARF)-1. ARF1 knockdown or inhibition of its guanine nucleotide exchange factors (GEFs) markedly attenuated VE-cadherin internalization and barrier hyperpermeability induced by SHP2 deficiency. SHP2 knockdown increased the total and phosphorylated levels of MET, whose activity was necessary for ARF1 activation and VE-cadherin internalization. Furthermore, constitutive endothelium-specific deletion of Shp2 in mice led to disrupted endothelial cell junctions, massive hemorrhage, and lethality in embryos. Induced and endothelium-specific deletion of Shp2 in adult mice resulted in lung hyperpermeability. Inhibitors for ARF1-GEF or MET used in pregnant mice prevented the vascular leakage in endothelial Shp2-deleted embryos. Together, our findings define a novel role of SHP2 in stabilizing junctional VE-cadherin in the resting endothelial barrier through suppressing MET and ARF1 activation.-Zhang, J., Huang, J., Qi, T., Huang, Y., Lu, Y., Zhan, T., Gong, H., Zhu, Z., Shi, Y., Zhou, J., Yu, L., Zhang, X., Cheng, H., Ke, Y. SHP2 protects endothelial cell barrier through suppressing VE-cadherin internalization regulated by MET-ARF1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyun Qi
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianwei Zhan
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengyi Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China; and
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
49
|
Goissis MD, Giassetti MI, Worst RA, Mendes CM, Moreira PV, Assumpção MEOA, Visintin JA. Spermatogonial stem cell potential of CXCR4-positive cells from prepubertal bull testes. Anim Reprod Sci 2018; 196:219-229. [PMID: 30120011 DOI: 10.1016/j.anireprosci.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSC) have the potential to restore spermatogenesis when transplanted into testes depleted of germ cells. Due to this property, SSC could be used in breeding programs and in transgenic animal research. Particularly in cattle, SSC are not as well characterized as in mice or humans. In mice, C-X-C Motif Chemokine Receptor 4 positive (CXCR4+) testicular cells have high SSC potential. It, therefore, was hypothesized that CXCR4 is a marker of undifferentiated spermatogonia in cattle. Using samples from pre-pubertal calves, the CXCR4 protein was detected by immunohistochemistry in a few cells of the seminiferous tubules. Testicular cells were isolated, frozen-thawed and submitted to magnetic-activated cell sorting using anti-CXCR4 antibody. Quantitative RT-PCR analysis revealed that CXCR4+ cells had THY1, OCT4 and ZBTB16 (or PLZF) mRNA in these cells. Flow cytometry results indicated that the proportion of THY1+ cells is enriched in CXCR4+ populations. Colonization potential of CXCR4+ cells was assessed after xenotransplantation into testes of nude mice treated with busulfan. Transplantation of CXCR4+ cells yielded an increase of 5.4-fold when compared to CXCR4- cells. These results indicate that CXCR4 could be used as a marker to enrich and sort cells of bulls with putative spermatogonial stem cell potential.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil.
| | - Mariana I Giassetti
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Robinson A Worst
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Camilla M Mendes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Pedro V Moreira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Mayra E O A Assumpção
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Jose A Visintin
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| |
Collapse
|
50
|
Dong W, He B, Qian H, Liu Q, Wang D, Li J, Wei Z, Wang Z, Xu Z, Wu G, Qian G, Wang G. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy 2018; 14:1677-1692. [PMID: 29965781 DOI: 10.1080/15548627.2018.1476811] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvascular barrier dysfunction is the central pathophysiological feature of acute lung injury (ALI). RAB26 is a newly identified small GTPase involved in the regulation of endothelial cell (EC) permeability. However, the mechanism behind this protection has not been clearly elucidated. Here we found that RAB26 promoted the integrity of adherens junctions (AJs) in a macroautophagy/autophagy-dependent manner in ALI. RAB26 is frequently downregulated in mouse lungs after LPS treatment. Mice lacking Rab26 exhibited phosphorylated SRC expression and increased CDH5/VE-cadherin phosphorylation, leading to AJ destruction. rab26-null mice showed further aggravation of the effects of endotoxin insult on lung vascular permeability and water content. Depletion of RAB26 resulted in upregulation of phosphorylated SRC, enhancement of CDH5 phosphorylation, and aggravation of CDH5 internalization, thereby weakening AJ integrity and endothelial barrier function in human pulmonary microvascular endothelial cells (HPMECs). RAB26 overexpression caused active interaction between SRC and the autophagy marker LC3-II and promoted degradation of phosphorylated SRC. Furthermore, RAB26 was involved in a direct and activation-dependent manner in autophagy induction through interaction with ATG16L1 in its GTP-bound form. These findings demonstrate that RAB26 exerts a protective effect on endothelial cell (EC) permeability, which is in part dependent on autophagic targeting of active SRC, and the resultant CDH5 dephosphorylation maintains AJ stabilization. Thus, RAB26-mediated autophagic targeting of phosphorylated SRC can maintain barrier integrity when flux through the RAB26-SRC pathway is protected. These findings suggest that activation of RAB26-SRC signaling provides a new therapeutic opportunity to prevent vascular leakage in ALI. ABBREVIATIONS AJs: adherens junctions; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG 16L1: autophagy related 16 like; 1 BALF: bronchoalveolar lavage fluidCQ: chloroquine; Ctrl: control; EC: endothelial cell; GFP: green fluorescent protein; HA-tagged; RAB26WT: HA-tagged wild-type; RAB26 HA-tagged; RAB26QL: HA-tagged; RAB26Q123LHA-tagged; RAB26NI: HA-tagged; RAB26N177IHPMECs: human pulmonary microvascular endothelial cells; H&E: hematoxylin & eosin; IgG: immunoglobulin; GIF: immunofluorescence; IP: immunoprecipitationi;. p.: intraperitoneal; LPS: lipopolysaccharide; PBS: phosphate-buffered salinesi; RNA: small interfering;RNASQSTM1/p62, sequestosome; 1TBS: Tris-buffered saline; VEGF: vascular endothelial growth factor; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Weijie Dong
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Binfeng He
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Hang Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Qian Liu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Dong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jin Li
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhenghua Wei
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zi Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Zhi Xu
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guangyu Wu
- b Department of Pharmacology and Toxicology , Georgia Regents University , Augusta , Georgia , USA
| | - Guisheng Qian
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Guansong Wang
- a Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|