1
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Dhawan V, Manes PK, Calabrese V. Nitric oxide and hormesis. Nitric Oxide 2023; 133:1-17. [PMID: 36764605 DOI: 10.1016/j.niox.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vikas Dhawan
- Department of Surgery, Indian Naval Ship Hospital, Mumbai, India.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
2
|
Calabrese EJ, Calabrese V. Enhancing health span: muscle stem cells and hormesis. Biogerontology 2022; 23:151-167. [PMID: 35254570 DOI: 10.1007/s10522-022-09949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a significant public health and medical concern confronting the elderly. Considerable research is being directed to identify ways in which the onset and severity of sarcopenia may be delayed/minimized. This paper provides a detailed identification and assessment of hormetic dose responses in animal model muscle stem cells, with particular emphasis on cell proliferation, differentiation, and enhancing resilience to inflammatory stresses and how this information may be useful in preventing sarcopenia. Hormetic dose responses were observed following administration of a broad range of agents, including dietary supplements (e.g., resveratrol), pharmaceuticals (e.g., dexamethasone), endogenous ligands (e.g., tumor necrosis factor α), environmental contaminants (e.g., cadmium) and physical agents (e.g., low level laser). The paper assesses both putative mechanisms of hormetic responses in muscle stem cells, and potential therapeutic implications and application(s) of hormetic frameworks for slowing muscle loss and reduced functionality during the aging process.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97, 95125, Catania, Italy
| |
Collapse
|
3
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
4
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
6
|
Cole AJ, Iyengar M, Panesso-Gómez S, O'Hayer P, Chan D, Delgoffe GM, Aird KM, Yoon E, Bai S, Buckanovich RJ. NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight 2020; 5:131486. [PMID: 32182216 DOI: 10.1172/jci.insight.131486] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Development of chemotherapy resistance is a major problem in ovarian cancer. One understudied mechanism of chemoresistance is the induction of quiescence, a reversible nonproliferative state. Unfortunately, little is known about regulators of quiescence. Here, we identify the master transcription factor nuclear factor of activated T cells cytoplasmic 4 (NFATC4) as a regulator of quiescence in ovarian cancer. NFATC4 is enriched in ovarian cancer stem-like cells and correlates with decreased proliferation and poor prognosis. Treatment of cancer cells with cisplatin resulted in NFATC4 nuclear translocation and activation of the NFATC4 pathway, while inhibition of the pathway increased chemotherapy response. Induction of NFATC4 activity resulted in a marked decrease in proliferation, G0 cell cycle arrest, and chemotherapy resistance, both in vitro and in vivo. Finally, NFATC4 drove a quiescent phenotype in part via downregulation of MYC. Together, these data identify NFATC4 as a driver of quiescence and a potential new target to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mangala Iyengar
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick O'Hayer
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Chan
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center; and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
8
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Zhang Y, Pan X, Sun Y, Geng YJ, Yu XY, Li Y. The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:347-368. [PMID: 30390260 DOI: 10.1007/978-981-13-1435-3_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscle atrophy in aging is characterized by progressive loss of muscle mass and function. Muscle mass is determined by the balance of synthesis and degradation of protein, which are regulated by several signaling pathways such as ubiquitin-proteasome system, autophagy-lysosome systems, oxidative stress, proinflammatory cytokines, hormones, and so on. Sufficient nutrition can enhance protein synthesis, while exercise can improve the quality of life in the elderly. This chapter will discuss the epidemiology, pathogenesis, as well as the current treatment for aging-induced muscular atrophy.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiangbin Pan
- Department of Cardiac Surgery, Fuwai Hospital, Beijing, People's Republic of China
| | - Yi Sun
- Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| | | | - Xi-Yong Yu
- Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yangxin Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Koltai E, Bori Z, Chabert C, Dubouchaud H, Naito H, Machida S, Davies KJ, Murlasits Z, Fry AC, Boldogh I, Radak Z. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle. J Physiol 2017; 595:3361-3376. [PMID: 28251652 PMCID: PMC5451718 DOI: 10.1113/jp273774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. ABSTRACT Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing.
Collapse
Affiliation(s)
- Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zoltán Bori
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Clovis Chabert
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble Cedex, 0938041, France
| | - Hervé Dubouchaud
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble Cedex, 0938041, France
| | - Hisashi Naito
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Japan
| | - Shuichi Machida
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Japan
| | - Kelvin Ja Davies
- Ethel Percy Andrus Gerontology Centre of the Leonard Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences, of the Dornsife College of Letters, Arts, and Sciences, the University of Southern California, Los Angeles, CA, 90089-0191, USA
| | | | - Andrew C Fry
- Osness Human Performance Laboratories, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.,Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary
| |
Collapse
|
11
|
Messina S, Bitto A, Vita GL, Aguennouz M, Irrera N, Licata N, Sframeli M, Bruschetta D, Minutoli L, Altavilla D, Vita G, Squadrito F. Modulation of neuronal nitric oxide synthase and apoptosis by the isoflavone genistein in Mdx mice. Biofactors 2015; 41:324-9. [PMID: 26332024 DOI: 10.1002/biof.1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/08/2022]
Abstract
Dystrophin lack in DMD causes neuronal nitric oxide synthase (nNOS) membrane delocalization which in turn promotes functional muscle ischemia, and exacerbates muscle injury. Apoptosis and the exhaustion of muscle regenerative capacity are implicated in Duchenne muscular dystrophy (DMD) pathogenesis and therefore are relevant therapeutic targets. Genistein has been reported to have pro-proliferative effects, promoting G1/S cell phase transition through the induction of cyclin D1, and anti-apoptotic properties. We previously showed that genistein could reduce muscle necrosis and enhance regeneration with an augmented number of myogenin-positive satellite cells and myonuclei, ameliorating muscle function in mdx mice. In this study we evaluated the underlying mechanisms of genistein effect on muscle specimens of mdx and wild type mice treated for five weeks with genistein (2 mg/kg/i.p. daily) or vehicle. Western blot analysis show that genistein increased cyclin D1 and nNOS expression; and showed an antiapoptotic effect, modulating the expression of BAX and Bcl-2. Our results suggest that this isoflavone might enhance the regenerative spurt in mdx mice muscle restoring nNOS, promoting G1/S phase transition in muscle cell, and inhibiting apoptosis. Further studies with longer time treatment or using different experimental approaches are needed to better investigate the underlying mechanisms of such results.
Collapse
Affiliation(s)
- Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Gian Luca Vita
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | | | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Norma Licata
- Department of Neurosciences, University of Messina, Messina, Italy
| | | | - Daniele Bruschetta
- Department of Biomorphology and Biotechnologies, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Consalvi S, Saccone V, Mozzetta C. Histone deacetylase inhibitors: a potential epigenetic treatment for Duchenne muscular dystrophy. Epigenomics 2015; 6:547-60. [PMID: 25431946 DOI: 10.2217/epi.14.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a life-threatening genetic disease that currently has no available cure. A number of pharmacological strategies that aim to target events downstream of the genetic defect are currently under clinical investigation, and some of these are outlined in this report. In particular, we focus on the ability of histone deacetylase inhibitors to promote muscle regeneration and prevent the fibro-adipogenic degeneration of dystrophic mice. We describe the rationale behind the translation of histone deacetylase inhibitors into a clinical approach, which inspired the first clinical trial with an epigenetic drug as a potential therapeutic option for DMD patients.
Collapse
Affiliation(s)
- Silvia Consalvi
- IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | |
Collapse
|
13
|
Li Y, Wang Y, Willems E, Willemsen H, Franssens L, Buyse J, Decuypere E, Everaert N. In ovo L-arginine supplementation stimulates myoblast differentiation but negatively affects muscle development of broiler chicken after hatching. J Anim Physiol Anim Nutr (Berl) 2015; 100:167-77. [PMID: 25846259 DOI: 10.1111/jpn.12299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/19/2015] [Indexed: 02/01/2023]
Abstract
In this study, we tested the hypothesis that in ovo feeding (IOF) of L-arginine (L-Arg) enhances nitric oxide (NO) production, stimulates the process of myogenesis, and regulates post-hatching muscle growth. Different doses of L-Arg were injected into the amnion of chicken embryos at embryonic day (ED) 16. After hatching, the body weight of individual male chickens was recorded weekly for 3 weeks. During in vitro experiments, myoblasts of the pectoralis major (PM) were extracted at ED16 and were incubated in medium containing 0.01 mm L-Arg, 0.05 mm L-Arg, and (or) 0.05 mm L-nitro-arginine-methyl-ester (L-NAME), an inhibitor of nitric oxide synthase (NOS). When 25 mg/kg L-Arg/initial egg weight was injected, no difference was observed in body weight at hatch, but a significant decrease was found during the following 3 weeks compared to that of the non-injected and saline-injected control, and this also affected the growth of muscle mass. L-NAME inhibited gene expression of myogenic differentiation antigen (MyoD), myogenin, NOS, and follistatin, decreased the cell viability, and increased myostatin (MSTN) gene expression. 0.05 mm L-Arg stimulated myogenin gene expression but also depressed muscle cell viability. L-NAME blocked the effect of 0.05 mm L-Arg on myogenin mRNA levels when co-incubated with 0.05 mm L-Arg. L-Arg treatments had no significant influence on NOS mRNA gene expression, but had inhibiting effect on follistatin gene expression, while L-NAME treatments had effects on both. These results suggested that L-Arg stimulated myoblast differentiation, but the limited number of myoblasts would form less myotubes and then less myofibers, while the latter limited the growth of muscle mass.
Collapse
Affiliation(s)
- Y Li
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Y Wang
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - E Willems
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - H Willemsen
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - L Franssens
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - J Buyse
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - E Decuypere
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - N Everaert
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium.,Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
14
|
Das UN. Molecular, Biochemical, and Physiological Basis of Beneficial Actions of Exercise. DIET AND EXERCISE IN COGNITIVE FUNCTION AND NEUROLOGICAL DISEASES 2015:183-204. [DOI: 10.1002/9781118840634.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Rocheteau P, Vinet M, Chretien F. Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 2015; 56:215-35. [PMID: 25344673 DOI: 10.1007/978-3-662-44608-9_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skeletal muscle of vertebrates has a huge regenerative capacity. When destroyed after different types of injury, this organ can regenerate very quickly (less than 20 days following myotoxin injection in the mouse) ad integrum and repeatedly. The cell responsible for this regeneration is the so-called satellite cell, the muscle stem cell that lies on top of the muscle fibre, a giant, multinucleated cell that contains the contractile material. When injected in the muscle, satellite cells can efficiently differentiate into contractile muscle fibres. The satellite cell shows great therapeutic potential; and its regenerative capacity has triggered particular interest in the field of muscular degeneration. In this review we will focus on one particular property of the satellite cell: its quiescence and dormancy. Indeed adult satellite cells are quiescent; they lie between the basal lamina and the basement membrane of the muscle fibre, ready to proliferate, and fuse in order to regenerate myofibers upon injury. It has recently been shown that a subpopulation of satellite cells is able to enter dormancy in human and mice cadavers. Dormancy is defined by a low metabolic state, low mobility, and a long lag before division when plated in vitro, compared to quiescent cells. This definition is also based on current knowledge about long-term hematopoietic stem cells, a subpopulation of stem cells that are described as dormant based on the same criteria (rare division and low metabolism when compared to progeny which are dividing more often). In the first part of this review, we will provide a description of satellite cells which addresses their quiescent state. We will then focus on the uneven distribution of satellite cells in the muscle and describe evidence that suggests that their dormancy differs from one muscle to the next and that one should be cautious when making generalisations regarding this cellular state. In a second part, we will discuss the transition between active dividing cells in developing animals to quiescence. This mechanism could be used or amplified in the switch from quiescence to dormancy. In a third part, we will review the signals and dynamics that actively maintain the satellite cell quiescent. The in-depth understanding of these mechanisms is key to describing how dormancy relies on quiescent state of the cells. In a fourth part, we will deal with dormancy per se: how dormant satellite cells can be obtained, their characteristics, their metabolic profile, and their molecular signature as compared to quiescent cells. Here, we will highlight one of the most important recent findings: that quiescence is a prerequisite for the entry of the satellite cell into dormancy. Since dormancy is a newly discovered phenomenon, we will review the mechanisms responsible for quiescence and activation, as these two cellular states are better known and key to understanding satellite cell dormancy. This will allow us to describe dormancy and its prerequisites.
Collapse
Affiliation(s)
- Pierre Rocheteau
- Human histopathology and animal models, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | | | | |
Collapse
|
16
|
Colangelo V, François S, Soldà G, Picco R, Roma F, Ginelli E, Meneveri R. Next-generation sequencing analysis of miRNA expression in control and FSHD myogenesis. PLoS One 2014; 9:e108411. [PMID: 25285664 PMCID: PMC4186784 DOI: 10.1371/journal.pone.0108411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has demonstrated that miRNA sequences can regulate skeletal myogenesis by controlling the process of myoblast proliferation and differentiation. However, at present a deep analysis of miRNA expression in control and FSHD myoblasts during differentiation has not yet been derived. To close this gap, we used a next-generation sequencing (NGS) approach applied to in vitro myogenesis. Furthermore, to minimize sample genetic heterogeneity and muscle-type specific patterns of gene expression, miRNA profiling from NGS data was filtered with FC≥4 (log2FC≥2) and p-value<0.05, and its validation was derived by qRT-PCR on myoblasts from seven muscle districts. In particular, control myogenesis showed the modulation of 38 miRNAs, the majority of which (34 out 38) were up-regulated, including myomiRs (miR-1, -133a, -133b and -206). Approximately one third of the modulated miRNAs were not previously reported to be involved in muscle differentiation, and interestingly some of these (i.e. miR-874, -1290, -95 and -146a) were previously shown to regulate cell proliferation and differentiation. FSHD myogenesis evidenced a reduced number of modulated miRNAs than healthy muscle cells. The two processes shared nine miRNAs, including myomiRs, although with FC values lower in FSHD than in control cells. In addition, FSHD cells showed the modulation of six miRNAs (miR-1268, -1268b, -1908, 4258, -4508- and -4516) not evidenced in control cells and that therefore could be considered FSHD-specific, likewise three novel miRNAs that seem to be specifically expressed in FSHD myotubes. These data further clarify the impact of miRNA regulation during control myogenesis and strongly suggest that a complex dysregulation of miRNA expression characterizes FSHD, impairing two important features of myogenesis: cell cycle and muscle development. The derived miRNA profiling could represent a novel molecular signature for FSHD that includes diagnostic biomarkers and possibly therapeutic targets.
Collapse
Affiliation(s)
- Veronica Colangelo
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Stéphanie François
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Giulia Soldà
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Francesca Roma
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Enrico Ginelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Meneveri
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
17
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Janke A, Upadhaya R, Snow WM, Anderson JE. A new look at cytoskeletal NOS-1 and β-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev Dyn 2013; 242:1369-81. [PMID: 23940011 DOI: 10.1002/dvdy.24031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Loss of dystrophin profoundly affects muscle function and cognition. Changes in the dystrophin-glycoprotein complex (DGC) including disruption of nitric oxide synthase (NOS-1) may result from loss of dystrophin or secondarily after muscle damage. Disruptions in NOS-1 and beta-dystroglycan (bDG) were examined in developing diaphragm, quadriceps, and two brain regions between control and mdx mice at embryonic day E18 and postnatal days P1, P10, and P28. Age-dependent differential muscle loading allowed us to test the hypothesis that DGC changes are dependent on muscle use. RESULTS Muscle development, including loss of central nucleation and the localization of NOS-1 and bDG, was earlier in diaphragm than quadriceps; these features were differentially disrupted in dystrophic muscles. The NOS-1/bDG ratio, an index of DGC stability, was higher in dystrophic diaphragm (P10-P28) and quadriceps (P28) than controls. There were also distinct regional differences in NOS-1 and bDG in brain tissues with age and strain. NOS-1 increased with age in control forebrain and cerebellum, and in mdx cerebellum; NOS-1 and bDG were higher in control than mdx mouse forebrain. CONCLUSIONS Important developmental changes in structure and muscle DGC preceded the hallmarks of dystrophy, and are consistent with the impact of muscle-specific differential loading during maturation.
Collapse
Affiliation(s)
- Alyssa Janke
- Faculty of Science, Department of Biological Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
19
|
Lee ASJ, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, Gunning PW, Hardeman EC. Aged skeletal muscle retains the ability to fully regenerate functional architecture. BIOARCHITECTURE 2013; 3:25-37. [PMID: 23807088 PMCID: PMC3715540 DOI: 10.4161/bioa.24966] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While the general understanding of muscle regenerative capacity is that it declines with increasing age due to impairments in the number of muscle progenitor cells and interaction with their niche, studies vary in their model of choice, indices of myogenic repair, muscle of interest and duration of studies. We focused on the net outcome of regeneration, functional architecture, compared across three models of acute muscle injury to test the hypothesis that satellite cells maintain their capacity for effective myogenic regeneration with age. Muscle regeneration in extensor digitorum longus muscle (EDL) of young (3 mo-old), old (22 mo-old) and senescent female mice (28 mo-old) was evaluated for architectural features, fiber number and central nucleation, weight, collagen and fat deposition. The 3 injury paradigms were: a myotoxin (notexin) which leaves the blood vessels and nerves intact, freezing (FI) that damages local muscle, nerve and blood vessels and denervation-devascularization (DD) which dissociates the nerves and blood vessels from the whole muscle. Histological analyses revealed successful architectural regeneration following notexin injury with negligible fibrosis and fully restored function, regardless of age. In comparison, the regenerative response to injuries that damaged the neurovascular supply (FI and DD) was less effective, but similar across the ages. The focus on net regenerative outcome demonstrated that old and senescent muscle has a robust capacity to regenerate functional architecture.
Collapse
Affiliation(s)
- Antonio S J Lee
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
21
|
Rigamonti E, Touvier T, Clementi E, Manfredi AA, Brunelli S, Rovere-Querini P. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. THE JOURNAL OF IMMUNOLOGY 2013; 190:1767-77. [PMID: 23335752 DOI: 10.4049/jimmunol.1202903] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adult skeletal muscle regeneration results from activation, proliferation, and fusion of muscle stem cells, such as myogenic precursor cells. Macrophages are consistently present in regenerating skeletal muscles and participate into the repair process. The signals involved in the cross-talk between various macrophage populations and myogenic precursor cells have been only partially identified. In this study, we show a key role of inducible NO synthase (iNOS), expressed by classically activated macrophages in the healing of skeletal muscle. We found that, after sterile injury, iNOS expression is required for effective regeneration of the tissue, as myogenic precursor cells in the muscle of injured iNOS(-/-) mice fail to proliferate and differentiate. We also found that iNOS modulates inflammatory cell recruitment: damaged muscles of iNOS(-/-) animals express significantly higher levels of chemokines such as MIP2, MCP1, MIP-1α, and MCP1, and display more infiltrating neutrophils after injury and a persistence of macrophages at later time points. Finally, we found that iNOS expression in the injured muscle is restricted to infiltrating macrophages. To our knowledge, these data thus provide the first evidence that iNOS expression by infiltrating macrophages contributes to muscle regeneration, revealing a novel mechanism of inflammation-dependent muscle healing.
Collapse
Affiliation(s)
- Elena Rigamonti
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
23
|
Ge Y, Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J Biol Chem 2012; 287:43928-35. [PMID: 23115234 DOI: 10.1074/jbc.r112.406942] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mammalian (or mechanistic) target of rapamycin (mTOR) regulates a wide range of cellular and developmental processes by coordinating signaling responses to mitogens, nutrients, and various stresses. Over the last decade, mTOR has emerged as a master regulator of skeletal myogenesis, controlling multiple stages of the myofiber formation process. In this minireview, we present an emerging view of the signaling network underlying mTOR regulation of myogenesis, which contrasts with the well established mechanisms in the regulation of cell and muscle growth. Current questions for future studies are also highlighted.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
24
|
Malik V, Rodino-Klapac LR, Mendell JR. Emerging drugs for Duchenne muscular dystrophy. Expert Opin Emerg Drugs 2012; 17:261-77. [PMID: 22632414 DOI: 10.1517/14728214.2012.691965] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. AREAS COVERED Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. EXPERT OPINION Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect.
Collapse
Affiliation(s)
- Vinod Malik
- The Ohio State University, Research Institute, Nationwide Children's Hospital and, Department of Pediatrics, Columbus, OH 43205, USA
| | | | | |
Collapse
|
25
|
D'Antona G, Mascaro A, Monopoli A, Miglietta D, Ongini E, Bottinelli R. Nitric oxide prevents atorvastatin-induced skeletal muscle dysfunction and alterations in mice. Muscle Nerve 2012; 47:72-80. [PMID: 23042511 DOI: 10.1002/mus.23465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2012] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Myopathy is the most common side effect of statins. Because nitric oxide (NO) has a key role in regulating skeletal muscle function, we studied whether the NO-donating atorvastatin NCX 6560 could show a better profile on skeletal muscle function and structure compared with atorvastatin. METHODS C57BL/6 mice received atorvastatin 40 mg/kg/day or an equivalent dose of NCX 6560 for 2 months. Muscle function assessed by treadmill test, serum creatine kinase (CK) activity, citrate synthase (CS) activity, and muscle histology were evaluated. RESULTS Atorvastatin significantly (P < 0.001) reduced muscle endurance, increased serum CK by 6-fold, and induced muscle fiber atrophy. Conversely, NCX 6560 preserved muscle function, prevented CK increase and did not modify muscle structure. Interestingly, atorvastatin reduced CS activity, a marker for mitochondrial function, in gastrocnemius, diaphragm, and heart, whereas NCX 6560 prevented such decrease. CONCLUSIONS These findings suggest that NO may prevent statin-induced myopathy.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 2012; 16:1013-25. [PMID: 21615681 PMCID: PMC4365881 DOI: 10.1111/j.1582-4934.2011.01348.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.
Collapse
Affiliation(s)
- Hugo C Olguín
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
27
|
François S, D'Orlando C, Fatone T, Touvier T, Pessina P, Meneveri R, Brunelli S. Necdin enhances myoblasts survival by facilitating the degradation of the mediator of apoptosis CCAR1/CARP1. PLoS One 2012; 7:e43335. [PMID: 22905258 PMCID: PMC3419192 DOI: 10.1371/journal.pone.0043335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/20/2012] [Indexed: 01/23/2023] Open
Abstract
Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is sustained by the production of new myofibers by means of the satellite cells. Survival of the satellite cells is a critical requirement for efficient muscle reconstitution. Necdin, a member of the MAGE proteins family, is expressed in satellite cell-derived myogenic precursors during perinatal growth and in the adult upon activation during muscle regeneration, where it plays an important role both in myoblast differentiation and survival. We show here that necdin exerts its pro-survival activity by counteracting the action of the pro-apoptotic protein Cell Cycle Apoptosis Regulatory Protein (CCAR1/CARP1) that we have identified as a new molecular interactor of necdin by two-hybrid screening. Necdin is responsible for the maintenance of CCAR1 protein levels, by implementing its ubiquitination and degradation through the proteasome. Taken together, these data shed new light on the molecular mechanism of necdin anti-apoptotic activity in myogenesis.
Collapse
Affiliation(s)
- Stephanie François
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Cristina D'Orlando
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Fatone
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Patrizia Pessina
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Silvia Brunelli
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
28
|
Kim J, Hwang YS, Chung AM, Chung BG, Khademhosseini A. Liver cell line derived conditioned medium enhances myofibril organization of primary rat cardiomyocytes. Mol Cells 2012; 34:149-58. [PMID: 22836944 PMCID: PMC3887817 DOI: 10.1007/s10059-012-0019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/29/2012] [Accepted: 06/21/2012] [Indexed: 11/26/2022] Open
Abstract
Cardiomyocytes are the fundamental cells of the heart and play an important role in engineering of tissue constructs for regenerative medicine and drug discovery. Therefore, the development of culture conditions that can be used to generate functional cardiomyocytes to form cardiac tissue may be of great interest. In this study, isolated neonatal rat cardiomyocytes were cultured with several culture conditions in vitro and characterized for cell proliferation, myofibril organization, and cardiac functionality by assessing cell morphology, immunocytochemical staining, and time-lapse confocal scanning microscopy. When cardiomyocytes were cultured in liver cell line derived conditioned medium without exogenous growth factors and cytokines, the cell proliferation increased, cell morphology was highly elongated, and subsequent myofibril organization was highly developed. These developed myofibril organization also showed high level of contractibility and synchronization, representing high functionality of cardiomyocytes. Interestingly, many of the known factors in hepatic conditioned medium, such as insulin-like growth factor II (IGFII), macrophage colony-stimulating factor (MCSF), leukemia inhibitory factor (LIF), did not show similar effects as the hepatic conditioned medium, suggesting the possibility of synergistic activity of the several soluble factors or the presence of unknown factors in hepatic conditioned medium. Finally, we demonstrated that our culture system could provide a potentially powerful tool for in vitro cardiac tissue organization and cardiac function study.
Collapse
Affiliation(s)
- Jinseok Kim
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791,
Korea
| | - Yu-Shik Hwang
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701,
Korea
| | - Alice Mira Chung
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
| | - Bong Geun Chung
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Bionano Engineering, Hanyang University, Ansan 426-791,
Korea
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701,
Korea
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115,
USA
| |
Collapse
|
29
|
Nitric oxide in myogenesis and therapeutic muscle repair. Mol Neurobiol 2012; 46:682-92. [PMID: 22821188 DOI: 10.1007/s12035-012-8311-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a short-lived intracellular and intercellular messenger. The first realisation that nitric oxide is important in physiology occurred in 1987 when its identity with the endothelium-derived relaxing factor was discovered. Subsequent studies have shown that nitric oxide possesses a number of physiological functions that are essential not only to vascular homeostasis but also to neurotransmission, such as in the processes of learning and memory and endocrine gland regulation, as well as inflammation and immune responses. The discovery in 1995 that a splice variant of the neuronal nitric oxide synthase is localised at the sarcolemma via the dystrophin-glycoprotein complex and of its displacement in Duchenne muscular dystrophy has stimulated a host of studies exploring the role of nitric oxide in skeletal muscle physiology. Recently, nitric oxide has emerged as a relevant messenger also of myogenesis that it regulates at several key steps, especially when the process is stimulated for muscle repair following acute and chronic muscle injuries. Here, we will review briefly the mechanisms and functions of nitric oxide in skeletal muscle and discuss its role in myogenesis, with specific attention to the promising nitric oxide-based approaches now being explored at the pre-clinical and clinical level for the therapy of muscular dystrophy.
Collapse
|
30
|
Bizzarro V, Petrella A, Parente L. Annexin A1: novel roles in skeletal muscle biology. J Cell Physiol 2012; 227:3007-15. [PMID: 22213240 DOI: 10.1002/jcp.24032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Annexin A1 (ANXA1, lipocortin-1) is the first characterized member of the annexin superfamily of proteins, so called since their main property is to bind (i.e., to annex) to cellular membranes in a Ca(2+) -dependent manner. ANXA1 has been involved in a broad range of molecular and cellular processes, including anti-inflammatory signalling, kinase activities in signal transduction, maintenance of cytoskeleton and extracellular matrix integrity, tissue growth, apoptosis, and differentiation. New insights show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. This suggests that ANXA1 may contribute to the regeneration of skeletal muscle tissue and may have therapeutic implications with respect to the development of ANXA1 mimetics.
Collapse
Affiliation(s)
- Valentina Bizzarro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano, Salerno, Italy
| | | | | |
Collapse
|
31
|
Can cancer cachexia be prevented/treated? Nutrition 2012; 28:844-8. [PMID: 22698701 DOI: 10.1016/j.nut.2012.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 02/06/2012] [Indexed: 11/20/2022]
|
32
|
Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 2012; 30:197-209. [PMID: 22084027 PMCID: PMC3378700 DOI: 10.1002/stem.783] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7+/Myf5− cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. Stem Cells 2012; 30:197–209.
Collapse
Affiliation(s)
- Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leiter JRS, Upadhaya R, Anderson JE. Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. Am J Physiol Cell Physiol 2012; 302:C1306-15. [DOI: 10.1152/ajpcell.00305.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related sarcopenia reduces the size, strength, and function of muscle, and the diameter of muscle fibers. It also disrupts the dystrophin-glycoprotein complex, dislocating nitric oxide synthase 1 (NOS-1) and reducing sarcolemmal integrity. This study of quadriceps muscle in 18-mo-old mice showed that NO-donor treatment with isosorbide dinitrate (I) for 6 wk, in combination with voluntary exercise for 3 wk, increased muscle mass by 25% and stimulated cell proliferation. The resulting fiber hypertrophy was accompanied by a lower ratio of protein:DNA, consistent with myogenic-cell hyperplasia. Treatment enhanced the ratio of NOS-1:β-dystroglycan in correlation with fiber diameter, improved sarcolemmal integrity, and increased vascular density after an increase in vascular endothelial growth factor protein at 3 wk. Results demonstrate that age-related muscle refractoriness to exercise can be overcome with NO-donor treatment. Since activation of muscle stem cells and vascular perfusion are limiting factors in the maintenance, regeneration, and growth of aged muscle, results suggest the feasibility of using NO-donor drugs to combat atrophy and muscle ischemia. Improved function and quality of life from the NO-amplified effects of exercise may be useful in aging and other conditions such as disuse, insulin resistance, or microgravity.
Collapse
Affiliation(s)
- Jeff R. S. Leiter
- Departments of 1Surgery,
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Judy E. Anderson
- Biological Sciences, and
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
DE LUCA ANNAMARIA. Pre-clinical drug tests in the mdx mouse as a model of dystrophinopathies: an overview. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2012; 31:40-7. [PMID: 22655516 PMCID: PMC3440805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy is a lethal X-linked muscle disease affecting 1/3500 live male birth. It results from defects in the subsarcolemmal protein dystrophin, a component of the dystrophin-glycoprotein complex (DGC) which links the intracellular cytoskeleton to the extracellular matrix. The absence of dystrophin leads to muscle membrane fragility, muscle necrosis and gradual replacement of skeletal muscle by fat and connective tissue, through a complex and still unclear cascade of interconnecting events. No cure is currently available, with glucocorticoids being the sole drugs in clinical use in spite of their remarkable side effects. A great effort is devoted at performing pre-clinical tests on the mdx mouse, the mostly used homologous animal model for DMD, with the final aim to identify drugs safer than steroids and able to target the pathogenic mechanisms so to delay pathology progression. This review updates the efforts on this topic, focusing on the open issues about the animal model and highlighting the classes of pharmaceuticals that are more promising as disease-modifiers, while awaiting for more corrective therapies. Although caution is necessary in data transfer from mdx model to DMD patients, the implementation of standard operating procedures and the growing understanding of the pathology may allow a more accurate evaluation of therapeutics, alone or in combination, in pre-clinical settings. A continuous cross-talk with clinicians and patients associations are also crucial points for proper translation of data from mouse to bedside.
Collapse
Affiliation(s)
- ANNAMARIA DE LUCA
- Address for correspondence: Annamaria De Luca, Sezione di Farmacologia, Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari "Aldo Moro", via Orabona 4 Campus, 70125 Bari, Italy. Tel. +39 080 5442245. Fax +39 080 5442801. E-mail:
| |
Collapse
|
35
|
Radak Z, Naito H, Taylor AW, Goto S. Nitric oxide: Is it the cause of muscle soreness? Nitric Oxide 2012; 26:89-94. [DOI: 10.1016/j.niox.2011.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
|
36
|
D'Angelo MG, Gandossini S, Martinelli Boneschi F, Sciorati C, Bonato S, Brighina E, Comi GP, Turconi AC, Magri F, Stefanoni G, Brunelli S, Bresolin N, Cattaneo D, Clementi E. Nitric oxide donor and non steroidal anti inflammatory drugs as a therapy for muscular dystrophies: evidence from a safety study with pilot efficacy measures in adult dystrophic patients. Pharmacol Res 2012; 65:472-9. [PMID: 22306844 DOI: 10.1016/j.phrs.2012.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 01/22/2023]
Abstract
This open-label, single centre pilot study was designed to evaluate safety and tolerability of the combination of the drugs isosorbide dinitrate, a nitric oxide donor, and ibuprofen, a non steroid anti-inflammatory drug, in a cohort of adult dystrophic patients (Duchenne, Becker and Limb-Girdle Muscular Dystrophy). Seventy-one patients were recruited: 35, treated with the drug combination for 12 months, and 36 untreated. Safety and adverse events were assessed by reported signs and symptoms, physical examinations, blood tests, cardiac and respiratory function tests. Exploratory outcomes measure, such as the motor function measure scale, were also applied. Good safety and tolerability profiles of the long-term co-administration of the drugs were demonstrated. Few and transient side effects (i.e. headache and low blood pressure) were reported. Additionally, exploratory outcomes measures were feasible in all the disease population studied and evidenced a trend towards amelioration that reached statistical significance in one dimension of the MFM scale. Systemic administration of ibuprofen and isosorbide dinitrate provides an adequate safety margin for clinical studies aimed at assessing efficacy.
Collapse
|
37
|
Martins KJB, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, Putman CT, Michel RN. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol 2012; 590:1427-42. [PMID: 22219342 DOI: 10.1113/jphysiol.2011.223370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering L-NAME (0.75 mg ml(−1)) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day(−1)) of rat fast-twitch muscles (L+Stim; n = 30) and outcomes were compared with control rats receiving only CLFS (Stim; n = 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling.
Collapse
Affiliation(s)
- Karen J B Martins
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sciorati C, Miglietta D, Buono R, Pisa V, Cattaneo D, Azzoni E, Brunelli S, Clementi E. A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy. Pharmacol Res 2011; 64:210-7. [PMID: 21609764 PMCID: PMC3134707 DOI: 10.1016/j.phrs.2011.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 01/07/2023]
Abstract
A resolutive therapy for muscular dystrophies, a heterogeneous group of genetic diseases leading to muscular degeneration and in the severe forms to death, is still lacking. Since inflammation and defects in nitric oxide generation are recognized key pathogenic events in muscular dystrophy, we have analysed the effects of a derivative of ibuprofen, NCX 320, belonging to the class of cyclooxygenase inhibiting nitric oxide donator (CINOD), in the α-sarcoglycan null mice, a severe mouse model of dystrophy. NCX 320 was administered daily in the diet for 8months starting 1month from weaning. Muscle functional recovery was evaluated by free wheel and treadmill tests at 8months. Serum creatine kinase activity, as well as the number of diaphragm inflammatory infiltrates and necrotic fibres, was measured as indexes of skeletal muscle damage. Muscle regeneration was evaluated in diaphragm and tibialis anterior muscles, measuring the numbers of centronucleated fibres and of myogenic precursor cells. NCX 320 mitigated muscle damage, reducing significantly serum creatine kinase activity, the number of necrotic fibres and inflammatory infiltrates. Moreover, NCX 320 stimulated muscle regeneration increasing significantly the number of myogenic precursor cells and regenerating fibres. All these effects concurred in inducing a significant improvement of muscle function, as assessed by both free wheel and treadmill tests. These results describe the properties of a new compound incorporating nitric oxide donation together with anti-inflammatory properties, showing that it is effective in slowing muscle dystrophy progression long term. Of importance, this new compound deserves specific attention for its potential in the therapy of muscular dystrophy given that ibuprofen is well tolerated in paediatric patients and with a profile of safety that makes it suitable for chronic treatment such as the one required in muscular dystrophies.
Collapse
Affiliation(s)
- Clara Sciorati
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Via Olgettina 58, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Consalvi S, Saccone V, Giordani L, Minetti G, Mozzetta C, Puri PL. Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. Mol Med 2011; 17:457-65. [PMID: 21308150 DOI: 10.2119/molmed.2011.00049] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy.
Collapse
Affiliation(s)
- Silvia Consalvi
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia, and European Brain Research Institute, Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Mizunoya W, Upadhaya R, Burczynski FJ, Wang G, Anderson JE. Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol 2011; 300:C1065-77. [PMID: 21270295 DOI: 10.1152/ajpcell.00482.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Duchenne muscular dystrophy (DMD), palliative glucocorticoid therapy can produce myopathy or calcification. Since increased nitric oxide synthase activity in dystrophic mice promotes regeneration, the outcome of two nitric oxide (NO) donor drugs, MyoNovin (M) and isosorbide dinitrate (I), on the effectiveness of the anti-inflammatory drug prednisone (P) in alleviating progression of dystrophy was tested. Dystrophic mdx mice were treated (18 days) as controls or with an NO donor ± P. Fiber permeability and DNA synthesis were labeled by Evans blue dye (EBD) and bromodeoxyuridine uptake, respectively. P decreased body weight gain, M increased quadriceps mass, and I increased heart mass. P increased fiber permeability (%EBD+ fibers) and calcification in diaphragm. Treatment with NO donors + P (M+P, I+P) reduced %EBD+ fibers and calcification vs. P alone. %EBD+ fibers in M+P diaphragm did not differ from control. NO donor treatment reduced proliferation and the population of c-met+ cells and accelerated fiber regeneration. Concurrent with P, NO donor treatment suppressed two important detrimental effects of P in mice, possibly by accelerating regeneration, rebalancing satellite cell quiescence and activation in dystrophy, and/or increasing perfusion. Results suggest that NO donors could improve current therapy for DMD.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Dept. of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
41
|
Molecular mechanisms of myoblast fusion across species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:113-35. [PMID: 21432017 DOI: 10.1007/978-94-007-0763-4_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle development, growth and regeneration depend on the ability of progenitor myoblasts to fuse to one another in a series of ordered steps. Whereas the cellular steps leading to the formation of a multinucleated myofiber are conserved in several model organisms, the molecular regulatory factors may vary. Understanding the common and divergent mechanisms regulating myoblast fusion in Drosophila melanogaster (fruit fly), Danio rerio (zebrafish) and Mus musculus (mouse) provides a better insight into the process of myoblast fusion than any of these models could provide alone. Deciphering the mechanisms of myoblast fusion from simpler to more complex organisms is of fundamental interest to skeletal muscle biology and may provide therapeutic avenues for various diseases that affect muscle.
Collapse
|
42
|
Abstract
Hypothalamic-hypophysiotropic peptides are the proximate regulators of pituitary cells, but they cannot fully account for the complex functioning of these cells. Accordingly, awareness is growing that an array of peptides produced in the pituitary exert paracrine/autocrine functions. One such peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), was originally identified as a hypothalamic activator of cAMP production in pituitary cells. Gonadotrophs and folliculostellate cells are the main source of pituitary PACAP, and each pituitary cell type expresses a PACAP receptor. PACAP increases alpha-subunit (Cga) and Lhb mRNAs, and it stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling to repress Fshb and gonadotropin-releasing hormone-receptor (Gnrhr) expression as well as other activin-responsive genes. The PACAP (Adcyap1) promoter is activated by cAMP, and pituitary cells may communicate by a feed-forward, cAMP-dependent mechanism to maintain a high level of PACAP in the fetal pituitary. At birth, pituitary PACAP declines and pituitary follistatin levels decrease, which together with increased gonadotropin-releasing hormone secretion allow Gnrhr and Fshb to increase and facilitate activation of the newborn gonads. Changes in Adcyap1 expression levels in the adult pituitary may contribute to the selective rise in follicle-stimulating hormone (FSH) from age 20-30 days to the midcycle surge and to the secondary increase in FSH that occurs before estrus. These results provide further support for the notion that PACAP is a key player in reproduction through its actions as a pituitary autocrine/paracrine hormone.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism, and Diabetes, University of Louisville School of Medicine, 550 Jackson Street, Louisville, KY 40202, USA.
| | | |
Collapse
|
43
|
Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil 2010; 31:215-25. [DOI: 10.1007/s10974-010-9227-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
44
|
Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D'Angelo G, Cattaneo D, Brunelli S, Clementi E. Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 2010; 160:1550-60. [PMID: 20590643 PMCID: PMC2938824 DOI: 10.1111/j.1476-5381.2010.00809.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Current therapies for muscular dystrophy are based on corticosteroids. Significant side effects associated with these therapies have prompted several studies aimed at identifying possible alternative strategies. As inflammation and defects of nitric oxide (NO) generation are key pathogenic events in muscular dystrophies, we have studied the effects of combining the NO donor isosorbide dinitrate (ISDN) and the non-steroidal anti-inflammatory drug ibuprofen. EXPERIMENTAL APPROACH alpha-Sarcoglycan-null mice were treated for up to 8 months with ISDN (30 mg.kg(-1)) plus ibuprofen (50 mg.kg(-1)) administered daily in the diet. Effects of ISDN and ibuprofen alone were assessed in parallel. Drug effects on animal motility and muscle function, muscle damage, inflammatory infiltrates and cytokine levels, as well as muscle regeneration including assessment of endogenous stem cell pool, were measured at selected time points. KEY RESULTS Combination of ibuprofen and ISDN stimulated regeneration capacity, of myogenic precursor cells, reduced muscle necrotic damage and inflammation. Muscle function in terms of free voluntary movement and resistance to exercise was maintained throughout the time window analysed. The effects of ISDN and ibuprofen administered separately were transient and significantly lower than those induced by their combination. CONCLUSIONS AND IMPLICATIONS Co-administration of NO and ibuprofen provided synergistic beneficial effects in a mouse model of muscular dystrophy, leading to an effective therapy. Our results open the possibility of immediate clinical testing of a combination of ISDN and ibuprofen in dystrophic patients, as both components are approved for use in humans, with a good safety profile.
Collapse
Affiliation(s)
- Clara Sciorati
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
| | - Roberta Buono
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Emanuele Azzoni
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
- Department of Experimental Medicine, University of Milano-BicoccaMonza, Italy
| | - Silvana Casati
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Pierangela Ciuffreda
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | | | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Silvia Brunelli
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
- Department of Experimental Medicine, University of Milano-BicoccaMonza, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
- E. Medea Scientific InstituteBosisio Parini, Italy
| |
Collapse
|
45
|
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol 2010; 189:1157-69. [PMID: 20566686 PMCID: PMC2894448 DOI: 10.1083/jcb.200912093] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/26/2010] [Indexed: 01/11/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has emerged as a key regulator of skeletal muscle development by governing distinct stages of myogenesis, but the molecular pathways downstream of mTOR are not fully understood. In this study, we report that expression of the muscle-specific micro-RNA (miRNA) miR-1 is regulated by mTOR both in differentiating myoblasts and in mouse regenerating skeletal muscle. We have found that mTOR controls MyoD-dependent transcription of miR-1 through its upstream enhancer, most likely by regulating MyoD protein stability. Moreover, a functional pathway downstream of mTOR and miR-1 is delineated, in which miR-1 suppression of histone deacetylase 4 (HDAC4) results in production of follistatin and subsequent myocyte fusion. Collective evidence strongly suggests that follistatin is the long-sought mTOR-regulated fusion factor. In summary, our findings unravel for the first time a link between mTOR and miRNA biogenesis and identify an mTOR-miR-1-HDAC4-follistatin pathway that regulates myocyte fusion during myoblast differentiation in vitro and skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Cell and Developmental Biology and W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Yejing Ge
- Department of Cell and Developmental Biology and W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Jenny Drnevich
- Department of Cell and Developmental Biology and W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Yong Zhao
- Center for Molecular Cardiology and Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029
| | - Mark Band
- Department of Cell and Developmental Biology and W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Jie Chen
- Department of Cell and Developmental Biology and W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| |
Collapse
|
46
|
Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ 2010; 17:1684-96. [PMID: 20467441 DOI: 10.1038/cdd.2010.48] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During myogenic differentiation the short mitochondria of myoblasts change into the extensively elongated network observed in myotubes. The functional relevance and the molecular mechanisms driving the formation of this mitochondrial network are unknown. We now show that mitochondrial elongation is required for myogenesis to occur and that this event depends on the cellular generation of nitric oxide (NO). Inhibition of NO synthesis in myogenic precursor cells leads to inhibition of mitochondrial elongation and of myogenic differentiation. This is due to the enhanced activity, translocation and docking of the pro-fission GTPase dynamin-related protein-1 (Drp1) to mitochondria, leading also to a latent mitochondrial dysfunction that increased sensitivity to apoptotic stimuli. These effects of NO inhibition were not observed in myogenic precursor cells containing a dominant-negative form of Drp1. Both NO-dependent repression of Drp1 action and maintenance of mitochondrial integrity and function were mediated through the soluble guanylate cyclase. These data uncover a novel level of regulation of differentiation linking mitochondrial morphology and function to myogenic differentiation.
Collapse
|
47
|
Regulation of embryonic stem cell self-renewal and differentiation by TGF-beta family signaling. SCIENCE CHINA-LIFE SCIENCES 2010; 53:497-503. [PMID: 20596917 DOI: 10.1007/s11427-010-0096-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/21/2009] [Indexed: 12/15/2022]
Abstract
Embryonic stem (ES) cells are characterized by their ability to indefinitely self-renew and potential to differentiate into all the cell lineages of the body. ES cells are considered to have potential applications in regenerative medicine. In particular, the emergence of an ES cell analogue - induced pluripotent stem (iPS) cells via somatic cell reprogramming by co-expressing a limited number of critical stemness-related transcriptional factors has solved the problem of obtaining patient-specific pluripotent cells, encouraging researchers to develop more specific and functional cell lineages from ES or iPS cells for broad therapeutic applications. ES cell fate choice is delicately controlled by a core transcriptional network, epigenetic modification profiles and complex signaling cascades both intrinsically and extrinsically. Of these signals, transforming growth factor beta (TGF-beta) family members, including TGF-beta, bone morphogenetic protein (BMP), Activin and Nodal, have been reported to influence cell self-renewal and a broad spectrum of lineage differentiation in ES cells, in accordance with the key roles of TGF-beta family signaling in early embryo development. In this review, the roles of TGF-beta family signals in coordinating ES cell fate determination are summarized.
Collapse
|
48
|
Percival JM, Anderson KNE, Huang P, Adams ME, Froehner SC. Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest 2010; 120:816-26. [PMID: 20124730 DOI: 10.1172/jci40736] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/09/2009] [Indexed: 11/17/2022] Open
Abstract
Signaling via the neuronal NOS (nNOS) splice variant nNOSmu is essential for skeletal muscle health and is commonly reduced in neuromuscular disease. nNOSmu is thought to be the predominant source of NO in skeletal muscle. Here we demonstrate the existence of what we believe to be a novel signaling pathway, mediated by the nNOS splice variant nNOSbeta, localized at the Golgi complex in mouse skeletal muscle cells. In contrast to muscles lacking nNOSmu alone, muscles missing both nNOSmu and nNOSbeta were severely myopathic, exhibiting structural defects in the microtubule cytoskeleton, Golgi complex, and mitochondria. Skeletal muscles lacking both nNOSmu and nNOSbeta were smaller in mass, intrinsically weak, highly susceptible to fatigue, and exhibited marked postexercise weakness. Our data indicate that nNOSbeta is a critical regulator of the structural and functional integrity of skeletal muscle and demonstrate the existence of 2 functionally distinct nNOS microdomains in skeletal muscle, created by the differential targeting of nNOSmu to the sarcolemma and nNOSbeta to the Golgi. We have previously shown that sarcolemmal nNOSmu matches the blood supply to the metabolic demands of active muscle. We now demonstrate that nNOSbeta simultaneously modulates the ability of skeletal muscle to maintain force production during and after exercise. We conclude therefore that nNOS splice variants are critical regulators of skeletal muscle exercise performance.
Collapse
Affiliation(s)
- Justin M Percival
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195-7290, USA.
| | | | | | | | | |
Collapse
|
49
|
Dahlman JM, Bakkar N, He W, Guttridge DC. NF-kappaB functions in stromal fibroblasts to regulate early postnatal muscle development. J Biol Chem 2009; 285:5479-87. [PMID: 20018862 DOI: 10.1074/jbc.m109.075606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Classical NF-kappaB activity functions as an inhibitor of the skeletal muscle myogenic program. Recent findings reveal that even in newborn RelA/p65(-/-) mice, myofiber numbers are increased over that of wild type mice, suggesting that NF-kappaB may be a contributing factor in early postnatal skeletal muscle development. Here we show that in addition to p65 deficiency, repression of NF-kappaB with the IkappaB alpha-SR transdominant inhibitor or with muscle-specific deletion of IKKbeta resulted in similar increases in total fiber numbers as well as an up-regulation of myogenic gene products. Upon further characterization of early postnatal muscle, we observed that NF-kappaB activity progressively declines within the first few weeks of development. At birth, the majority of this activity is compartmentalized to muscle fibers, but by neonatal day 8 NF-kappaB activity from the myofibers diminishes, and instead, stromal fibroblasts become the main cellular compartment within the muscle that contains active NF-kappaB. We find that NF-kappaB functions in these fibroblasts to regulate inducible nitric-oxide synthase expression, which we show is important for myoblast fusion during the growth and maturation process of skeletal muscle. Together, these data broaden our understanding of NF-kappaB during development by showing that in addition to its role as a negative regulator of myogenesis, NF-kappaB also regulates nitric-oxide synthase expression within stromal fibroblasts to stimulate myoblast fusion and muscle hypertrophy.
Collapse
Affiliation(s)
- Jason M Dahlman
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
50
|
The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 2009; 8:328-38. [PMID: 19464390 DOI: 10.1016/j.arr.2009.05.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 12/22/2022]
Abstract
It has been well-established that the age-related loss of muscle mass and strength, or sarcopenia, impairs skeletal muscle function and reduces functional performance at a more advanced age. Skeletal muscle satellite cells (SC), as precursors of new myonuclei, have been suggested to be involved in the development of sarcopenia. In accordance with the type II muscle fiber atrophy observed in the elderly, recent studies report a concomitant fiber type specific reduction in SC content. Resistance type exercise interventions have proven effective to augment skeletal muscle mass and improve muscle function in the elderly. In accordance, recent work shows that resistance type exercise training can augment type II muscle fiber size and reverse the age-related decline in SC content. The latter is supported by an increase in SC activation and proliferation factors that generally appear following exercise training. Present findings strongly suggest that the skeletal muscle SC control myogenesis and have an important, but yet unresolved, function in the loss of muscle mass with aging. This review discusses the contribution of skeletal muscle SC in the age-related loss of muscle mass and the efficacy of exercise training as a means to attenuate and/or reverse this process.
Collapse
|