1
|
Jenkins PM, Bender KJ. Axon initial segment structure and function in health and disease. Physiol Rev 2025; 105:765-801. [PMID: 39480263 DOI: 10.1152/physrev.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
At the simplest level, neurons are structured to integrate synaptic input and perform computational transforms on that input, converting it into an action potential (AP) code. This process, converting synaptic input into AP output, typically occurs in a specialized region of the axon termed the axon initial segment (AIS). The AIS, as its name implies, is often contained to the first section of axon abutted to the soma and is home to a dizzying array of ion channels, attendant scaffolding proteins, intracellular organelles, extracellular proteins, and, in some cases, synapses. The AIS serves multiple roles as the final arbiter for determining if inputs are sufficient to evoke APs, as a gatekeeper that physically separates the somatodendritic domain from the axon proper, and as a regulator of overall neuronal excitability, dynamically tuning its size to best suit the needs of parent neurons. These complex roles have received considerable attention from experimentalists and theoreticians alike. Here, we review recent advances in our understanding of the AIS and its role in neuronal integration and polarity in health and disease.
Collapse
Affiliation(s)
- Paul M Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J Bender
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States
| |
Collapse
|
2
|
Fréal A, Hoogenraad CC. The dynamic axon initial segment: From neuronal polarity to network homeostasis. Neuron 2025; 113:649-669. [PMID: 39947181 DOI: 10.1016/j.neuron.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/15/2024] [Accepted: 01/07/2025] [Indexed: 03/08/2025]
Abstract
The axon initial segment (AIS) is a highly specialized compartment in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in the proximal part of the axon is essential for its two major functions: generating and modulating action potentials and maintaining neuron polarity. Recent findings revealed that the incredibly stable AIS is generated from highly dynamic components and can undergo extensive structural and functional changes in response to alterations in activity levels. These activity-dependent alterations of AIS structure and function have profound consequences for neuronal functioning, and AIS plasticity has emerged as a key regulator of network homeostasis. This review highlights the functions of the AIS, its architecture, and how its organization and remodeling are influenced by developmental plasticity and both acute and chronic adaptations. It also discusses the mechanisms underlying these processes and explores how dysregulated AIS plasticity may contribute to brain disorders.
Collapse
Affiliation(s)
- Amélie Fréal
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Jin L, Qin Y, Zhao Y, Zhou X, Zeng Y. Endothelial cytoskeleton in mechanotransduction and vascular diseases. J Biomech 2025; 182:112579. [PMID: 39938443 DOI: 10.1016/j.jbiomech.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The cytoskeleton is an important structural component that regulates various aspects of cell morphology, movement, and intracellular signaling. It plays a pivotal role in the cellular response to biomechanical stimuli, particularly in endothelial cells, which are critical for vascular homeostasis and the pathogenesis of cardiovascular diseases. Mechanical forces, such as shear and tension, activate intracellular signaling cascades that regulate transcription, translation, and cellular behaviors. Despite extensive research into cytoskeletal functions, the precise mechanisms by which the cytoskeleton transduces mechanical signals remain incompletely understood. This review focuses on the role of cytoskeletal components in membrane, cytoplasm, and nucleus in mechanotransduction, with an emphasis on their structure, mechanical and biological behaviors, dynamic interactions, and response to mechanical forces. The collaboration between membrane cytoskeleton, cytoplasmic cytoskeleton, and nucleoskeleton is indispensable for endothelial cells to respond to mechanical stimuli. Understanding their mechanoresponsive mechanisms is essential for advancing therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yunran Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
4
|
Qi Y, Zhao R, Tian J, Lu J, He M, Tai Y. Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. Neurosci Bull 2024; 40:1774-1788. [PMID: 39080101 PMCID: PMC11607270 DOI: 10.1007/s12264-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 11/30/2024] Open
Abstract
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangteng Lu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Escobedo Jr. G, Wu Y, Ogawa Y, Ding X, Rasband MN. An evolutionarily conserved AnkyrinG-dependent motif clusters axonal K2P K+ channels. J Cell Biol 2024; 223:e202401140. [PMID: 39078369 PMCID: PMC11289519 DOI: 10.1083/jcb.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
The evolution of ion channel clustering at nodes of Ranvier enabled the development of complex vertebrate nervous systems. At mammalian nodes, the K+ leak channels TRAAK and TREK-1 underlie membrane repolarization. Despite the molecular similarities between nodes and the axon initial segment (AIS), TRAAK and TREK-1 are reportedly node-specific, suggesting a unique clustering mechanism. However, we show that TRAAK and TREK-1 are enriched at both nodes and AIS through a common mechanism. We identified a motif near the C-terminus of TRAAK that is necessary and sufficient for its clustering. The motif first evolved among cartilaginous fish. Using AnkyrinG (AnkG) conditional knockout mice, CRISPR/Cas9-mediated disruption of AnkG, co-immunoprecipitation, and surface recruitment assays, we show that TRAAK forms a complex with AnkG and that AnkG is necessary for TRAAK's AIS and nodal clustering. In contrast, TREK-1's clustering requires TRAAK. Our results expand the repertoire of AIS and nodal ion channel clustering mechanisms and emphasize AnkG's central role in assembling excitable domains.
Collapse
Affiliation(s)
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Wernert F, Moparthi SB, Pelletier F, Lainé J, Simons E, Moulay G, Rueda F, Jullien N, Benkhelifa-Ziyyat S, Papandréou MJ, Leterrier C, Vassilopoulos S. The actin-spectrin submembrane scaffold restricts endocytosis along proximal axons. Science 2024; 385:eado2032. [PMID: 39172837 DOI: 10.1126/science.ado2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Clathrin-mediated endocytosis has characteristic features in neuronal dendrites and presynapses, but how membrane proteins are internalized along the axon shaft remains unclear. We focused on clathrin-coated structures and endocytosis along the axon initial segment (AIS) and their relationship to the periodic actin-spectrin scaffold that lines the axonal plasma membrane. A combination of super-resolution microscopy and platinum-replica electron microscopy on cultured neurons revealed that AIS clathrin-coated pits form within "clearings", circular areas devoid of actin-spectrin mesh. Actin-spectrin scaffold disorganization increased clathrin-coated pit formation. Cargo uptake and live-cell imaging showed that AIS clathrin-coated pits are particularly stable. Neuronal plasticity-inducing stimulation triggered internalization of the clathrin-coated pits through polymerization of branched actin around them. Thus, spectrin and actin regulate clathrin-coated pit formation and scission to control endocytosis at the AIS.
Collapse
Affiliation(s)
- Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Satish Babu Moparthi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Florence Pelletier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Jeanne Lainé
- Sorbonne Université, Department of Physiology, Faculty of Medicine Pitié-Salpêtrière, Paris, France
| | - Eline Simons
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Gilles Moulay
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Fanny Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Nicolas Jullien
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | | | | | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
7
|
Luque-Fernández V, Vanspauwen SK, Landra-Willm A, Arvedsen E, Besquent M, Sandoz G, Rasmussen HB. An ankyrin G-binding motif mediates TRAAK periodic localization at axon initial segments of hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 2024; 121:e2310120121. [PMID: 39058579 PMCID: PMC11295008 DOI: 10.1073/pnas.2310120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.
Collapse
Affiliation(s)
- Virginia Luque-Fernández
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Sam K. Vanspauwen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Arnaud Landra-Willm
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Emil Arvedsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| | - Maïlys Besquent
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Guillaume Sandoz
- Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice06108, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice06100, France
- Fédération Hospitalo-Universitaire InovPain, Côte d’Azur University, University Hospital Centre Nice, Nice06000, France
| | - Hanne B. Rasmussen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200, Denmark
| |
Collapse
|
8
|
Wang Y, Chen Y, Chen L, Herron BJ, Chen XY, Wolpaw JR. Motor learning changes the axon initial segment of the spinal motoneuron. J Physiol 2024; 602:2107-2126. [PMID: 38568869 PMCID: PMC11196014 DOI: 10.1113/jp283875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.
Collapse
Affiliation(s)
- Yu Wang
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Bruce J. Herron
- Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
9
|
Thompson AC, Aizenman CD. Characterization of Na + currents regulating intrinsic excitability of optic tectal neurons. Life Sci Alliance 2024; 7:e202302232. [PMID: 37918964 PMCID: PMC10622587 DOI: 10.26508/lsa.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Developing neurons adapt their intrinsic excitability to maintain stable output despite changing synaptic input. The mechanisms behind this process remain unclear. In this study, we examined Xenopus optic tectal neurons and found that the expressions of Nav1.1 and Nav1.6 voltage-gated Na+ channels are regulated during changes in intrinsic excitability, both during development and becsuse of changes in visual experience. Using whole-cell electrophysiology, we demonstrate the existence of distinct, fast, persistent, and resurgent Na+ currents in the tectum, and show that these Na+ currents are co-regulated with changes in Nav channel expression. Using antisense RNA to suppress the expression of specific Nav subunits, we found that up-regulation of Nav1.6 expression, but not Nav1.1, was necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Furthermore, this regulation was also necessary for normal development of sensory guided behaviors. These data suggest that the regulation of Na+ currents through the modulation of Nav1.6 expression, and to a lesser extent Nav1.1, plays a crucial role in controlling the intrinsic excitability of tectal neurons and guiding normal development of the tectal circuitry.
Collapse
|
10
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
11
|
Osete JR, Akkouh IA, Ievglevskyi O, Vandenberghe M, de Assis DR, Ueland T, Kondratskaya E, Holen B, Szabo A, Hughes T, Smeland OB, Steen VM, Andreassen OA, Djurovic S. Transcriptional and functional effects of lithium in bipolar disorder iPSC-derived cortical spheroids. Mol Psychiatry 2023; 28:3033-3043. [PMID: 36653674 PMCID: PMC10615757 DOI: 10.1038/s41380-023-01944-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.
Collapse
Affiliation(s)
- Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Ievglevskyi
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Matthieu Vandenberghe
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Elena Kondratskaya
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Vidar Martin Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Agbo J, Ibrahim ZG, Magaji SY, Mutalub YB, Mshelia PP, Mhya DH. Therapeutic efficacy of voltage-gated sodium channel inhibitors in epilepsy. ACTA EPILEPTOLOGICA 2023; 5:16. [PMID: 40217485 PMCID: PMC11960332 DOI: 10.1186/s42494-023-00127-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a neurological disease characterized by excessive and abnormal hyper-synchrony of electrical discharges of the brain and a predisposition to generate epileptic seizures resulting in a broad spectrum of neurobiological insults, imposing psychological, cognitive, social and also economic burdens to the sufferer. Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials throughout the central nervous system. Dysfunction of these channels has been implicated in the pathogenesis of epilepsy. VGSC inhibitors have been demonstrated to act as anticonvulsants to suppress the abnormal neuronal firing underlying epileptic seizures, and are used for the management and treatment of both genetic-idiopathic and acquired epilepsies. We discuss the forms of idiopathic and acquired epilepsies caused by VGSC mutations and the therapeutic efficacy of VGSC blockers in idiopathic, acquired and pharmacoresistant forms of epilepsy in this review. We conclude that there is a need for better alternative therapies that can be used alone or in combination with VGSC inhibitors in the management of epilepsies. The current anti-seizure medications (ASMs) especially for pharmacoresistant epilepsies and some other types of epilepsy have not yielded expected therapeutic efficacy partly because they do not show subtype-selectivity in blocking sodium channels while also bringing side effects. Therefore, there is a need to develop novel drug cocktails with enhanced selectivity for specific VGSC isoforms, to achieve better treatment of pharmacoresistant epilepsies and other types of epileptic seizures.
Collapse
Affiliation(s)
- John Agbo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria.
| | - Zainab G Ibrahim
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Shehu Y Magaji
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Yahkub Babatunde Mutalub
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Philemon Paul Mshelia
- Department of Physiology, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Daniel H Mhya
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| |
Collapse
|
13
|
Kouchi Z, Kojima M. A Structural Network Analysis of Neuronal ArhGAP21/23 Interactors by Computational Modeling. ACS OMEGA 2023; 8:19249-19264. [PMID: 37305272 PMCID: PMC10249030 DOI: 10.1021/acsomega.2c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
RhoGTPase-activating proteins (RhoGAPs) play multiple roles in neuronal development; however, details of their substrate recognition system remain elusive. ArhGAP21 and ArhGAP23 are RhoGAPs that contain N-terminal PDZ and pleckstrin homology domains. In the present study, the RhoGAP domain of these ArhGAPs was computationally modeled by template-based methods and the AlphaFold2 software program, and their intrinsic RhoGTPase recognition mechanism was analyzed from the domain structures using the protein docking programs HADDOCK and HDOCK. ArhGAP21 was predicted to preferentially catalyze Cdc42, RhoA, RhoB, RhoC, and RhoG and to downregulate RhoD and Tc10 activities. Regarding ArhGAP23, RhoA and Cdc42 were deduced to be its substrates, whereas RhoD downregulation was predicted to be less efficient. The PDZ domains of ArhGAP21/23 possess the FTLRXXXVY sequence, and similar globular folding consists of antiparalleled β-sheets and two α-helices that are conserved with PDZ domains of MAST-family proteins. A peptide docking analysis revealed the specific interaction of the ArhGAP23 PDZ domain with the PTEN C-terminus. The pleckstrin homology domain structure of ArhGAP23 was also predicted, and the functional selectivity for the interactors regulated by the folding and disordered domains in ArhGAP21 and ArhGAP23 was examined by an in silico analysis. An interaction analysis of these RhoGAPs revealed the existence of mammalian ArhGAP21/23-specific type I and type III Arf- and RhoGTPase-regulated signaling. Multiple recognition systems of RhoGTPase substrates and selective Arf-dependent localization of ArhGAP21/23 may form the basis of the functional core signaling necessary for synaptic homeostasis and axon/dendritic transport regulated by RhoGAP localization and activities.
Collapse
Affiliation(s)
- Zen Kouchi
- Department
of Genetics, Institute for Developmental
Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai-city 480-0392 Aichi, Japan
| | - Masaki Kojima
- Laboratory
of Bioinformatics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
14
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
15
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
16
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
17
|
Nguyen H, Zhu W, Baltan S. Casein Kinase 2 Signaling in White Matter Stroke. Front Mol Biosci 2022; 9:908521. [PMID: 35911974 PMCID: PMC9325966 DOI: 10.3389/fmolb.2022.908521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
The growth of the aging population, together with improved stroke care, has resulted in an increase in stroke survivors and a rise in recurrent events. Axonal injury and white matter (WM) dysfunction are responsible for much of the disability observed after stroke. The mechanisms of WM injury are distinct compared to gray matter and change with age. Therefore, an ideal stroke therapeutic must restore neuronal and axonal function when applied before or after a stroke, and it must also protect across age groups. Casein kinase 2 (CK2), is expressed in the brain, including WM, and is regulated during the development and numerous disease conditions such as cancer and ischemia. CK2 activation in WM mediates ischemic injury by activating the Cdk5 and AKT/GSK3β signaling pathways. Consequently, CK2 inhibition using the small molecule inhibitor CX-4945 (Silmitasertib) correlates with preservation of oligodendrocytes, conservation of axon structure, and axonal mitochondria, leading to improved functional recovery. Remarkably, CK2 inhibition promotes WM function when applied after ischemic injury by specifically regulating the AKT/GSK3β pathways. The blockade of the active conformation of AKT confers post-ischemic protection to young and old WM by preserving mitochondria, implying AKT as a common therapeutic target across age groups. Using a NanoString nCounter miRNA expression profiling, comparative analyses of ischemic WM with or without CX-4945 treatment reveal that miRNAs are expressed at high levels in WM after ischemia, and CX-4945 differentially regulates some of these miRNAs. Therefore, we propose that miRNA regulation may be one of the protective actions of CX-4945 against WM ischemic injury. Silmitasertib is FDA approved and currently in use for cancer and Covid patients; therefore, it is plausible to repurpose CK2 inhibitors for stroke patients.
Collapse
Affiliation(s)
| | | | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp Mol Med 2022; 54:867-877. [PMID: 35794211 PMCID: PMC9356056 DOI: 10.1038/s12276-022-00798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
Ankyrin proteins act as molecular scaffolds and play an essential role in regulating cellular functions. Recent evidence has implicated the ANK3 gene, encoding ankyrin-G, in bipolar disorder (BD), schizophrenia (SZ), and autism spectrum disorder (ASD). Within neurons, ankyrin-G plays an important role in localizing proteins to the axon initial segment and nodes of Ranvier or to the dendritic shaft and spines. In this review, we describe the expression patterns of ankyrin-G isoforms, which vary according to the stage of brain development, and consider their functional differences. Furthermore, we discuss how posttranslational modifications of ankyrin-G affect its protein expression, interactions, and subcellular localization. Understanding these mechanisms leads us to elucidate potential pathways of pathogenesis in neurodevelopmental and psychiatric disorders, including BD, SZ, and ASD, which are caused by rare pathogenic mutations or changes in the expression levels of ankyrin-G in the brain. Mutations affecting the production, distribution, or function of the ankyrin-G protein may contribute to a variety of different neuropsychiatric disorders. Ankyrin-G is typically observed at the synapses between neurons, and contributes to intercellular adhesion and signaling along with other important functions. Peter Penzes and colleagues at Northwestern University, Chicago, USA, review the biology of this protein and identify potential mechanisms by which ankyrin-G mutations might impair healthy brain development. Mutations in the gene encoding this protein are strongly linked with bipolar disorder, but have also been tentatively connected to autism spectrum disorders and schizophrenia. The authors highlight physiologically important interactions with a diverse array of other brain proteins, which can in turn be modulated by various chemical modifications to ankyrin-G, and conclude that drugs that influence these modifications could have potential therapeutic value.
Collapse
|
19
|
Caefer DM, Phan NQ, Liddle JC, Balsbaugh JL, O'Shea JP, Tzingounis AV, Schwartz D. The Okur-Chung Neurodevelopmental Syndrome Mutation CK2 K198R Leads to a Rewiring of Kinase Specificity. Front Mol Biosci 2022; 9:850661. [PMID: 35517865 PMCID: PMC9062000 DOI: 10.3389/fmolb.2022.850661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of protein kinase CK2. The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a complete loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.
Collapse
Affiliation(s)
- Danielle M Caefer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Nhat Q Phan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jennifer C Liddle
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Jeremy L Balsbaugh
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Joseph P O'Shea
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
20
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
21
|
Stevens SR, van der Heijden ME, Ogawa Y, Lin T, Sillitoe RV, Rasband MN. Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival. J Neurosci 2022; 42:2-15. [PMID: 34785580 PMCID: PMC8741159 DOI: 10.1523/jneurosci.1132-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
Ankyrin scaffolding proteins are critical for membrane domain organization and protein stabilization in many different cell types including neurons. In the cerebellum, Ankyrin-R (AnkR) is highly enriched in Purkinje neurons, granule cells, and in the cerebellar nuclei (CN). Using male and female mice with a floxed allele for Ank1 in combination with Nestin-Cre and Pcp2-Cre mice, we found that ablation of AnkR from Purkinje neurons caused ataxia, regional and progressive neurodegeneration, and altered cerebellar output. We show that AnkR interacts with the cytoskeletal protein β3 spectrin and the potassium channel Kv3.3. Loss of AnkR reduced somatic membrane levels of β3 spectrin and Kv3.3 in Purkinje neurons. Thus, AnkR links Kv3.3 channels to the β3 spectrin-based cytoskeleton. Our results may help explain why mutations in β3 spectrin and Kv3.3 both cause spinocerebellar ataxia.SIGNIFICANCE STATEMENT Ankyrin scaffolding proteins localize and stabilize ion channels in the membrane by linking them to the spectrin-based cytoskeleton. Here, we show that Ankyrin-R (AnkR) links Kv3.3 K+ channels to the β3 spectrin-based cytoskeleton in Purkinje neurons. Loss of AnkR causes Purkinje neuron degeneration, altered cerebellar physiology, and ataxia, which is consistent with mutations in Kv3.3 and β3 spectrin causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Lin
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
22
|
Rivaud MR, Delmar M, Remme CA. Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc Res 2021; 116:1557-1570. [PMID: 32251506 PMCID: PMC7341171 DOI: 10.1093/cvr/cvaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 435 E 30th St, NSB 707, New York, NY 10016, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
24
|
Quistgaard EM, Nissen JD, Hansen S, Nissen P. Mind the Gap: Molecular Architecture of the Axon Initial Segment - From Fold Prediction to a Mechanistic Model of Function? J Mol Biol 2021; 433:167176. [PMID: 34303720 DOI: 10.1016/j.jmb.2021.167176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is a distinct neuronal domain, which is responsible for initiating action potentials, and therefore of key importance to neuronal signaling. To determine how it functions, it is necessary to establish which proteins reside there, how they are organized, and what the dynamic features are. Great strides have been made in recent years, and it is now clear that several AIS cytoskeletal and membrane proteins interact to form a higher-order periodic structure. Here we briefly describe AIS function, protein composition and molecular architecture, and discuss perspectives for future structural characterization, and if structure predictions will be able to model complex higher-order assemblies.
Collapse
Affiliation(s)
- Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Josephine Dannersø Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Sean Hansen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Properties of Calmodulin Binding to Na V1.2 IQ Motif and Its Autism-Associated Mutation R1902C. Neurochem Res 2021; 46:523-534. [PMID: 33394222 DOI: 10.1007/s11064-020-03189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/15/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.
Collapse
|
27
|
Bhardwaj P, Kulasiri D, Samarasinghe S. Modeling protein-protein interactions in axon initial segment to understand their potential impact on action potential initiation. Neural Regen Res 2021; 16:700-706. [PMID: 33063731 PMCID: PMC8067952 DOI: 10.4103/1673-5374.295332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) region is crucial for action potential initiation due to the presence of high-density AIS protein voltage-gated sodium channels (Nav). Nav channels comprise several serine residues responsible for the recruitment of Nav channels into the structure of AIS through interactions with ankyrin-G (AnkG). In this study, a series of computational experiments are performed to understand the role of AIS proteins casein kinase 2 and AnkG on Nav channel recruitment into the AIS. The computational simulation results using Virtual cell software indicate that Nav channels with all serine sites available for phosphorylation bind to AnkG with strong affinity. At the low initial concentration of AnkG and casein kinase 2, the concentration of Nav channels reduces significantly, suggesting the importance of casein kinase 2 and AnkG in the recruitment of Nav channels.
Collapse
Affiliation(s)
- Piyush Bhardwaj
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre of Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
28
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
29
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
30
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
31
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
33
|
Torii T, Ogawa Y, Liu CH, Ho TSY, Hamdan H, Wang CC, Oses-Prieto JA, Burlingame AL, Rasband MN. NuMA1 promotes axon initial segment assembly through inhibition of endocytosis. J Cell Biol 2020; 219:jcb.201907048. [PMID: 31727776 PMCID: PMC7041696 DOI: 10.1083/jcb.201907048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/22/2022] Open
Abstract
Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. Torii et al. show that NuMA1 is transiently located at the AIS and promotes rapid AIS assembly by inhibiting the endocytosis of neurofascin-186. Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. However, the mechanisms controlling AIS assembly remain poorly defined. We performed differential proteomics and found nuclear mitotic apparatus protein 1 (NuMA1) is downregulated in AIS-deficient neonatal mouse brains and neurons. NuMA1 is transiently located at the AIS during development where it interacts with the scaffolding protein 4.1B and the dynein regulator lissencephaly 1 (Lis1). Silencing NuMA1 or protein 4.1B by shRNA disrupts AIS assembly, but not maintenance. Silencing Lis1 or overexpressing NuMA1 during AIS assembly increased the density of AIS proteins, including ankyrinG and neurofascin-186 (NF186). NuMA1 inhibits the endocytosis of AIS NF186 by impeding Lis1’s interaction with doublecortin, a potent facilitator of NF186 endocytosis. Our results indicate the transient expression and AIS localization of NuMA1 stabilizes the developing AIS by inhibiting endocytosis and removal of AIS proteins.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Hamdan Hamdan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Chih-Chuan Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
34
|
Ichinose S, Ogawa T, Jiang X, Hirokawa N. The Spatiotemporal Construction of the Axon Initial Segment via KIF3/KAP3/TRIM46 Transport under MARK2 Signaling. Cell Rep 2020; 28:2413-2426.e7. [PMID: 31461655 DOI: 10.1016/j.celrep.2019.07.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
The axon initial segment (AIS) is a compartment that serves as a molecular barrier to achieve axon-dendrite differentiation. Distribution of specific proteins during early neuronal development has been proposed to be critical for AIS construction. However, it remains unknown how these proteins are specifically targeted to the proximal axon within this limited time period. Here, we reveal spatiotemporal regulation driven by the microtubule (MT)-based motor KIF3A/B/KAP3 that transports TRIM46, influenced by a specific MARK2 phosphorylation cascade. In the proximal part of the future axon under low MARK2 activity, the KIF3/KAP3 motor recognizes TRIM46 as cargo and transports it to the future AIS. In contrast, in the somatodendritic area under high MARK2 activity, KAP3 phosphorylated at serine 60 by MARK2 cannot bind with TRIM46 and be transported. This spatiotemporal regulation between KIF3/KAP3 and TRIM46 under specific MARK2 activity underlies the specific transport needed for axonal differentiation.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
35
|
Structural and Functional Refinement of the Axon Initial Segment in Avian Cochlear Nucleus during Development. J Neurosci 2020; 40:6709-6721. [PMID: 32719016 DOI: 10.1523/jneurosci.3068-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) is involved in action potential initiation. Structural and biophysical characteristics of the AIS differ among cell types and/or brain regions, but the underlying mechanisms remain elusive. Using immunofluorescence and electrophysiological methods, combined with super-resolution imaging, we show in the developing nucleus magnocellularis of the chicken in both sexes that the AIS is refined in a tonotopic region-dependent manner. This process of AIS refinement differs among cells tuned to different frequencies. At hearing onset, the AIS was ∼50 µm long with few voltage-gated sodium channels regardless of tonotopic region. However, after hatching, the AIS matured and displayed an ∼20-µm-long structure with a significant enrichment of sodium channels responsible for an increase in sodium current and a decrease in spike threshold. Moreover, the shortening was more pronounced, while the accumulation of channels was not, in neurons tuned to higher frequency, creating tonotopic differences in the AIS. We conclude that AIS shortening is mediated by disassembly of the cytoskeleton at the distal end of the AIS, despite intact periodicity of the submembranous cytoskeleton across the AIS. Importantly, deprivation of afferent input diminished the shortening in neurons tuned to a higher frequency to a larger extent in posthatch animals, with little effect on the accumulation of sodium channels. Thus, cytoskeletal reorganization and sodium channel enrichment at the AIS are differentially regulated depending on tonotopic region, but work synergistically to optimize neuronal output in the auditory nucleus.SIGNIFICANCE STATEMENT The axon initial segment (AIS) plays fundamental roles in determining neuronal output. The AIS varies structurally and molecularly across tonotopic regions in avian cochlear nucleus. However, the mechanism underlying these variations remains unclear. The AIS is immature around hearing onset, but becomes shorter and accumulates more sodium channels during maturation, with a pronounced shortening and a moderate channel accumulation at higher tonotopic regions. Afferent input adjusts sodium conductance at the AIS by augmenting AIS shortening (via disassembly of cytoskeletons at its distal end) specifically at higher-frequency regions. However, this had little effect on channel accumulation. Thus, cytoskeletal structure and sodium channel accumulation at the AIS are regulated differentially but work synergistically to optimize the neuronal output.
Collapse
|
36
|
Overrepresentation of genetic variation in the AnkyrinG interactome is related to a range of neurodevelopmental disorders. Eur J Hum Genet 2020; 28:1726-1733. [PMID: 32651551 DOI: 10.1038/s41431-020-0682-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Upon the discovery of numerous genes involved in the pathogenesis of neurodevelopmental disorders, several studies showed that a significant proportion of these genes converge on common pathways and protein networks. Here, we used a reversed approach, by screening the AnkyrinG protein-protein interaction network for genetic variation in a large cohort of 1009 cases with neurodevelopmental disorders. We identified a significant enrichment of de novo potentially disease-causing variants in this network, confirming that this protein network plays an important role in the emergence of several neurodevelopmental disorders.
Collapse
|
37
|
Zybura AS, Baucum AJ, Rush AM, Cummins TR, Hudmon A. CaMKII enhances voltage-gated sodium channel Nav1.6 activity and neuronal excitability. J Biol Chem 2020; 295:11845-11865. [PMID: 32611770 DOI: 10.1074/jbc.ra120.014062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Indexed: 11/06/2022] Open
Abstract
Nav1.6 is the primary voltage-gated sodium channel isoform expressed in mature axon initial segments and nodes, making it critical for initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may have profound effects on input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism regulating ion channel function. Because Nav1.6 and the multifunctional Ca2+/CaM-dependent protein kinase II (CaMKII) are independently linked to excitability disorders, we sought to investigate modulation of Nav1.6 function by CaMKII signaling. We show that inhibition of CaMKII, a Ser/Thr protein kinase associated with excitability, synaptic plasticity, and excitability disorders, with the CaMKII-specific peptide inhibitor CN21 reduces transient and persistent currents in Nav1.6-expressing Purkinje neurons by 87%. Using whole-cell voltage clamp of Nav1.6, we show that CaMKII inhibition in ND7/23 and HEK293 cells significantly reduces transient and persistent currents by 72% and produces a 5.8-mV depolarizing shift in the voltage dependence of activation. Immobilized peptide arrays and nanoflow LC-electrospray ionization/MS of Nav1.6 reveal potential sites of CaMKII phosphorylation, specifically Ser-561 and Ser-641/Thr-642 within the first intracellular loop of the channel. Using site-directed mutagenesis to test multiple potential sites of phosphorylation, we show that Ala substitutions of Ser-561 and Ser-641/Thr-642 recapitulate the depolarizing shift in activation and reduction in current density. Computational simulations to model effects of CaMKII inhibition on Nav1.6 function demonstrate dramatic reductions in spontaneous and evoked action potentials in a Purkinje cell model, suggesting that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate neuronal excitability.
Collapse
Affiliation(s)
- Agnes S Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony J Baucum
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | | | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | - Andy Hudmon
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
38
|
Scheuer R, Philipp SE, Becker A, Nalbach L, Ampofo E, Montenarh M, Götz C. Protein Kinase CK2 Controls Ca V2.1-Dependent Calcium Currents and Insulin Release in Pancreatic β-Cells. Int J Mol Sci 2020; 21:ijms21134668. [PMID: 32630015 PMCID: PMC7370021 DOI: 10.3390/ijms21134668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.
Collapse
Affiliation(s)
- Rebecca Scheuer
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
| | - Stephan Ernst Philipp
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University Kirrberger Str., bldg. 45-46, D-66424 Homburg, Germany; (S.E.P.); (A.B.)
| | - Alexander Becker
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University Kirrberger Str., bldg. 45-46, D-66424 Homburg, Germany; (S.E.P.); (A.B.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University Kirrberger Str., bldg. 65, D-66424 Homburg, Germany; (L.N.); (E.A.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University Kirrberger Str., bldg. 65, D-66424 Homburg, Germany; (L.N.); (E.A.)
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str., bldg. 44, D-66424 Homburg, Germany; (R.S.); (M.M.)
- Correspondence:
| |
Collapse
|
39
|
Thetiot M, Freeman SA, Roux T, Dubessy AL, Aigrot MS, Rappeneau Q, Lejeune FX, Tailleur J, Sol-Foulon N, Lubetzki C, Desmazieres A. An alternative mechanism of early nodal clustering and myelination onset in GABAergic neurons of the central nervous system. Glia 2020; 68:1891-1909. [PMID: 32119167 DOI: 10.1002/glia.23812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023]
Abstract
In vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node-like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein β2Nav for node-like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node-like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset.
Collapse
Affiliation(s)
- Melina Thetiot
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France
| | - Sean A Freeman
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France.,Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Thomas Roux
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France.,Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Anne-Laure Dubessy
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France.,Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Marie-Stéphane Aigrot
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France
| | - Quentin Rappeneau
- Sorbonne Université, UPMC Paris 06, Inserm, CNRS, Institut de la Vision, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, Paris, France
| | - Nathalie Sol-Foulon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France
| | - Catherine Lubetzki
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France.,Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Anne Desmazieres
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière, ICM-GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Eshed-Eisenbach Y, Peles E. The clustering of voltage-gated sodium channels in various excitable membranes. Dev Neurobiol 2020; 81:427-437. [PMID: 31859465 DOI: 10.1002/dneu.22728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023]
Abstract
In excitable membranes, the clustering of voltage-gated sodium channels (VGSC) serves to enhance excitability at critical sites. The two most profoundly studied sites of channel clustering are the axon initial segment, where action potentials are generated and the node of Ranvier, where action potentials propagate along myelinated axons. The clustering of VGSC is found, however, in other highly excitable sites such as axonal terminals, postsynaptic membranes of dendrites and muscle fibers, and pre-myelinated axons. In this review, different examples of axonal as well as non-axonal clustering of VGSC are discussed and the underlying mechanisms are compared. Whether the clustering of channels is intrinsically or extrinsically induced, it depends on the submembranous actin-based cytoskeleton that organizes these highly specialized membrane microdomains through specific adaptor proteins.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Fréal A, Rai D, Tas RP, Pan X, Katrukha EA, van de Willige D, Stucchi R, Aher A, Yang C, Altelaar AFM, Vocking K, Post JA, Harterink M, Kapitein LC, Akhmanova A, Hoogenraad CC. Feedback-Driven Assembly of the Axon Initial Segment. Neuron 2019; 104:305-321.e8. [PMID: 31474508 PMCID: PMC6839619 DOI: 10.1016/j.neuron.2019.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 11/01/2022]
Abstract
The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.
Collapse
Affiliation(s)
- Amélie Fréal
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Karin Vocking
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Jan Andries Post
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
43
|
Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proc Natl Acad Sci U S A 2019; 116:19717-19726. [PMID: 31451636 PMCID: PMC6765234 DOI: 10.1073/pnas.1909989116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Axon initial segments of vertebrate neurons integrate thousands of dendritic inputs and generate a single outgoing action potential. Giant ankyrin-G associates with most of the molecular components of axon initial segments and is required for their assembly. This study identified 3 human mutations of giant ankyrin-G resulting in impaired neurodevelopment in compound heterozygotes. These mutations prevent transition of giant ankyrin-G from a closed to an open conformation, which normally is regulated by phosphorylation of giant ankyrin-G during maturation of axon initial segments. Giant ankyrin-G thus functions in a signaling pathway that may contribute to activity-dependent plasticity of the axon initial segment as well as provide a therapeutic target for treatment of patients bearing giant ankyrin-G mutations. Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and β4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of β4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of β4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of β4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.
Collapse
|
44
|
The MAP1B Binding Domain of Na v1.6 Is Required for Stable Expression at the Axon Initial Segment. J Neurosci 2019; 39:4238-4251. [PMID: 30914445 DOI: 10.1523/jneurosci.2771-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022] Open
Abstract
Nav1.6 (SCN8A) is a major voltage-gated sodium channel in the mammalian CNS, and is highly concentrated at the axon initial segment (AIS). As previously demonstrated, the microtubule associated protein MAP1B binds the cytoplasmic N terminus of Nav1.6, and this interaction is disrupted by the mutation p.VAVP(77-80)AAAA. We now demonstrate that this mutation results in WT expression levels on the somatic surface but reduced surface expression at the AIS of cultured rat embryonic hippocampal neurons from both sexes. The mutation of the MAP1B binding domain did not impair vesicular trafficking and preferential delivery of Nav1.6 to the AIS; nor was the diffusion of AIS inserted channels altered relative to WT. However, the reduced AIS surface expression of the MAP1B mutant was restored to WT levels by inhibiting endocytosis with Dynasore, indicating that compartment-specific endocytosis was responsible for the lack of AIS accumulation. Interestingly, the lack of AIS targeting resulted in an elevated percentage of persistent current, suggesting that this late current originates predominantly in the soma. No differences in the voltage dependence of activation or inactivation were detected in the MAP1B binding mutant relative to WT channel. We hypothesize that MAP1B binding to the WT Nav1.6 masks an endocytic motif, thus allowing long-term stability on the AIS surface. This work identifies a critical and important new role for MAP1B in the regulation of neuronal excitability and adds to our understanding of AIS maintenance and plasticity, in addition to identifying new target residues for pathogenic mutations of SCN8A SIGNIFICANCE STATEMENT Nav1.6 is a major voltage-gated sodium channel in human brain, where it regulates neuronal activity due to its localization at the axon initial segment (AIS). Nav1.6 mutations cause epilepsy, intellectual disability, and movement disorders. In the present work, we show that loss of interaction with MAP1B within the Nav1.6 N terminus reduces the steady-state abundance of Nav1.6 at the AIS. The effect is due to increased Nav1.6 endocytosis at this neuronal compartment rather than a failure of forward trafficking to the AIS. This work confirms a new biological role of MAP1B in the regulation of sodium channel localization and will contribute to future analysis of patient mutations in the cytoplasmic N terminus of Nav1.6.
Collapse
|
45
|
Alpizar SA, Baker AL, Gulledge AT, Hoppa MB. Loss of Neurofascin-186 Disrupts Alignment of AnkyrinG Relative to Its Binding Partners in the Axon Initial Segment. Front Cell Neurosci 2019; 13:1. [PMID: 30723396 PMCID: PMC6349729 DOI: 10.3389/fncel.2019.00001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
The axon initial segment (AIS) is a specialized region within the proximal portion of the axon that initiates action potentials thanks in large part to an enrichment of sodium channels. The scaffolding protein ankyrinG (AnkG) is essential for the recruitment of sodium channels as well as several other intracellular and extracellular proteins to the AIS. In the present study, we explore the role of the cell adhesion molecule (CAM) neurofascin-186 (NF-186) in arranging the individual molecular components of the AIS in cultured rat hippocampal neurons. Using a CRISPR depletion strategy to ablate NF expression, we found that the loss of NF selectively perturbed AnkG accumulation and its relative proximal distribution within the AIS. We found that the overexpression of sodium channels could restore AnkG accumulation, but not its altered distribution within the AIS without NF present. We go on to show that although the loss of NF altered AnkG distribution, sodium channel function within the AIS remained normal. Taken together, these results demonstrate that the regulation of AnkG and sodium channel accumulation within the AIS can occur independently of one another, potentially mediated by other binding partners such as NF.
Collapse
Affiliation(s)
- Scott A Alpizar
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Arielle L Baker
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| | - Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
46
|
Balasanyan V, Watanabe K, Dempsey WP, Lewis TL, Trinh LA, Arnold DB. Structure and Function of an Actin-Based Filter in the Proximal Axon. Cell Rep 2018; 21:2696-2705. [PMID: 29212018 DOI: 10.1016/j.celrep.2017.11.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022] Open
Abstract
The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI.
Collapse
Affiliation(s)
- Varuzhan Balasanyan
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaori Watanabe
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - William P Dempsey
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tommy L Lewis
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Le A Trinh
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Don B Arnold
- Department of Biology, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
47
|
Bastian C, Quinn J, Tripathi A, Aquila D, McCray A, Dutta R, Baltan S, Brunet S. CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiol Dis 2018; 126:47-61. [PMID: 29944965 DOI: 10.1016/j.nbd.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - John Quinn
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ajai Tripathi
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Danielle Aquila
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Andrew McCray
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ranjan Dutta
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Selva Baltan
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Sylvain Brunet
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
48
|
Pletto D, Capra S, Finardi A, Colciaghi F, Nobili P, Battaglia GS, Locatelli D, Cagnoli C. Axon outgrowth and neuronal differentiation defects after a-SMN and FL-SMN silencing in primary hippocampal cultures. PLoS One 2018; 13:e0199105. [PMID: 29902268 PMCID: PMC6001960 DOI: 10.1371/journal.pone.0199105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.
Collapse
Affiliation(s)
- Daniela Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Cinzia Cagnoli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
49
|
Yermakov LM, Drouet DE, Griggs RB, Elased KM, Susuki K. Type 2 Diabetes Leads to Axon Initial Segment Shortening in db/db Mice. Front Cell Neurosci 2018; 12:146. [PMID: 29937715 PMCID: PMC6002488 DOI: 10.3389/fncel.2018.00146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023] Open
Abstract
Cognitive and mood impairments are common central nervous system complications of type 2 diabetes, although the neuronal mechanism(s) remains elusive. Previous studies focused mainly on neuronal inputs such as altered synaptic plasticity. Axon initial segment (AIS) is a specialized functional domain within neurons that regulates neuronal outputs. Structural changes of AIS have been implicated as a key pathophysiological event in various psychiatric and neurological disorders. Here we evaluated the structural integrity of the AIS in brains of db/db mice, an established animal model of type 2 diabetes associated with cognitive and mood impairments. We assessed the AIS before (5 weeks of age) and after (10 weeks) the development of type 2 diabetes, and after daily exercise treatment of diabetic condition. We found that the development of type 2 diabetes is associated with significant AIS shortening in both medial prefrontal cortex and hippocampus, as evident by immunostaining of the AIS structural protein βIV spectrin. AIS shortening occurs in the absence of altered neuronal and AIS protein levels. We found no change in nodes of Ranvier, another neuronal functional domain sharing a molecular organization similar to the AIS. This is the first study to identify AIS alteration in type 2 diabetes condition. Since AIS shortening is known to lower neuronal excitability, our results may provide a new avenue for understanding and treating cognitive and mood impairments in type 2 diabetes.
Collapse
Affiliation(s)
- Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Domenica E Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Khalid M Elased
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
50
|
Huang CYM, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 2018; 1420:46-61. [PMID: 29749636 DOI: 10.1111/nyas.13718] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is located at the proximal axon and is the site of action potential initiation. This reflects the high density of ion channels found at the AIS. Adaptive changes to the location and length of the AIS can fine-tune the excitability of neurons and modulate plasticity in response to activity. The AIS plays an important role in maintaining neuronal polarity by regulating the trafficking and distribution of proteins that function in somatodendritic or axonal compartments of the neuron. In this review, we provide an overview of the AIS cytoarchitecture, mechanism of assembly, and recent studies revealing mechanisms of differential transport at the AIS that maintain axon and dendrite identities. We further discuss how genetic mutations in AIS components (i.e., ankyrins, ion channels, and spectrins) and injuries may cause neurological disorders.
Collapse
Affiliation(s)
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|