1
|
de Morais Gomes V, Santos DM, Macedo-da-Silva J, Lazari LC, Machado RRG, Dos Santos AF, Araujo DB, Coutinho JVP, Arini GS, Angeli CB, de Souza EE, Marques RF, Boscardin SB, Wrenger C, Marinho CRF, Oliveira DBL, Durigon EL, Labriola L, Rosa-Fernandes L, Palmisano G. P.1 and P.2 SARS-CoV-2 Brazilian variants activate the unfolded protein response with a time and pathway specificity. J Proteomics 2025; 315:105397. [PMID: 39909104 DOI: 10.1016/j.jprot.2025.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
COVID-19 is a human respiratory syndrome caused by the infection of the SARS-CoV-2 virus that has a high rate of infection and mortality. Viruses modulate the host machinery by altering cellular mechanisms that favor their replication. One of the mechanisms that viruses exploit is the protein folding and processing of post-translational modifications that occur in the endoplasmic reticulum (ER). When ER function is impaired, there is an accumulation of misfolded proteins leading to endoplasmic reticulum stress (ER stress). To maintain homeostasis, cells trigger an adaptive signaling mechanism called the Unfolded Protein Response (UPR) which helps cells deal with stress, but under severe conditions, can activate the apoptotic cell death mechanism. This study elucidated an activation of a diversity of molecular mechanisms by Brazilian variants of SARS-CoV-2 by a time-resolved and large-scale characterization of SARS-CoV-2-infected cells proteomics and immunoblotting. Furthermore, it was shown that pharmacological UPR modulation could reduce viral release by counteracting the different viral activations of its cellular response. Analysis of human clinical specimens and disease outcomes focusing on ER stress reinforces the importance of UPR modulation as a host regulatory mechanism during viral infection and could point to novel therapeutic targets. SIGNIFICANCE: Since the emergence of SARS-CoV-2 and the consequent COVID-19 pandemic, the rapid emergence of variants of this new coronavirus has been a cause for concern since many of them have significantly higher rates of transmissibility and virulence, being called Variants of Concern (VOC). In this work, we studied the VOCs Gamma (P.1) and Zeta (P.2), also known as Brazilian variants. Constant evidence has reported that there are particularities related to each variant of SARS-CoV-2, with different rates of transmissibility, replication and modulation of host biological processes being observed, in addition to the mutations present in the variants. For this reason, this work focused on infections caused by the Brazilian variants of SARS-CoV-2 in different cell lines, in which we were able to observe that the infections caused by the variants induced endoplasmic reticulum stress in the infected cells and activated the UPR pathways, presenting specific modulations of each variant in this pathway. Furthermore, transcriptome analysis of patients revealed a correlation between ER-related genes and COVID-19 progression. Finally, we observed that the use of UPR modulators in host cells decreased viral release of all variants without affecting cell viability. The data presented in this work complement the observations of other studies that aim to understand the pathogenicity of SARS-CoV-2 VOCs and possible new therapeutic strategies, mainly targeting biological processes related to the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Lucas C Lazari
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | | | - Danielle Bastos Araujo
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | | | - Gabriel Santos Arini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Claudia B Angeli
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Edmarcia E de Souza
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Rodolfo F Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | - Danielle B L Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | - Edison L Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil; Scientific Platform Pasteur USP, Sao Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
2
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
3
|
Li X, Hu F, Lu T, Wu S, Ma G, Lin Y, Zhang H. Endoplasmic reticulum stress in non-small cell lung cancer. Am J Cancer Res 2025; 15:1829-1851. [PMID: 40371139 PMCID: PMC12070083 DOI: 10.62347/rgrq7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
The Endoplasmic reticulum (ER), an organelle present in various eukaryotic cells, is responsible for protein synthesis, modification, folding, and transport, as well as for the regulation of lipid metabolism and Ca2+ homeostasis. ER stress plays a pivotal role in the pathogenesis and therapeutic response of non-small cell lung cancer (NSCLC), significantly influencing cellular fate decisions through its unique sensing and regulatory mechanisms. This review aims to elucidate the key role of ER stress sensors and to explore how they mediate cell autophagy, apoptosis, and non-apoptotic modes of cell death in the context of drug-treated NSCLC. This investigation lays a solid foundation for optimizing future treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Fangning Hu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Tong Lu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Shuo Wu
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| | - Yani Lin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, School of Laboratory Animal and Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical SciencesJinan, Shandong, China
| | - Hua Zhang
- Department of Thoracic Surgery, Shandong Provincial Public Health Clinical CenterJinan, Shandong, China
| |
Collapse
|
4
|
Moreews M, Karlsson MCI. Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders. Semin Immunol 2025; 78:101954. [PMID: 40267701 DOI: 10.1016/j.smim.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
Collapse
Affiliation(s)
- Marion Moreews
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
5
|
Rangel-López A, Mata-Rocha M, Pérez-González OA, López-Romero R, López-Sánchez DM, Juárez-Méndez S, Villegas-Ruiz V, Méndez-Tenorio A, Mejía-Araguré JM, Orihuela-Rodríguez O, Álvarez-Aguilar C, Majluf-Cruz A, Amato D, Zavala-Vega S, Melchor-Doncel de la Torre S, Paniagua-Sierra R, Arellano-Galindo J. Gene Expression Profile of Cultured Human Coronary Arterial Endothelial Cells Exposed to Serum from Chronic Kidney Disease Patients: Role of MAPK Signaling Pathway. Int J Mol Sci 2025; 26:3732. [PMID: 40332370 PMCID: PMC12027878 DOI: 10.3390/ijms26083732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene expression profile in uremic serum-induced human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also explored which pathways are involved in this process. We found 100 differentially expressed genes (DEGs) among the conditions of interest by supervised principal component analysis and hierarchical cluster analysis. The expressions of four major DEGs were validated by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze the interaction and expression patterns. Ten pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were, among others, positive regulation of inflammatory response, positive regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell development, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity (p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our study suggests that inflammation and the ERK-MAPK pathway are highly enriched in kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies and approaches based on MAPK pathway interfering strategies are needed to confirm these data.
Collapse
Affiliation(s)
- Angélica Rangel-López
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Oscar Alberto Pérez-González
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Ricardo López-Romero
- Unidad de Investigación en Biomedicina y Oncología Genómica, Hospital de Gineco-Pediatría 3A, IMSS, Mexico City 07760, Mexico;
| | - Dulce María López-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, SS, Mexico City 14080, Mexico;
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Vanessa Villegas-Ruiz
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Juan Manuel Mejía-Araguré
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico;
| | - Oscar Orihuela-Rodríguez
- Departamento Clínico de Cardiología-UMAE Hospital de Especialidades, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Cleto Álvarez-Aguilar
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán 58020, Mexico;
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Hemostasia, Trombosis y Aterogénesis, Hospital General Regional 1, IMSS, Mexico City 03103, Mexico;
| | - Dante Amato
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, SS, Mexico City 14269, Mexico;
| | - Silvia Melchor-Doncel de la Torre
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Ramón Paniagua-Sierra
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
| | - José Arellano-Galindo
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| |
Collapse
|
6
|
Zou Y, Ruan M, Feng X, Liu F, Liu W, Chen S, Chu Z. Neuroprotective effect of riboflavin kinase on cerebral ischemia injury in rats. Mol Med 2025; 31:125. [PMID: 40175896 PMCID: PMC11966939 DOI: 10.1186/s10020-025-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Riboflavin kinase (RFK, also called flavokinase) is a catalytic enzyme that converts riboflavin to its active form in vivo. Dysfunction of the RFK gene has been associated with susceptibility to ischemic stroke. However, the protective role and mechanisms of RFK in ischemic stroke have not been elucidated. METHODS Lentivirus-mediated RFK knock-up (RFK( +)) and knock-down (RFK(-)) were used to investigate the protective effect and mechanism of RFK in the rat middle cerebral artery occlusion (MCAO) model in vivo and in the oxygen and glucose deprivation (OGD) model of neurons in vitro; and the dependence of the protective effect of RFK on flavins was also investigated. RESULTS We demonstrated that RFK was an endogenous protein against ischemia brain injury both in vivo and in vitro experiments. RFK inhibited cerebral infarction, cerebral edema and neuronal apoptosis after cerebral ischemia. Its mechanisms include inhibition of the protein expression of Caspase 12 and Caspase 3 induced by cerebral ischemia, and thus inhibiting endoplasmic reticulum stress (ERS) and neuronal apoptosis; the protective effect of RFK depends on the presence of the flavoprotein Ero1; exogenous riboflavin supplementation protected cortical neurons from ischemic injury and prolonged the lifespan in stroke-prone spontaneously hypertensive rats with low RFK gene function, but this protective effect is limited and cannot completely reverse the decreasing trend of neuronal tolerance to ischemic injury caused by RFK gene dysfunction; the protective effect of RFK against ischemic injury is independent of the presence of flavins and their concentrations. CONCLUSIONS The present study demonstrates that RFK is an important regulatory molecule against ischemia brain injury and its mechanism involves inhibition of ERS. The protective effect of RFK is independent of the presence of flavins and their concentrations. RFK deserves further investigation as a promising target gene for the detection of stroke susceptibility. Flavins may be used as a preventive or adjunctive treatments for ischemic brain injury.
Collapse
Affiliation(s)
- Yingxin Zou
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Minghua Ruan
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xu Feng
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fei Liu
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Weihong Liu
- Naval Medical Center, Naval Medical University, Shanghai, China.
| | - Song Chen
- Naval Medical Center, Naval Medical University, Shanghai, China.
| | - Zhiyong Chu
- Naval Medical Center, Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Kanuri B, Maremanda KP, Chattopadhyay D, Essop MF, Lee MKS, Murphy AJ, Nagareddy PR. Redefining Macrophage Heterogeneity in Atherosclerosis: A Focus on Possible Therapeutic Implications. Compr Physiol 2025; 15:e70008. [PMID: 40108774 DOI: 10.1002/cph4.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Atherosclerosis is a lipid disorder where modified lipids (especially oxidized LDL) induce macrophage foam cell formation in the aorta. Its pathogenesis involves a continuum of persistent inflammation accompanied by dysregulated anti-inflammatory responses. Changes in the immune cell status due to differences in the lesional microenvironment are crucial in terms of plaque development, its progression, and plaque rupture. Ly6Chi monocytes generated through both medullary and extramedullary cascades act as one of the major sources of plaque macrophages and thereby foam cells. Both monocytes and monocyte-derived macrophages also participate in pathological events in atherosclerosis-associated multiple organ systems through inter-organ communications. For years, macrophage phenotypes M1 and M2 have been shown to perpetuate inflammatory and resolution responses; nevertheless, such a dualistic classification is too simplistic and contains severe drawbacks. As the lesion microenvironment is enriched with multiple mediators that possess the ability to activate macrophages to diverse phenotypes, it is obvious that such cells should demonstrate substantial heterogeneity. Considerable research in this regard has indicated the presence of additional macrophage phenotypes that are exclusive to atherosclerotic plaques, namely Mox, M4, Mhem, and M(Hb) type. Furthermore, although the concept of macrophage clusters has come to the fore in recent years with the evolution of high-dimensional techniques, classifications based on such 'OMICS' approaches require extensive functional validation as well as metabolic phenotyping. Bearing this in mind, the current review provides an overview of the status of different macrophage populations and their role during atherosclerosis and also outlines possible therapeutic implications.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Krishna P Maremanda
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Dipanjan Chattopadhyay
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Man Kit Sam Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
He P, Chang H, Qiu Y, Wang Z. Mitochondria associated membranes in dilated cardiomyopathy: connecting pathogenesis and cellular dysfunction. Front Cardiovasc Med 2025; 12:1571998. [PMID: 40166597 PMCID: PMC11955654 DOI: 10.3389/fcvm.2025.1571998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, yet therapeutic options remain limited. While traditional research has focused on mechanisms such as energy deficits and calcium dysregulation, increasing evidence suggests that mitochondria-associated membranes (MAMs) could provide new insights into understanding and treating DCM. In this narrative review, we summarize the key role of MAMs, crucial endoplasmic reticulum (ER)-mitochondria interfaces, in regulating cellular processes such as calcium homeostasis, lipid metabolism, and mitochondrial dynamics. Disruption of MAMs function may initiate pathological cascades, including ER stress, inflammation, and cell death. These disruptions in MAM function lead to further destabilization of cellular homeostasis. Identifying MAMs as key modulators of cardiac health may provide novel insights for early diagnosis and targeted therapies in DCM.
Collapse
Affiliation(s)
- Pingge He
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueqing Qiu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhentao Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
He Y, Sun F, Song C, Liu Y, Wang R, Wang Y, Sun X, Juan Z, Wang Y. Clemastine fumarate alleviates endoplasmic reticulum stress through the Nur77/GFPT2/CHOP pathway after ischemia/reperfusion in rat hearts. Int Immunopharmacol 2025; 149:114242. [PMID: 39929094 DOI: 10.1016/j.intimp.2025.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND PURPOSE Clemastine fumarate (CLE) is an H1 receptor (H1R) antagonist that is used clinically to treat various allergic disorders. It blocks histamine release from mast cells and inhibits H1R. Preliminary studies have shown that CLE can reduce myocardial ischemia/reperfusion (I/R) injury. In this study, we confirmed the efficacy of CLE against myocardial I/R injury using in vivo and in vitro examinations. EXPERIMENTAL APPROACH To test the efficacy of CLE against myocardial I/R injury, we established a rat model of myocardial hypoxia/reperfusion injury. A series of assessments were conducted to determine cardiac function, measure areas of myocardial infarction, and analyze the histopathological changes. Additionally, we developed a rat model of cardiomyocyte hypoxia/reoxygenation (H/R); in both models, we quantified the expression levels of key markers and cardiac injury-specific proteins to assess the biochemical milieu influenced by CLE treatment. KEY RESULTS Our findings demonstrated that CLE reduced the expression of nerve growth factor-induced gene B (Nur77), glutamine-fructose-6-phosphate transaminase 2 (GFPT2), and C/EBP homologous protein (CHOP) and decreased the area of myocardial infarction and the degree of endoplasmic reticulum stress. CLE pretreatment ameliorated abnormal fibers and myocardial edema and reduced the inflammatory cell infiltration caused by I/R injury. While Nur77 overexpression aggravated cardiac function, these effects were ameliorated by the downregulation of Nur77. CONCLUSION AND IMPLICATIONS We anticipate that these results validate the hypothesis that CLE mitigates apoptosis and reduces endogenous stress within myocardial cells by modulating Nur77, GFPT2, and CHOP expression. These findings elucidate the therapeutic mechanisms by which CLE alleviates myocardial I/R injury. In addition, they will serve as a new theoretical foundation for developing future treatment strategies and enhancing clinical applications in cardiac care.
Collapse
Affiliation(s)
- Yuling He
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Fan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Caixuan Song
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Yongxin Liu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Rouguo Wang
- Hospital of Shandong Second Medical University China
| | - Yingmeng Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Xiaotong Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China.
| | - Zhaodong Juan
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China.
| | | |
Collapse
|
10
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
11
|
Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y, Ma Y, Yang J. Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution. Cancer Med 2025; 14:e70684. [PMID: 40035165 PMCID: PMC11877002 DOI: 10.1002/cam4.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) serves as a crucial hub for protein synthesis and processing, playing an essential role in maintaining protein homeostasis. Perturbations, such as hypoxia, oxidative stress, inadequate amino acid supply, Ca2+ imbalance, and acidosis, can disrupt cellular equilibrium and result in the accumulation of misfolded/unfolded proteins within the ER lumen. This triggers ER stress. In response to this stress, an unfolded protein response (UPR) is activated as a mechanism to cope with the stress and restore internal balance. The UPR is regulated by three sensors located in the ER: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). However, the UPR can promote tumor growth in vivo by affecting tumor angiogenesis, cell migration, cell metabolism, and treatment resistance, and has a huge impact on the tumor microenvironment. MATERIALS AND METHODS We conducted a literature review of scientific papers on the topic of ER stress in the tumor microenvironment. RESULTS AND DISCUSSION This review focuses on the inducing factors of ER stress, the mechanism of the UPR signaling pathway induced by ER stress, and the effect of ER stress on the tumor microenvironment and immune-infiltrating cells. Tumors can regulate their evolution by affecting themselves and the tumor microenvironment through endoplasmic reticulum stress. This study reveals the important role of endoplasmic reticulum stress in the occurrence and development of tumors, and provides new ideas and potential therapeutic targets for the precision treatment of tumors. Future studies can further explore the molecular mechanism of ER stress regulating tumor microenvironment and explore its application potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaosheng Peng
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Juan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Shu Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yan Zhao
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Haoyuan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuhao Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuxuan Ma
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Jianjun Yang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
12
|
Mazzolini L, Touriol C. PERK-Olating Through Cancer: A Brew of Cellular Decisions. Biomolecules 2025; 15:248. [PMID: 40001551 PMCID: PMC11852789 DOI: 10.3390/biom15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The type I protein kinase PERK is an endoplasmic reticulum (ER) transmembrane protein that plays a multifaceted role in cancer development and progression, influencing tumor growth, metastasis, and cellular stress responses. The activation of PERK represents one of the three signaling pathways induced during the unfolded protein response (UPR), which is triggered, in particular, in tumor cells that constitutively experience various intracellular and extracellular stresses that impair protein folding within the ER. PERK activation can lead to both pro-survival and proapoptotic outcomes, depending on the cellular context and the extent of ER stress. It helps the reprogramming of the gene expression in cancer cells, thereby ensuring survival in the face of oncogenic stress, such as replicative stress and DNA damage, and also microenvironmental challenges, including hypoxia, angiogenesis, and metastasis. Consequently, PERK contributes to tumor initiation, transformation, adaptation to the microenvironment, and chemoresistance. However, sustained PERK activation in cells can also impair cell proliferation and promote apoptotic death by various interconnected processes, including mitochondrial dysfunction, translational inhibition, the accumulation of various cellular stresses, and the specific induction of multifunctional proapoptotic factors, such as CHOP. The dual role of PERK in promoting both tumor progression and suppression makes it a complex target for therapeutic interventions. A comprehensive understanding of the intricacies of PERK pathway activation and their impact is essential for the development of effective therapeutic strategies, particularly in diseases like cancer, where the ER stress response is deregulated in most, if not all, of the solid and liquid tumors. This article provides an overview of the knowledge acquired from the study of animal models of cancer and tumor cell lines cultured in vitro on PERK's intracellular functions and their impact on cancer cells and their microenvironment, thus highlighting potential new therapeutic avenues that could target this protein.
Collapse
|
13
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Schmitt-Ulms G, Wang X, Watts J, Booth S, Wille H, Zhao W. A unified model for the origins of spongiform degeneration and other neuropathological features in prion diseases. ARXIV 2025:arXiv:2412.16678v2. [PMID: 39876936 PMCID: PMC11774453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event. Having surveyed the neuropathological record and other distant literature niches, we propose a model in which pathogenic forms of the prion protein poison raft domains, including essential Na+, K+-ATPases (NKAs) embedded within them, thereby triggering an ER-centered cellular rescue program coordinated by the unfolded protein response (UPR). The execution of this program stalls general protein synthesis, causing the deterioration of synaptic spines. As the disease progresses, cells selectively increase sterol biosynthesis, along with ribosome and ER biogenesis. These adaptive rescue attempts cause morphological changes to the ER which manifest as ER dilation or ER hypertrophy in a manner that is influenced by Ca2+ influx into the cell. The nuclear-to-cytoplasmic transport of mRNAs and tRNAs interrupts in late stage disease, thereby depriving ribosomes of supplies and inducing them to aggregate into a paracrystalline form. In support of this model, we share previously reported data, whose features are consistent with the interpretation that 1) the phenotype of ER dilation is observed in major prion diseases, 2) varicose tubules and oval bodies represent ER hypertrophy, and 3) virus-like dense particles are paracrystalline aggregates of inactive ribosomes.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Joel Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Stephanie Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Edmonton, Edmonton, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Gielecińska A, Kciuk M, Kontek R. The Impact of Calcium Overload on Cellular Processes: Exploring Calcicoptosis and Its Therapeutic Potential in Cancer. Int J Mol Sci 2024; 25:13727. [PMID: 39769488 PMCID: PMC11679949 DOI: 10.3390/ijms252413727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The key role of calcium in various physiological and pathological processes includes its involvement in various forms of regulated cell death (RCD). The concept of 'calcicoptosis' has been introduced as a calcium-induced phenomenon associated with oxidative stress and cellular damage. However, its definition remains controversial within the research community, with some considering it a general form of calcium overload stress, while others view it as a tumor-specific calcium-induced cell death. This review examines 'calcicoptosis' in the context of established RCD mechanisms such as apoptosis, necroptosis, ferroptosis, and others. It further analyzes the intricate relationship between calcium dysregulation and oxidative stress, emphasizing that while calcium overload often triggers cell death, it may not represent an entirely new type of RCD but rather an extension of known pathways. The purpose of this paper is to discuss the implications of this perspective for cancer therapy focusing on calcium-based nanoparticles. By investigating the connections between calcium dynamics and cell death pathways, this review contributes to the advancement of our understanding of calcicoptosis and its possible therapeutic uses.
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki Street 21/23, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| |
Collapse
|
16
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
17
|
An ZY, Han SZ, Li ZY, Chang SY, Zhang XL, Lu GJ, Zhang T, Quan BH, Yin XJ, Quan LH, Kang JD. Eicosatrienoic acid enhances the quality of in vitro matured porcine oocytes by reducing PRKN-mediated ubiquitination of CISD2. Theriogenology 2024; 230:285-298. [PMID: 39357167 DOI: 10.1016/j.theriogenology.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.
Collapse
Affiliation(s)
- Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
18
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
19
|
He X, Wei W, Liu J, Liang Z, Wu Y, Liu J, Pi J, Zhang H. Whole-transcriptome analysis reveals the effect of retinoic acid on small intestinal mucosal injury in cage-stressed young laying ducks. Poult Sci 2024; 103:104376. [PMID: 39423790 PMCID: PMC11532482 DOI: 10.1016/j.psj.2024.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024] Open
Abstract
Retinoic acid (RA) is an active derivative of vitamin A and is involved in a variety of physiological processes, including cell growth, antioxidant, and inflammation. However, the role of RA in intestinal oxidative stress injury in caged-stressed laying ducks is unknown. In this study, we analyzed the effect and underlying mechanism of RA supplementation on intestinal damage in cage-stressed young laying ducks. One hundred and sixty laying ducks were divided into 5 treatment groups, including a control group (CR) and 4 treatment groups exposed to different RA concentrations (2,500, 5,000, 7,500 and 10,000 IU/kg, TG1 to TG4). The experimental period comprised a 7-d prefeeding period and a 10-d experimental feeding period, for a total of 17 d. Phenotypic analysis revealed that compared with the control group, RA addition increased the intestinal villus height and the villus-to-crypt ratio; decreased the crypt depth (P < 0.01); decreased the serum diamine oxidase and D-lactate concentrations (P < 0.05); increased the serum antioxidant capacity and intestinal antioxidant gene expression levels (P < 0.05); and increased the expression levels of tight junction-related genes, with the greatest effect observed in TG2 group. Our further whole-transcriptome analysis of duodenum tissues from CR and TG2 ducks revealed 706 differentially expressed mRNAs (DEmRNAs), 357 differentially expressed lncRNAs (DElncRNAs), 14 differentially expressed circRNAs (DEcircRNAs), and 4 differentially expressed miRNAs (DEmiRNAs). These DEGs are involved in calcium signaling, NOD-like receptor signaling, pyruvate metabolism, Jak-STAT signaling, Wnt signaling, riboflavin metabolism, and the adherens junction and tight junction pathways. The results of omics and marker gene expression analysis suggested that RA treatment may play a role in endoplasmic reticulum stress (ERS) and apoptosis. In conclusion, the addition of RA to the diet improved intestinal injury by improving the redox homeostasis of intestinal cells associated with ERS, enhancing the intestinal tight junction structure and alleviating the apoptosis of intestinal epithelial cells; moreover, 5,000 IU/kg RA was determined to be the most appropriate concentration for supplementation.
Collapse
Affiliation(s)
- Xiaolong He
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenzhuo Wei
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jia Liu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
20
|
Shi H, Zhao Y. Astaxanthin inhibits apoptosis in a cell model of tauopathy by attenuating endoplasmic reticulum stress and unfolded protein response. Eur J Pharmacol 2024; 983:176962. [PMID: 39214273 DOI: 10.1016/j.ejphar.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of misfolded proteins is a common pathological characteristic shared by many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. The disruption of proteostasis triggers endoplasmic reticulum (ER) stress, during which the unfolded protein response (UPR) is initiated by the activation of protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6). These three branches of UPR signals act in concert to reduce the levels of abnormal proteins and restore ER homeostasis. However, the overactivation of UPR impairs cell function and induces apoptosis, which has been implicated in neurodegeneration. Astaxanthin is a xanthophyll carotenoid which has been shown to have neuroprotective effects in both cell and animal models; however, its effects on ER stress and UPR induced by disrupted proteostasis remain unclear. In this study, the effects of astaxanthin on ER stress and cytotoxicity were investigated in N2a cells stably expressing the pro-aggregant tau repeat domain carrying FTDP-17 mutation ΔK280 (Tau4RDΔK280). The results demonstrated that astaxanthin significantly inhibited Tau4RDΔK280-induced loss of cell viability and apoptosis, attenuating Tau4RDΔK280-induced caspase-3 activation and decrease of Bcl-2. Further studies revealed that astaxanthin treatment alleviated Tau4RDΔK280-induced ER stress and suppressed the activation of PERK, IRE1 and ATF6 signaling pathways. These findings suggested that astaxanthin might inhibit Tau4RDΔK280-induced cytotoxicity by attenuating UPR and ER stress. In addition, astaxanthin treatment resulted in a great reduction in the production of intracellular reactive oxygen species and a significant decrease in calcium influx induced by Tau4RDΔK280, which also contributed to the protective effects of astaxanthin against Tau4RDΔK280-induced cytotoxicity.
Collapse
Affiliation(s)
- Huahua Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
21
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
22
|
Krestinin R, Kobyakova M, Baburina Y, Sotnikova L, Krestinina O. Astaxanthin Protects Against H 2O 2- and Doxorubicin-Induced Cardiotoxicity in H9c2 Rat Myocardial Cells. Life (Basel) 2024; 14:1409. [PMID: 39598207 PMCID: PMC11595901 DOI: 10.3390/life14111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Astaxanthin (AST) is a carotenoid that has positive effects on various organs and tissues. It also exhibits a cardioprotective action. In this study, the influence of AST on the survival of H9c2 cardiomyocytes under hydrogen peroxide (H2O2)- and doxorubicin (DOX)-induced cardiotoxicity was investigated. Under these conditions, the content of cytosolic Ca2+ was measured, and changes in the area of the mitochondrial mass, as well as in the content of the voltage-dependent anion channel 1 (VDAC1), the autophagy marker LC3A/B, and the pro-apoptotic transcription factor homologous protein (CHOP), were determined. It was found that AST removed the cytotoxic effect of H2O2 and DOX, while cell survival increased, and the mitochondrial mass did not differ from the control. At the same time, a decrease in the content of cytosolic Ca2+ and the restoration of the VDAC1 level to values close to the control were observed. The restoration of the CHOP level suggests a reduction in endoplasmic reticulum (ER) stress in cells. The results allow us to consider AST as a potential agent in the prevention and/or treatment of cardiac diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (R.K.); (M.K.); (Y.B.); (L.S.)
| |
Collapse
|
23
|
Yeewa R, Sangphukieo A, Jantaree P, Wongkummool W, Yamsri T, Poompouang S, Chaiyawat P, Lo Piccolo L, Jantrapirom S. ERO1A inhibition mitigates neuronal ER stress and ameliorates UBQLN2 ALS phenotypes in Drosophila melanogaster. Prog Neurobiol 2024; 242:102674. [PMID: 39395630 DOI: 10.1016/j.pneurobio.2024.102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Modulating the ER stress pathway holds therapeutic promise for neurodegenerative diseases; however, identifying optimal targets remains challenging. In this study, we conducted an unbiased screening to systematically search for commonly up-regulated proteins in ER stress-related neurodegenerative conditions, with endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) emerging as a significant hit. Further experiments conducted in the model organism Drosophila melanogaster demonstrated that elevated levels of Drosophila ERO1A (ERO1L) were indeed detrimental to neurons. Conversely, genetic suppression or pharmacological inhibition of ERO1L activity provided neuroprotection under ER stress and extended the lifespan of flies. To translate these findings, we performed a genetic modifier screening and underscored significant neuroprotective effects against UBQLN2ALS pathology. Additionally, administration of the chemical probe inhibitor of ERO1A, known as EN460, enhanced locomotive functions and neuromuscular junction (NMJ) morphology in Drosophila UBQLN2ALS model. Mechanistically, targeting ERO1L during environmental or pathological ER stress mitigated proteotoxic stress by lowering either the PERK or IRE1 branches of the unfolded protein response (UPR). These findings suggest ERO1A as a promising therapeutic target in UBQLN2ALS and other ER stress-related conditions.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siwat Poompouang
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Luca Lo Piccolo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Jiang Z, Wen X, Mao Q, Wang G, Wang Z, Yan Y, Gao S, Sun X, Zhang M, Liu J, Zhang R, Yang B. 13-Methylpalmatine improves myocardial infarction injury by inhibiting CHOP-mediated cross-talk between endoplasmic reticulum and mitochondria. Biomed Pharmacother 2024; 179:117342. [PMID: 39182321 DOI: 10.1016/j.biopha.2024.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and endoplasmic reticulum stress (ERS) and mitochondrial Ca2+ overload have been involved in apoptotic cardiomyocyte death during MI. 13-Methylpalmatine (13-Me-PLT) is a natural isoquinoline alkaloid isolated from Coptis chinensis and has not been systematically studied for their potential pharmacological effects in cardiovascular diseases. We conducted the present study to elucidate whether 13-Me-PLT modulates MI pathology in animal MI and cellular hypoxic models, employing state-of-the-art molecular techniques. The results demonstrated that 13-Me-PLT preserved post-ischemic cardiac function and alleviated cardiomyocyte apoptosis. 13-Me-PLT decreased ERS and the communication between ER and mitochondria, which serves as a protective mechanism against mitochondrial Ca2+ overload and structural and functional injuries to mitochondria. Our data revealed mitigating mitochondrial Ca2+ overload and apoptosis by inhibiting CHOP-mediated Ca2+ transfer between inositol 1,4,5-trisphosphate receptor (IP3R) in ER and VDAC1 in mitochondria as an underlying mechanism for 13-Me-PLT action. Furthermore, 13-Me-PLT produced superior effects in alleviating cardiac dysfunction and apoptosis post-MI to diltiazem and palmatine. Collectively, our research suggests that the CHOP/IP3R/VDAC1 signaling pathway mediates ER-mitochondrial Ca2+ transfer and 13-Me-PLT activates this axis to maintain cellular and organellar Ca2+ homeostasis, protecting against ischemic myocardial injury. These findings may offer an opportunity to develop new agents for the therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shan Gao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqian Sun
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
25
|
Jin Z, Lu J, Xu H, Zhang Y, Zhang S, Zhang D, Hu J, Shi Z, Li Z, Wang J. Exploring the correlation between innate immune activation of inflammasome and regulation of pyroptosis after intracerebral hemorrhage: From mechanism to treatment. Biomed Pharmacother 2024; 179:117382. [PMID: 39241565 DOI: 10.1016/j.biopha.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.
Collapse
Affiliation(s)
- Ziqi Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Ying Zhang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shanshan Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jing Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhao Shi
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Zhuyang Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Yang J, Liu J. Proteome and ubiquitinome analyses of the brain cortex in K18- hACE2 mice infected with SARS-CoV-2. iScience 2024; 27:110602. [PMID: 39211577 PMCID: PMC11357812 DOI: 10.1016/j.isci.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Clinical research indicates that SARS-CoV-2 infection is linked to several neurological consequences, and the virus is still spreading despite the availability of vaccinations and antiviral medications. To determine how hosts respond to SARS-CoV-2 infection, we employed LC-MS/MS to perform ubiquitinome and proteome analyses of the brain cortexes from K18-hACE2 mice in the presence and absence of SARS-CoV-2 infection. A total of 8,024 quantifiable proteins and 5,220 quantifiable lysine ubiquitination (Kub) sites in 2023 proteins were found. Glutamatergic synapse, calcium signaling pathway, and long-term potentiation may all play roles in the neurological consequences of SARS-CoV-2 infection. Then, we observed possible interactions between 26 SARS-CoV-2 proteins/E3 ubiquitin-protein ligases/deubiquitinases and several differentially expressed mouse proteins or Kub sites. We present the first description of the brain cortex ubiquitinome in K18-hACE2 mice, laying the groundwork for further investigation into the pathogenic processes and treatment options for neurological dysfunction following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xutong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
27
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
28
|
Vaishampayan P, Lee Y. Redox-active vitamin C suppresses human osteosarcoma growth by triggering intracellular ROS-iron-calcium signaling crosstalk and mitochondrial dysfunction. Redox Biol 2024; 75:103288. [PMID: 39083898 PMCID: PMC11342202 DOI: 10.1016/j.redox.2024.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Pharmacological vitamin C (VC) has gained attention for its pro-oxidant characteristics and selective ability to induce cancer cell death. However, defining its role in cancer has been challenging due to its complex redox properties. In this study, using a human osteosarcoma (OS) model, we show that the redox-active property of VC is critical for inducing non-apoptotic cancer cell death via intracellular reactive oxygen species (ROS)-iron-calcium crosstalk and mitochondrial dysfunction. In both 2D and 3D OS cell culture models, only the oxidizable form of VC demonstrated potent dose-dependent cytotoxicity, while non-oxidizable and oxidized VC derivatives had minimal effects. Live-cell imaging showed that only oxidizable VC caused a surge in cytotoxic ROS, dependent on iron rather than copper. Inhibitors of ferroptosis, a form of iron-dependent cell death, along with classical apoptosis inhibitors, were unable to completely counteract the cytotoxic effects induced by VC. Further pharmacological and genetic inhibition analyses showed that VC triggers calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs), leading to mitochondrial ROS production and eventual cell death. RNA sequencing revealed down-regulation of genes involved in the mitochondrial electron transport chain and oxidative phosphorylation upon pharmacological VC treatment. Consistently, high-dose VC reduced mitochondrial membrane potential, oxidative phosphorylation, and ATP levels, with ATP reconstitution rescuing VC-induced cytotoxicity. In vivo OS xenograft studies demonstrated reduced tumor growth with high-dose VC administration, concomitant with the altered expression of mitochondrial ATP synthase (MT-ATP). These findings emphasize VC's potential clinical utility in osteosarcoma treatment by inducing mitochondrial metabolic dysfunction through a vicious intracellular ROS-iron-calcium cycle.
Collapse
Affiliation(s)
- Prajakta Vaishampayan
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, 99202, USA; Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
29
|
Moghadam RK, Daraei A, Haddadi M, Mardi A, Karamali N, Rezaiemanesh A. Casting Light on the Janus-Faced HMG-CoA Reductase Degradation Protein 1: A Comprehensive Review of Its Dualistic Impact on Apoptosis in Various Diseases. Mol Neurobiol 2024; 61:6842-6863. [PMID: 38356096 DOI: 10.1007/s12035-024-03994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Arshia Daraei
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
30
|
Li N, Xu J, Yan X, Liu Q, Zhang M. TROP2 promotes the proliferation of triple-negative breast cancer cells via calcium ion-dependent ER stress signaling pathway. Cell Biochem Biophys 2024; 82:2205-2216. [PMID: 38816653 DOI: 10.1007/s12013-024-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To explore the molecular mechanisms of tumor-associated calcium signal transduction factor 2 (TROP2) affecting the occurrence and development of triple-negative breast cancer (TNBC). METHODS The TCGA database, immunohistochemical staining, and qRT-PCR were used to analyze the expression of TROP2 in TNBC tissues and cells. The protein expressions of TROP2 and inositol 1,4,5-trisphosphate receptor (IP3R) after TROP2 knockdown were detected by western blot (WB). Cell proliferation was detected by CCK8 and colony formation assay, Annexin V-APC/PI flow cytometry was used to detect apoptosis, and intracellular calcium ion (Ca2+) was detected by flow cytometry with Fura 2-AM fluorescent probe. Finally, the morphological changes of the endoplasmic reticulum (ER) were observed by transmission electron microscopy, and the expression of ER stress (ERS)-related proteins was detected by WB and immunofluorescence staining. RESULTS TROP2 was up-regulated in TNBC tumor tissues and cells. Silencing TROP2 decreased the proliferation rate and clone formation number, and increased the apoptosis rate and the Ca2+ level in TNBC cells. These phenomena were reversed after the addition of 2-APB. In addition, after TROP2 knockdown, the expressions of IP3R and ERS-related proteins were up-regulated, the ER was cystic dilated, and ERS was activated. And the addition of 2-APB significantly inhibited the activation of ERS induced by TROP2 knockdown. CONCLUSION TROP2 regulated the proliferation and apoptosis of TNBC cells through a Ca2+-dependent ERS signaling pathway.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China
| | - Jianzhong Xu
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China
| | - Xi Yan
- Department of Pharmacy, Changzhi People's Hospital, Changzhi, 046000, China
| | - Qing Liu
- Department of Emergency, Changzhi People's Hospital, Changzhi, 046000, China
| | - Mingqi Zhang
- Department of Breast Surgery, Changzhi People's Hospital, Changzhi, 046000, China.
| |
Collapse
|
31
|
Michelangeli F, Mohammed NA, Jones B, Tairu M, Al‐Mousa F. Cytotoxicity by endocrine disruptors through effects on ER Ca 2+ transporters, aberrations in Ca 2+ signalling pathways and ER stress. FEBS Open Bio 2024; 14:1384-1396. [PMID: 39138623 PMCID: PMC11492318 DOI: 10.1002/2211-5463.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Concerns regarding man-made organic chemicals pervading our ecosystem and having adverse and detrimental effects upon organisms, including man, have now been studied for several decades. Since the 1970s, some environmental pollutants were identified as having endocrine disrupting affects. These endocrine disrupting chemicals (EDC) were initially shown to have estrogenic or anti-estrogenic properties and some were also shown to bind to a variety of hormone receptors. However, since the 1990s it has also been identified that many of these EDC additionally, have the ability of causing abnormal alterations in Ca2+ signalling pathways (also commonly involved in hormone signalling), leading to exaggerated elevations in cytosolic [Ca2+] levels, that is known to cause activation of a number of cell death pathways. The major emphasis of this review is to present a personal perspective of the evidence for some types of EDC, specifically alkylphenols and brominated flame retardants (BFRs), causing direct effects on Ca2+ transporters (mainly the SERCA Ca2+ ATPases), culminating in acute cytotoxicity and cell death. Evidence is also presented to indicate that this Ca2+ATPase inhibition, which leads to abnormally elevated cytosolic [Ca2+], as well as a decreased luminal ER [Ca2+], which triggers the ER stress response, are both involved in acute cytotoxicity.
Collapse
Affiliation(s)
- Francesco Michelangeli
- Chester Medical SchoolUniversity of ChesterUK
- School of BiosciencesUniversity of BirminghamUK
| | - Noor A. Mohammed
- School of BiosciencesUniversity of BirminghamUK
- Department of BiologyUniversity of DuhokIraq
| | | | | | - Fawaz Al‐Mousa
- General Directorate of Poison Control CentreMinistry of HealthRiyadhSaudi Arabia
| |
Collapse
|
32
|
Doll L, Welte K, Skokowa J, Bajoghli B. A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation. Blood Adv 2024; 8:4050-4065. [PMID: 38739706 PMCID: PMC11342096 DOI: 10.1182/bloodadvances.2023011656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Collapse
Affiliation(s)
- Larissa Doll
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Tuebingen University, Tuebingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Austrian BioImaging/CMI, Vienna, Austria
| |
Collapse
|
33
|
Ni L, Yang L, Lin Y. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med 2024; 11:1413441. [PMID: 39070554 PMCID: PMC11282489 DOI: 10.3389/fcvm.2024.1413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The research progress of endoplasmic reticulum (ER) stress in atherosclerosis (AS) is of great concern. The ER, a critical cellular organelle, plays a role in important biological processes including protein synthesis, folding, and modification. Various pathological factors may cause ER stress, and sustained or excessive ER stress triggers the unfolded protein response, ultimately resulting in apoptosis and disease. Recently, researchers have discovered the importance of ER stress in the onset and advancement of AS. ER stress contributes to the occurrence of AS through different pathways such as apoptosis, inflammatory response, oxidative stress, and autophagy. Therefore, this review focuses on the mechanisms of ER stress in the development of AS and related therapeutic targets, which will contribute to a deeper understanding of the disease's pathogenesis and provide novel strategies for preventing and treating AS.
Collapse
Affiliation(s)
| | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
34
|
Karadenizli Taşkin S, Şahin D, Dede F, Ünal Halbutoğullari ZS, Sarihan M, Kurnaz Özbek S, Özsoy ÖD, Kasap M, Yazir Y, Ateş N. Endoplasmic reticulum stress produced by Thapsigargin affects the occurrence of spike-wave discharge by modulating unfolded protein response pathways and activating immune responses in a dose-dependent manner. Eur J Pharmacol 2024; 974:176613. [PMID: 38670446 DOI: 10.1016/j.ejphar.2024.176613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
The Endoplasmic Reticulum (ER) is associated with many cellular functions, from post-transcriptional modifications to the proper folding of proteins, and disruption of these functions causes ER stress. Although the relationship between epileptic seizures and ER stress has been reported, the contribution of ER stress pathways to epileptogenesis is still unclear. This study aimed to investigate the possible effects of ER stress-related molecular pathways modulated by mild- and high-dose Thapsigargin (Tg) on absence epileptic activity, CACNA1H and immune responses in WAG/Rij rats. For this purpose, rats were divided into four groups; mild-dose (20 ng) Tg, high-dose (200 ng) Tg, saline, and DMSO and drugs administered intracerebroventriculary. EEG activity was recorded for 1 h and 24 h after drug administration following the baseline recording. In cortex and thalamus tissues, GRP78, ERp57, GAD153 protein changes (Western Blot), Eif2ak3, XBP-1, ATF6, CACNA1H mRNA expressions (RT-PCR), NF-κB and TNF-α levels (ELISA) were measured. Mild-dose-Tg administration resulted in increased spike-wave discharge (SWD) activity at the 24th hour compared to administration of saline, and high-dose-Tg and it also significantly increased the amount of GRP78 protein, the expression of Eif2ak3, XBP-1, and CACNA1H mRNA in the thalamus tissue. In contrast, high-dose-Tg administration suppressed SWD activity and significantly increased XBP-1 and ATF6 mRNA expression in the thalamus, and increased NF-κB and TNF-α levels. In conclusion, our findings indicate that Tg affects SWD occurrence by modulating the unfolded protein response pathway and activating inflammatory processes in a dose-dependent manner.
Collapse
Affiliation(s)
| | - Deniz Şahin
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Fazilet Dede
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | | | - Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Sema Kurnaz Özbek
- Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Özgür Doğa Özsoy
- Department of Biochemistry, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| | - Nurbay Ateş
- Physiology Department, Kocaeli University Medical Faculty, Kocaeli, Turkey.
| |
Collapse
|
35
|
Wang D, Sun Z, Yin Y, Xiang J, Wei Y, Ma Y, Wang L, Liu G. Vitamin D and Atherosclerosis: Unraveling the Impact on Macrophage Function. Mol Nutr Food Res 2024; 68:e2300867. [PMID: 38864846 DOI: 10.1002/mnfr.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Vitamin D plays a crucial role in preventing atherosclerosis and in the regulation of macrophage function. This review aims to provide a comprehensive summary of the clinical evidence regarding the impact of vitamin D on atherosclerotic cardiovascular disease, atherosclerotic cerebrovascular disease, peripheral arterial disease, and associated risk factors. Additionally, it explores the mechanistic studies investigating the influence of vitamin D on macrophage function in atherosclerosis. Numerous findings indicate that vitamin D inhibits monocyte or macrophage recruitment, macrophage cholesterol uptake, and esterification. Moreover, it induces autophagy of lipid droplets in macrophages, promotes cholesterol efflux from macrophages, and regulates macrophage polarization. This review particularly focuses on analyzing the molecular mechanisms and signaling pathways through which vitamin D modulates macrophage function in atherosclerosis. It claims that vitamin D has a direct inhibitory effect on the formation, adhesion, and migration of lipid-loaded monocytes, thus exerting anti-atherosclerotic effects. Therefore, this review emphasizes the crucial role of vitamin D in regulating macrophage function and preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen Sun
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyi Xiang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuzhe Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Le Wang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
36
|
Sharifi S, Yamamoto T, Zeug A, Elsner M, Avezov E, Mehmeti I. Non-esterified fatty acid palmitate facilitates oxidative endoplasmic reticulum stress and apoptosis of β-cells by upregulating ERO-1α expression. Redox Biol 2024; 73:103170. [PMID: 38692092 PMCID: PMC11070623 DOI: 10.1016/j.redox.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to β-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1β, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic β-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent β-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated β-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic β-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and β-cell failure.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tomoko Yamamoto
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, CB2 0AH Cambridge, UK
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
37
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
38
|
Shen H, Fu L, Cai Y, Zhu K, Chen X. Hexafluoropropylene oxide trimer acid (HFPO-TA) exerts cytotoxic effects on leydig cells via the ER stress/JNK/β-trcp/mcl-1 axis. Food Chem Toxicol 2024; 188:114678. [PMID: 38643823 DOI: 10.1016/j.fct.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an alternative to perfluorooctanoic acid (PFOA) and is widely used in various industries. The effects of HFPO-TA on the male reproductive system and the underlying mechanisms are still not fully understood. In this study, TM3 mouse Leydig cells were used as the main model to evaluate the cytotoxicity of HFPO-TA in vitro. HFPO-TA inhibited the viability and expression of multiple biomarkers of Leydig cells. HFPO-TA also induced Leydig cell apoptosis in a caspase-dependent manner. Moreover, HFPO-TA induced the ubiquitination and degradation of Mcl-1 in a β-TrCP-dependent manner. Further investigations showed that HFPO-TA treatment led to the upregulation of ROS, which activated the ER stress/JNK/β-TrCP axis in Leydig cells. Overall, our study provides novel insights into the cytotoxic effects of HFPO-TA on the male reproductive system.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Lingling Fu
- Jinhua Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xueqin Chen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
39
|
Yuan F, Zhou H, Liu C, Wang Y, Quan J, Liu J, Li H, von Itzstein M, Yu X. Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway. Cancer Gene Ther 2024; 31:904-916. [PMID: 38467765 DOI: 10.1038/s41417-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.
Collapse
Affiliation(s)
- Fengyan Yuan
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
- Hunan Research Center of Biliary Disease, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
- Key Laboratory of Biliary Disease Prevention and treatment, the First Affiliated Hospital of Hunan Normal University,, Changsha, China.
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
| |
Collapse
|
40
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
41
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
42
|
Vinik Y, Maimon A, Dubey V, Raj H, Abramovitch I, Malitsky S, Itkin M, Ma'ayan A, Westermann F, Gottlieb E, Ruppin E, Lev S. Programming a Ferroptosis-to-Apoptosis Transition Landscape Revealed Ferroptosis Biomarkers and Repressors for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307263. [PMID: 38441406 PMCID: PMC11077643 DOI: 10.1002/advs.202307263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/11/2024] [Indexed: 05/09/2024]
Abstract
Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Maimon
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Vinay Dubey
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Harsha Raj
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Ifat Abramovitch
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Sergey Malitsky
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Maxim Itkin
- Metabolic Profiling UnitWeizmann Institute of ScienceRehovot76100Israel
| | - Avi Ma'ayan
- Department of Pharmacological SciencesMount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Frank Westermann
- Neuroblastoma GenomicsGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Eyal Gottlieb
- The Ruth and Bruce RappaportFaculty of MedicineTechnion–Israel Institute of TechnologyHaifa3525433Israel
| | - Eytan Ruppin
- Cancer Data Science LaboratoryNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Sima Lev
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
43
|
Du J, Zhang X, Li B, Huo S, Zhang J, Fu Y, Song M, Shao B, Li Y. The hepatotoxicity of hexafluoropropylene oxide trimer acid caused by apoptosis via endoplasmic reticulum-mitochondrial crosstalk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171234. [PMID: 38428612 DOI: 10.1016/j.scitotenv.2024.171234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze 274031, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Liao Y, Huang J, Wang Z, Yang Z, Shu Y, Gan S, Wang Z, Lu W. The phosphokinase activity of IRE1ɑ prevents the oxidative stress injury through miR-25/Nox4 pathway after ICH. CNS Neurosci Ther 2024; 30:e14537. [PMID: 37994671 PMCID: PMC11017440 DOI: 10.1111/cns.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and oxidative stress are the major pathologies encountered after intracerebral hemorrhage (ICH). Inositol-requiring enzyme-1 alpha (IRE1α) is the most evolutionarily conserved ER stress sensor, which plays a role in monitoring and responding to the accumulation of unfolded/misfolded proteins in the ER lumen. Recent studies have shown that ER stress is profoundly related to oxidative stress in physiological or pathological conditions. The purpose of this study was to investigate the role of IRE1α in oxidative stress and the potential mechanism. METHODS A mouse model of ICH was established by autologous blood injection. The IRE1α phosphokinase inhibitor KIRA6 was administrated intranasally at 1 h after ICH, antagomiR-25 and agomiR-25 were injected intraventricularly at 24 h before ICH. Western blot analysis, RT-qPCR, immunofluorescence staining, hematoma volume, neurobehavioral tests, dihydroethidium (DHE) staining, H2O2 content, brain water content, body weight, Hematoxylin and Eosin (HE) staining, Nissl staining, Morris Water Maze (MWM) and Elevated Plus Maze (EPM) were performed. RESULTS Endogenous phosphorylated IRE1α (p-IRE1α), miR-25-3p, and Nox4 were increased in the ICH model. Administration of KIRA6 downregulated miR-25-3p expression, upregulated Nox4 expression, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, reduced body weight, aggravated spatial learning and memory deficits, and increased anxiety levels. Then antagomiR-25 further upregulated the expression of Nox4, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, whereas agomiR-25 reversed the effects promoted by KIRA6. CONCLUSION The IRE1α phosphokinase activity is involved in the oxidative stress response through miR-25/Nox4 pathway in the mouse ICH brain.
Collapse
Affiliation(s)
- Yuhui Liao
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Medical CollegeSichuan University of Arts and ScienceDazhouChina
| | - Juan Huang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhenhua Wang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhengyu Yang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Yue Shu
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Shengwei Gan
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Zhixu Wang
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| | - Weitian Lu
- Department of Anatomy, Basic Medical CollegeChongqing Medical UniversityChongqingChina
- Institute of Neuroscience, Basic Medical CollegeChongqing Medical UniversityChongqingChina
| |
Collapse
|
46
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
47
|
Germani S, Van Ho AT, Cherubini A, Varone E, Chernorudskiy A, Renna GM, Fumagalli S, Gobbi M, Lucchetti J, Bolis M, Guarrera L, Craparotta I, Rastelli G, Piccoli G, de Napoli C, Nogara L, Poggio E, Brini M, Cattaneo A, Bachi A, Simmen T, Calì T, Quijano-Roy S, Boncompagni S, Blaauw B, Ferreiro A, Zito E. SEPN1-related myopathy depends on the oxidoreductase ERO1A and is druggable with the chemical chaperone TUDCA. Cell Rep Med 2024; 5:101439. [PMID: 38402623 PMCID: PMC10982971 DOI: 10.1016/j.xcrm.2024.101439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.
Collapse
Affiliation(s)
- Serena Germani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrew Tri Van Ho
- Basic and Translational Myology Laboratory, Université Paris, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | - Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Bioinformatics Core Unit, Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Giorgia Rastelli
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgia Piccoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cosimo de Napoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Elena Poggio
- Department of Biology, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Pharmaceutical Sciences, University of Padova, Padova, Italy; Department of Biology, University of Padova, Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | | | - Angela Bachi
- IFOM-ETS AIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Reference Center for Neuromuscular Disorders Nord-Est-Ile de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padova, Italy.
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris, BFA, UMR 8251, CNRS, 75013 Paris, France; APHP, Reference Center for Neuromuscular Disorders Nord-Est-Ile de France, Neuromyology Department, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
48
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
49
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
50
|
Nguyen HT, Wiederkehr A, Wollheim CB, Park KS. Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity. Exp Mol Med 2024; 56:273-288. [PMID: 38297165 PMCID: PMC10907728 DOI: 10.1038/s12276-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024] Open
Abstract
Autophagy is an essential quality control mechanism for maintaining organellar functions in eukaryotic cells. Defective autophagy in pancreatic beta cells has been shown to be involved in the progression of diabetes through impaired insulin secretion under glucolipotoxic stress. The underlying mechanism reveals the pathologic role of the hyperactivation of mechanistic target of rapamycin (mTOR), which inhibits lysosomal biogenesis and autophagic processes. Moreover, accumulating evidence suggests that oxidative stress induces Ca2+ depletion in the endoplasmic reticulum (ER) and cytosolic Ca2+ overload, which may contribute to mTOR activation in perilysosomal microdomains, leading to autophagic defects and β-cell failure due to lipotoxicity. This review delineates the antagonistic regulation of autophagic flux by mTOR and AMP-dependent protein kinase (AMPK) at the lysosomal membrane, and both of these molecules could be activated by perilysosomal calcium signaling. However, aberrant and persistent Ca2+ elevation upon lipotoxic stress increases mTOR activity and suppresses autophagy. Therefore, normalization of autophagy is an attractive therapeutic strategy for patients with β-cell failure and diabetes.
Collapse
Affiliation(s)
- Ha Thu Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|