1
|
Sun Y, Ikeuchi Y, Guo F, Hyun I, Ming GL, Fu J. Bioengineering innovations for neural organoids with enhanced fidelity and function. Cell Stem Cell 2025; 32:689-709. [PMID: 40315834 PMCID: PMC12052258 DOI: 10.1016/j.stem.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/19/2025] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Neural organoids have been utilized to recapitulate different aspects of the developing nervous system. While hailed as promising experimental tools for studying human neural development and neuropathology, current neural organoids do not fully recapitulate the anatomy or microcircuitry-level functionality of the developing brain, spinal cord, or peripheral nervous system. In this review, we discuss emerging bioengineering approaches that control morphogen signals and biophysical microenvironments, which have improved the efficiency, fidelity, and utility of neural organoids. Furthermore, advancements in bioengineered tools have facilitated more sophisticated analyses of neural organoid functions and applications, including improved neural-bioelectronic interfaces and organoid-based information processing. Emerging bioethical issues associated with advanced neural organoids are also discussed. Future opportunities of neural organoid research lie in enhancing their fidelity, maturity, and complexity and expanding their applications in a scalable manner.
Collapse
Affiliation(s)
- Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8654, Japan
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Insoo Hyun
- Center for Life Sciences and Public Learning, Museum of Science, Boston, MA 02114, USA; Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Zheng Z, Zhao L, Zhao S, Wu Z, Wu N. A rare germline mutation reverses the suppressive effect of GPC5 thereby promoting lung adenocarcinoma development and tumorigenesis. Front Genet 2025; 16:1582504. [PMID: 40352786 PMCID: PMC12062016 DOI: 10.3389/fgene.2025.1582504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Background and Objective Glypican-5 (GPC5) has been well-characterized as a tumor suppressor in lung adenocarcinoma (LUAD); however, the functional implications of its germline mutations in cancer pathogenesis remain largely unexplored. In this study, we identified and characterized a pathogenic GPC5 variant (c.776C>T, p.Pro259Leu) within a Chinese LUAD pedigree, systematically investigating its oncogenic mechanisms through comprehensive molecular and cellular analyses. Methods Our investigation employed a multifaceted approach beginning with the recruitment of a LUAD-affected family cohort (n=4 patients, 1 healthy control), followed by exome sequencing of matched blood and FFPE tumor samples. Through rigorous rare variant analysis, we prioritized the GPC5 c.776C>T variant, subsequently validating its pathogenicity via integrated computational modeling and immunohistochemical profiling. Mechanistic studies in A549 and H2009 LUAD cell lines encompassed: (1) comprehensive proliferation and apoptosis assessment using CCK-8, colony formation, EdU incorporation, and flow cytometry; (2) migration and invasion evaluation through Transwell and wound healing assays; (3) EMT/Wnt pathway interrogation via Western blot analysis of E-cadherin, N-cadherin, Vimentin, and β-catenin expression patterns; and (4) definitive functional validation through GPC5 overexpression and knockdown experiments. Results Genetic analysis revealed the GPC5 c.776C>T variant exhibited complete cosegregation with LUAD phenotype in the pedigree while being absent in control populations (gnomAD frequency: 0.000003989), accompanied by significantly reduced GPC5 expression in tumor tissues. Functional characterization demonstrated that compared to wild-type, the mutant variant conferred aggressive oncogenic properties: significantly enhanced proliferative capacity, impaired apoptosis induction, and markedly increased migratory potential. Molecular analyses revealed the mutant promoted EMT activation through nuclear β-catenin accumulation and subsequent upregulation of mesenchymal markers. Crucially, siRNA-mediated GPC5 knockdown phenocopied these oncogenic effects, providing definitive evidence of its tumor-suppressive function. Discussion Our findings establish that the GPC5 c.776C>T mutation drives LUAD progression through a novel molecular mechanism involving impaired β-catenin degradation, subsequent nuclear translocation, and consequent EMT activation. These results position GPC5 as a critical nodal regulator of Wnt/β-catenin signaling in LUAD pathogenesis and suggest its germline mutations may serve as valuable biomarkers for hereditary LUAD risk assessment. Therapeutically, these findings highlight the potential utility of Wnt pathway inhibitors in managing GPC5-mutant LUAD cases, while also providing a molecular framework for future investigations into glypican family members in cancer biology.
Collapse
Affiliation(s)
- Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Lina Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Zhihong Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Turan MG, Kantarci H, Cevik S, Kaplan OI. ARL13B regulates juxtaposed cilia-cilia elongation in BBSome dependent manner in Caenorhabditis elegans. iScience 2025; 28:111791. [PMID: 39925426 PMCID: PMC11804779 DOI: 10.1016/j.isci.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/30/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The interaction of cilia with various cellular compartments, such as axons, has emerged as a new form of cellular communication. Cilia often extend in proximity to cilia from neighboring cells. However, the mechanisms driving this process termed juxtaposed cilia-cilia elongation (JCE) remain unclear. We use fluorescence-based visualization to study the mechanisms of coordinated cilia elongation in sensory neurons of Caenorhabditis elegans. Conducting a selective gene-based screening strategy reveals that ARL-13/ARL13B and MKS-5/RPGRIP1L are essential for JCE. We demonstrate that ARL-13 modulates JCE independently of cilia length. Loss of NPHP-2/inversin along with HDAC-6 enhances the cilia misdirection phenotype of arl-13 mutants, while disruption of the BBSome complex, but not microtubule components, partially suppresses the JCE defects in arl-13 mutants. We further show changes in the phospholipid compositions in arl-13 mutants. We suggest that ARL-13 contributes to JCE, in part, through the modulation of the ciliary membrane.
Collapse
Affiliation(s)
- Merve Gül Turan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hanife Kantarci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I. Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
4
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Wang J, Zhang C, Zhang L, Yao HJ, Liu X, Shi Y, Zhao J, Bo X, Chen H, Li L. Comparative study on genomic and epigenomic profiles of retinoblastoma or tuberous sclerosis complex via nanopore sequencing and a joint screening framework. Cancer Gene Ther 2024; 31:439-453. [PMID: 38146007 DOI: 10.1038/s41417-023-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Recurrence and extraocular metastasis in advanced intraocular retinoblastoma (RB) are still major obstacles for successful treatment of Chinese children. Tuberous sclerosis complex (TSC) is a very rare, multisystemic genetic disorder characterized by hamartomatous growth. In this study, we aimed to compare genomic and epigenomic profiles with human RB or TSC using recently developed nanopore sequencing, and to identify disease-associated variations or genes. Peripheral blood samples were collected from either RB or RB/TSC patients plus their normal siblings, followed by nanopore sequencing and identification of disease-specific structural variations (SVs) and differentially methylated regions (DMRs) by a systematic biology strategy named as multiomics-based joint screening framework. In total, 316 RB- and 1295 TSC-unique SVs were identified, as well as 1072 RB- and 1114 TSC-associated DMRs, respectively. We eventually identified 6 key genes for RB for further functional validation. Knockdown of CDK19 with specific siRNAs significantly inhibited Y79 cellular proliferation and increased sensitivity to carboplatin, whereas downregulation of AHNAK2 promoted the cell growth as well as drug resistance. Those two genes might serve as potential diagnostic markers or therapeutic targets of RB. The systematic biology strategy combined with functional validation might be an effective approach for rare pediatric malignances with limited samples and challenging collection process.
Collapse
Affiliation(s)
- Junting Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Chengyue Zhang
- Department of Ophthalmology, Beijing Children's Hospital affiliated with Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
| | - Hong-Juan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St., Beijing, 100053, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Beijing, 100700, China
| | - Junyang Zhao
- Department of Ophthalmology, Beijing Children's Hospital affiliated with Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China.
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
6
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
7
|
Pilcher L, Solomon L, Dragon JA, Gupta D, Spees JL. The Neural Progenitor Cell-Associated Transcription Factor FoxG1 Regulates Cardiac Epicardial Cell Proliferation. Stem Cells Int 2024; 2024:8601360. [PMID: 38239823 PMCID: PMC10796189 DOI: 10.1155/2024/8601360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The epicardium is a layer of mesothelial cells that covers the surface of the heart. During development, epicardial cells undergo epithelial-to-mesenchymal transition (EMT) to form multipotent precursors that migrate into the heart and contribute to the coronary vasculature by differentiating into adventitial fibroblasts, smooth muscle cells, and endothelial cells. Epicardial cells also provide paracrine signals to cardiac myocytes that are required for appropriate heart growth. In adult hearts, a similar process of epicardial cell EMT, migration, and differentiation occurs after myocardial infarction (MI, heart attack). Pathological cardiac hypertrophy is associated with fibrosis, negative remodeling, and reduced cardiac function. In contrast, aerobic exercises such as swimming and running promote physiological (i.e., beneficial) hypertrophy, which is associated with angiogenesis and improved cardiac function. As epicardial cell function(s) during physiological hypertrophy are poorly understood, we analyzed and compared the native epicardial cells isolated directly from the hearts of running-exercised mice and age-matched, nonrunning littermates. To obtain epicardial cells, we enzymatically digested the surfaces of whole hearts and performed magnetic-activated cell sorting (MACS) with antibodies against CD104 (integrin β4). By cDNA microarray assays, we identified genes with increased transcription in epicardial cells after running exercise; these included FoxG1, a transcription factor that controls neural progenitor cell proliferation during brain development and Snord116, a small noncoding RNA that coordinates expression of genes with epigenetic, circadian, and metabolic functions. In cultured epicardial cells, shRNA-mediated FoxG1 knockdown significantly decreased cell proliferation, as well as Snord116 expression. Our results demonstrate that FoxG1 regulates epicardial proliferation, and suggest it may affect cardiac remodeling.
Collapse
Affiliation(s)
- Lucy Pilcher
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Lara Solomon
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Julie A. Dragon
- Vermont Integrative Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05446, USA
| | - Jeffrey L. Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
8
|
Crenshaw MM, Meyers ML, Brown K, Slegesky V, Duis J, Elias ER, Saenz M, Shi W, Filmus J, Meeks NJL. Five siblings expand the spectrum of GPC6-related skeletal dysplasia. Am J Med Genet A 2023; 191:2571-2577. [PMID: 37353964 DOI: 10.1002/ajmg.a.63337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Skeletal dysplasias broadly include disorders of cartilage or bone. Omodysplasia-1 is a type of skeletal dysplasia caused by biallelic loss of function variants in the GPC6 gene. GPC6 codes for the protein glypican 6 (GPC6) (OMIM *604404), which stimulates bone growth. We report a family in which five out of nine children were presented with a skeletal dysplasia characterized phenotypically by mild short stature and rhizomelia. All affected individuals were found to have homozygous missense variants in GPC6: c.511 C>T (p.Arg171Trp). Radiograph findings included rhizomelic foreshortening of all four extremities, coxa breva, and ulna minus deformity. Using a Hedgehog (Hh) reporter assay, we demonstrate that the variant found in this family results in significantly reduced stimulation of Hh activity when compared to the wild-type GPC6 protein, however protein function is still present. Thus, the milder phenotype seen in the family presented is hypothesized due to decreased GPC6 protein activity versus complete loss of function as seen in omodysplasia-1. Given the unique phenotype and molecular mechanism, we propose that this family's findings widen the phenotypic spectrum of GPC6-related skeletal dysplasias.
Collapse
Affiliation(s)
- Molly M Crenshaw
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | | | - Kathleen Brown
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Valerie Slegesky
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Jessica Duis
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Ellen R Elias
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Margarita Saenz
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Wen Shi
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jorge Filmus
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| |
Collapse
|
9
|
Niu RZ, Feng WQ, Yu QS, Shi LL, Qin QM, Liu J. Integrated analysis of plasma proteome and cortex single-cell transcriptome reveals the novel biomarkers during cortical aging. Front Aging Neurosci 2023; 15:1063861. [PMID: 37539343 PMCID: PMC10394382 DOI: 10.3389/fnagi.2023.1063861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Background With the increase of age, multiple physiological functions of people begin gradually degenerating. Regardless of natural aging or pathological aging, the decline in cognitive function is one of the most obvious features in the process of brain aging. Brain aging is a key factor for several neuropsychiatric disorders and for most neurodegenerative diseases characterized by onset typically occurring late in life and with worsening of symptoms over time. Therefore, the early prevention and intervention of aging progression are particularly important. Since there is no unified conclusion about the plasma diagnostic biomarkers of brain aging, this paper innovatively employed the combined multi-omics analysis to delineate the plasma markers of brain aging. Methods In order to search for specific aging markers in plasma during cerebral cortex aging, we used multi-omics analysis to screen out differential genes/proteins by integrating two prefrontal cortex (PFC) single-nucleus transcriptome sequencing (snRNA-seq) datasets and one plasma proteome sequencing datasets. Then plasma samples were collected from 20 young people and 20 elder people to verify the selected differential genes/proteins with ELISA assay. Results We first integrated snRNA-seq data of the post-mortem human PFC and generated profiles of 65,064 nuclei from 14 subjects across adult (44-58 years), early-aging (69-79 years), and late-aging (85-94 years) stages. Seven major cell types were classified based on established markers, including oligodendrocyte, excitatory neurons, oligodendrocyte progenitor cells, astrocytes, microglia, inhibitory neurons, and endotheliocytes. A total of 93 cell-specific genes were identified to be significantly associated with age. Afterward, plasma proteomics data from 2,925 plasma proteins across 4,263 young adults to nonagenarians (18-95 years old) were combined with the outcomes from snRNA-seq data to obtain 12 differential genes/proteins (GPC5, CA10, DGKB, ST6GALNAC5, DSCAM, IL1RAPL2, TMEM132C, VCAN, APOE, PYH1R, CNTN2, SPOCK3). Finally, we verified the 12 differential genes by ELISA and found that the expression trends of five biomarkers (DSCAM, CNTN2, IL1RAPL2, CA10, GPC5) were correlated with brain aging. Conclusion Five differentially expressed proteins (DSCAM, CNTN2, IL1RAPL2, CA10, GPC5) can be considered as one of the screening indicators of brain aging, and provide a scientific basis for clinical diagnosis and intervention.
Collapse
|
10
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Timpanaro A, Piccand C, Uldry AC, Bode PK, Dzhumashev D, Sala R, Heller M, Rössler J, Bernasconi M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int J Mol Sci 2023; 24:2601. [PMID: 36768928 PMCID: PMC9917031 DOI: 10.3390/ijms24032601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Peter Karl Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rita Sala
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
12
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
13
|
Hasegawa H, Tanaka T, Kondo M, Teramoto K, Nakayama K, Hwang GW. Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice. Toxicol Res 2023; 39:169-177. [PMID: 36726835 PMCID: PMC9839917 DOI: 10.1007/s43188-022-00164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ethanol is toxic to the brain and causes various neurological disorders. Although ethanol can directly exert toxicity on neurons, it also acts on other cell types in the central nervous system. Blood vessel endothelial cells interact with, and are affected by blood ethanol. However, the effects of ethanol on the vascular structures of the brain have not been well documented. In this study, we examined the effects of binge levels of ethanol on brain vasculature. Immunostaining analysis indicated structural alterations of blood vessels in the cerebral cortex, which became more tortuous than those in the control mice after ethanol administration. The interaction between the blood vessels and astrocytes decreased, especially in the upper layers of the cerebral cortex. Messenger RNA expression analysis revealed a unique downregulation of Vegfa mRNA encoding vascular endothelial growth factor (VEGF)-A among VEGF, angiopoietin, endothelin family angiogenic and blood vessel remodeling factors. The expression of three proteoglycan core proteins, glypican-5, neurocan, and serglycin, was also altered after ethanol administration. Thus, binge levels of ethanol affect the expression of VEGF-A and blood vessel-supporting proteoglycans, resulting in changes in the vascular structure of the cerebral cortex. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00164-y.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Toshiya Tanaka
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Koji Teramoto
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Kei Nakayama
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi 9818558 Japan
| |
Collapse
|
14
|
Baldavira CM, Prieto TG, Machado-Rugolo J, de Miranda JT, da Silveira LKR, Velosa APP, Teodoro WR, Ab’Saber A, Takagaki T, Capelozzi VL. Modeling extracellular matrix through histo-molecular gradient in NSCLC for clinical decisions. Front Oncol 2022; 12:1042766. [PMID: 36452484 PMCID: PMC9703002 DOI: 10.3389/fonc.2022.1042766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Collapse
Affiliation(s)
| | | | - Juliana Machado-Rugolo
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Health Technology Assessment Center, Clinical Hospital, Medical School of São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lizandre Keren Ramos da Silveira
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Ab’Saber
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells. J Biol Chem 2022; 298:102609. [PMID: 36265583 PMCID: PMC9672413 DOI: 10.1016/j.jbc.2022.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. Therefore, we used rVAR2 as a model to establish a method based on random mutagenesis of the GAG-binding protein and phage display to identify and optimize probes targeting tumor GAGs. We identified a new probe, VAR2HP, which selectively recognized Hep by interacting with unique epitopes consisting of a decasaccharide structure that contains at least three HexA2S(1-4)GlcNS6S disaccharides. Moreover, we found that these Hep-like epitopes were overexpressed in various cancer cells. Most importantly, our in vivo experiments showed that VAR2HP had good biocompatibility and preferentially localizes to tumors, which indicates that VAR2HP has great application potential in tumor diagnosis and targeted therapy. In conclusion, this study provides a strategy for the discovery of novel tumor-associated GAG epitopes and their specific probes.
Collapse
|
16
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
17
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
19
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Liu YC, Wierbowski BM, Salic A. Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate. J Cell Sci 2022; 135:274739. [PMID: 35142364 PMCID: PMC8977055 DOI: 10.1242/jcs.259297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that play critical roles in multiple cell signaling pathways. Glypicans consist of a globular core, an unstructured stalk modified with sulfated glycosaminoglycan chains, and a glycosylphosphatidylinositol anchor. Though these structural features are conserved, their individual contribution to glypican function remains obscure. Here, we investigate how glypican 3 (GPC3), which is mutated in Simpson-Golabi-Behmel tissue overgrowth syndrome, regulates Hedgehog signaling. We find that GPC3 is necessary for the Hedgehog response, surprisingly controlling a downstream signal transduction step. Purified GPC3 ectodomain rescues signaling when artificially recruited to the surface of GPC3-deficient cells but has dominant-negative activity when unattached. Strikingly, the purified stalk, modified with heparan sulfate but not chondroitin sulfate, is necessary and sufficient for activity. Our results demonstrate a novel function for GPC3-associated heparan sulfate and provide a framework for the functional dissection of glycosaminoglycans by in vivo biochemical complementation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Hood College, Frederick, MD 21701, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Dagälv A, Lundequist A, Filipek-Górniok B, Dierker T, Eriksson I, Kjellén L. Heparan Sulfate Structure: Methods to Study N-Sulfation and NDST Action. Methods Mol Biol 2022; 2303:139-150. [PMID: 34626376 DOI: 10.1007/978-1-0716-1398-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine which proteins will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [35S]sulfate or [3H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.
Collapse
Affiliation(s)
- Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Lundequist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inger Eriksson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Pan J, Ho M. Role of glypican-1 in regulating multiple cellular signaling pathways. Am J Physiol Cell Physiol 2021; 321:C846-C858. [PMID: 34550795 DOI: 10.1152/ajpcell.00290.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glypican-1 (GPC1) is one of the six glypican family members in humans. It is composed of a core protein with three heparan sulfate chains and attached to the cell membrane by a glycosyl-phosphatidylinositol anchor. GPC1 modulates various signaling pathways including fibroblast growth factors (FGF), vascular endothelial growth factor-A (VEGF-A), transforming growth factor-β (TGF-β), Wnt, Hedgehog (Hh), and bone morphogenic protein (BMP) through specific interactions with pathway ligands and receptors. The impact of these interactions on signaling pathways, activating or inhibitory, is dependent upon specific GPC1 domain interaction with pathway components, as well as cell surface context. In this review, we summarize the current understanding of the structure of GPC1, as well as its role in regulating multiple signaling pathways. We focus on the functions of GPC1 in cancer cells and how new insights into these signaling processes can inform its translational potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Jiajia Pan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,School of Life Sciences, East China Normal University, Shanghai, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Yang X, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu WW, Zhao WQ, Wei W, Wu CP, Jiang JT, Ji M. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 2021; 40:4307-4323. [PMID: 34079082 DOI: 10.1038/s41388-021-01837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Glypican-5 (GPC5) is a member of heparan sulfate proteoglycans, and its biological importance in initiation and progression of lung cancer remains controversial. In the present study, we revealed that GPC5 transcriptionally enhanced the expression of CTDSP1 (miR-26b host gene) via AhR-ARNT pathway, and such up-regulation of CTDSP1 intracellularly contributed to the inhibited proliferation of lung cancer cells. Moreover, exosomes derived from GPC5-overexpressing human lung cancer cells (GPC5-OE-derived exosomes) had an extracellular repressive effect on human lymphatic endothelial cells (hLECs), leading to decreased tube formation and migration. Comparison between GPC5-WT- and GPC5-OE-derived exosomes showed that miR-26b (embedded within introns of CTDSP1 gene) was significantly up-regulated in GPC5-OE-derived exosomes and critical to the influence on hLECs. On the mechanism, we demonstrated that miR-26b transferred into hLECs directly targeted to PTK2 3'-UTR and led to PTK2 down-regulation, resulting in defects in tube formation and migration of hLECs. By uncovering the regulation network among GPC5, miR-26b, miR-26b host gene (CTDSP1), and target gene (PTK2), our findings demonstrated that GPC5 functioned as a tumor suppressor in human lung cancer.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wen Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Qing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chang Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jing Ting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.
- Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| |
Collapse
|
25
|
Hedgehog signaling activation required for glypican-6-mediated regulation of invasion, migration, and epithelial-mesenchymal transition of gastric cancer cells. Biosci Rep 2021; 40:225096. [PMID: 32478377 PMCID: PMC7295629 DOI: 10.1042/bsr20193181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and one of the most aggressive cancers in China. Glypican 6 is highly expressed in gastric adenocarcinoma and may act as a diagnostic and prognostic marker; however, the functional importance and molecular mechanism of glypican 6 in GC remains unclear. In the current study, we aimed to reveal the function and mechanism of glypican 6 in two GC cell lines: MKN-45 and SGC-7901. We found higher expression of glypican 6 in MKN-45 and SGC-7901 cells than in cells from the normal gastric mucosa epithelial cell line GES-1. Glypican 6 knockdown suppressed MKN-45 and SGC-7901 cell proliferation. A Transwell assay confirmed that glypican 6 silencing inhibited the migration and invasiveness of MKN-45 and SGC-7901 cells. Epithelial-to-mesenchymal transition (EMT) markers were determined by western blotting, and the results showed reduced Vimentin expression and elevated E-cadherin expression in glypican 6 short interfering RNA (siRNA) transfected MKN-45 and SGC-7901 cells. However, glypican 6 overexpression in GES-1 cells showed no significant promotion on GES-1 cells proliferation and migration. Further studies confirmed that glypican 6 siRNA regulated Hedgehog and Gli1 signaling and participated in the function of glypican 6 on MKN-45 and SGC-7901 cell migration and invasion. Our findings suggest that decreased glypican 6 expression inhibits the migration and invasion ability of GC cells.
Collapse
|
26
|
Takeuchi M, Takeuchi K, Takai T, Yamaguchi R, Furukawa T, Akagi KI, Takeuchi JK. Subcellular localization of glypican-5 is associated with dynamic motility of the human mesenchymal stem cell line U3DT. PLoS One 2021; 16:e0226538. [PMID: 33606708 PMCID: PMC7895401 DOI: 10.1371/journal.pone.0226538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
Glypican-5 (GPC5) is a heparan sulfate proteoglycan (HSPG) localized to the plasma membrane. We previously reported that in the human mesenchymal stem cell line UE6E7T-3, GPC5 is overexpressed in association with transformation and promotes cell proliferation by acting as a co-receptor for Sonic hedgehog signaling. In this study, we found using immunofluorescence microscopy that in transformed cells (U3DT), GPC5 localized not only at primary cilia on the cell surface, but also at the leading edge of migrating cells, at the intercellular bridge and blebs during cytokinesis, and in extracellular vesicles. In each subcellular region, GPC5 colocalized with fibroblast growth factor receptor (FGFR) and the small GTPases Rab11 and ARF6, indicating that GPC5 is delivered to these regions by Rab11-associated recycling endosomes. These colocalizations suggest that GPC5 plays an important role in FGF2 stimulation of cell migration, which was abrogated by knockdown of GPC5. Our findings indicate that GPC5 plays a role in regulation of U3DT cell migration and provides several insights into the functions of GPC5 that could be elucidated by future studies.
Collapse
Affiliation(s)
- Masao Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Kikuko Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tomoyo Takai
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Ritsuko Yamaguchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tetsushi Furukawa
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Ken-ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Jun K. Takeuchi
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
28
|
Glypican-1, -3, -5 (GPC1, GPC3, GPC5) and Hedgehog Pathway Expression in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2021; 29:345-351. [PMID: 33512817 DOI: 10.1097/pai.0000000000000907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 12/09/2022]
Abstract
Proteoglycans are involved in tumor development and may regulate the Hedgehog (HH) pathway. This study aimed to investigate the gene and protein expression of glypican-1 (GPC1), -3 (GPC3), and -5 (GPC5) in oral squamous cell carcinoma (OSCC) and tumor-free lateral margins (TM) and their association with the HH pathway. Quantitative PCR was performed for GPC1, GPC3, GPC5, SHH, PTCH1, SMO, and GLI1 genes in samples of OSCC (n=31), TM (n=12), and non-neoplastic oral mucosa (NNM) of healthy patients (n=6), alongside an immunohistochemical evaluation of GPC1, GPC3, and GPC5 proteins and HH proteins SHH and glioma-associated oncogene homolog 1 (GLI1). Double staining for GPC3/SHH, GPC5/SHH, GPC3/tubulin [ac Lys40], GPC5/Tubulin [ac Lys40], and GPC5/GLI1 was also performed. Overexpression of GPC1 and GPC5 in tumor samples and underexpressed levels of GPC3 gene transcripts were observed when compared with TM (standard sample). HH pathway mRNA aberrant expression in OSCC samples and a negative correlation between GPC1 and GPC5 at transcription levels were detected. GPC1 staining was rare in OSCC, but positive cells were found in NNM and TM. Otherwise positive immunostaining for GPC3 and GPC5 was observed in OSCCs, but not in NNM and TM. Blood vessels adjacent to tumor islands were positive for GPC1 and GPC5. Co-localization of GPC3-positive and GPC5-positive cells with SHH and Tubulin [ac Lys40] proteins was noted, as well as of GPC5 and GLI1. The absence of the GPC1 protein in neoplastic cells, underexpression of the GPC3 gene, and co-localization of GPCs and HH proteins may indicate the maintenance of aberrant HH pathway activation in OSCC.
Collapse
|
29
|
Danesin C, Darche-Gabinaud R, Escalas N, Bouguetoch V, Cochard P, Al Oustah A, Ohayon D, Glise B, Soula C. Sulf2a controls Shh-dependent neural fate specification in the developing spinal cord. Sci Rep 2021; 11:118. [PMID: 33420239 PMCID: PMC7794431 DOI: 10.1038/s41598-020-80455-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France.
| | - Romain Darche-Gabinaud
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Vanessa Bouguetoch
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Philippe Cochard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - David Ohayon
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Bruno Glise
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Cathy Soula
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
30
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Prognostic value of Glypican family genes in early-stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy and possible mechanisms. BMC Gastroenterol 2020; 20:415. [PMID: 33302876 PMCID: PMC7731467 DOI: 10.1186/s12876-020-01560-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background This study explored the prognostic significance of Glypican (GPC) family genes in patients with pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Methods A total of 112 PDAC patients from TCGA and 48 patients from GEO were included in the analysis. The relationship between overall survival and the expression of GPC family genes as well as basic clinical characteristics was analyzed using the Kaplan-Meier method with the log-rank test. Joint effects survival analysis was performed to further examine the relationship between GPC genes and prognosis. A prognosis nomogram was established based on clinical characteristics and prognosis-related genes. Prognosis-related genes were investigated by genome-wide co-expression analysis and gene set enrichment analysis (GSEA) was carried out to identify potential mechanisms of these genes affecting prognosis. Results In TCGA database, high expression of GPC2, GPC3, and GPC5 was significantly associated with favorable survival (log-rank P = 0.031, 0.021, and 0.028, respectively; adjusted P value = 0.005, 0.022, and 0.020, respectively), and joint effects analysis of these genes was effective for prognosis prediction. The prognosis nomogram was applied to predict the survival probability using the total scores calculated. Genome-wide co-expression and GSEA analysis suggested that the GPC2 may affect prognosis through sequence-specific DNA binding, protein transport, cell differentiation and oncogenic signatures (KRAS, RAF, STK33, and VEGFA). GPC3 may be related to cell adhesion, angiogenesis, inflammatory response, signaling pathways like Ras, Rap1, PI3K-Akt, chemokine, GPCR, and signatures like cyclin D1, p53, PTEN. GPC5 may be involved in transcription factor complex, TFRC1, oncogenic signatures (HOXA9 and BMI1), gene methylation, phospholipid metabolic process, glycerophospholipid metabolism, cell cycle, and EGFR pathway. Conclusion GPC2, GPC3, and GPC5 expression may serve as prognostic indicators in PDAC, and combination of these genes showed a higher efficiency for prognosis prediction.
Collapse
|
32
|
Filipek-Górniok B, Habicher J, Ledin J, Kjellén L. Heparan Sulfate Biosynthesis in Zebrafish. J Histochem Cytochem 2020; 69:49-60. [PMID: 33216642 DOI: 10.1369/0022155420973980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biosynthesis of heparan sulfate (HS) proteoglycans occurs in the Golgi compartment of cells and will determine the sulfation pattern of HS chains, which in turn will have a large impact on the biological activity of the proteoglycans. Earlier studies in mice have demonstrated the importance of HS for embryonic development. In this review, the enzymes participating in zebrafish HS biosynthesis, along with a description of enzyme mutants available for functional studies, are presented. The consequences of the zebrafish genome duplication and maternal transcript contribution are briefly discussed as are the possibilities of CRISPR/Cas9 methodologies to use the zebrafish model system for studies of biosynthesis as well as proteoglycan biology.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Judith Habicher
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
34
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
35
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Guan Y, Liu L, Jia Q, Jin X, Pang Y, Meng F, Zhang X, Shen H. The Role of Cell Growth-Related Gene Copy Number Variation in Autoimmune Thyroid Disease. Biol Trace Elem Res 2020; 195:409-416. [PMID: 31494809 DOI: 10.1007/s12011-019-01880-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
Autoimmune thyroid disease (AITD) is a recurrent and refractory clinical endocrine disease. Some studies have shown that the incidence of AITD is not only related to iodine, a kind of environmental factor, but that susceptibility genes also play a crucial role in its pathogenesis. Since research on susceptibility genes is still underway, the aims of this study were to assess the association between copy number variations (CNVs) and AITD, to identify genes related to susceptibility to AITD, and to explore the risk factors in the occurrence of AITD. Blood samples from five AITD patients and five controls from each area were assessed by chromosome microarray to identify candidate genes. The copy number (CN) of the candidate genes and urinary iodine levels were determined in adults, including 158 AITD patients and 181 controls, from areas having different iodine statuses. The cell growth-related genes, glypican 5 (GPC5), B9 domain containing 2 (B9D2), and ankyrin repeat and suppressor of cytokine signaling [SOCS] box-containing protein family 11 (ASB11), were selected as the candidate genes. The distribution of GPC5, B9D2, and ASB11 CNVs in AITD patients and controls was significantly different, and high urinary iodine levels and GPC5 CNVs are risk factors for AITD. There was no significant association between urinary iodine level and CNVs of the candidate genes. High urinary iodine levels and GPC5 CNVs are risk factors for AITD, but an association with the occurrence of AITD was not found.
Collapse
Affiliation(s)
- Yunfeng Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Harbin Center for Disease Control and Prevention, Harbin, China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Qingzhen Jia
- Institute for Endemic Disease Prevention and Treatment of Shanxi Province, Linfen, Shanxi, China
| | - Xing Jin
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Yi Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Fangang Meng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xiaoye Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
- Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Tu R, Duan B, Song X, Xie T. Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation. SCIENCE ADVANCES 2020; 6:eaaz0480. [PMID: 32426496 PMCID: PMC7220319 DOI: 10.1126/sciadv.aaz0480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/28/2020] [Indexed: 05/04/2023]
Abstract
Although multiple signaling pathways work synergistically in various niches to control stem cell self-renewal and differentiation, it remains poorly understood how they cooperate with one another molecularly. In the Drosophila ovary, Hh and Wnt pathways function in the niche to promote germline stem cell (GSC) progeny differentiation. Here, we show that glypican Dlp-mediated Hh and Wnt signaling interdependence operates in the niche to promote GSC progeny differentiation by preventing BMP signaling. Hh/Wnt-mediated dlp repression is essential for their signaling interdependence in niche cells and for GSC progeny differentiation by preventing BMP signaling. Mechanistically, Hh and Wnt downstream transcription factors directly bind to the same dlp regulatory region and recruit corepressors composed of transcription factor Croc and Egg/H3K9 trimethylase to repress Dlp expression. Therefore, our study reveals a novel mechanism for Hh/Wnt signaling-mediated direct dlp repression and a novel regulatory mechanism for Dlp-mediated Hh/Wnt signaling interdependence in the GSC differentiation niche.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Corresponding author.
| |
Collapse
|
38
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
39
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1311] [Impact Index Per Article: 262.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
40
|
Listik E, Toma L. Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy. Oncotarget 2020; 11:828-845. [PMID: 32180897 PMCID: PMC7061737 DOI: 10.18632/oncotarget.27492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors, with which patients have a mean survival of 24 months. Glypican-1 has been previously shown to be overexpressed in human glioblastoma and to be negatively correlated with patient’s survival. This study aimed to investigate how glypican-1 influences the tumoral profile of human glioblastoma using in vitro cell line models. By downregulating the expression of glypican-1 in U-251 MG cells, we observed that the cellular growth and proliferation were highly reduced, in which cells were significantly shifted towards G0 as opposed to G1 phases. Cellular migration was severely affected, and glypican-1 majorly impacted the affinity towards laminin-binding of glioblastoma U-251 MG cells. This proteoglycan was highly prevalent in glioblastoma cells, being primarily localized in the cellular membrane and extracellular vesicles, occasionally with glypican-3. Glypican-1 could also be found in cell-cell junctions with syndecan-4 but was not identified in lipid rafts in this study. Glypican-1-silenced cells were much more susceptible to temozolomide than in U-251 MG itself. Therefore, we present evidence not only to support facts that glypican-1 is an elementary macromolecule in glioblastoma tumoral microenvironment but also to introduce this proteoglycan as a promising therapeutic target for this lethal tumor.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Zhao S, Wu C, Gao Z, Li X, Guo Z, Wang Z. Notch signaling governs the expression of glypican Dally to define the stem cell niche. Biol Open 2020; 9:bio.047696. [PMID: 31826854 PMCID: PMC6994927 DOI: 10.1242/bio.047696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular glypicans play pivotal roles in organogenesis, stem cell maintenance and cancer development. However, the growth phenotypes associated with different levels of glypican are not consistent in development or tumorigenesis. This requires clarification on how the spatial patterns of glypican relate to the distribution of signaling molecules in different cellular contexts, and how glypican expression is regulated. We have previously reported that Dally, one of the glypican members in Drosophila, is required in the niche for the maintenance of germline stem cells (GSCs) via short-range BMP signaling in ovary. However, the regulatory mechanism of glypican pattern in the ovarian stem cell niche remains elusive. Our current data demonstrate that the Notch pathway is genetically upstream of Dally and its function to maintain GSCs relies on Dally expression. Combining yeast and fruit fly genetics, we illustrate that Dally is under the transcriptional control of Notch signaling via the transcription factor Su(H). Further, we assayed human glypicans and disease-associated variants in Drosophila ovary, which can serve as an effective system to evaluate the structure–function relationship of human homologs. Summary: Spatial regulation of a cell surface glycoprotein defines the territory of germline stem cells.
Collapse
Affiliation(s)
- Songhua Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China.,The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Wu
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Guo
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China .,The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Heparanase: A Potential Therapeutic Target in Sarcomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:405-431. [PMID: 32274719 DOI: 10.1007/978-3-030-34521-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcomas comprise a heterogeneous group of rare malignancies of mesenchymal origin including more than 70 subtypes. They may arise in muscle, bone, cartilage and other connective tissues. Their high histological and genetic heterogeneity makes diagnosis and treatment very challenging. Deregulation of heparanase has been found in several sarcoma subtypes and high expression levels have been correlated with poor prognosis in Ewing's sarcoma and osteosarcoma. Altered expression of specific heparan sulfate proteoglycans and heparan sulfate biosynthetic enzymes has also been observed. Advances in molecular pathogenesis of sarcomas have evidenced the critical role of several heparan sulfate binding growth factors and receptor tyrosine kinases, highly interconnected with the microenvironment, in sustaining tumor growth and progression. Interference with heparanase/heparan sulfate functions represents a potential therapeutic approach in sarcoma. In this chapter, we summarize the current knowledge about the biological significance of heparanase expression and its potential as a therapeutic target in subtypes of both soft tissue and bone sarcomas. Particular emphasis is given to the involvement of heparan sulfate proteoglycans and their synthesizing and modifying enzymes in bone physiology and disorders leading up to the pathobiology of bone sarcomas. The chapter also describes the cooperation between exostin loss-of-function and heparanase upregulation in hereditary Multiple Osteochondroma syndrome as a paradigmatic example of constitutive alteration of the heparanase/heparan sulfate proteoglycan system which may contribute to progression to malignant secondary chondrosarcoma. Preclinical evidence of the role of heparanase as a promising therapeutic target in various sarcoma subtypes is finally resumed.
Collapse
|
43
|
Characterization of C. elegans Chondroitin Proteoglycans and Their Large Functional and Structural Heterogeneity; Evolutionary Aspects on Structural Differences Between Humans and the Nematode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:155-170. [PMID: 32185697 DOI: 10.1007/5584_2020_485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteoglycans regulate important cellular pathways in essentially all metazoan organisms. While considerable effort has been devoted to study structural and functional aspects of proteoglycans in vertebrates, the knowledge of the core proteins and proteoglycan-related functions in invertebrates is relatively scarce, even for C.elegans. This nematode produces a large amount of non-sulfated chondroitin in addition to small amount of low-sulfated chondroitin chains (Chn and CS chains, respectively). Until recently, 9 chondroitin core proteins (CPGs) had been identified in C.elegans, none of which showed any homology to vertebrate counterparts or to other invertebrate core proteins. By using a glycoproteomic approach, we recently characterized the chondroitin glycoproteome of C.elegans, resulting in the identification of 15 novel CPG core proteins in addition to the 9 previously established. Three of the novel core proteins displayed homology to human proteins, indicating that CPG and CSPG core proteins may be more conserved throughout evolution than previously perceived. Bioinformatic analysis of the primary amino acid sequences revealed that the core proteins contained a broad range of functional domains, indicating that specialization of proteoglycan-mediated functions may have evolved early in metazoan evolution. This review specifically discusses our recent data in relation to previous knowledge of core proteins and GAG-attachment sites in Chn and CS proteoglycans of C.elegans and humans, and point out both converging and diverging aspects of proteoglycan evolution.
Collapse
|
44
|
Purfield DC, Evans RD, Carthy TR, Berry DP. Genomic Regions Associated With Gestation Length Detected Using Whole-Genome Sequence Data Differ Between Dairy and Beef Cattle. Front Genet 2019; 10:1068. [PMID: 31749838 PMCID: PMC6848454 DOI: 10.3389/fgene.2019.01068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
While many association studies exist that have attempted to relate genomic markers to phenotypic performance in cattle, very few have considered gestation length as a phenotype, and of those that did, none used whole genome sequence data from multiple breeds. The objective of the present study was therefore to relate imputed whole genome sequence data to estimated breeding values for gestation length using 22,566 sires (representing 2,262,706 progeny) of multiple breeds [Angus (AA), Charolais (CH), Holstein-Friesian (HF), and Limousin (LM)]. The associations were undertaken within breed using linear mixed models that accounted for genomic relatedness among sires; a separate association analysis was undertaken with all breeds analysed together but with breed included as a fixed effect in the model. Furthermore, the genome was divided into 500 kb segments and whether or not segments harboured a single nucleotide polymorphism (SNP) with a P ≤ 1 × 10-4 common to different combinations of breeds was determined. Putative quantitative trait loci (QTL) regions associated with gestation length were detected in all breeds; significant associations with gestation length were only detected in the HF population and in the across-breed analysis of all 22,566 sires. Twenty-five SNPs were significantly associated (P ≤ 5 × 10-8) with gestation length in the HF population. Of the 25 significant SNPs, 18 were located within three QTLs on Bos taurus autosome number (BTA) 18, six were in two QTL on BTA19, and one was located within a QTL on BTA7. The strongest association was rs381577268, a downstream variant of ZNF613 located within a QTL spanning from 58.06 to 58.19 Mb on BTA18; it accounted for 1.37% of the genetic variance in gestation length. Overall there were 11 HF animals within the edited dataset that were homozygous for the T allele at rs381577268 and these had a 3.3 day longer (P < 0.0001) estimated breeding value (EBV) for gestation length than the heterozygous animals and a 4.7 day longer (P < 0.0001) EBV for gestation length than the homozygous CC animals. The majority of the 500 kb windows harboring a SNP with a P ≤ 1 × 10-4 were unique to a single breed and no window was shared among all four breeds for gestation length, suggesting any QTLs identified are breed-specific associations.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| | | | - Tara R Carthy
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Cork, Ireland
| |
Collapse
|
45
|
Hong X, Zhang Z, Pan L, Ma W, Zhai X, Gu C, Zhang Y, Bi X, Huang W, Pei H, Liu Z. MicroRNA-301b promotes the proliferation and invasion of glioma cells through enhancing activation of Wnt/β-catenin signaling via targeting Glypican-5. Eur J Pharmacol 2019; 854:39-47. [PMID: 30951720 DOI: 10.1016/j.ejphar.2019.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence has suggested that Glypican-5 (GPC5) is a tumor suppressor gene in many types of cancers. However, whether GPC5 is involved in glioma remains unknown. This study was designed to explore the expression, biological function and regulatory mechanism of GPC5 in glioma. Our results demonstrated that GPC5 expression was significantly decreased in multiple glioma cell lines. Gain-of-function experiments showed that the ectopic expression of GPC5 markedly inhibited the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines. GPC5 was identified as a target gene of microRNA-301b (miR-301b). Further data showed that miR-301b expression was significantly up-regulated in glioma tissues and cell lines. In addition, miR-301b expression was inversely correlated with GPC5 expression in clinical glioma tissues. The overexpression of miR-301b promoted the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines, whereas the inhibition of miR-301b showed the opposite effect. However, the silencing of GPC5 significantly reversed the antitumor effect of miR-301b inhibition. Overall, our results revealed a tumor suppressive role of GPC5 in glioma and suggested that GPC5 expression was regulated by miR-301b. Our study indicates that the inhibition of miR-301b represses the proliferation and invasion of glioma cells by up-regulating GPC5 expression.
Collapse
Affiliation(s)
- Xin Hong
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Zhengliang Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wei Ma
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xu Zhai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Changwei Gu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Yaru Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xiaoju Bi
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wan Huang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| |
Collapse
|
46
|
Barron M, Zhang S, Li J. A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data. Nucleic Acids Res 2019; 46:e14. [PMID: 29140455 PMCID: PMC5815159 DOI: 10.1093/nar/gkx1113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data.
Collapse
Affiliation(s)
- Martin Barron
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| |
Collapse
|
47
|
Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long-Range Sonic Hedgehog Signaling. Stem Cells 2019; 37:899-909. [PMID: 30977233 PMCID: PMC8491322 DOI: 10.1002/stem.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
48
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
49
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
50
|
Ortiz MV, Roberts SS, Glade Bender J, Shukla N, Wexler LH. Immunotherapeutic Targeting of GPC3 in Pediatric Solid Embryonal Tumors. Front Oncol 2019; 9:108. [PMID: 30873384 PMCID: PMC6401603 DOI: 10.3389/fonc.2019.00108] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Glypican 3 (GPC3) is a heparan sulfate proteoglycan and cell surface oncofetal protein which is highly expressed on a variety of pediatric solid embryonal tumors including the majority of hepatoblastomas, Wilms tumors, rhabdoid tumors, certain germ cell tumor subtypes, and a minority of rhabdomyosarcomas. Via both its core protein and heparan sulfate side chains, GPC3 activates the canonical Wnt/β-catenin pathway, which is frequently overexpressed in these malignancies. Loss of function mutations in GPC3 lead to Simpson-Golabi-Behmel Syndrome, an X-linked overgrowth condition with a predisposition to GPC3-expressing cancers including hepatoblastoma and Wilms tumor. There are several immunotherapeutic approaches to targeting GPC3, including vaccines, monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, cytolytic T lymphocytes, and CAR T cells. These therapies offer a potentially novel means to target these pediatric solid embryonal tumors. A key pediatric-specific consideration of GPC3-targeted immunotherapeutics is that GPC3 can be physiologically expressed in normal tissues during the first year of life, particularly in the liver and kidney. In summary, this article reviews the current evidence for targeting childhood cancers with GPC3-directed immunotherapies.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Julia Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|