1
|
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. MEMBRANES 2024; 14:137. [PMID: 38921504 PMCID: PMC11205511 DOI: 10.3390/membranes14060137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
| | - Yixuan Chen
- School of Physics, Peking University, Beijing 100871, China;
| | - Hongli Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Aleksanyan M, Grafmüller A, Crea F, Georgiev VN, Yandrapalli N, Block S, Heberle J, Dimova R. Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304336. [PMID: 37653602 PMCID: PMC10625111 DOI: 10.1002/advs.202304336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Fucsia Crea
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Vasil N. Georgiev
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Naresh Yandrapalli
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Stephan Block
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Joachim Heberle
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| |
Collapse
|
3
|
Ghuloum FI, Stevens LA, Johnson CA, Riobo-Del Galdo NA, Amer MH. Towards modular engineering of cell signalling: Topographically-textured microparticles induce osteogenesis via activation of canonical hedgehog signalling. BIOMATERIALS ADVANCES 2023; 154:213652. [PMID: 37837904 DOI: 10.1016/j.bioadv.2023.213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Polymer microparticles possess great potential as functional building blocks for advanced bottom-up engineering of complex tissues. Tailoring the three-dimensional architectural features of culture substrates has been shown to induce osteogenesis in mesenchymal stem cells in vitro, but the molecular mechanisms underpinning this remain unclear. This study proposes a mechanism linking the activation of Hedgehog signalling to the osteoinductive effect of surface-engineered, topographically-textured polymeric microparticles. In this study, mesenchymal progenitor C3H10T1/2 cells were cultured on smooth and dimpled poly(D,l-lactide) microparticles to assess differences in viability, cellular morphology, proliferation, and expression of a range of Hedgehog signalling components and osteogenesis-related genes. Dimpled microparticles induced osteogenesis and activated the Hedgehog signalling pathway relative to smooth microparticles and 2D-cultured controls without the addition of exogenous biochemical factors. We observed upregulation of the osteogenesis markers Runt-related transcription factor2 (Runx2) and bone gamma-carboxyglutamate protein 2 (Bglap2), as well as the Hedgehog signalling components, glioma associated oncogene homolog 1 (Gli1), Patched1 (Ptch1), and Smoothened (Smo). Treatment with the Smo antagonist KAAD-cyclopamine confirmed the involvement of Smo in Gli1 target gene activation, with a significant reduction in the expression of Gli1, Runx2 and Bglap2 (p ≤ 0.001) following KAAD-cyclopamine treatment. Overall, our study demonstrates the role of the topographical microenvironment in the modulation of Hedgehog signalling, highlighting the potential for tailoring substrate topographical design to offer cell-instructive 3D microenvironments. Topographically-textured microparticles allow the modulation of Hedgehog signalling in vitro without adding exogenous biochemical agonists, thereby eliminating potential confounding artefacts in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Fatmah I Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Lee A Stevens
- Low Carbon Energy and Resources Technologies Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
4
|
Jani P, Nayani K, Abbott NL. Sculpting the shapes of giant unilamellar vesicles using isotropic-nematic-isotropic phase cycles. SOFT MATTER 2021; 17:9078-9086. [PMID: 34558596 DOI: 10.1039/d1sm00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding how soft matter deforms in response to mechanical interactions is central to the design of functional synthetic materials as well as elucidation of the behaviors of biological assemblies. Here we explore how cycles of thermally induced transitions between nematic (N) and isotropic (I) phases can be used to exert cyclical elastic stresses on dispersions of giant unilamellar vesicles (GUVs) and thereby evolve GUV shape and properties. The measurements were enabled by the finding that I-N-I phase transitions of the lyotropic chromonic liquid crystal disodium cromoglycate, when conducted via an intermediate columnar (M) phase, minimized transport of GUVs on phase fronts to confining surfaces. Whereas I to N phase transitions strained spherical GUVs into spindle-like shapes, with an efflux of GUV internal volume, subsequent N to I transitions generated a range of complex GUV shapes, including stomatocyte, pear- and dumbbell-like shapes that depended on the extent of strain in the N phase. The highest strained GUVs were observed to form buds (daughter vesicles) that we show, via a cycle of I-N-I-N phase transitions, are connected via a neck to the parent vesicle. Additional experiments established that changes in elasticity of the phase surrounding the GUVs and not thermal expansion of membranes were responsible for the shape transitions, and that I-N-I transformations that generate stomatocytes can be understood from the Bilayer-Coupling model of GUV shapes. Overall, these observations advance our understanding of how LC elastic stresses can be regulated to evolve the shapes of soft biological assemblies as well as provide new approaches for engineering synthetic soft matter.
Collapse
Affiliation(s)
- Purvil Jani
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Karthik Nayani
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas L Abbott
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Grzeczkowicz A, Drabik M, Lipko A, Bącal P, Kwiatkowska A, Kazimierczak B, Granicka LH. A Composite Membrane System with Gold Nanoparticles, Hydroxyapatite, and Fullerenol for Dual Interaction for Biomedical Purposes. MEMBRANES 2021; 11:565. [PMID: 34436328 PMCID: PMC8398639 DOI: 10.3390/membranes11080565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Background: Wound dressing plays a vital role in post-operative aftercare. There is the necessity to develop dressings for application on the border of soft and hard tissue. This study aimed to develop multifunctional polyelectrolyte layers enhanced by hydroxyapatite nanoparticles, gold nanoparticles (AuNPs), and/or fullerenol nanocomposites to achieve a wound dressing that could be applied on the bone-skin interface. Methods: Constructed shells were examined using TEM, STEM, and EDX techniques. The human osteoblasts or fibroblasts were immobilized within the shells. The systems morphology was assessed using SEM. The functioning of cells was determined by flow cytomery. Moreover, the internalization of AuNPs was assessed. Results: Involvement of fullerenol and/or hydroxyapatite nanoparticles influenced the immobilized cell systems morphology. Membranes with fullerenol and hydroxyapatite nanoparticles were observed to block the internalization of AuNPs by immobilized hFOB cells. Conclusions: The designed bilayer membranes incorporating fullerenol, and bacteriostatic elements, prevented the internalization of AuNPs by hFOB cells and ensured the proper counts and morphology of eukaryotic cells. The developed material can be recommended for dressings at the bone-skin interface.
Collapse
Affiliation(s)
- Anna Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| | - Monika Drabik
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| | - Agata Lipko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| | - Paweł Bącal
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55 St., 02-109 Warsaw, Poland
| | - Angelika Kwiatkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| | - Beata Kazimierczak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland; (A.G.); (M.D.); (A.L.); (P.B.); (A.K.); (B.K.)
| |
Collapse
|
6
|
Kwon TY, Jeong J, Park E, Cho Y, Lim D, Ko UH, Shin JH, Choi J. Physical analysis reveals distinct responses of human bronchial epithelial cells to guanidine and isothiazolinone biocides. Toxicol Appl Pharmacol 2021; 424:115589. [PMID: 34029620 DOI: 10.1016/j.taap.2021.115589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Changes in the physical state of the cells can serve as important indicators of stress responses because they are closely linked with the changes in the pathophysiological functions of the cells. Physical traits can be conveniently assessed by analyzing the morphological features and the stresses at the cell-matrix and cell-cell adhesions in both single-cell and monolayer model systems in 2D. In this study, we investigated the mechano-stress responses of human bronchial epithelial cells, BEAS-2B, to two functionally distinct groups of biocides identified during the humidifier disinfectant accident, namely, guanidine (PHMG) and isothiazolinone (CMIT/MIT). We analyzed the physical traits, including cell area, nuclear area, and nuclear shape. While the results showed inconsistent average responses to the biocides, the degree of dispersion in the data set, measured by standard deviation, was remarkably higher in CMIT/MIT treated cells for all traits. As mechano-stress endpoints, traction and intercellular stresses were also measured, and the cytoskeletal actin structures were analyzed using immunofluorescence. This study demonstrates the versatility of the real-time imaging-based biomechanical analysis, which will contribute to identifying the temporally sensitive cellular behaviors as well as the emergence of heterogeneity in response to exogenously imposed stress factors. This study will also shed light on a comparative understanding of less studied substance, CMIT/MIT, in relation to a more studied substance, PHMG, which will further contribute to more strategic planning for proper risk management of the ingredients involved in toxicological accidents.
Collapse
Affiliation(s)
- Tae Yoon Kwon
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Dongyoung Lim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea.
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Chidanguro T, Simon YC. Bent out of shape: towards non‐spherical polymersome morphologies. POLYM INT 2021. [DOI: 10.1002/pi.6203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tamuka Chidanguro
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS USA
| |
Collapse
|
8
|
Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:164-180. [PMID: 31910095 DOI: 10.1089/ten.teb.2019.0256] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Health care and medicine were revolutionized in recent years by the development of biomaterials, such as stents, implants, personalized drug delivery systems, engineered grafts, cell sheets, and other transplantable materials. These materials not only support the growth of cells before transplantation but also serve as replacements for damaged tissues in vivo. Among the various biomaterials available, those made from natural biological sources such as extracellular proteins (collagen, fibronectin, laminin) have shown significant benefits, and thus are widely used. However, routine biomaterial-based research requires copious quantities of proteins and the use of pure and intact extracellular proteins could be highly cost ineffective. Gelatin is a molecular derivative of collagen obtained through the irreversible denaturation of collagen proteins. Gelatin shares a very close molecular structure and function with collagen and thus is often used in cell and tissue culture to replace collagen for biomaterial purposes. Recent technological advancements such as additive manufacturing, rapid prototyping, and three-dimensional printing, in general, have resulted in great strides toward the generation of functional gelatin-based materials for medical purposes. In this review, the structural and molecular similarities of gelatin to other extracellular matrix proteins are compared and analyzed. Current strategies for gelatin crosslinking and production are described and recent applications of gelatin-based biomaterials in cell culture and tissue regeneration are discussed. Finally, recent improvements in gelatin-based biomaterials for medical applications and future directions are elaborated. Impact statement In this study, we described gelatin's biochemical properties and compared its advantages and drawbacks over other extracellular matrix proteins and polymers used for biomaterial application. We also described how gelatin can be used with other polymers in creating gelatin composite materials that have enhanced mechanical properties, increased biocompatibility, and boosted bioactivity, maximizing its benefits for biomedical purposes. The article is relevant, as it discussed not only the chemistry of gelatin, but also listed the current techniques in gelatin/biomaterial manufacturing and described the most recent trends in gelatin-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Alvin Bacero Bello
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.,Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Deogil Kim
- Department of Biomedical Science, CHA University, Seongnam-Si, Republic of Korea
| | - Dohyun Kim
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, Dongguk University, Gyeonggi, Republic of Korea
| |
Collapse
|
9
|
Natale CF, Lafaurie-Janvore J, Ventre M, Babataheri A, Barakat AI. Focal adhesion clustering drives endothelial cell morphology on patterned surfaces. J R Soc Interface 2019; 16:20190263. [PMID: 31480922 DOI: 10.1098/rsif.2019.0263] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In many cell types, shape and function are intertwined. In vivo, vascular endothelial cells (ECs) are typically elongated and aligned in the direction of blood flow; however, near branches and bifurcations where atherosclerosis develops, ECs are often cuboidal and have no preferred orientation. Thus, understanding the factors that regulate EC shape and alignment is important. In vitro, EC morphology and orientation are exquisitely sensitive to the composition and topography of the substrate on which the cells are cultured; however, the underlying mechanisms remain poorly understood. Different strategies of substrate patterning for regulating EC shape and orientation have been reported including adhesive motifs on planar surfaces and micro- or nano-scale gratings that provide substrate topography. Here, we explore how ECs perceive planar bio-adhesive versus microgrooved topographic surfaces having identical feature dimensions. We show that while the two types of patterned surfaces are equally effective in guiding and directing EC orientation, the cells are considerably more elongated on the planar patterned surfaces than on the microgrooved surfaces. We also demonstrate that the key factor that regulates cellular morphology is focal adhesion clustering which subsequently drives cytoskeletal organization. The present results promise to inform design strategies of novel surfaces for the improved performance of implantable cardiovascular devices.
Collapse
Affiliation(s)
- C F Natale
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy
| | - J Lafaurie-Janvore
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - M Ventre
- Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy
| | - A Babataheri
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - A I Barakat
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Wong CK, Stenzel MH, Thordarson P. Non-spherical polymersomes: formation and characterization. Chem Soc Rev 2019; 48:4019-4035. [DOI: 10.1039/c8cs00856f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This tutorial review summarizes recent efforts over the past decade to study the morphological transformation of conventionally spherical polymersomes into non-spherical polymersomes.
Collapse
Affiliation(s)
- Chin Ken Wong
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Martina H. Stenzel
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD)
| | - Pall Thordarson
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
11
|
Aras BS, Zhou YC, Dawes A, Chou CS. The importance of mechanical constraints for proper polarization and psuedo-cleavage furrow generation in the early Caenorhabditis elegans embryo. PLoS Comput Biol 2018; 14:e1006294. [PMID: 29985915 PMCID: PMC6053242 DOI: 10.1371/journal.pcbi.1006294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/19/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Intracellular polarization, where a cell specifies a spatial axis by segregation of specific factors, is a fundamental biological process. In the early embryo of the nematode worm Caenorhabditis elegans (C. elegans), polarization is often accompanied by deformations of the cortex, a highly contractile structure consisting of actin filaments cross-linked by the motor protein myosin (actomyosin). It has been suggested that the eggshell surrounding the early embryo plays a role in polarization although its function is not understood. Here we develop a mathematical model which couples a reaction-diffusion model of actomyosin dynamics with a phase field model of the cell cortex to implicitly track cell shape changes in the early C. elegans embryo. We investigate the potential rigidity effect of the geometric constraint imposed by the presence and size of the eggshell on polarization dynamics. Our model suggests that the geometric constraint of the eggshell is essential for proper polarization and the size of the eggshell also affects the dynamics of polarization. Therefore, we conclude that geometric constraint on a cell might affect the dynamics of a biochemical process. Polarization, whereby molecules and proteins are asymmetrically distributed throughout the cell, is a vital process for many cellular functions. In the early C. elegans embryo the asymmetric distribution of cell cytoskeleton during the initiation of polarization leads to asymmetric contractions which are higher in the anterior and lower in the posterior of a cell. The C. elegans embryo is surrounded by a rigid body, the eggshell, which functions in numerous cell processes. We investigate the structural support of eggshell during the establishment phase by tracking the moving cell surface. We incorporate protein dynamics involved in polarization into the membrane evolution. We conclude that eggshell might have a role in cell polarization by preventing the distortion of cell surface.
Collapse
Affiliation(s)
- Betül Senay Aras
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Y C Zhou
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adriana Dawes
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Li J, Shima H, Nishizawa H, Ikeda M, Brydun A, Matsumoto M, Kato H, Saiki Y, Liu L, Watanabe-Matsui M, Iemura K, Tanaka K, Shiraki T, Igarashi K. Phosphorylation of BACH1 switches its function from transcription factor to mitotic chromosome regulator and promotes its interaction with HMMR. Biochem J 2018; 475:981-1002. [PMID: 29459360 DOI: 10.1042/bcj20170520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2023]
Abstract
The transcription repressor BACH1 performs mutually independent dual roles in transcription regulation and chromosome alignment during mitosis by supporting polar ejection force of mitotic spindle. We now found that the mitotic spindles became oblique relative to the adhesion surface following endogenous BACH1 depletion in HeLa cells. This spindle orientation rearrangement was rescued by re-expression of BACH1 depending on its interactions with HMMR and CRM1, both of which are required for the positioning of mitotic spindle, but independently of its DNA-binding activity. A mass spectrometry analysis of BACH1 complexes in interphase and M phase revealed that BACH1 lost during mitosis interactions with proteins involved in chromatin and gene expression but retained interactions with HMMR and its known partners including CHICA. By analyzing BACH1 modification using stable isotope labeling with amino acids in cell culture, mitosis-specific phosphorylations of BACH1 were observed, and mutations of these residues abolished the activity of BACH1 to restore mitotic spindle orientation in knockdown cells and to interact with HMMR. Detailed histological analysis of Bach1-deficient mice revealed lengthening of the epithelial fold structures of the intestine. These observations suggest that BACH1 performs stabilization of mitotic spindle orientation together with HMMR and CRM1 in mitosis, and that the cell cycle-specific phosphorylation switches the transcriptional and mitotic functions of BACH1.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University, Sendai 980-8575, Japan
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masatoshi Ikeda
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Andrey Brydun
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University, Sendai 980-8575, Japan
| | - Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuriko Saiki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Restart Postdoctoral Fellow, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takuma Shiraki
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawashi 649-6493, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
13
|
Calcium-axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes. J Biol Phys 2017; 44:53-80. [PMID: 29090363 DOI: 10.1007/s10867-017-9475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 μL.s-1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10-4 nm-1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10-4 nm-1, while 50% of cilia underwent bending similar to that observed during calcium-free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 μm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 μm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 μM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ≈1.0 mM in vitro, but at higher concentration (≈1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule-associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer.
Collapse
|
14
|
Natarajan J, Madras G, Chatterjee K. Development of Graphene Oxide-/Galactitol Polyester-Based Biodegradable Composites for Biomedical Applications. ACS OMEGA 2017; 2:5545-5556. [PMID: 30023749 PMCID: PMC6044677 DOI: 10.1021/acsomega.7b01139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/22/2017] [Indexed: 05/08/2023]
Abstract
We have developed nanocomposites based on galactitol/adipic acid in the molar ratio of 1:1 with different weight percentages of graphene oxide (GO). The objective of this study was to analyze the effect of enhanced physicochemical properties achieved due to the addition of GO to the polymers on cellular responses. The chemical structures of the polymer and composites were confirmed by Fourier transform infrared spectroscopy. Scanning electron microscopy revealed the uniform distribution of GO in the polymers. Differential scanning calorimetry showed no significant variation in the glass-transition temperature of the nanocomposites. Dynamic mechanical analysis demonstrated the increase of Young's modulus with the increase in the addition of GO to the polymer from 0.5 to 1 wt % and a dramatic decrease in modulus with the addition of 2 wt % GO to the polyester. Contact angle analysis illustrated a slight increase in hydrophilicity with the addition of GO to the polyester. Investigations on the hydrolytic degradation and dye release were performed and revealed that the degradation and release decreased with the increase in the weight percentages of GO but increased for 2 wt % GO with the polymer. The rates of degradation and dye release followed first-order and Higuchi kinetics, respectively. The initial in vitro cytocompatibility studies exhibited minimal toxicity. Mineralization studies proved that these nanocomposites stimulated osteogenesis. This study has salient implications for designing biodegradable polymers for use as scaffolds with tailored release.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre
for Nano Science and Engineering, Department of Chemical Engineering, and Department of
Materials Engineering, Indian Institute
of Science, C.V. Raman
Avenue, Bangalore 560012, India
| | - Giridhar Madras
- Centre
for Nano Science and Engineering, Department of Chemical Engineering, and Department of
Materials Engineering, Indian Institute
of Science, C.V. Raman
Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre
for Nano Science and Engineering, Department of Chemical Engineering, and Department of
Materials Engineering, Indian Institute
of Science, C.V. Raman
Avenue, Bangalore 560012, India
| |
Collapse
|
15
|
Natarajan J, Madras G, Chatterjee K. Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28281-28297. [PMID: 28766935 DOI: 10.1021/acsami.7b09299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study elucidates the facile synthesis and exceptional properties of a family of novel poly(ester amide)s (PEAs) based on bis(2-hydroxy ethylene) terephthalamide that was obtained from the poly(ethylene terephthalate) waste. Fourier transform infrared and 1H NMR were used to verify the presence of ester and amide in the polymer backbone. Differential scanning calorimetry data showed that the glass transition temperature decreased with as the chain length of dicarboxylic acids increased. Dynamic mechanical analysis and contact angle studies proved that the modulus values and hydrophobicity increased with as the chain lengths of dicarboxylic acids increased. In vitro hydrolytic degradation and dye release studies demonstrated that the degradation and release decreased with as the chain lengths of dicarboxylic acids increased. Modeling these data illustrated that degradation and release follow first-order degradation and zero-order release, respectively. The in vitro cytocompatibility studies confirmed the minimal toxicity characteristic of these polymers. Osteogenic studies proved that these polymers can be highly influential in diverting the cells toward osteogenic lineage. Alizarin red staining evinced the presence of twice the amount of calcium phosphate deposits by the cells on these polymers when compared to the control. The observed result was also corroborated by the increased expression of alkaline phosphatase. These findings were further validated by the markedly higher mRNA expressions for known osteogenic markers using real time polymerase chain reaction. Therefore, these polymers efficiently promoted osteogenesis. This study demonstrates that the physical properties, degradation, and release kinetics can be altered to meet the specific requirements in organ regeneration as well as facilitate simultaneous polymer resorption through control of the chain length of the monomers. The findings of this study have significant implications for designing cost-effective biodegradable polymers for tissue engineering.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
16
|
Zhang J, Dalbay MT, Luo X, Vrij E, Barbieri D, Moroni L, de Bruijn JD, van Blitterswijk CA, Chapple JP, Knight MM, Yuan H. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomater 2017; 57:487-497. [PMID: 28456657 PMCID: PMC5489417 DOI: 10.1016/j.actbio.2017.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. STATEMENT OF SIGNIFICANCE The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation.
Collapse
|
17
|
Le BQ, Vasilevich A, Vermeulen S, Hulshof F, Stamatialis DF, van Blitterswijk CA, de Boer J. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Eng Part A 2017; 23:458-469. [DOI: 10.1089/ten.tea.2016.0421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Bach Q. Le
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Aliaksei Vasilevich
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Steven Vermeulen
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Frits Hulshof
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Dimitrios F. Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
18
|
Natarajan J, Movva S, Madras G, Chatterjee K. Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:534-547. [PMID: 28532063 DOI: 10.1016/j.msec.2017.03.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023]
Abstract
Various classes of biodegradable polymers have been explored towards finding alternates for the existing treatments for bone disorders. In this framework, two families of polyesters using an array of crosslinkers were synthesized. One was based on galactiol/adipic acid and the other based on galactitol/dodecanedioic acid. The structures of the polymers were confirmed by FTIR and further confirmed by 1H NMR. DSC showed that the polymers were amorphous and the glass transition temperature increased with increase in crosslinking. DMA and contact angle analysis revealed that the modulus and hydrophobicity increased with increase in crosslinking. Swelling studies demonstrated that %swelling decreased with increase in crosslinking. The in vitro hydrolytic degradation studies and dye release studies of all the polymers exhibited that the degradation and release rate decreased with increase in crosslinking, hydrophobicity and modulus. Degradation and release followed first order kinetics and Higuchi kinetics, respectively. The preliminary in vitro cytotoxicity studies proved that this array of polymers was not cytotoxic. Osteogenic differentiation of pre-osteoblasts was observed in three dimensional (3D) porous scaffolds prepared using these polymers. This study demonstrates the ability to modulate the physical properties, degradation and release kinetics of these biodegradable polymers through smart selection of crosslinkers. The findings of these studies have important implications for developing novel biodegradable polymers for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sahitya Movva
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
19
|
The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin. Sci Rep 2017; 7:40538. [PMID: 28094304 PMCID: PMC5240092 DOI: 10.1038/srep40538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/07/2016] [Indexed: 01/16/2023] Open
Abstract
The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other “staminal” traits.
Collapse
|
20
|
Natarajan J, Dasgupta Q, Shetty SN, Sarkar K, Madras G, Chatterjee K. Poly(ester amide)s from Soybean Oil for Modulated Release and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25170-84. [PMID: 27599306 DOI: 10.1021/acsami.6b10382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Designing biomaterials for bone tissue regeneration that are also capable of eluting drugs is challenging. Poly(ester amide)s are known for their commendable mechanical properties, degradation, and cellular response. In this regard, development of new poly(ester amide)s becomes imperative to improve the quality of lives of people affected by bone disorders. In this framework, a family of novel soybean oil based biodegradable poly(ester amide)s was synthesized based on facile catalyst-free melt-condensation reaction. The structure of the polymers was confirmed by FTIR and (1)H -NMR, which indicated the formation of the ester and amide bonds along the polymer backbone. Thermal analysis revealed the amorphous nature of the polymers. Contact angle and swelling studies proved that the hydrophobic nature increased with increase in chain length of the diacids and decreased with increase in molar ratio of sebacic acid. Mechanical studies proved that Young's modulus decreased with decrease in chain lengths of the diacids and increase in molar ratio of sebacic acid. The in vitro hydrolytic degradation and dye release demonstrated that the degradation and release decreased with increase in chain lengths of the diacids and increased with increase in molar ratio of sebacic acid. The degradation followed first order kinetics and dye release followed Higuchi kinetics. In vitro cell studies showed no toxic effects of the polymers. Osteogenesis studies revealed that the polymers can be remarkably efficient because more than twice the amount of minerals were deposited on the polymer surfaces than on the tissue culture polystyrene surfaces. Thus, a family of novel poly(ester amide)s has been synthesized, characterized for controlled release and tissue engineering applications wherein the physical, degradation, and release kinetics can be tuned by varying the monomers and their molar ratios.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Queeny Dasgupta
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Shreya N Shetty
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kishor Sarkar
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
21
|
Real-time prediction of cell division timing in developing zebrafish embryo. Sci Rep 2016; 6:32962. [PMID: 27597656 PMCID: PMC5011986 DOI: 10.1038/srep32962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems.
Collapse
|
22
|
Memory of cell shape biases stochastic fate decision-making despite mitotic rounding. Nat Commun 2016; 7:11963. [PMID: 27349214 PMCID: PMC4931277 DOI: 10.1038/ncomms11963] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cell shape influences function, and the current model suggests that such shape effect is transient. However, cells dynamically change their shapes, thus, the critical question is whether shape information remains influential on future cell function even after the original shape is lost. We address this question by integrating experimental and computational approaches. Quantitative live imaging of asymmetric cell-fate decision-making and their live shape manipulation demonstrates that cellular eccentricity of progenitor cell indeed biases stochastic fate decisions of daughter cells despite mitotic rounding. Modelling and simulation indicates that polarized localization of Delta protein instructs by the progenitor eccentricity is an origin of the bias. Simulation with varying parameters predicts that diffusion rate and abundance of Delta molecules quantitatively influence the bias. These predictions are experimentally validated by physical and genetic methods, showing that cells exploit a mechanism reported herein to influence their future fates based on their past shape despite dynamic shape changes. Cell shape influences function but during mitotic cell rounding the original shape is lost. Here the authors show that the cellular eccentricity of progenitor cell biases stochastic fate-decisions using a combination of quantitative live imaging, genetic manipulations and computational simulations.
Collapse
|
23
|
Dimitracopoulos A, Lam M, Baum B. Oriented Division: Using T-Junctions to Determine Direction. Curr Biol 2016; 26:R371-3. [PMID: 27166698 DOI: 10.1016/j.cub.2016.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell shape has long been thought to be the main cue for spindle positioning in mitotic cells, but new evidence suggests that, in the context of an epithelium, tricellular junctions encode positional information that helps orient mitotic spindles.
Collapse
Affiliation(s)
| | - Maxine Lam
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, UCL, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Pilarczyk G, Raulf A, Gunkel M, Fleischmann BK, Lemor R, Hausmann M. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes. J Funct Biomater 2016; 7:E1. [PMID: 26751484 PMCID: PMC4810060 DOI: 10.3390/jfb7010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.
Collapse
Affiliation(s)
- Götz Pilarczyk
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| | - Alexandra Raulf
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Manuel Gunkel
- ViroQuant Cell Networks RNAi Screening Facility, BioQuant Center, Im Neuenheimer Feld INF 267, Heidelberg D-69120, Germany.
| | - Bernd K Fleischmann
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Robert Lemor
- Luxembourg Institute for Science and Technology, 5 avenue des Hauts-Fourneaux, Esch-Belval L-4362, Luxembourg.
| | - Michael Hausmann
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| |
Collapse
|
25
|
Natarajan J, Madras G, Chatterjee K. Localized delivery and enhanced osteogenic differentiation with biodegradable galactitol polyester elastomers. RSC Adv 2016. [DOI: 10.1039/c6ra11476h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytocompatible galactitol based polyesters showed variations in physical properties, degradation, dye release and ability to direct cells towards bone lineage.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Kaushik Chatterjee
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
26
|
Natarajan J, Madras G, Chatterjee K. Maltitol-based biodegradable polyesters with tailored degradation and controlled release for bone regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra02058e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyesters based on maltitol and different dicarboxylic acids promoted mineral deposition and directed cells towards osteogenic lineage.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Kaushik Chatterjee
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
27
|
Sarbazvatan S, Sardari D, Taheri N, Sepanloo K. Response of single cell with acute angle exposed to an external electric field. Med Eng Phys 2015; 37:1015-9. [PMID: 26307458 DOI: 10.1016/j.medengphy.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/01/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
It is known that the electric field incurs effects on the living cells. Predicting the response of single cell or multilayer cells to induced alternative or static eclectic field has permanently been a challenge. In the present study a first order single cell with acute angle under the influence of external electric field is considered. The cell division stage or the special condition of reshaping is modelled with a cone being connected. In the case of cell divisions, anaphase, it can be considered with two cones that connected nose-to-nose. Each cone consists of two regions. The first is the membrane modelled with a superficial layer, and the second is cytoplasm at the core. A Laplace equation is written for this model and the distribution of its electric field is a sharp point in the single cell for which an acute angle model is calculated.
Collapse
Affiliation(s)
- Saber Sarbazvatan
- Faculdade de Ciências, Universidade do Porto- Rua do Campo Alegre, 4169-007, Porto, Portugal .
| | - Dariush Sardari
- Plasma Physics Building, Islamic Azad University, Science & Research Branch, Tehran, P.O. Box 14515-775, Iran
| | - Nahid Taheri
- Faculdade de Ciências, Universidade do Porto- Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Kamran Sepanloo
- Reactor & Accelerators Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran, Iran
| |
Collapse
|
28
|
Xia Y, He X, Cao M, Wang X, Sun Y, He H, Xu H, Lu JR. Self-Assembled Two-Dimensional Thermoresponsive Microgel Arrays for Cell Growth/Detachment Control. Biomacromolecules 2014; 15:4021-31. [DOI: 10.1021/bm501069w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yongqing Xia
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Xinlong He
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Meiwen Cao
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Xiaojuan Wang
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Yawei Sun
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Hua He
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Hai Xu
- State
Key Laboratory of Heavy Oil Processing and Centre for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao, 266555, China
| | - Jian Ren Lu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
29
|
Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. ACTA ACUST UNITED AC 2014; 102:13-36. [DOI: 10.1002/bdrc.21059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| |
Collapse
|
30
|
Fan Z, Shen Y, Zhang F, Zuo B, Lu Q, Wu P, Xie Z, Dong Q, Zhang H. Control of olfactory ensheathing cell behaviors by electrospun silk fibroin fibers. Cell Transplant 2013; 22 Suppl 1:S39-50. [PMID: 24153024 DOI: 10.3727/096368913x672190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the only glial cell type that normally penetrates the transition zone between the peripheral and central nervous systems, are one of the most promising candidates for cell transplantation in repairing spinal cord injury (SCI). However, we must manipulate and regulate OECs' behavior to make these cells effective in cell transplantation. In the present study, we assessed the response of rat OECs to different variants of nanofibrous silk fibroin mats with regard to cell morphology, adhesion, proliferation, and migration and the related gene and protein expression. Results showed that OECs adhere and spread more easily on Tussah silk fibroin (TSF) fibers than Bombyx mori silk fibroin fibers, resulting in a higher rate of cell proliferation and gene and protein expression, examined by RT-PCR and ELISA. In addition, the morphology of OECs on microfibers is mainly polygonal with short protrusions, whereas the OECs on nanofibers exhibit a bipolar shape with long protrusions that align along the fibers, especially when aligned fibers are employed. Moreover, OECs on silk fibroin nanofibers migrate more efficiently than those on poly-L-lysine (PLL). Based on the experimental results, the morphology, adhesion, spread, gene and protein expression, and migration of OECs could be modulated and regulated by adjusting the contents and structure of silk fibroin nanofibers, shedding light on the control of OECs' behavior in nerve tissue engineering and thus the future therapeutic intervention for nerve repair after injury. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
31
|
Chen X, Thibeault SL. Response of fibroblasts to transforming growth factor-β1 on two-dimensional and in three-dimensional hyaluronan hydrogels. Tissue Eng Part A 2012; 18:2528-38. [PMID: 22734649 DOI: 10.1089/ten.tea.2012.0094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1), an important cytokine with multiple functions, is secreted during wound healing. Previous studies have utilized two-dimensional (2D) cell culture to elucidate the functions of TGF-β1; however, 2D culture does not represent the complex three-dimensional (3D) in vivo environment. Using a synthetic hyaluronan (HA) extracellular matrix (ECM) hydrogel, we investigated the effect of TGF-β1 on fibroblasts cultured in three conditions--on tissue culture polystyrene (TCP), on HA (2D), and in HA (3D). After TGF-β1 treatment (0.1 to 20 ng/mL), morphological features and ECM regulation were analyzed by immunocytochemistry, Western blot, quantitative polymerase chain reaction, and zymogram assays. On TCP, cells showed the typical spindle shape with strong alpha smooth muscle actin (α-SMA) staining of cytoplasmic myofilaments along the cell axes after TGF-β1 treatment; on HA (2D), spindle-shape cells showed little α-SMA staining; in HA (3D), cells were smaller and rounded with less α-SMA deposition. The α-SMA gene and protein expression on TCP were significantly upregulated by TGF-β1, but TGF-β1 did not induce α-SMA expression in the presence of HA (both 2D and 3D). 3D HA culture significantly downregulated collagen I, III, and fibronectin expression, increased matrix metalloproteinase 1 and 2 (MMP1/MMP2) activity, upregulated MMP1 mRNA and downregulated TIMP3 mRNA expression. This study suggested that exogenous HA, particularly in 3D culture, appears to suppress ECM production, enhances ECM degradation and remodeling, and inhibits myofibroblast differentiation without decreasing TGF-β receptor expression.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
32
|
Farnum CE, Wilsman NJ. Axonemal positioning and orientation in three-dimensional space for primary cilia: what is known, what is assumed, and what needs clarification. Dev Dyn 2011; 240:2405-31. [PMID: 22012592 PMCID: PMC3278774 DOI: 10.1002/dvdy.22756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two positional characteristics of the ciliary axoneme--its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional (3D) space--are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|