1
|
Tian S, Qin Y, Wu Y, Dong M. Design, performance, processing, and validation of a pooled CRISPR perturbation screen for bacterial toxins. Nat Protoc 2025; 20:1158-1195. [PMID: 39487259 DOI: 10.1038/s41596-024-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
Unbiased forward genetic screens have been extensively employed in biological research to elucidate functional genomics. In pooled clustered regularly interspaced short palindromic repeats (CRISPR) perturbation screens, various genetically encoded gain-of-function or loss-of-function mutations are introduced into a heterogeneous population of cells. Subsequently, these cells are screened for phenotypes, perturbation-associated genotypes are analyzed and a connection between genotype and phenotype is determined. CRISPR screening techniques enable the investigation of important biological questions, such as how bacterial toxins kill cells and cause disease. However, the broad spectrum of effects caused by diverse toxins presents a challenge when selecting appropriate screening strategies. Here, we provide a step-by-step protocol for a genome-wide pooled CRISPR perturbation screen to study bacterial toxins. We describe technical considerations, pilot experiments, library construction, screen execution, result analysis and validation of the top enriched hits. These screens are applicable for many different types of toxins and are anticipated to reveal a repertoire of host factors crucial in the intoxication pathway, such as receptors, trafficking/translocation factors and substrates. The entire protocol takes 21-27 weeks and does not require specialized knowledge beyond basic biology.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yuhang Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuxuan Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Huang T, Xie W, Guo Y, Li Y, Yin J, Jin X, Ma Y, Zhang Y, Huang D, Chen C, Wang X, Zhu Z, Gan Y, Liesz A, Yu W, Yuan J, Li P. St3gal5-mediated sialylation of glyco-CD177 on neutrophils restricts neuroinflammation following CNS injury. Proc Natl Acad Sci U S A 2025; 122:e2426187122. [PMID: 40244680 PMCID: PMC12037025 DOI: 10.1073/pnas.2426187122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
Neutrophils are the most abundant circulating leukocyte population that play critical roles in neuroinflammation following central nervous system (CNS) injury. CD177, a glycoprotein on neutrophils, is emerging as an important immune regulator which can fundamentally affect multiple human inflammatory diseases. However, the role and regulatory mechanism of CD177 glycobiology of neutrophils in neuroinflammation remain elusive. Here, we show that CD177+ neutrophils expand significantly and infiltrate the injured brain following CNS injury both in the human and mouse. Using single-cell RNA sequencing and genetic approaches, we find CD177+ neutrophils as an anti-inflammatory subset that is critical for modulating neuroinflammation after CNS injury. We further identify St3gal5, a sialyltransferase (ST), that can mediate the sialylation and cell surface presentation of glyco-CD177 on neutrophils. Glycoproteomics reveal downregulated sialylation levels in St3gal5-deficient neutrophils. Neutrophil-specific depletion of St3gal5 prevents the cell surface presentation of CD177 on brain-infiltrated neutrophils and exacerbates neuroinflammation. Administration of the FDA-approved anticonvulsant valproic acid (VPA), an St3gal5 upregulator, promotes the glycosylation of neutrophils and attenuates neuroinflammation following CNS injury. Our study reveals a glycoimmuno-regulatory effect of neutrophils and suggests VPA as a neutrophil glycobiology targeting approach to combat neuroinflammation following CNS injury.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Jiemin Yin
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Xia Jin
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Yezhi Ma
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Yueman Zhang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Caiyang Chen
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Xin Wang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Yu Gan
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich81377, Germany
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Pudong, Shanghai201210, China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai200127, China
| |
Collapse
|
3
|
Zhang W, Chen H, Liu W, Jia K, Yi M. Characterizing Marine Medaka ( Oryzias melastigma) Haploid Embryonic Stem Cells: A Valuable Tool for Marine Fish Genetic Research. Animals (Basel) 2024; 14:2739. [PMID: 39335329 PMCID: PMC11428384 DOI: 10.3390/ani14182739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Haploid embryonic stem cells (ESCs), which combine the properties of haploidy and pluripotency, hold significant potential for advancing developmental biology and reproductive technology. However, while previous research has largely focused on haploid ESCs in freshwater species like Japanese medaka (Oryzias latipes), little is known about their counterparts in marine species. This study hypothesizes that haploid ESCs from marine fish could offer unique insights and tools for genetic and virological research. To address this, we successfully established and characterized a novel haploid ESC line, hMMES1, derived from marine medaka (Oryzias melastigma). The hMMES1 cells contain 24 chromosomes, exhibit core stem cell characteristics, and express key pluripotency markers. In vitro, hMMES1 cells form embryonic bodies (EBs) capable of differentiating into the three germ layers. In vivo, hMMES1 cells were successfully transplanted into marine medaka and zebrafish, resulting in the generation of interspecies and interordinal chimeras. Additionally, hMMES1 cells demonstrate high efficiency in transfection and transduction, and show susceptibility to major aquaculture viruses, nodavirus (NNV) and iridovirus (SGIV). These findings suggest that hMMES1 cells represent a valuable model for genetic manipulation and virological studies in marine fish species.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Huiquan Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 519082, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| |
Collapse
|
4
|
Machin DC, Williamson DJ, Fisher P, Miller VJ, Arnott ZLP, Stevenson CME, Wildsmith GC, Ross JF, Wasson CW, Macdonald A, Andrews BI, Ungar D, Turnbull WB, Webb ME. Sortase-Modified Cholera Toxoids Show Specific Golgi Localization. Toxins (Basel) 2024; 16:194. [PMID: 38668619 PMCID: PMC11054894 DOI: 10.3390/toxins16040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.
Collapse
Affiliation(s)
- Darren C. Machin
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Daniel J. Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Peter Fisher
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Zoe L. P. Arnott
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Charlotte M. E. Stevenson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Gemma C. Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - James F. Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Christopher W. Wasson
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Andrew Macdonald
- Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK (A.M.)
| | - Benjamin I. Andrews
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (D.C.M.)
| |
Collapse
|
5
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Obeng EM, Steer DL, Fulcher AJ, Wagstaff KM. Sortase A transpeptidation produces seamless, unbranched biotinylated nanobodies for multivalent and multifunctional applications. NANOSCALE ADVANCES 2023; 5:2251-2260. [PMID: 37056610 PMCID: PMC10089078 DOI: 10.1039/d3na00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Exploitation of the biotin-streptavidin interaction for advanced protein engineering is used in many bio-nanotechnology applications. As such, researchers have used diverse techniques involving chemical and enzyme reactions to conjugate biotin to biomolecules of interest for subsequent docking onto streptavidin-associated molecules. Unfortunately, the biotin-streptavidin interaction is susceptible to steric hindrance and conformational malformation, leading to random orientations that ultimately impair the function of the displayed biomolecule. To minimize steric conflicts, we employ sortase A transpeptidation to produce quantitative, seamless, and unbranched nanobody-biotin conjugates for efficient display on streptavidin-associated nanoparticles. We further characterize the protein-nanoparticle complex and demonstrate its usefulness in optical microscopy and multivalent severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen interaction. The approach reported here provides a template for making novel multivalent and multifunctional protein complexes for avidity-inspired technologies.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - David L Steer
- Monash Proteomics and Metabolomics Facility, Monash University Clayton VIC 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton VIC 3800 Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
7
|
Bader C, Taylor M, Banerjee T, Teter K. The cytopathic activity of cholera toxin requires a threshold quantity of cytosolic toxin. Cell Signal 2023; 101:110520. [PMID: 36371029 PMCID: PMC9722578 DOI: 10.1016/j.cellsig.2022.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
After binding to the surface of a target cell, cholera toxin (CT) moves to the endoplasmic reticulum (ER) by retrograde transport. In the ER, the catalytic CTA1 subunit dissociates from the rest of the toxin and is transferred to the cytosol where it is degraded by a ubiquitin-independent proteasomal mechanism. However, CTA1 persists long enough to induce excessive cAMP production through the activation of Gsα. It is generally believed that only one or a few molecules of cytosolic CTA1 are necessary to elicit a cytopathic effect, yet no study has directly correlated the levels of cytosolic toxin to the extent of intoxication. Here, we used the technology of surface plasmon resonance to quantify the cytosolic pool of CTA1. Our data demonstrate that only 4% of surface-bound CTA1 is found in the cytosol after 2 h of intoxication. This represented around 2600 molecules of cytosolic toxin per cell, and it was sufficient to produce a robust cAMP response. However, we did not detect elevated cAMP levels in cells containing less than 700 molecules of cytosolic toxin. Thus, a threshold quantity of cytosolic CTA1 is required to elicit a cytopathic effect. When translocation to the cytosol was blocked soon after toxin exposure, the pool of CTA1 already in the cytosol was degraded and was not replenished. The cytosolic pool of CTA1 thus remained below its functional threshold, preventing the initiation of a cAMP response. These observations challenge the paradigm that extremely low levels of cytosolic toxin are sufficient for toxicity, and they provide experimental support for the development of post-intoxication therapeutic strategies.
Collapse
Affiliation(s)
- Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Tuhina Banerjee
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
8
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
9
|
Danielewicz N, Rosato F, Dai W, Römer W, Turnbull WB, Mairhofer J. Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnol Adv 2022; 59:107951. [DOI: 10.1016/j.biotechadv.2022.107951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
10
|
Abstract
To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5′ long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency.
Collapse
|
11
|
Kumari P, Bowmik S, Paul SK, Biswas B, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Sortase A: A chemoenzymatic approach for the labeling of cell surfaces. Biotechnol Bioeng 2021; 118:4577-4589. [PMID: 34491580 DOI: 10.1002/bit.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 01/31/2023]
Abstract
Sortase A, a transpeptidase enzyme is present in many Gram-positive bacteria and helps in the recruitment of the cell surface proteins. Over the last two decades, Sortase A has become an attractive tool for performing in vivo and in vitro ligations. Sortase A-mediated ligation has continuously been used for its specificity, robustness, and highly efficient nature. These properties make it a popular choice among protein engineers as well as researchers from different fields. In this review, we give an overview of Sortase A-mediated ligation of various molecules on the cell surfaces, which can have diverse applications in interdisciplinary fields.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sujoy Bowmik
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sudipto Kumar Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Bidisha Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| |
Collapse
|
12
|
Robb Huhn G, Torres-Mangual N, Clore J, Cilenti L, Frisan T, Teter K. Endocytosis of the CdtA subunit from the Haemophilus ducreyi cytolethal distending toxin. Cell Microbiol 2021; 23:e13380. [PMID: 34292647 DOI: 10.1111/cmi.13380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022]
Abstract
Many Gram-negative pathogens produce a cytolethal distending toxin (CDT) with two cell-binding subunits (CdtA + CdtC) and a catalytic CdtB subunit. After adhesion to the plasma membrane of a target cell, CDT moves by retrograde transport to endoplasmic reticulum. CdtB then enters the nucleus where it generates DNA breaks that lead to cell cycle arrest and apoptosis or senescence. CdtA anchors the CDT holotoxin to the plasma membrane and is thought to remain on the cell surface after endocytosis of the CdtB/CdtC heterodimer. Here, we re-examined the potential endocytosis and intracellular transport of CdtA from the Haemophilus ducreyi CDT. We recorded the endocytosis of holotoxin-associated CdtA with a cell-based enzyme-linked immunoabsorbent assay (CELISA) and visualised its presence in the early endosomes by confocal microscopy 10 min after CDT binding to the cell surface. Western blot analysis documented the rapid degradation of internalised CdtA. Most of internalised CdtB and CdtC were degraded as well. The rapid rate of CDT internalisation and turnover, which could explain why CdtA endocytosis was not detected in previous studies, suggests only a minor pool of cell-associated CdtB reaches the nucleus. Our work demonstrates that CDT is internalised as an intact holotoxin and identifies the endosomes as the site of CdtA dissociation from CdtB/CdtC. TAKE AWAYS: During the endocytosis of CDT, CdtA is thought to remain at the cell surface. A cell-based ELISA documented the rapid endocytosis of CdtA. CdtA was visualised in the early endosomes by confocal microscopy. Intracellular CdtA was rapidly degraded, along with most of CdtB and CdtC.
Collapse
Affiliation(s)
- G Robb Huhn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Naly Torres-Mangual
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Colorado State University, Fort Collins, CO, USA
| | - John Clore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
13
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
14
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
16
|
Li D, Mukhopadhyay S. Functional analyses of the UDP-galactose transporter SLC35A2 using the binding of bacterial Shiga toxins as a novel activity assay. Glycobiology 2020; 29:490-503. [PMID: 30834435 DOI: 10.1093/glycob/cwz016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023] Open
Abstract
SLC35A2 transports UDP-galactose from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum for glycosylation. Mutations in SLC35A2 induce a congenital disorder of glycosylation. Despite the biomedical relevance, mechanisms of transport via SLC35A2 and the impact of disease-associated mutations on activity are unclear. To address these issues, we generated a predicted structure of SLC35A2 and assayed for the effects of a set of structural and disease-associated mutations. Activity assays were performed using a rescue approach in ΔSLC35A2 cells and took advantage of the fact that SLC35A2 is required for expression of the glycosphingolipid globotriaosylceramide (Gb3), the cell surface receptor for Shiga toxin 1 (STx1) and 2 (STx2). The N- and C-terminal cytoplasmic loops of SLC35A2 were dispensable for activity, but two critical glycine (Gly-202 and Gly-214) and lysine (Lys-78 and Lys-297) residues in transmembrane segments were required. Residues corresponding to Gly-202 and Gly-214 in the related transporter SLC35A1 form a substrate-translocating channel, suggesting that a similar mechanism may be involved in SLC35A2. Among the eight disease-associated mutations tested, SLC35A2 function was completely inhibited by two (S213F and G282R) and partially inhibited by three (R55L, G266V, and S304P), providing a straight-forward mechanism of disease. Interestingly, the remaining three (V331I, V258M, and Y267C) did not impact SLC35A2 function, suggesting that complexities beyond loss of transporter activity may underlie disease due to these mutations. Overall, our results provide new insights into the mechanisms of transport of SLC35A2 and improve understanding of the relationship between SLC35A2 mutations and disease.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Miller SE, Schneider JP. The effect of turn residues on the folding and cell-penetrating activity of β-hairpin peptides and applications toward protein delivery. Pept Sci (Hoboken) 2020; 112:e24125. [PMID: 34504991 PMCID: PMC8425381 DOI: 10.1002/pep2.24125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/25/2019] [Indexed: 11/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are useful tools for the delivery of a wide variety of cargo into cells. Our lab has developed two classes of CPPs based on β-hairpin sequences, one that folds at the surface of cell membranes and the other that is intrinsically disordered. Although these peptides can effectively deliver different types of cargo, their use in protein delivery has been hindered due to the presence of non-natural D-proline within the central turn region of both sequences, which prohibits functionalizing proteins with the CPPs via standard expression protocols. In this work, we describe new CPPs that replace the non-natural turn region with natural turn motifs amenable to protein expression. We first investigate how these changes within the turn affect various CPP-related properties in the absence of protein cargo, and then generate protein fusions for intracellular delivery.
Collapse
Affiliation(s)
- Stephen E Miller
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
18
|
Luong P, Li Q, Chen PF, Wrighton PJ, Chang D, Dwyer S, Bayer MT, Snapper SB, Hansen SH, Thiagarajah JR, Goessling W, Lencer WI. A quantitative single-cell assay for retrograde membrane traffic enables rapid detection of defects in cellular organization. Mol Biol Cell 2019; 31:511-519. [PMID: 31774722 PMCID: PMC7202069 DOI: 10.1091/mbc.e19-07-0375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.
Collapse
Affiliation(s)
- Phi Luong
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Qian Li
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200000, China
| | - Pin-Fang Chen
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Denis Chang
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Sean Dwyer
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marie-Theres Bayer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Scott B Snapper
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Steen H Hansen
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Wayne I Lencer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Burress H, Kellner A, Guyette J, Tatulian SA, Teter K. HSC70 and HSP90 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 2019; 294:12122-12131. [PMID: 31221799 DOI: 10.1074/jbc.ra119.008568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Indexed: 11/06/2022] Open
Abstract
Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N- to C-terminal extraction of CTA1 from the ER.
Collapse
Affiliation(s)
- Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida 32816
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826.
| |
Collapse
|
20
|
Yamaji T, Sekizuka T, Tachida Y, Sakuma C, Morimoto K, Kuroda M, Hanada K. A CRISPR Screen Identifies LAPTM4A and TM9SF Proteins as Glycolipid-Regulating Factors. iScience 2019; 11:409-424. [PMID: 30660999 PMCID: PMC6348303 DOI: 10.1016/j.isci.2018.12.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/28/2018] [Indexed: 12/02/2022] Open
Abstract
Glycosphingolipids (GSLs) are produced by various GSL-synthesizing enzymes, but post-translational regulation of these enzymes is incompletely understood. To address this knowledge disparity, we focused on biosynthesis of globotriaosylceramide (Gb3), the Shiga toxin (STx) receptor, and performed a genome-wide CRISPR/CAS9 knockout screen in HeLa cells using STx1-mediated cytotoxicity. We identified various genes including sphingolipid-related genes and membrane-trafficking genes. In addition, we found two proteins, LAPTM4A and TM9SF2, for which physiological roles remain elusive. Disruption of either LAPTM4A or TM9SF2 genes reduced Gb3 biosynthesis, resulting in accumulation of its precursor, lactosylceramide. Loss of LAPTM4A decreased endogenous Gb3 synthase activity in a post-transcriptional mechanism, whereas loss of TM9SF2 did not affect Gb3 synthase activity but instead disrupted localization of Gb3 synthase. Furthermore, the Gb3-regulating activity of TM9SF2 was conserved in the TM9SF family. These results provide mechanistic insight into the post-translational regulation of the activity and localization of Gb3 synthase. Genome-wide CRISPR knockout screening using Shiga toxin-induced cell death Both LAPTM4A and TM9SF2 are required for Gb3 biosynthesis Loss of LAPTM4A reduces Gb3 synthase activity post-transcriptionally TM9SF2 regulates the subcellular localization of Gb3 synthase
Collapse
Affiliation(s)
- Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuriko Tachida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Chisato Sakuma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kanta Morimoto
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
21
|
Protein disulfide isomerase does not act as an unfoldase in the disassembly of cholera toxin. Biosci Rep 2018; 38:BSR20181320. [PMID: 30135140 PMCID: PMC6127674 DOI: 10.1042/bsr20181320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
Cholera toxin (CT) is composed of a disulfide-linked A1/A2 heterodimer and a ring-like, cell-binding B homopentamer. The catalytic A1 subunit must dissociate from CTA2/CTB5 to manifest its cellular activity. Reduction of the A1/A2 disulfide bond is required for holotoxin disassembly, but reduced CTA1 does not spontaneously separate from CTA2/CTB5: protein disulfide isomerase (PDI) is responsible for displacing CTA1 from its non-covalent assembly in the CT holotoxin. Contact with PDI shifts CTA1 from a protease-resistant conformation to a protease-sensitive conformation, which is thought to represent the PDI-mediated unfolding of CTA1. Based solely on this finding, PDI is widely viewed as an ‘unfoldase’ that triggers toxin disassembly by unfolding the holotoxin-associated A1 subunit. In contrast with this unfoldase model of PDI function, we report the ability of PDI to render CTA1 protease-sensitive is unrelated to its role in toxin disassembly. Multiple conditions that promoted PDI-induced protease sensitivity in CTA1 did not support PDI-mediated disassembly of the CT holotoxin. Moreover, preventing the PDI-induced shift in CTA1 protease sensitivity did not affect PDI-mediated disassembly of the CT holotoxin. Denatured PDI could still convert CTA1 into a protease-sensitive state, and equal or excess molar fractions of PDI were required for both efficient conversion of CTA1 into a protease-sensitive state and efficient disassembly of the CT holotoxin. These observations indicate the ‘unfoldase’ property of PDI does not play a functional role in CT disassembly and does not represent an enzymatic activity.
Collapse
|
22
|
Lichtenstein BR, Höcker B. Engineering an AB 5 Protein Carrier. Sci Rep 2018; 8:12643. [PMID: 30139944 PMCID: PMC6107655 DOI: 10.1038/s41598-018-30910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
The promise of biologic therapeutics is hindered by the challenge to deliver their activity to biochemically relevant sites within diseased cells. The favourable application of the natural protein carriers of the AB5 toxin family to this challenge has been restricted owing to still unresolved requirements for assembling non-native cargo into carrier complexes. Here, we clarify the properties of fusion peptides which allow co-assembly of a selected fluorescent protein cargo with the non-toxic B subunit of a heat-labile enterotoxin. We establish the influence of sequence length, sequence identity and secondary structure of these linking domains on the assembly and disassembly of the complexes. Through our engineering framework we identify several non-native, reduced length fusion sequences that robustly assemble with the native carriers, maintain their ability to deliver protein cargo to cells, and demonstrate substantially refined in vitro properties. Constructs based upon these sequences should prove directly applicable to a variety of protein delivery challenges, and the described design framework should find immediate application to other members of the AB5 protein carrier family.
Collapse
Affiliation(s)
- Bruce R Lichtenstein
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany. .,Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| | - Birte Höcker
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany. .,Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
23
|
Pishesha N, Ingram JR, Ploegh HL. Sortase A: A Model for Transpeptidation and Its Biological Applications. Annu Rev Cell Dev Biol 2018; 34:163-188. [PMID: 30110557 DOI: 10.1146/annurev-cellbio-100617-062527] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular biologists and chemists alike have long sought to modify proteins with substituents that cannot be installed by standard or even advanced genetic approaches. We here describe the use of transpeptidases to achieve these goals. Living systems encode a variety of transpeptidases and peptide ligases that allow for the enzyme-catalyzed formation of peptide bonds, and protein engineers have used directed evolution to enhance these enzymes for biological applications. We focus primarily on the transpeptidase sortase A, which has become popular over the past few years for its ability to perform a remarkably wide variety of protein modifications, both in vitro and in living cells.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hidde L Ploegh
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
24
|
Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet 2018; 34:466-476. [PMID: 29606283 DOI: 10.1016/j.tig.2018.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic disorders that result from abnormal protein or lipid glycosylation. They are often difficult to clinically diagnose because they broadly affect many organs and functions and lack clinical uniformity. However, recent technological advances in next-generation sequencing have revealed a treasure trove of new genetic disorders, expanded the knowledge of known disorders, and showed a critical role in infectious diseases. More comprehensive genetic tools specifically tailored for mammalian cell-based models have revealed a critical role for glycosylation in pathogen-host interactions, while also identifying new CDG susceptibility genes. We highlight recent advancements that have resulted in a better understanding of human glycosylation disorders, perspectives for potential future therapies, and mysteries for which we continue to seek new insights and solutions.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Di Minin G, Postlmayr A, Wutz A. HaSAPPy: A tool for candidate identification in pooled forward genetic screens of haploid mammalian cells. PLoS Comput Biol 2018; 14:e1005950. [PMID: 29337991 PMCID: PMC5798846 DOI: 10.1371/journal.pcbi.1005950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/05/2018] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
Haploid cells are increasingly used for screening of complex pathways in animal genomes. Hemizygous mutations introduced through viral insertional mutagenesis can be directly selected for phenotypic changes. Here we present HaSAPPy a tool for analysing sequencing datasets of screens using insertional mutations in large pools of haploid cells. Candidate gene prediction is implemented through identification of enrichment of insertional mutations after selection by simultaneously evaluating several parameters. We have developed HaSAPPy for analysis of genetic screens for silencing factors of X chromosome inactivation in haploid mouse embryonic stem cells. To benchmark the performance, we further analyse several datasets of genetic screens in human haploid cells for which candidates have been validated. Our results support the effective candidate prediction strategy of HaSAPPy. HaSAPPy is implemented in Python, licensed under the MIT license, and is available from https://github.com/gdiminin/HaSAPPy.
Collapse
Affiliation(s)
- Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (AW); (GDM)
| | - Andreas Postlmayr
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (AW); (GDM)
| |
Collapse
|
26
|
New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resist Updat 2018; 36:30-46. [PMID: 29499836 PMCID: PMC5844649 DOI: 10.1016/j.drup.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 12/26/2022]
Abstract
Despite substantial advances in the treatment of various cancers, many patients still receive anti-cancer therapies that hardly eradicate tumor cells but inflict considerable side effects. To provide the best treatment regimen for an individual patient, a major goal in molecular oncology is to identify predictive markers for a personalized therapeutic strategy. Regarding novel targeted anti-cancer therapies, there are usually good markers available. Unfortunately, however, targeted therapies alone often result in rather short remissions and little cytotoxic effect on the cancer cells. Therefore, classical chemotherapy with frequent long remissions, cures, and a clear effect on cancer cell eradication remains a corner stone in current anti-cancer therapy. Reliable biomarkers which predict the response of tumors to classical chemotherapy are rare, in contrast to the situation for targeted therapy. For the bulk of cytotoxic therapeutic agents, including DNA-damaging drugs, drugs targeting microtubules or antimetabolites, there are still no reliable biomarkers used in the clinic to predict tumor response. To make progress in this direction, meticulous studies of classical chemotherapeutic drug action and resistance mechanisms are required. For this purpose, novel functional screening technologies have emerged as successful technologies to study chemotherapeutic drug response in a variety of models. They allow a systematic analysis of genetic contributions to a drug-responsive or −sensitive phenotype and facilitate a better understanding of the mode of action of these drugs. These functional genomic approaches are not only useful for the development of novel targeted anti-cancer drugs but may also guide the use of classical chemotherapeutic drugs by deciphering novel mechanisms influencing a tumor’s drug response. Moreover, due to the advances of 3D organoid cultures from patient tumors and in vivo screens in mice, these genetic screens can be applied using conditions that are more representative of the clinical setting. Patient-derived 3D organoid lines furthermore allow the characterization of the “essentialome”, the specific set of genes required for survival of these cells, of an individual tumor, which could be monitored over the course of treatment and help understanding how drug resistance evolves in clinical tumors. Thus, we expect that these functional screens will enable the discovery of novel cancer-specific vulnerabilities, and through clinical validation, move the field of predictive biomarkers forward. This review focuses on novel advanced techniques to decipher the interplay between genetic alterations and drug response.
Collapse
|
27
|
Navarro Negredo P, Edgar JR, Wrobel AG, Zaccai NR, Antrobus R, Owen DJ, Robinson MS. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J Cell Biol 2017; 216:2927-2943. [PMID: 28743825 PMCID: PMC5584140 DOI: 10.1083/jcb.201602058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
Acidic clusters act as sorting signals for packaging cargo into clathrin-coated vesicles (CCVs), and also facilitate down-regulation of MHC-I by HIV-1 Nef. To find acidic cluster sorting machinery, we performed a gene-trap screen and identified the medium subunit (µ1) of the clathrin adaptor AP-1 as a top hit. In µ1 knockout cells, intracellular CCVs still form, but acidic cluster proteins are depleted, although several other CCV components were either unaffected or increased, indicating that cells can compensate for long-term loss of AP-1. In vitro experiments showed that the basic patch on µ1 that interacts with the Nef acidic cluster also contributes to the binding of endogenous acidic cluster proteins. Surprisingly, µ1 mutant proteins lacking the basic patch and/or the tyrosine-based motif binding pocket could rescue the µ1 knockout phenotype completely. In contrast, these mutants failed to rescue Nef-induced down-regulation of MHC class I, suggesting a possible mechanism for attacking the virus while sparing the host cell.
Collapse
Affiliation(s)
- Paloma Navarro Negredo
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
28
|
Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation. Infect Immun 2016; 84:3388-3398. [PMID: 27647866 DOI: 10.1128/iai.00732-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/10/2016] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PT) moves from the host cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic PTS1 subunit dissociates from the rest of the toxin in the ER and then shifts to a disordered conformation which may trigger its export to the cytosol through the quality control mechanism of ER-associated degradation (ERAD). Functional roles for toxin instability and ERAD in PTS1 translocation have not been established. We addressed these issues with the use of a surface plasmon resonance system to quantify the cytosolic pool of PTS1 from intoxicated cells. Only 3% of surface-associated PTS1 reached the host cytosol after 3 h of toxin exposure. This represented, on average, 38,000 molecules of cytosolic PTS1 per cell. Cells treated with a proteasome inhibitor contained larger quantities of cytosolic PTS1. Stabilization of the dissociated PTS1 subunit with chemical chaperones inhibited toxin export to the cytosol and blocked PT intoxication. ERAD-defective cell lines likewise exhibited reduced quantities of cytosolic PTS1 and PT resistance. These observations identify the unfolding of dissociated PTS1 as a trigger for its ERAD-mediated translocation to the cytosol.
Collapse
|
29
|
Toyotome T, Takahashi H, Kamei K. MEIS3 is repressed in A549 lung epithelial cells by deoxynivalenol and the repression contributes to the deleterious effect. J Toxicol Sci 2016; 41:25-31. [PMID: 26763390 DOI: 10.2131/jts.41.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deoxynivalenol (DON) is an important Fusarium toxin of concern for food safety. The inhalation of powder contaminated with DON is possible and may cause lung toxicity. In this study, we analyzed the gene expression profile of A549 cells treated for 24 hr with 0.2 µg/mL DON by microarray analysis. In total, 16 genes and 5 noncoding RNAs were significantly affected by DON treatment. The repression of B3GALT4, MEIS3, AK7, SEMA3A, KCNMB4, and SCARA5 was confirmed by quantitative PCR. We investigated the DON toxicity on A549 cells that exogenously expressed these 6 genes. The result indicated that A549 cells that transiently expressed MEIS3 were tolerant to the deleterious effects of DON. Our data show that DON affected the expression of genes with various functions, and suggest that the repression of MEIS3 plays roles in the deleterious effect of DON in A549 lung epithelial cells.
Collapse
Affiliation(s)
- Takahito Toyotome
- Research Unit for Risk Analysis, Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine
| | | | | |
Collapse
|
30
|
Walker WA, Tarannum M, Vivero-Escoto JL. Cellular Endocytosis and Trafficking of Cholera Toxin B-Modified Mesoporous Silica Nanoparticles. J Mater Chem B 2016; 4:1254-1262. [PMID: 27134749 PMCID: PMC4847754 DOI: 10.1039/c5tb02079d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, mesoporous silica nanoparticles (MSNs) were functionalized with Cholera toxin subunit B (CTxB) protein to influence their intracellular trafficking pathways. The CTxB-MSN carrier was synthesized, and its chemical and structural properties were characterized. Endocytic pathway inhibition assays showed that the uptake of CTxB-MSNs in human cervical cancer (HeLa) cells was partially facilitated by both chlatrin- and caveolae-mediated endocytosis mechanisms. Laser scanning confocal microscopy (LSCM) experiments demonstrated that CTxB-MSNs were taken up by the cells and partially trafficked through the trans-Golgi network into to the endoplasmic reticulum in a retrograde fashion. The delivery abilities of CTxB-MSNs were evaluated using propidium iodide, an impermeable cell membrane dye. LSCM images depicted the release of propidium iodide in the endoplasmic reticulum and cell nucleus of HeLa cells.
Collapse
Affiliation(s)
- William A. Walker
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| | - Mubin Tarannum
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| | - Juan L. Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte NC 28223, U.S.A
| |
Collapse
|
31
|
Tsvetkov P, Mendillo ML, Zhao J, Carette JE, Merrill PH, Cikes D, Varadarajan M, van Diemen FR, Penninger JM, Goldberg AL, Brummelkamp TR, Santagata S, Lindquist S. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 2015; 4. [PMID: 26327695 PMCID: PMC4551903 DOI: 10.7554/elife.08467] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Marc L Mendillo
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinghui Zhao
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Ferdy R van Diemen
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
32
|
Abstract
Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| |
Collapse
|
33
|
Abstract
Most animal genomes are diploid, and mammalian development depends on specific adaptations that have evolved secondary to diploidy. Genomic imprinting and dosage compensation restrict haploid development to early embryos. Recently, haploid mammalian development has been reinvestigated since the establishment of haploid embryonic stem cells (ESCs) from mouse embryos. Haploid cells possess one copy of each gene, facilitating the generation of loss-of-function mutations in a single step. Recessive mutations can then be assessed in forward genetic screens. Applications of haploid mammalian cell systems in screens have been illustrated in several recent publications. Haploid ESCs are characterized by a wide developmental potential and can contribute to chimeric embryos and mice. Different strategies for introducing genetic modifications from haploid ESCs into the mouse germline have been further developed. Haploid ESCs therefore introduce new possibilities in mammalian genetics and could offer an unprecedented tool for genome exploration in the future.
Collapse
Affiliation(s)
- Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland;
| |
Collapse
|
34
|
Next-generation libraries for robust RNA interference-based genome-wide screens. Proc Natl Acad Sci U S A 2015; 112:E3384-91. [PMID: 26080438 DOI: 10.1073/pnas.1508821112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic screening based on loss-of-function phenotypes is a powerful discovery tool in biology. Although the recent development of clustered regularly interspaced short palindromic repeats (CRISPR)-based screening approaches in mammalian cell culture has enormous potential, RNA interference (RNAi)-based screening remains the method of choice in several biological contexts. We previously demonstrated that ultracomplex pooled short-hairpin RNA (shRNA) libraries can largely overcome the problem of RNAi off-target effects in genome-wide screens. Here, we systematically optimize several aspects of our shRNA library, including the promoter and microRNA context for shRNA expression, selection of guide strands, and features relevant for postscreen sample preparation for deep sequencing. We present next-generation high-complexity libraries targeting human and mouse protein-coding genes, which we grouped into 12 sublibraries based on biological function. A pilot screen suggests that our next-generation RNAi library performs comparably to current CRISPR interference (CRISPRi)-based approaches and can yield complementary results with high sensitivity and high specificity.
Collapse
|
35
|
Witte MD, Wu T, Guimaraes CP, Theile CS, Blom AEM, Ingram JR, Li Z, Kundrat L, Goldberg SD, Ploegh HL. Site-specific protein modification using immobilized sortase in batch and continuous-flow systems. Nat Protoc 2015; 10:508-16. [PMID: 25719269 DOI: 10.1038/nprot.2015.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transpeptidation catalyzed by sortase A allows the preparation of proteins that are site-specifically and homogeneously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bio-orthogonal reactive groups and affinity handles. This protocol describes immobilization of sortase A on a solid support (Sepharose beads). Immobilization of sortase A simplifies downstream purification of a protein of interest after labeling of its N or C terminus. Smaller batch and larger-scale continuous-flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca(2+)-independent variant of sortase A with increased catalytic activity. This heptamutant variant of sortase A (7M) was generated by combining previously published mutations, and this immobilized enzyme can be used for the modification of calcium-senstive substrates or in instances in which low temperatures are needed. Preparation of immobilized sortase A takes 1-2 d. Batch reactions take 3-12 h and flow reactions proceed at 0.5 ml h(-1), depending on the geometry of the reactor used.
Collapse
Affiliation(s)
- Martin D Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Tongfei Wu
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Oncology Medicinal Chemistry, Janssen Research and Development, Beerse, Belgium
| | - Carla P Guimaraes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Annet E M Blom
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jessica R Ingram
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Lenka Kundrat
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Shalom D Goldberg
- Centyrex, Janssen Research and Development, LLC, Spring House, Pennsylvania, USA
| | - Hidde L Ploegh
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Shen H, McHale CM, Smith MT, Zhang L. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:31-42. [PMID: 26041264 DOI: 10.1016/j.mrrev.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cliona M McHale
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Luoping Zhang
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014; 159:647-61. [PMID: 25307932 PMCID: PMC4253859 DOI: 10.1016/j.cell.2014.09.029] [Citation(s) in RCA: 1958] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022]
Abstract
While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways.
Collapse
Affiliation(s)
- Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline E Villalta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan H Whitehead
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carla Guimaraes
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hidde L Ploegh
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael C Bassik
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei S Qi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Wuethrich I, Peeters JGC, Blom AEM, Theile CS, Li Z, Spooner E, Ploegh HL, Guimaraes CP. Site-specific chemoenzymatic labeling of aerolysin enables the identification of new aerolysin receptors. PLoS One 2014; 9:e109883. [PMID: 25275512 PMCID: PMC4183550 DOI: 10.1371/journal.pone.0109883] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022] Open
Abstract
Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.
Collapse
Affiliation(s)
- Irene Wuethrich
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janneke G. C. Peeters
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Annet E. M. Blom
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Christopher S. Theile
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Carla P. Guimaraes
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
39
|
Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, Ploegh HL. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J Biol Chem 2014; 289:24005-18. [PMID: 25031321 PMCID: PMC4148833 DOI: 10.1074/jbc.m114.589275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/08/2014] [Indexed: 12/25/2022] Open
Abstract
A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport.
Collapse
Affiliation(s)
- Fikadu G Tafesse
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Carla P Guimaraes
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Takeshi Maruyama
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Jan E Carette
- the Stanford School of Medicine, Stanford, California 94305
| | - Stephen Lory
- the Harvard Medical School, Boston, Massachusetts 02115, and
| | - Thijn R Brummelkamp
- the Netherlands Cancer Institute, Postbus 90203, 1006 BE Amsterdam, The Netherlands
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142,
| |
Collapse
|
40
|
Abstract
Haploid genetics holds great promise for understanding genome evolution and function. Much of the work on haploid genetics has previously been limited to microbes, but possibilities now extend to animal species, including mammals. Whereas haploid animals were described decades ago, only very recent advances in culture techniques have facilitated haploid embryonic stem cell derivation in mammals. This article examines the potential use of haploid cells and puts haploid animal cells into a historical and biological context. Application of haploid cells in genetic screening holds promise for advancing the genetic exploration of mammalian genomes.
Collapse
Affiliation(s)
- Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hoenggerberg, Schafmattstrasse 22, 8049 Zurich, Switzerland
| |
Collapse
|
41
|
Lee CC, Freinkman E, Sabatini DM, Ploegh HL. The protein synthesis inhibitor blasticidin s enters mammalian cells via leucine-rich repeat-containing protein 8D. J Biol Chem 2014; 289:17124-31. [PMID: 24782309 DOI: 10.1074/jbc.m114.571257] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Leucine-rich repeat-containing 8 (LRRC8) proteins have been identified as putative receptors involved in lymphocyte development and adipocyte differentiation. They remain poorly characterized, and no specific function has been assigned to them. There is no consensus on how this family of proteins might function because homology searches suggest that members of the LRRC8 family act not as plasma membrane receptors, but rather as channels that mediate cell-cell signaling. Here we provide experimental evidence that supports a role for LRRC8s in the transport of small molecules. We show that LRRC8D is a mammalian protein required for the import of the antibiotic blasticidin S. We characterize localization and topology of LRRC8A and LRRC8D and demonstrate that LRRC8D interacts with LRRC8A, LRRC8B, and LRRC8C. Given the suggested involvement in solute transport, our results support a model in which LRRC8s form one or more complexes that may mediate cell-cell communication by transporting small solutes.
Collapse
Affiliation(s)
- Clarissa C Lee
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Elizaveta Freinkman
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - David M Sabatini
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, the David H. Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, the Broad Institute, Cambridge, Massachusetts 02142, and the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
| |
Collapse
|
42
|
Chen WW, Birsoy K, Mihaylova MM, Snitkin H, Stasinski I, Yucel B, Bayraktar EC, Carette JE, Clish CB, Brummelkamp TR, Sabatini DD, Sabatini DM. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep 2014; 7:27-34. [PMID: 24685140 PMCID: PMC4040975 DOI: 10.1016/j.celrep.2014.02.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 02/28/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial respiratory chain disorders are characterized by loss of electron transport chain (ETC) activity. Although the causes of many such diseases are known, there is a lack of effective therapies. To identify genes that confer resistance to severe ETC dysfunction when inactivated, we performed a genome-wide genetic screen in haploid human cells with the mitochondrial complex III inhibitor antimycin. This screen revealed that loss of ATPIF1 strongly protects against antimycin-induced ETC dysfunction and cell death by allowing for the maintenance of mitochondrial membrane potential. ATPIF1 loss protects against other forms of ETC dysfunction and is even essential for the viability of human ρ° cells lacking mitochondrial DNA, a system commonly used for studying ETC dysfunction. Importantly, inhibition of ATPIF1 ameliorates complex III blockade in primary hepatocytes, a cell type afflicted in severe mitochondrial disease. Altogether, these results suggest that inhibition of ATPIF1 can ameliorate severe ETC dysfunction in mitochondrial pathology.
Collapse
Affiliation(s)
- Walter W Chen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kivanc Birsoy
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Maria M Mihaylova
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Harriet Snitkin
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Iwona Stasinski
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - Burcu Yucel
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Erol C Bayraktar
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary B Clish
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121 1066 CX, Amsterdam, The Netherlands
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, New York, 10016, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA, Wilen CB, Malani N, Male F, Lee FH, Bushman FD, Cherry S, Doms RW, Bates P, Briley K. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog 2014; 10:e1003911. [PMID: 24516383 PMCID: PMC3916400 DOI: 10.1371/journal.ppat.1003911] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. As obligate, intracellular parasites viruses are dependent upon the host cell for numerous factors and processes. However, for many important viruses few of the required host factors have been identified. Hantaviruses are rodent-borne viruses that are associated with severe human disease. Transmission to humans occurs sporadically with a recent notable example in Yosemite National park. In the present study, we utilized two independent genetic strategies to discover cellular factors needed for replication of the highly pathogenic hantavirus Andes virus. We found that four genes, encoding components of a complex involved in regulation of cholesterol synthesis and uptake, were critical for Andes virus infection. Drugs that inhibit an enzyme in this complex or that reduce cellular cholesterol levels effectively blocked Andes virus infection, suggesting new ways for combating this pathogenic virus.
Collapse
Affiliation(s)
- Josiah Petersen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary Jane Drake
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily A. Bruce
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber M. Riblett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chukwuka A. Didigu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Craig B. Wilen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nirav Malani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frances Male
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fang-Hua Lee
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sara Cherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Doms
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PB); (KB)
| | - Kenneth Briley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PB); (KB)
| |
Collapse
|
44
|
Hess GT, Guimaraes CP, Spooner E, Ploegh HL, Belcher AM. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures. ACS Synth Biol 2013; 2:490-6. [PMID: 23713956 DOI: 10.1021/sb400019s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multiphage devices requires precise control of interactions between the M13 capsid proteins. Toward this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multiphage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi-material devices.
Collapse
Affiliation(s)
| | - Carla P. Guimaraes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
45
|
Theile CS, Witte MD, Blom AEM, Kundrat L, Ploegh HL, Guimaraes CP. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 2013; 8:1800-7. [PMID: 23989674 DOI: 10.1038/nprot.2013.102] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This protocol describes the use of sortase-mediated reactions to label the N terminus of any given protein of interest. The sortase recognition sequence, LPXTG (for Streptococcus aureus sortase A) or LPXTA (for Staphylococcus pyogenes sortase A), can be appended to a variety of probes such as fluorophores, biotin or even to other proteins. The protein to be labeled acts as a nucleophile by attacking the intermediate formed between the probe containing the LPXTG/A motif and the sortase enzyme. If sortase, the protein of interest and a suitably functionalized label are available, the reactions usually require less than 3 h.
Collapse
|
46
|
Witte MD, Theile CS, Wu T, Guimaraes CP, Blom AEM, Ploegh HL. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. Nat Protoc 2013; 8:1808-19. [PMID: 23989675 DOI: 10.1038/nprot.2013.103] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a simple procedure for the production of such chimeric proteins, starting from correctly folded proteins and readily available peptides. By equipping the N terminus or C terminus of the proteins of interest with a set of click handles using sortase A, followed by a strain-promoted click reaction, unnatural N-to-N and C-to-C linked (hetero) fusion proteins are established. Examples of proteins that have been conjugated via this method include interleukin-2, interferon-α, ubiquitin, antibodies and several single-domain antibodies. If the peptides, sortase A and the proteins of interest are in hand, the unnaturally N-to-N and C-to-C fused proteins can be obtained in 3-4 d.
Collapse
Affiliation(s)
- Martin D Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
47
|
Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 2013; 8:1787-99. [PMID: 23989673 DOI: 10.1038/nprot.2013.101] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methods for site-specific modification of proteins should be quantitative and versatile with respect to the nature and size of the biological or chemical targets involved. They should require minimal modification of the target, and the underlying reactions should be completed in a reasonable amount of time under physiological conditions. Sortase-mediated transpeptidation reactions meet these criteria and are compatible with other labeling methods. Here we describe the expression and purification conditions for two sortase A enzymes that have different recognition sequences. We also provide a protocol that allows the functionalization of any given protein at its C terminus, or, for select proteins, at an internal site. The target protein is engineered with a sortase-recognition motif (LPXTG) at the place where modification is desired. Upon recognition, sortase cleaves the protein between the threonine and glycine residues, facilitating the attachment of an exogenously added oligoglycine peptide modified with the functional group of choice (e.g., fluorophore, biotin, protein or lipid). Expression and purification of sortase takes ∼3 d, and sortase-mediated reactions take only a few minutes, but reaction times can be extended to increase yields.
Collapse
|
48
|
Bürckstümmer T, Banning C, Hainzl P, Schobesberger R, Kerzendorfer C, Pauler FM, Chen D, Them N, Schischlik F, Rebsamen M, Smida M, Fece de la Cruz F, Lapao A, Liszt M, Eizinger B, Guenzl PM, Blomen VA, Konopka T, Gapp B, Parapatics K, Maier B, Stöckl J, Fischl W, Salic S, Taba Casari MR, Knapp S, Bennett KL, Bock C, Colinge J, Kralovics R, Ammerer G, Casari G, Brummelkamp TR, Superti-Furga G, Nijman SMB. A reversible gene trap collection empowers haploid genetics in human cells. Nat Methods 2013; 10:965-71. [PMID: 24161985 DOI: 10.1038/nmeth.2609] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/22/2013] [Indexed: 11/09/2022]
Abstract
Knockout collections are invaluable tools for studying model organisms such as yeast. However, there are no large-scale knockout collections of human cells. Using gene-trap mutagenesis in near-haploid human cells, we established a platform to generate and isolate individual 'gene-trapped cells' and used it to prepare a collection of human cell lines carrying single gene-trap insertions. In most cases, the insertion can be reversed. This growing library covers 3,396 genes, one-third of the expressed genome, is DNA-barcoded and allows systematic screens for a wide variety of cellular phenotypes. We examined cellular responses to TNF-α, TGF-β, IFN-γ and TNF-related apoptosis-inducing ligand (TRAIL), to illustrate the value of this unique collection of isogenic human cell lines.
Collapse
|
49
|
McCluskey AJ, Collier RJ. Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol Cancer Ther 2013; 12:2273-81. [PMID: 23945077 DOI: 10.1158/1535-7163.mct-13-0358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chimeric protein toxins that act selectively on cells expressing a designated receptor may serve as investigational probes and/or antitumor agents. Here, we report use of the enzyme sortase A (SrtA) to create four chimeric toxins designed to selectively kill cells bearing the tumor marker HER2. We first expressed and purified: (i) a receptor recognition-deficient form of diphtheria toxin that lacks its receptor-binding domain and (ii) a mutated, receptor-binding-deficient form of anthrax-protective antigen. Both proteins carried at the C terminus the sortase recognition sequence LPETGG and a H₆ affinity tag. Each toxin protein was mixed with SrtA plus either of two HER2-recognition proteins--a single-chain antibody fragment or an Affibody--both carrying an N-terminal G₅ tag. With wild-type SrtA, the fusion reaction between the toxin and receptor-recognition proteins approached completion only after several hours, whereas with an evolved form of the enzyme, SrtA*, the reaction was virtually complete within 5 minutes. The four fusion toxins were purified and shown to kill HER2-positive cells in culture with high specificity. Sortase-mediated ligation of binary combinations of diverse natively folded proteins offers a facile way to produce large sets of chimeric proteins for research and medicine.
Collapse
Affiliation(s)
- Andrew J McCluskey
- Corresponding Author: Andrew J. McCluskey, Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115.
| | | |
Collapse
|
50
|
A reporter screen in a human haploid cell line identifies CYLD as a constitutive inhibitor of NF-κB. PLoS One 2013; 8:e70339. [PMID: 23861985 PMCID: PMC3704534 DOI: 10.1371/journal.pone.0070339] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022] Open
Abstract
The development of forward genetic screens in human haploid cells has the potential to transform our understanding of the genetic basis of cellular processes unique to man. So far, this approach has been limited mostly to the identification of genes that mediate cell death in response to a lethal agent, likely due to the ease with which this phenotype can be observed. Here, we perform the first reporter screen in the near-haploid KBM7 cell line to identify constitutive inhibitors of NF-κB. CYLD was the only currently known negative regulator of NF-κB to be identified, thus uniquely distinguishing this gene. Also identified were three genes with no previous known connection to NF-κB. Our results demonstrate that reporter screens in haploid human cells can be applied to investigate the many complex signaling pathways that converge upon transcription factors.
Collapse
|