1
|
Sharma R, Oyagawa CRM, Abbasi H, Dragunow M, Conole D. Phenotypic approaches for CNS drugs. Trends Pharmacol Sci 2024; 45:997-1017. [PMID: 39438155 DOI: 10.1016/j.tips.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Central nervous system (CNS) drug development is plagued by high clinical failure rate. Phenotypic assays promote clinical translation of drugs by reducing complex brain diseases to measurable, clinically valid phenotypes. We critique recent platforms integrating patient-derived brain cells, which most accurately recapitulate CNS disease phenotypes, with higher throughput models, including immortalized cells, to balance validity and scalability. These platforms were screened with conventional commercial chemogenomic compound libraries. We explore emerging library curation strategies to improve hit rate and quality, and screening novel fragment libraries as alternatives, for more tractable drug target deconvolution. The clinically relevant models used in these platforms could harbor important, unidentified drug targets, so we review evolving agnostic target deconvolution approaches, including chemical proteomics and artificial intelligence (AI), which aid in phenotypic screening hit mechanism elucidation, thereby facilitating rational hit-to-drug optimization.
Collapse
Affiliation(s)
- Raahul Sharma
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Caitlin R M Oyagawa
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Hamid Abbasi
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| | - Daniel Conole
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
2
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Or-Geva N, Steinman L. Hunger guides immunity to friend versus foe. Nat Neurosci 2024; 27:393-394. [PMID: 38360948 DOI: 10.1038/s41593-024-01590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Noga Or-Geva
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Hoeks C, Puijfelik FV, Koetzier SC, Rip J, Corsten CEA, Wierenga-Wolf AF, Melief MJ, Stinissen P, Smolders J, Hellings N, Broux B, van Luijn MM. Differential Runx3, Eomes, and T-bet expression subdivides MS-associated CD4 + T cells with brain-homing capacity. Eur J Immunol 2024; 54:e2350544. [PMID: 38009648 DOI: 10.1002/eji.202350544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Collapse
Affiliation(s)
- Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Fabiënne van Puijfelik
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cato E A Corsten
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Park E, Barclay WE, Barrera A, Liao TC, Salzler HR, Reddy TE, Shinohara ML, Ciofani M. Integrin α3 promotes T H17 cell polarization and extravasation during autoimmune neuroinflammation. Sci Immunol 2023; 8:eadg7597. [PMID: 37831759 PMCID: PMC10821720 DOI: 10.1126/sciimmunol.adg7597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by CNS-infiltrating leukocytes, including TH17 cells that are critical mediators of disease pathogenesis. Although targeting leukocyte trafficking is effective in treating autoimmunity, there are currently no therapeutic interventions that specifically block encephalitogenic TH17 cell migration. Here, we report integrin α3 as a TH17 cell-selective determinant of pathogenicity in experimental autoimmune encephalomyelitis. CNS-infiltrating TH17 cells express high integrin α3, and its deletion in CD4+ T cells or Il17a fate-mapped cells attenuated disease severity. Mechanistically, integrin α3 enhanced the immunological synapse formation to promote the polarization and proliferation of TH17 cells. Moreover, the transmigration of TH17 cells into the CNS was dependent on integrin α3, and integrin α3 deficiency enhanced the retention of CD4+ T cells in the perivascular space of the blood-brain barrier. Integrin α3-dependent interactions continuously maintain TH17 cell identity and effector function. The requirement of integrin α3 in TH17 cell pathogenicity suggests integrin α3 as a therapeutic target for MS treatment.
Collapse
Affiliation(s)
- Eunchong Park
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William E. Barclay
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Harmony R. Salzler
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Timothy E. Reddy
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Mari L. Shinohara
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Affiliation(s)
- Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Lee MJ, Choi JH, Kwon TW, Jo HS, Ha Y, Nah SY, Cho IH. Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023; 47:672-680. [PMID: 37720568 PMCID: PMC10499591 DOI: 10.1016/j.jgr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS. Methods Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited mRNA expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, USA
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Buzzelli AA, McWilliams IL, Shin B, Bryars MT, Harrington LE. Intrinsic STAT4 Expression Controls Effector CD4 T Cell Migration and Th17 Pathogenicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1667-1676. [PMID: 37093664 PMCID: PMC11302403 DOI: 10.4049/jimmunol.2200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.
Collapse
Affiliation(s)
- Ashlyn A. Buzzelli
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Ian L. McWilliams
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Boyoung Shin
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Morgan T. Bryars
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Laurie E. Harrington
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| |
Collapse
|
9
|
Lee JI, Choi JH, Kwon TW, Jo HS, Kim DG, Ko SG, Song GJ, Cho IH. Neuroprotective effects of bornyl acetate on experimental autoimmune encephalomyelitis via anti-inflammatory effects and maintaining blood-brain-barrier integrity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154569. [PMID: 36842217 DOI: 10.1016/j.phymed.2022.154569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Bornyl acetate (BA), a chemical component of essential oil in the Pinus family, has yet to be actively studies in terms of its therapeutic effect on numerous diseases, including autoimmune diseases. PURPOSE This study aimed to investigate the pharmacological effects and molecular mechanisms of BA on myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) mice in an animal model of multiple sclerosis (MS), a representative autoimmune disease in central nervous system. METHODS BA (100, 200, or 400 mg/kg) was orally treated to EAE mice once daily for 30 days after immunization for the behavioral test and for the 16th-18th days for the histopathological and molecular analyses, from the onset stage (8th day) of EAE symptoms. RESULTS BA mitigated behavioral dysfunction (motor disability) and demyelination in the spinal cord that were associated with the down-regulation of representative pro-inflammatory cytokines (interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha), enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and chemokines (monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and regulated on activation), and decreased infiltration of microglia (CD11b+/CD45+(low)) and macrophages (CD11b+/CD45+(high)). The anti-inflammatory effect of BA was related to the inhibition of mitogen-activated protein kinases and nuclear factor-kappa B pathways. BA also reduced the recruitment/infiltration rates of CD4+ T, Th1, and Th17 cells into the spinal cords of EAE mice, which was related to reduced blood-spinal cord barrier (BSCB) disruption. CONCLUSION These findings strongly suggest that BA may alleviate EAE due to its anti-inflammatory and BSCB protective activities. This indicates that BA is a potential therapeutic agent for treating autoimmune demyelinating diseases including MS.
Collapse
Affiliation(s)
- Joon-Il Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae-Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do 25601, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
10
|
Lanz TV, Robinson WH, Ho PP, Steinman L. Roadmap for understanding mechanisms on how Epstein-Barr virus triggers multiple sclerosis and for translating these discoveries in clinical trials. Clin Transl Immunology 2023; 12:e1438. [PMID: 36815946 PMCID: PMC9933111 DOI: 10.1002/cti2.1438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Here, we offer a roadmap for what might be studied next in understanding how EBV triggers MS. We focus on two areas: The first area concerns the molecular mechanisms underlying how clonal antibody in the CSF emanates in widespread molecular mimicry to key antigens in the nervous system including GlialCAM, a protein associated with chloride channels. A second and equally high priority in the roadmap concerns various therapeutic approaches that are related to blocking the mechanisms whereby EBV triggers MS. Therapies deserving of attention include clinical trials with antivirals and the development of 'inverse' vaccines based on nucleic acid technologies to control or to eradicate the consequences of EBV infection. High enthusiasm is given to continuation of ongoing clinical trials of cellular adoptive therapy to attack EBV-infected cells. Clinical trials of vaccines to EBV are another area deserving attention. These suggested topics involving research on mechanism, and the design, implementation and performance of well-designed trials are not intended to be an exhaustive list. We have splendid tools available to our community of medical scientists to tackle how EBV triggers MS and then to perhaps change the world with new therapies to potentially eradicate MS, as we have done with nearly complete success for poliomyelitis.
Collapse
|
11
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
12
|
Chen BY, Salas JR, Trias AO, Rodriguez AP, Tsang JE, Guemes M, Le TM, Galic Z, Shepard HM, Steinman L, Nathanson DA, Czernin J, Witte ON, Radu CG, Schultz KA, Clark PM. Targeting deoxycytidine kinase improves symptoms in mouse models of multiple sclerosis. Immunology 2023; 168:152-169. [PMID: 35986643 PMCID: PMC9844239 DOI: 10.1111/imm.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. The deoxyribonucleoside salvage pathway with the rate-limiting enzyme deoxycytidine kinase (dCK) captures extracellular deoxyribonucleosides for use in intracellular deoxyribonucleotide metabolism. Previous studies have shown that deoxyribonucleoside salvage activity is enriched in lymphocytes and required for early lymphocyte development. However, specific roles for the deoxyribonucleoside salvage pathway and dCK in autoimmune diseases such as MS are unknown. Here we demonstrate that dCK activity is necessary for the development of clinical symptoms in the MOG35-55 and MOG1-125 experimental autoimmune encephalomyelitis (EAE) mouse models of MS. During EAE disease, deoxyribonucleoside salvage activity is elevated in the spleen and lymph nodes. Targeting dCK with the small molecule dCK inhibitor TRE-515 limits disease severity when treatments are started at disease induction or when symptoms first appear. EAE mice treated with TRE-515 have significantly fewer infiltrating leukocytes in the spinal cord, and TRE-515 blocks activation-induced B and T cell proliferation and MOG35-55 -specific T cell expansion without affecting innate immune cells or naïve T and B cell populations. Our results demonstrate that targeting dCK limits symptoms in EAE mice and suggest that dCK activity is required for MOG35-55 -specific lymphocyte activation-induced proliferation.
Collapse
Affiliation(s)
- Bao Ying Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica R. Salas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alyssa O. Trias
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arely Perez Rodriguez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan E. Tsang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Guemes
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoran Galic
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Peter M. Clark
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
14
|
Koetzier SC, van Langelaar J, Melief MJ, Wierenga-Wolf AF, Corsten CEA, Blok KM, Hoeks C, Broux B, Wokke B, van Luijn MM, Smolders J. Distinct Effector Programs of Brain-Homing CD8+ T Cells in Multiple Sclerosis. Cells 2022; 11:cells11101634. [PMID: 35626671 PMCID: PMC9139595 DOI: 10.3390/cells11101634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
The effector programs of CD8+ memory T cells are influenced by the transcription factors RUNX3, EOMES and T-bet. How these factors define brain-homing CD8+ memory T cells in multiple sclerosis (MS) remains unknown. To address this, we analyzed blood, CSF and brain tissues from MS patients for the impact of differential RUNX3, EOMES and T-bet expression on CD8+ T cell effector phenotypes. The frequencies of RUNX3- and EOMES-, but not T-bet-expressing CD8+ memory T cells were reduced in the blood of treatment-naïve MS patients as compared to healthy controls. Such reductions were not seen in MS patients treated with natalizumab (anti-VLA-4 Ab). We found an additional loss of T-bet in RUNX3-expressing cells, which was associated with the presence of MS risk SNP rs6672420 (RUNX3). RUNX3+EOMES+T-bet− CD8+ memory T cells were enriched for the brain residency-associated markers CCR5, granzyme K, CD20 and CD69 and selectively dominated the MS CSF. In MS brain tissues, T-bet coexpression was recovered in CD20dim and CD69+ CD8+ T cells, and was accompanied by increased coproduction of granzyme K and B. These results indicate that coexpression of RUNX3 and EOMES, but not T-bet, defines CD8+ memory T cells with a pre-existing brain residency-associated phenotype such that they are prone to enter the CNS in MS.
Collapse
Affiliation(s)
- Steven C. Koetzier
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Annet F. Wierenga-Wolf
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Cato E. A. Corsten
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Katelijn M. Blok
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Cindy Hoeks
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (C.H.); (B.B.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (C.H.); (B.B.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Beatrijs Wokke
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Correspondence: (M.M.v.L.); (J.S.)
| | - Joost Smolders
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 Amsterdam, The Netherlands
- Correspondence: (M.M.v.L.); (J.S.)
| |
Collapse
|
15
|
Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022; 11:cells11040660. [PMID: 35203312 PMCID: PMC8870644 DOI: 10.3390/cells11040660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
After decades of development, inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice for the treatment of inflammatory disorders, with three PDE4 inhibitors being in clinical use as therapeutics for psoriasis, psoriatic arthritis, chronic obstructive pulmonary disease and atopic dermatitis. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. We have previously demonstrated a role for the PDE8A-Raf-1 kinase complex in the regulation of myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) activated CD4+ effector T cell adhesion and locomotion by a mechanism that differs from PDE4 activity. In this study, we explored the in vivo treatment of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) induced in mice immunized with MOG using the PDE8-selective inhibitor PF-04957325. For treatment in vivo, mice with EAE were either subcutaneously (s.c.) injected three times daily (10 mg/kg/dose), or were implanted subcutaneously with Alzet mini-osmotic pumps to deliver the PDE8 inhibitor (15.5 mg/kg/day). The mice were scored daily for clinical signs of paresis and paralysis which were characteristic of EAE. We observed the suppression of the clinical signs of EAE and a reduction of inflammatory lesion formation in the CNS by histopathological analysis through the determination of the numbers of mononuclear cells isolated from the spinal cord of mice with EAE. The PDE8 inhibitor treatment reduces the accumulation of both encephalitogenic Th1 and Th17 T cells in the CNS. Our study demonstrates the efficacy of targeting PDE8 as a treatment of autoimmune inflammation in vivo by reducing the inflammatory lesion load.
Collapse
|
16
|
Treatment of multiple sclerosis in children: A brief overview. Clin Immunol 2022; 237:108947. [PMID: 35123059 DOI: 10.1016/j.clim.2022.108947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is the most common autoimmune, chronic inflammatory demyelinating disorder of the central nervous system. Pediatric-onset MS (POMS), as opposed to adult-onset MS (AOMS), is a rare condition, presenting similar clinical features to AOMS, but a more active course of the disease, with higher relapse rates and greater white and grey matter damage. To date, the therapeutic approaches to treat POMS have been extrapolated from observational studies and data from trials conducted on adults, raising concerns about their efficacy and safety in the pediatric population. Herein, we discuss the most common therapeutic strategies used in POMS management, basing on the individual clinical practice and experience.
Collapse
|
17
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Ochocka N, Kaminska B. Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. Int J Mol Sci 2021; 22:3027. [PMID: 33809675 PMCID: PMC8002227 DOI: 10.3390/ijms22063027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) that have distinct ontogeny from other tissue macrophages and play a pivotal role in health and disease. Microglia rapidly react to the changes in their microenvironment. This plasticity is attributed to the ability of microglia to adapt a context-specific phenotype. Numerous gene expression profiling studies of immunosorted CNS immune cells did not permit a clear dissection of their phenotypes, particularly in diseases when peripheral cells of the immune system come to play. Only recent advances in single-cell technologies allowed studying microglia at high resolution and revealed a spectrum of discrete states both under homeostatic and pathological conditions. Single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (Cytometry by Time-Of-Flight, CyTOF) enabled determining entire transcriptomes or the simultaneous quantification of >30 cellular parameters of thousands of individual cells. Single-cell omics studies demonstrated the unforeseen heterogeneity of microglia and immune infiltrates in brain pathologies: neurodegenerative disorders, stroke, depression, and brain tumors. We summarize the findings from those studies and the current state of knowledge of functional diversity of microglia under physiological and pathological conditions. A precise definition of microglia functions and phenotypes may be essential to design future immune-modulating therapies.
Collapse
Affiliation(s)
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| |
Collapse
|
19
|
Capturing pathogenic immune cells before they home to brain. MED 2021; 2:214-216. [PMID: 33796875 DOI: 10.1016/j.medj.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue, Kaufmann and colleagues1 describe a population of immune cells that home to brain in multiple sclerosis (MS). Using an approved therapeutic, targeting α4β1integrin, they demonstrated how to trap these cells in blood, opening the possibility for their elimination before they cross into brain.
Collapse
|
20
|
Clinical Immunological Correlations in Patients with Multiple Sclerosis Treated with Natalizumab. Brain Sci 2020; 10:brainsci10110802. [PMID: 33143271 PMCID: PMC7692182 DOI: 10.3390/brainsci10110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Natalizumab (NAT) was the first disease modifying therapy used for the treatment of relapsing-remitting multiple sclerosis (MS) that was designed with a specific mechanism of action that targets an important step of the MS immunopathology, directly blocking the T lymphocyte intrusion in the central nervous system. Initially, it was considered that NAT carried no biological effects on the peripheral immune response. The purpose of our study was to assess the effects of NAT on the peripheral pro and anti-inflammatory cytokines and to reveal possible correlations between them and the clinical activity of the disease. We noticed a significant decrease in interleukin (IL)-17, tumor necrosis factor-alpha (TNF-α) and IL-31 serum levels in treated patients. The lack of relapses during the study was associated with low baseline IL-17 level. The patients that had an increase in the disability score during the study had significantly lower IL-17 and higher IL-1β baseline levels. IL-17 can be used as a biomarker for disease activity but also for progression assessment in NAT treated patients. NAT has a far more complex mechanism compared to what was initially believed, besides modulating lymphocyte trafficking through the blood–brain barrier, it also changes the peripheral levels of pro and anti-inflammatory cytokines in MS patients.
Collapse
|
21
|
Dragunow M. Human Brain Neuropharmacology: A Platform for Translational Neuroscience. Trends Pharmacol Sci 2020; 41:777-792. [PMID: 32994050 DOI: 10.1016/j.tips.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) drug development has been plagued by a failure to translate effective therapies from the lab to the clinic. There are many potential reasons for this, including poor understanding of brain pharmacokinetic (PK) and pharmacodynamic (PD) factors, preclinical study flaws, clinical trial design issues, the complexity and variability of human brain diseases, as well as species differences. To address some of these problems, we have developed a platform for CNS drug discovery comprising: drug screening of primary adult human brain cells; human brain tissue microarray analysis of drug targets; and high-content phenotypic screening methods. In this opinion, I summarise the theoretical basis and the practical development and use of this platform in CNS drug discovery.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Hugh Green Biobank, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Duc D, Vigne S, Bernier-Latmani J, Yersin Y, Ruiz F, Gaïa N, Leo S, Lazarevic V, Schrenzel J, Petrova TV, Pot C. Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis. Cell Rep 2020; 29:378-390.e4. [PMID: 31597098 DOI: 10.1016/j.celrep.2019.09.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune disease of the CNS. Although an association between MS and inflammatory bowel diseases is observed, the link connecting intestinal immune responses and neuroinflammation remains unclear. Here we show that encephalitogenic Th17 cells infiltrate the colonic lamina propria before neurological symptom development in two murine MS models, active and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Specifically targeting Th17 cell intestinal homing by blocking the α4β7-integrin and its ligand MAdCAM-1 pathway impairs T cell migration to the large intestine and dampens EAE severity in the Th17 cell adoptive transfer model. Mechanistically, myelin-specific Th17 cells proliferate in the colon and affect gut microbiota composition. The beneficial effect of blocking the α4β7-integrin and its ligand MAdCAM-1 pathway on EAE is interdependent with gut microbiota. Those results show that disrupting myelin-specific Th17 cell trafficking to the large intestine harnesses neuroinflammation and suggests that the gut environment and microbiota catalyze the encephalitogenic properties of Th17 cells.
Collapse
Affiliation(s)
- Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, and Ludwig Institute for Cancer Research Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
23
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
24
|
The Shifting Landscape of Disease-Modifying Therapies for Relapsing Multiple Sclerosis. J Neuroophthalmol 2018; 38:210-216. [PMID: 29750735 DOI: 10.1097/wno.0000000000000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is the most common nontraumatic neurological disorder of young adults, and roughly 85% of patients present with the relapsing form of the disease. Over the past 2 decades, the treatment arsenal for relapsing MS has expanded and evolved from mildly effective and relatively benign injectable agents to potent cell-depleting monoclonal agents. The latter have the potential to achieve disease remission coupled with risk of moderate to severe adverse events with which all MS care providers will need to acquaint themselves. METHODS This review is based on a detailed assessment of MS pivotal trials, extension studies, and expert reviews of the agents discussed. RESULTS/CONCLUSIONS The following review should aid those practitioners directly and indirectly involved in the care of MS patients in understanding the benefits and risks associated with the medications they prescribe.
Collapse
|
25
|
Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 2018; 21:541-551. [DOI: 10.1038/s41593-018-0100-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
|
26
|
Ajami B, Steinman L. Nonclassical monocytes: are they the next therapeutic targets in multiple sclerosis? Immunol Cell Biol 2018; 96:125-127. [PMID: 29352485 DOI: 10.1111/imcb.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bahareh Ajami
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Sorcini D, Bruscoli S, Frammartino T, Cimino M, Mazzon E, Galuppo M, Bramanti P, Al-Banchaabouchi M, Farley D, Ermakova O, Britanova O, Izraelson M, Chudakov D, Biagioli M, Sportoletti P, Flamini S, Raspa M, Scavizzi F, Nerlov C, Migliorati G, Riccardi C, Bereshchenko O. Wnt/β-Catenin Signaling Induces Integrin α4β1 in T Cells and Promotes a Progressive Neuroinflammatory Disease in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:3031-3041. [DOI: 10.4049/jimmunol.1700247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
|
28
|
Shirani A, Stüve O. Natalizumab for Multiple Sclerosis: A Case in Point for the Impact of Translational Neuroimmunology. THE JOURNAL OF IMMUNOLOGY 2017; 198:1381-1386. [PMID: 28167648 DOI: 10.4049/jimmunol.1601358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022]
Abstract
Advances in translational neuroimmunology over the last two decades have revolutionized the treatment of relapsing forms of multiple sclerosis. A pathological hallmark of multiple sclerosis is the presence of leukocytes in the areas of disease activity in the CNS. Natalizumab inhibits the trafficking of lymphocytes from the blood into the brain and spinal cord by blocking the adhesion molecule α4-integrin. Representing the enormous success of a molecular targeted approach, natalizumab was the first mAb approved for the treatment of relapsing-remitting multiple sclerosis. However, only a few months after its approval, natalizumab was withdrawn from the market because of an unanticipated life threatening adverse effect: progressive multifocal leukoencephalopathy. Natalizumab was later reintroduced with required adherence to a strict monitoring program. In this article, we review the bench-to-bedside journey of natalizumab, along with the lessons learned from postmarketing studies.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,Neurology Section, VA North Texas Health Care System, Medical Service, Dallas VA Medical Center, Dallas, TX 75216
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and .,Neurology Section, VA North Texas Health Care System, Medical Service, Dallas VA Medical Center, Dallas, TX 75216
| |
Collapse
|
29
|
Basole CP, Nguyen RK, Lamothe K, Vang A, Clark R, Baillie GS, Epstein PM, Brocke S. PDE8 controls CD4 + T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cell Signal 2017; 40:62-72. [PMID: 28851628 DOI: 10.1016/j.cellsig.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
Abstract
The levels of cAMP are regulated by phosphodiesterase enzymes (PDEs), which are targets for the treatment of inflammatory disorders. We have previously shown that PDE8 regulates T cell motility. Here, for the first time, we report that PDE8A exerts part of its control of T cell function through the V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase signaling pathway. To examine T cell motility under physiologic conditions, we analyzed T cell interactions with endothelial cells and ligands in flow assays. The highly PDE8-selective enzymatic inhibitor PF-04957325 suppresses adhesion of in vivo myelin oligodendrocyte glycoprotein (MOG) activated inflammatory CD4+ T effector (Teff) cells to brain endothelial cells under shear stress. Recently, PDE8A was shown to associate with Raf-1 creating a compartment of low cAMP levels around Raf-1 thereby protecting it from protein kinase A (PKA) mediated inhibitory phosphorylation. To test the function of this complex in Teff cells, we used a cell permeable peptide that selectively disrupts the PDE8A-Raf-1 interaction. The disruptor peptide inhibits the Teff-endothelial cell interaction more potently than the enzymatic inhibitor. Furthermore, the LFA-1/ICAM-1 interaction was identified as a target of disruptor peptide mediated reduction of adhesion, spreading and locomotion of Teff cells under flow. Mechanistically, we observed that disruption of the PDE8A-Raf-1 complex profoundly alters Raf-1 signaling in Teff cells. Collectively, our studies demonstrate that PDE8A inhibition by enzymatic inhibitors or PDE8A-Raf-1 kinase complex disruptors decreases Teff cell adhesion and migration under flow, and represents a novel approach to target T cells in inflammation.
Collapse
Affiliation(s)
| | | | - Katie Lamothe
- Department of Immunology, UConn Health, United States
| | - Amanda Vang
- Department of Immunology, UConn Health, United States; The National Hospital of Faroe Islands, Faroe Islands
| | - Robert Clark
- Department of Immunology, UConn Health, United States
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Stefan Brocke
- Department of Immunology, UConn Health, United States.
| |
Collapse
|
30
|
Elfeky M, Kamimura D, Arima Y, Murakami M, Steinman L. Targeting molecules involved in immune cell trafficking to the central nervous system for therapy in multiple sclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed Elfeky
- Psychoimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Japan
- Department of Biochemistry; Faculty of Veterinary Medicine; Alexandria University; Edfina Behera Egypt
| | - Daisuke Kamimura
- Psychoimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Yasunobu Arima
- Psychoimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Masaaki Murakami
- Psychoimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Lawrence Steinman
- Neurology and Neurological Sciences; Stanford University; Stanford CA USA
| |
Collapse
|
31
|
Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A 2017; 114:E6381-E6389. [PMID: 28716943 DOI: 10.1073/pnas.1701806114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.
Collapse
|
32
|
Sauer EL, Trifilieff E, Greer JM. Predicting the effects of potentially therapeutic modified peptides on polyclonal T cell populations in a mouse model of multiple sclerosis. J Neuroimmunol 2017; 307:18-26. [PMID: 28495132 DOI: 10.1016/j.jneuroim.2017.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Altered peptide ligands (APLs) have routinely been studied in clonal populations of Th cells that express a single T cell receptor (TCR), but results generated in this manner poorly predict the effects of APLs on polyclonal Th cells in vivo, contributing to the failure of phase II clinical trials of APLs in autoimmune diseases such as multiple sclerosis (MS). We have used a panel of APLs derived from an encephalitogenic epitope of myelin proteolipid protein to investigate the relationship between antigen cross-reactivity in a polyclonal environment, encephalitogenicity, and the capacity of an APL to provide protection against experimental autoimmune encephalomyelitis (EAE) in SJL mice. In general, polyclonal Th cell lines specific for encephalitogenic APLs cross-reacted with other encephalitogenic APLs, but not with non-encephalitogenic APLs, and vice versa. This, alongside analysis of TCR Vβ usage, suggested that encephalitogenic and non-encephalitogenic subgroups of APLs expand largely non-cross-reactive Th cell populations. As an exception to the rule, one non-encephalitogenic APL, L188, induced proliferation in polyclonal CD4+ T cells specific for the native encephalitogen, with minimal induction of cytokine production. Co-immunization of L188 alongside the native encephalitogen slightly enhanced disease development. In contrast, another APL, A188, which induced IL-10 production without proliferation in CD4+ T cells specific for the native encephalitogen, was able to protect against development of EAE in a dose-dependent fashion when co-immunized alongside the native encephalitogen. These results suggest that testing against polyclonal Th cell lines in vitro may be an effective strategy for distinguishing between potentially therapeutic and non-therapeutic APLs.
Collapse
Affiliation(s)
- Evan L Sauer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
| | - Elisabeth Trifilieff
- Laboratoire d'Imagerie et de Neurosciences Cognitives (LINC), Université de Strasbourg/CNRS, France
| | - Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia.
| |
Collapse
|
33
|
Bianchini E, De Biasi S, Simone AM, Ferraro D, Sola P, Cossarizza A, Pinti M. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunol Lett 2017; 183:1-7. [PMID: 28119072 DOI: 10.1016/j.imlet.2017.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive inflammatory demyelinating disorder of the central nervous system, and in several countries is a leading cause of permanent neurological disability in young adults, particularly women. MS is considered an autoimmune disease, caused by an aberrant immune response to environmental triggers in genetically susceptible subjects. However, the contribution of the innate or of the adaptive immune system to the development and progression of the disease has not yet been fully elucidated. Innate-like T lymphocytes are unconventional T cells that bridge the innate and adaptive arms of the immune system, because they use a T cell receptor to sense external ligands, but behave like innate cells when they rapidly respond to stimuli. These cells could play an important role in the pathogenesis of MS. Here, we focus on invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, and we review the current knowledge on their biology and possible involvement in MS. Although several studies have evaluated the frequency and functions of iNKT and MAIT cells both in MS patients and in experimental mouse models, contradictory observations have been reported, and it is not clear whether they exert a protective or a pro-inflammatory and harmful role. A better understanding of how immune cells are involved in MS, and of their interactions could be of great interest for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Anna Maria Simone
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Patrizia Sola
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
34
|
An interferon-β-resistant and NLRP3 inflammasome-independent subtype of EAE with neuronal damage. Nat Neurosci 2016; 19:1599-1609. [PMID: 27820602 DOI: 10.1038/nn.4421] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammation induced by innate immunity influences the development of T cell-mediated autoimmunity in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We found that strong activation of innate immunity induced Nod-like receptor protein 3 (NLRP3) inflammasome-independent and interferon-β (IFNβ)-resistant EAE (termed type B EAE), whereas EAE induced by weak activation of innate immunity requires the NLRP3 inflammasome and is sensitive to IFNβ treatment. Instead, an alternative inflammatory mechanism, including membrane-bound lymphotoxin-β receptor (LTβR) and CXC chemokine receptor 2 (CXCR2), is involved in type B EAE development, and type B EAE is ameliorated by antagonizing these receptors. Relative expression of Ltbr and Cxcr2 genes was indeed enhanced in patients with IFNβ-resistant multiple sclerosis. Remission was minimal in type B EAE due to neuronal damages induced by semaphorin 6B upregulation on CD4+ T cells. Our data reveal a new inflammatory mechanism by which an IFNβ-resistant EAE subtype develops.
Collapse
|
35
|
Steinman L. A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Mol Med 2016; 22:molmed.2015.00263. [PMID: 27652378 PMCID: PMC5004718 DOI: 10.2119/molmed.2015.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Lawrence Steinman, MD, of Stanford University in California. A visionary in the field of neurology, this is the story of Dr. Steinman's scientific journey.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
36
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
37
|
Ginwala R, McTish E, Raman C, Singh N, Nagarkatti M, Nagarkatti P, Sagar D, Jain P, Khan ZK. Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. J Neuroimmune Pharmacol 2016; 11:36-47. [PMID: 26040501 PMCID: PMC4857760 DOI: 10.1007/s11481-015-9617-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
Abstract
Apigenin, a natural flavonoid, found in several plants, fruits, vegetables, herbs, and spices, is known to have anti-oxidant and anti-inflammatory properties that are evident in the use of these substances for centuries as medicinal approaches to treat asthma, insomnia, Parkinson's disease, neuralgia, and shingles. However, there is a considerable dearth of information regarding its effect on immune cells, especially dendritic cells (DC) that maintain the critical balance between an immunogenic and tolerogenic immune response, in an immunospecialized location like the central nervous system (CNS). In this paper we looked at the anti-inflammatory properties of Apigenin in restoration of immune function and the resultant decrease in neuroinflammation. In vivo, a significant reduction in severity of experimental autoimmune encephalomyelitis (EAE) progression and relapse was observed in C57BL/6 (progressive) and SJL/J (relapse-remitting) mouse models of multiple sclerosis upon treatment with Apigenin. Apigenin treated EAE mice show decreased expression of α4 integrin and CLEC12A on splenic DCs and an increased retention of immune cells in the periphery compared to untreated EAE mice. This correlated consequently with immunohistochemistry findings of decreased immune cell infiltration and reduced demyelination in the CNS. These results indicate a protective role of Apigenin against the neurodegenerative effects resulting from the entry of DC stimulated pathogenic T cells into the CNS thus implicating a potential therapy for neuroinflammatory disease.
Collapse
Affiliation(s)
- Rashida Ginwala
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Emily McTish
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Chander Raman
- Division of Clinical Immunology and Rheumatology, University of Alabama School of Medicine, Birmingham, AB, USA
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Divya Sagar
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| |
Collapse
|
38
|
Rivera FJ, Kazanis I, Ghevaert C, Aigner L. Beyond Clotting: A Role of Platelets in CNS Repair? Front Cell Neurosci 2016; 9:511. [PMID: 26834562 PMCID: PMC4718976 DOI: 10.3389/fncel.2015.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Ilias Kazanis
- Department of Clinical Neuroscience, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of CambridgeCambridge, UK; Department of Biology, University of PatrasPatras, Greece
| | - Cedric Ghevaert
- Department of Haematology, University of CambridgeCambridge, UK; National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridge, UK
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University SalzburgSalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| |
Collapse
|
39
|
Khorramdelazad H, Bagheri V, Hassanshahi G, Zeinali M, Vakilian A. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J Neuroimmunol 2016; 290:70-5. [PMID: 26711573 DOI: 10.1016/j.jneuroim.2015.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
|
40
|
Vitaliti G, Matin N, Tabatabaie O, Di Traglia M, Pavone P, Lubrano R, Falsaperla R. Natalizumab in multiple sclerosis: discontinuation, progressive multifocal leukoencephalopathy and possible use in children. Expert Rev Neurother 2015; 15:1321-1341. [PMID: 26513633 DOI: 10.1586/14737175.2015.1102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the early 1990s, attention was drawn to the migration of immune cells into the central nervous system via the blood-brain barrier. The literature showed that lymphocytes binding to the endothelium were successfully inhibited by an antibody against α4β1 integrin. These biological findings resulted in the development of a humanized antibody to α4 integrin - natalizumab (NTZ) - to treat multiple sclerosis (MS). Here, we provide a systematic review and meta-analysis on the efficacy and safety of natalizumab, trying to answer the question whether its use may be recommended both in adult and in pediatric age groups as standard MS treatment. Our results highlight the improvement of clinical and radiological findings in treated patients (p < 0.005), confirming NTZ efficacy. Nevertheless, if NTZ is shown to be efficient, further studies should be performed to evaluate its safety and to target the MS profile that could benefit from this treatment.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| | - Nassim Matin
- b Tehran University of Medical Sciences , Tehran , Iran
| | | | - Mario Di Traglia
- c Department of Statistics , La Sapienza University of Rome , Rome , Italy
| | - Piero Pavone
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| | - Riccardo Lubrano
- d Paediatric Department, Paediatric Nephrology Operative Unit , Sapienza University of Rome , Rome , Italy
| | - Raffaele Falsaperla
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| |
Collapse
|
41
|
Worley S. Researchers Expand Focus on Progressive Forms Of Multiple Sclerosis: Efforts to Pinpoint the Beginning of Disease May Yield Clues to Treatment. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2015; 40:584-605. [PMID: 26417178 PMCID: PMC4571847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With disease-modifying treatments available for relapsing-remitting multiple sclerosis (MS), the quest for therapies for progressive MS has become a key focus of research.
Collapse
|
42
|
Abstract
Ideal therapy for inflammatory disease in the nervous system would preserve normal immune function, while suppressing only the pathologic immune responses that damage tissue and allowing for repair. In principle, antigen-specific therapy would eradicate unwanted adaptive immune responses-antibody and T-cell mediated--while preserving the integrity of other adaptive responses to infectious agents and retaining the ability to fight malignancy. However, at this time, for multiple sclerosis (MS) we do not have compelling evidence that would support any particular dominant immune response to any specific antigen or even a limited group of antigens. In fact, there are adaptive immune responses to a wide swathe of proteins and lipids found on neurons and myelin in MS. Unless controlling a few of the known immune responses is sufficient, antigen-specific therapy in MS may not have enough of an impact to modulate clinical outcome. However, in other neuroinflammatory conditions, such as neuromyelitis optica, the adaptive immune response is highly focused. Trials of antigen-specific therapy for neuroinflammatory disease might first be tested in diseases with a more limited adaptive immune response like neuromyelitis optica. The likelihood of a significant success for this therapeutic strategy might then ensue.
Collapse
|
43
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
44
|
Yost EA, Hynes TR, Hartle CM, Ott BJ, Berlot CH. Inhibition of G-protein βγ signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4+ T helper cells. PLoS One 2015; 10:e0116575. [PMID: 25629163 PMCID: PMC4309538 DOI: 10.1371/journal.pone.0116575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023] Open
Abstract
G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein βγ (Gβγ) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of Gβγ, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. Gβ1 and Gβ2 mRNA accounted for >99% of Gβ mRNA, and small interfering RNA (siRNA)-mediated silencing of Gβ1 but not Gβ2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking Gβγ enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking Gβγ also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous Gβγ inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking Gβγ in CD4+ T helper cells could have applications for autoimmune diseases.
Collapse
Affiliation(s)
- Evan A. Yost
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Thomas R. Hynes
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Cassandra M. Hartle
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Braden J. Ott
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Catherine H. Berlot
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Inflammatory conditions intensify and then resolve, often sparing and recovering some of the injured tissue. While the ebb and flow of inflammation can be followed in many tissues, there is not a great deal of information on how inflammation regresses in the brain. In this issue of the JCI, Walsh, Hendrix, and colleagues illuminate a cellular mechanism whereby T cells that infiltrate the brain after nerve crush or contusion actually protect neurons from injury. These infiltrating T cells produce IL-4 and do so independently of a classic adaptive T cell immune response. The T cells respond to mediators produced by damaged neurons, without the classic three-way interaction among antigen, the major histocompatibility complex, and the T cell receptor. After brain injury, these protective T cells produce IL-4, which attenuates damage via IL-4 receptors on neurons.
Collapse
|
46
|
Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol Res 2015; 58:307-14. [PMID: 24771483 DOI: 10.1007/s12026-014-8509-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The title of this contribution on Immunology at Stanford is purposely ambiguous. One goal is the development of safe and effective therapy for autoimmune diseases. Another definition of goal is to score, and this would ultimately mean the development of an approved drug. Indeed, the efforts in my four decades at Stanford, have included the discovery and subsequent development of a monoclonal antibody to block homing to the inflamed brain, leading to natalizumab, an approved therapeutic for two autoimmune diseases: relapsing-remitting MS and for inflammatory bowel disease. Multiple attempts to develop new therapies for autoimmune disease are described here: The trimolecular complex and the immune synapse serve as one major set of targets, with attempts to inhibit particular major histocompatibility molecules, the variable regions of the T cell receptor, and CD4. Other approaches focusing on antigen-specific tolerance include ongoing attempts with tolerizing DNA vaccines in type 1 diabetes. Finally, the repurposing of popular drugs approved for other indications, including statins and inhibitors of angiotensin converting enzyme is under development and showing promise in the clinic, particularly for secondary progressive multiple sclerosis. The milieu within Stanford Immunology has helped to nurture these efforts to translate discoveries in immunology and to take them from bench to bedside.
Collapse
|
47
|
Going viral and the fatal vulnerability of neurons from immunity, not from infection. Proc Natl Acad Sci U S A 2014; 111:16982-3. [PMID: 25422437 DOI: 10.1073/pnas.1420310111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
A risk classification for immunosuppressive treatment-associated progressive multifocal leukoencephalopathy. J Neurovirol 2014; 21:623-31. [DOI: 10.1007/s13365-014-0303-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
49
|
Steinman L, Shoenfeld Y. From defining antigens to new therapies in multiple sclerosis: honoring the contributions of Ruth Arnon and Michael Sela. J Autoimmun 2014; 54:1-7. [PMID: 25308417 DOI: 10.1016/j.jaut.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Ruth Arnon and Michael Sela profoundly influenced the development of a model system to test new therapies in multiple sclerosis (MS). Their application of the animal model, known as experimental autoimmune encephalomyelitis (EAE), for the discovery of Copaxone, opened a new path for testing of drug candidates in MS. By measuring clinical, pathologic, and immunologic outcomes, the biological implications of new drugs could be elucidated. Using EAE they established the efficacy of Copaxone as a therapy for preventing and reducing paralysis and inflammation in the central nervous system without massive immune suppression. This had a huge impact on the field of drug discovery for MS. Much like the use of parabiosis to discover soluble factors associated with obesity, or the replica plating system to probe antibiotic resistance in bacteria, the pioneering research on Copaxone using the EAE model, paved the way for the discovery of other therapeutics in MS, including Natalizumab and Fingolimod. Future applications of this approach may well elucidate novel therapies for the neurodegenerative phase of multiple sclerosis associated with disease progression.
Collapse
Affiliation(s)
- Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
50
|
Mindur JE, Ito N, Dhib-Jalbut S, Ito K. Early treatment with anti-VLA-4 mAb can prevent the infiltration and/or development of pathogenic CD11b+CD4+ T cells in the CNS during progressive EAE. PLoS One 2014; 9:e99068. [PMID: 24896098 PMCID: PMC4045930 DOI: 10.1371/journal.pone.0099068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
Natalizumab is a humanized monoclonal antibody against the leukocyte adhesion molecule very late antigen (VLA)-4, and is currently an approved therapy for patients with relapsing-remitting multiple sclerosis (RRMS). However, it is unknown whether natalizumab is beneficial for progressive forms of MS. Therefore, we assessed the effects of anti-VLA-4 monoclonal antibody (mAb) therapy in a progressive experimental autoimmune encephalomyelitis (EAE) mouse model. Notably, we found that early therapy could significantly reduce the severity of progressive EAE, while treatment initiated at an advanced stage was less efficient. Furthermore, we observed the accumulation of a novel subset of GM-CSF-producing CD11b+CD4+ T cells in the CNS throughout disease progression. Importantly, early therapeutic anti-VLA-4 mAb treatment suppressed the accumulation of these GM-CSF-producing CD11b+CD4+ T cells in the CNS along with activated microglia/macrophages populations, and also conferred a protective effect against inflammation-mediated neurodegeneration, including demyelination and axonal loss. Collectively, our data suggest that early treatment with anti-VLA-4 mAb can provide neuroprotection against progressive CNS autoimmune disease by preventing the accumulation of pathogenic GM-CSF-producing CD11b+CD4+ T cells in the CNS.
Collapse
Affiliation(s)
- John E. Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|