1
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
2
|
Manzi NI, de Jesus BN, Shi Y, Dickinson DJ. Temporally distinct roles of Aurora A in polarization of the C. elegans zygote. Development 2024; 151:dev202479. [PMID: 38488018 PMCID: PMC11165718 DOI: 10.1242/dev.202479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.
Collapse
Affiliation(s)
- Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Bailey N. de Jesus
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| |
Collapse
|
3
|
Feng H, Thompson EM. Functional specialization of Aurora kinase homologs during oogenic meiosis in the tunicate Oikopleura dioica. Front Cell Dev Biol 2023; 11:1323378. [PMID: 38130951 PMCID: PMC10733467 DOI: 10.3389/fcell.2023.1323378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
A single Aurora kinase found in non-vertebrate deuterostomes is assumed to represent the ancestor of vertebrate Auroras A/B/C. However, the tunicate Oikopleura dioica, a member of the sister group to vertebrates, possesses two Aurora kinases (Aurora1 and Aurora2) that are expressed in proliferative cells and reproductive organs. Previously, we have shown that Aurora kinases relocate from organizing centers to meiotic nuclei and were enriched on centromeric regions as meiosis proceeds to metaphase I. Here, we assessed their respective functions in oogenic meiosis using dsRNA interferences. We found that Aurora1 (Aur1) was involved in meiotic spindle organization and chromosome congression, probably through the regulation of microtubule dynamics, whereas Aurora2 (Aur2) was crucial for chromosome condensation and meiotic spindle assembly. In vitro kinase assays showed that Aur1 and Aur2 had comparable levels of kinase activities. Using yeast two-hybrid library screening, we identified a few novel interaction proteins for Aur1, including c-Jun-amino-terminal kinase-interacting protein 4, cohesin loader Scc2, and mitochondrial carrier homolog 2, suggesting that Aur1 may have an altered interaction network and participate in the regulation of microtubule motors and cohesin complexes in O. dioica.
Collapse
Affiliation(s)
- Haiyang Feng
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Manzi NI, de Jesus BN, Shi Y, Dickinson DJ. Temporally distinct roles of Aurora A in polarization of the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563816. [PMID: 37961467 PMCID: PMC10634818 DOI: 10.1101/2023.10.25.563816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
During asymmetric cell division, coordination of cell polarity and the cell cycle is critical for proper inheritance of cell fate determinants and generation of cellular diversity. In Caenorhabditis elegans (C. elegans), polarity is established in the zygote and is governed by evolutionarily conserved Partitioning defective (PAR) proteins that localize to distinct cortical domains. At the time of polarity establishment, anterior and posterior PARs segregate to opposing cortical domains that specify asymmetric cell fates. Timely establishment of these PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C.elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including no posterior domain, reversed polarity, and excess posterior domains. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system, drug treatments, and high-resolution microscopy, we found that AIR-1 regulates polarity via distinct mechanisms at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent the formation of bipolar domains, while in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together these data clarify the origin of the multiple polarization phenotypes observed in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with the progression of the cell cycle.
Collapse
Affiliation(s)
- Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Bailey N. de Jesus
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| |
Collapse
|
5
|
Ali A, Stukenberg PT. Aurora kinases: Generators of spatial control during mitosis. Front Cell Dev Biol 2023; 11:1139367. [PMID: 36994100 PMCID: PMC10040841 DOI: 10.3389/fcell.2023.1139367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
Cell division events require regulatory systems to ensure that events happen in a distinct order. The classic view of temporal control of the cell cycle posits that cells order events by linking them to changes in Cyclin Dependent Kinase (CDK) activities. However, a new paradigm is emerging from studies of anaphase where chromatids separate at the central metaphase plate and then move to opposite poles of the cell. These studies suggest that distinct events are ordered depending upon the location of each chromosome along its journey from the central metaphase plate to the elongated spindle poles. This system is dependent upon a gradient of Aurora B kinase activity that emerges during anaphase and acts as a spatial beacon to control numerous anaphase/telophase events and cytokinesis. Recent studies also suggest that Aurora A kinase activity specifies proximity of chromosomes or proteins to spindle poles during prometaphase. Together these studies argue that a key role for Aurora kinases is to provide spatial information that controls events depending upon the location of chromosomes or proteins along the mitotic spindle.
Collapse
Affiliation(s)
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Kim CH, Kim DE, Kim DH, Min GH, Park JW, Kim YB, Sung CK, Yim H. Mitotic protein kinase-driven crosstalk of machineries for mitosis and metastasis. Exp Mol Med 2022; 54:414-425. [PMID: 35379935 PMCID: PMC9076678 DOI: 10.1038/s12276-022-00750-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer. Improving understanding of the mechanisms linking cell division and cancer spread (metastasis) could provide novel strategies for treatment. A group of enzymes involved in cell division (mitosis) are also thought to play critical roles in the spread of cancers. Hyungshin Yim at Hanyang University in Ansan, South Korea, and co-workers in Korea and the USA reviewed the roles of several mitotic enzymes that are connected with metastasis as well as tumorigenesis. They discussed how these enzymes modify cytoskeletal proteins and other substrates during cancer progression. Some regulatory control of cell cytoskeletal structures is required for cancer cells to metastasize. Recent research has uncovered crosstalk between mitotic enzymes and metastatic cytoskeletal molecules in various cancers. Targeting mitotic enzymes and the ways they influence cytoskeletal mechanisms could provide valuable therapeutic strategies for suppressing metastasis.
Collapse
Affiliation(s)
- Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Ga-Hong Min
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jung-Won Park
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Chang K Sung
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
| |
Collapse
|
7
|
Wu FL, Chu PY, Chen GY, Wang K, Hsu WY, Ahmed A, Ma WL, Cheng WC, Wu YC, Yang JC. Natural anthraquinone compound emodin as a novel inhibitor of aurora A kinase: A pilot study. Chem Biol Drug Des 2021; 99:126-135. [PMID: 34411446 DOI: 10.1111/cbdd.13938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022]
Abstract
Aurora kinase A (AURKA) carries out an essential role in proliferation and involves in cisplatin resistance in various cancer cells. Overexpression of AURKA is associated with the poor prognosis of cancer patients. Thus, AURKA has been considered as a target for cancer therapy. Developing AURKA inhibitors became an important issue in cancer therapy. A natural compound emodin mainly extracted from rhubarbs possesses anti-cancer properties. However, the effect of emodin on AURKA has never been investigated. In the present study, molecular docking analysis indicated that emodin interacts with AURKA protein active site. We also found nine emodin analogues from Key Organic database by using ChemBioFinder software. Among that, one analogue 8L-902 showed a similar anti-cancer effect as emodin. The bindings of emodin and 8L-902 on AURKA protein were confirmed by cellular thermal shift assay. Furthermore, emodin inhibited the AURKA kinase activity in vitro and enhanced the cisplatin-DNA adduct level in a resistant ovarian cancer cell line. It seems that emodin may have the potential to inhibit cancer cell growth and enhance cisplatin therapy in cancer with resistance. Collectively, our finding reveals a novel AURKA inhibitor, emodin, which may be vulnerable to ovarian cancer therapy in the future.
Collapse
Affiliation(s)
- Fen-Lan Wu
- Department of Obstetrics and Gynecology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, China
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ke Wang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Sex Hormone Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Yu Hsu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Azaj Ahmed
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Sex Hormone Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chung Cheng
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
9
|
Wang Y, Yang Y, Gan Z, Zhao C, Lv C, Zhang Y, Zhao X. Role of AURKA in the hypothalamus-pituitary-testicular axis in Tibetan sheep from Tianzhu. Gen Comp Endocrinol 2021; 300:113617. [PMID: 32950578 DOI: 10.1016/j.ygcen.2020.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
The mitosis-associated protein aurora kinase A (AURKA) regulates the maturation of germ cells. We have previously reported using transcriptome analysis that AURKA is expressed in yak testes. Although Tibetan sheep possess an immense economic value, their reproductive rate is low. Herein, the expression and functions of AURKA in the hypothalamus-pituitary-testicular (HPT) axis in Tibetan sheep from Tianzhu were investigated. The cDNA sequence of sheep AURKA was cloned and bioinformatics techniques were used to predict its structure. Tissue expression of AURKA was determined by qPCR, immunoblotting, immunostaining, and immunohistochemistry. The AURKA coding sequence was found to be 1218 bp in length, encoding a 405-amino acid polypeptide chain. Furthermore, the highest sequence similarity of AURKA with the corresponding sequence in other species was seen in goat and cattle; the least degree of similarity was seen in the domestic cat. In addition, AURKA expression was elevated in the testes compared to that in the hypothalamus and pituitary (p < 0.01). Moreover, AURKA was mainly localized in the hypothalamic paraventricular nucleus (magnocellular), chromophobe cells of the pituitary, and spermatogenic cells of the testis. These results indicated that AURKA might participate in sheep reproductive regulation, thus providing a reference for the study of AURKA function in the reproductive process of Tibetan sheep from Tianzhu.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yang Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ze Gan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caiying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chen Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
10
|
Almada E, Pariani A, Rivabella Maknis T, Hidalgo F, Vena R, Favre C, Larocca MC. AKAP350 enables p150glued /EB1 interaction at the spindle poles. Biochimie 2020; 177:127-131. [PMID: 32841682 DOI: 10.1016/j.biochi.2020.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/28/2022]
Abstract
A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.
Collapse
Affiliation(s)
- Evangelina Almada
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Alejandro Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Tomás Rivabella Maknis
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Cellular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina.
| |
Collapse
|
11
|
Kapoor S, Kotak S. Centrosome Aurora A gradient ensures single polarity axis in C. elegans embryos. Biochem Soc Trans 2020; 48:1243-1253. [PMID: 32597472 PMCID: PMC7616972 DOI: 10.1042/bst20200298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior-posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), 560012 Bangalore, India
| |
Collapse
|
12
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
13
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Vukušić K, Buđa R, Tolić IM. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019; 132:132/18/jcs231985. [DOI: 10.1242/jcs.231985] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
What forces drive chromosome segregation remains one of the most challenging questions in cell division. Even though the duration of anaphase is short, it is of utmost importance for genome fidelity that no mistakes are made. Seminal studies in model organisms have revealed different mechanisms operating during chromosome segregation in anaphase, but the translation of these mechanisms to human cells is not straightforward. Recent work has shown that kinetochore fiber depolymerization during anaphase A is largely motor independent, whereas spindle elongation during anaphase B is coupled to sliding of interpolar microtubules in human cells. In this Review, we discuss the current knowledge on the mechanisms of force generation by kinetochore, interpolar and astral microtubules. By combining results from numerous studies, we propose a comprehensive picture of the role of individual force-producing and -regulating proteins. Finally, by linking key concepts of anaphase to most recent data, we summarize the contribution of all proposed mechanisms to chromosome segregation and argue that sliding of interpolar microtubules and depolymerization at the kinetochore are the main drivers of chromosome segregation during early anaphase in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|
17
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
18
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
19
|
Courthéoux T, Reboutier D, Vazeille T, Cremet JY, Benaud C, Vernos I, Prigent C. Microtubule nucleation during central spindle assembly requires NEDD1 phosphorylation on Serine 405 by Aurora A. J Cell Sci 2019; 132:jcs.231118. [DOI: 10.1242/jcs.231118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
During mitosis, the cell sequentially constructs two microtubule-based spindles to ensure faithful segregation of chromosomes. A bipolar spindle first pulls apart the sister chromatids, then a central spindle further separates them away. Although the assembly of the first spindle is well described, the assembly of the second remains poorly understood. We report here that the inhibition of Aurora A leads to an absence of the central spindle due to a lack of nucleation of microtubules in the midzone. In the absence of Aurora A, the HURP and NEDD1 proteins that are involved in nucleation of microtubules fail to concentrate in the midzone. HURP is an effector of RanGTP and NEDD1 serves as an anchor for the γTURC. Interestingly, Aurora A already phosphorylates them during assembly of the bipolar spindle. We show here that the expression of a NEDD1 isoform mimicking Aurora A phosphorylation is sufficient to restore microtubule nucleation in the midzone in a context of Aurora A inhibition. These results reveal a new control mechanism of nucleation of microtubules by Aurora A during assembly of the central spindle.
Collapse
Affiliation(s)
- Thibault Courthéoux
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - David Reboutier
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Thibaut Vazeille
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jean-Yves Cremet
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Christelle Benaud
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Claude Prigent
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| |
Collapse
|
20
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
21
|
Size matters! Aurora A controls Drosophila larval development. Dev Biol 2018; 440:88-98. [DOI: 10.1016/j.ydbio.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
|
22
|
Burgess SG, Mukherjee M, Sabir S, Joseph N, Gutiérrez-Caballero C, Richards MW, Huguenin-Dezot N, Chin JW, Kennedy EJ, Pfuhl M, Royle SJ, Gergely F, Bayliss R. Mitotic spindle association of TACC3 requires Aurora-A-dependent stabilization of a cryptic α-helix. EMBO J 2018; 37:e97902. [PMID: 29510984 PMCID: PMC5897774 DOI: 10.15252/embj.201797902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
Aurora-A regulates the recruitment of TACC3 to the mitotic spindle through a phospho-dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora-A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora-A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical-repeat region of CHC, not a recognized phospho-reader domain. This potentially widespread mechanism of phospho-recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Manjeet Mukherjee
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sarah Sabir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Mark Pfuhl
- Cardiovascular & Randall Division, Kings College London, London, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
Courtheoux T, Diallo A, Damodaran AP, Reboutier D, Watrin E, Prigent C. Aurora A kinase activity is required to maintain an active spindle assembly checkpoint during prometaphase. J Cell Sci 2018; 131:jcs.191353. [PMID: 29555820 DOI: 10.1242/jcs.191353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
During the prometaphase stage of mitosis, the cell builds a bipolar spindle of microtubules that mechanically segregates sister chromatids between two daughter cells in anaphase. The spindle assembly checkpoint (SAC) is a quality control mechanism that monitors proper attachment of microtubules to chromosome kinetochores during prometaphase. Segregation occurs only when each chromosome is bi-oriented with each kinetochore pair attached to microtubules emanating from opposite spindle poles. Overexpression of the protein kinase Aurora A is a feature of various cancers and is thought to enable tumour cells to bypass the SAC, leading to aneuploidy. Here, we took advantage of a chemical and chemical-genetic approach to specifically inhibit Aurora A kinase activity in late prometaphase. We observed that a loss of Aurora A activity directly affects SAC function, that Aurora A is essential for maintaining the checkpoint protein Mad2 on unattached kinetochores and that inhibition of Aurora A leads to loss of the SAC, even in the presence of nocodazole or Taxol. This is a new finding that should affect the way Aurora A inhibitors are used in cancer treatments.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Thibault Courtheoux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Alghassimou Diallo
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Arun Prasath Damodaran
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - David Reboutier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Erwan Watrin
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| | - Claude Prigent
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, Équipe labellisée Ligue contre le Cancer 2014-2016, F-35000 Rennes, France
| |
Collapse
|
24
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
25
|
Damodaran AP, Vaufrey L, Gavard O, Prigent C. Aurora A Kinase Is a Priority Pharmaceutical Target for the Treatment of Cancers. Trends Pharmacol Sci 2017; 38:687-700. [DOI: 10.1016/j.tips.2017.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
|
26
|
Yu Z, Sun Y, She X, Wang Z, Chen S, Deng Z, Zhang Y, Liu Q, Liu Q, Zhao C, Li P, Liu C, Feng J, Fu H, Li G, Wu M. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J Hematol Oncol 2017; 10:115. [PMID: 28595628 PMCID: PMC5465582 DOI: 10.1186/s13045-017-0483-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/31/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND SIX homeobox 3 (SIX3) is a member of the sine oculis homeobox transcription factor family. It plays a vital role in the nervous system development. Our previous study showed that the SIX3 gene is hypermethylated, and its expression is decreased in astrocytoma, but the role of SIX3 remains unknown. METHODS Chromatin-immunoprecipitation (ChIP) and luciferase reporter assay were used to confirm the binding of SIX3 to the promoter regions of aurora kinase A (AURKA) and aurora kinase B (AURKB). Confocal imaging and co-immunoprecipitation (Co-IP) were used to detect the interaction between AURKA and AURKB. Flow cytometry was performed to assess the effect of SIX3 on cell cycle distribution. Colony formation, EdU incorporation, transwell, and intracranial xenograft assays were performed to demonstrate the effect of SIX3 on the malignant phenotype of astrocytoma cells. RESULTS SIX3 is identified as a novel negative transcriptional regulator of AURKA and AURKB, and it decreases the expression of AURKA and AURKB in a dose-dependent manner in astrocytoma cells. Importantly, interactions between AURKA and AURKB stabilize and protect AURKA/B from degradation, and overexpression of SIX3 does not affect these interactions; SIX3 also acts as a tumor suppressor, and it increases p53 activity and expression at the post-translational level by the negative regulation of AURKA or AURKB, reduces the events of numerical centrosomal aberrations and misaligned chromosomes, and significantly inhibits the proliferation, invasion, and tumorigenesis of astrocytoma in vitro and in vivo. Moreover, experiments using primary cultured astrocytoma cells indicate that astrocytoma patients with a low expression of SIX3 and mutant p53 are more sensitive to treatment with aurora kinase inhibitors. CONCLUSION SIX3 is a novel negative transcriptional regulator and acts as a tumor suppressor that directly represses the transcription of AURKA and AURKB in astrocytoma. For the first time, the functional interaction of AURKA and AURKB has been found, which aids in the protection of their stability, and partially explains their constant high expression and activity in cancers. SIX3 is a potential biomarker that could be used to predict the response of astrocytoma patients to aurora kinase inhibitors.
Collapse
Affiliation(s)
- Zhibin Yu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zeyou Wang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuai Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhiyong Deng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qing Liu
- The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunhua Zhao
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
27
|
Ionkina AA, Tentler JJ, Kim J, Capasso A, Pitts TM, Ryall KA, Howison RR, Kabos P, Sartorius CA, Tan AC, Eckhardt SG, Diamond JR. Efficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer. Front Oncol 2017; 7:94. [PMID: 28555173 PMCID: PMC5430301 DOI: 10.3389/fonc.2017.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX) models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance to ENMD-2076. Experimental design p53-mutated, TNBC PDX models were treated with ENMD-2076 and evaluated for mechanisms of sensitivity or resistance to treatment. Correlative tissue testing was performed on tumor tissue to assess for markers of proliferation, apoptosis, senescence, and pathways of resistance after treatment and at the time of acquired resistance. Results Sensitivity to ENMD-2076 200 mg/kg daily was associated with induction of apoptosis while models exhibiting intrinsic or acquired resistance to treatment presented with a senescent phenotype. Response to ENMD-2076 was accompanied by an increase in p53 and p73 levels, even within the background of mutant p53. Treatment with ENMD-2076 resulted in a decrease in pAurA and an increase in pHH3. We observed a TNBC subtype switch from the luminal androgen receptor to the basal-like subtype at acquired resistance. Conclusion ENMD-2076 has antitumor activity in preclinical models of p53-mutated TNBC. Increased levels of p53 and p73 correlated with sensitivity whereas senescence was associated with resistance to ENMD-2076. The novel finding of a TNBC subtype switch at time of acquired resistance may provide mechanistic insights into the biologic effects of selective pressure of anticancer treatments on TNBC. ENMD-2076 is currently being evaluated in a Phase 2 clinical trial in patients with metastatic, previously treated TNBC where these biologic correlates can be further explored.
Collapse
Affiliation(s)
- Anastasia A Ionkina
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John J Tentler
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jihye Kim
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Capasso
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen A Ryall
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebekah R Howison
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Gail Eckhardt
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Bertolin G, Sizaire F, Herbomel G, Reboutier D, Prigent C, Tramier M. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat Commun 2016; 7:12674. [PMID: 27624869 PMCID: PMC5027284 DOI: 10.1038/ncomms12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation.
Collapse
Affiliation(s)
- Giulia Bertolin
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Florian Sizaire
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Gaëtan Herbomel
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - David Reboutier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Claude Prigent
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Marc Tramier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Microscopy Rennes Imaging Centre, Biosit, Université de Rennes 1, Rennes 35043, France
| |
Collapse
|
29
|
Ye AA, Torabi J, Maresca TJ. Aurora A Kinase Amplifies a Midzone Phosphorylation Gradient to Promote High-Fidelity Cytokinesis. THE BIOLOGICAL BULLETIN 2016; 231:61-72. [PMID: 27638695 PMCID: PMC5360107 DOI: 10.1086/689591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During cytokinesis, aurora B kinase (ABK) relocalizes from centromeres to the spindle midzone, where it is thought to provide a spatial cue for cytokinesis. While global ABK inhibition in Drosophila S2 cells results in macro- and multi-nucleated large cells, mislocalization of midzone ABK (mABK) by depletion of Subito (Drosophila MKLP2) does not cause notable cytokinesis defects. Subito depletion was, therefore, used to investigate the contribution of other molecules and redundant pathways to cytokinesis in the absence of mABK. Inhibiting potential polar relaxation pathways via removal of centrosomes (CNN RNAi) or a kinetochore-based phosphatase gradient (Sds22 RNAi) did not result in cytokinesis defects on their own or in combination with loss of mABK. Disruption of aurora A kinase (AAK) activity resulted in midzone assembly defects, but did not significantly affect contractile ring positioning or cytokinesis. Live-cell imaging of a Förster resonance energy transfer (FRET)-based aurora kinase phosphorylation sensor revealed that midzone substrates were less phosphorylated in AAK-inhibited cells, despite the fact that midzone levels of active phosphorylated ABK (pABK) were normal. Interestingly, in the absence of mABK, an increased number of binucleated cells were observed following AAK inhibition. The data suggest that equatorial stimulation rather than polar relaxation mechanisms is the major determinant of contractile ring positioning and high-fidelity cytokinesis in Drosophila S2 cells. Furthermore, we propose that equatorial stimulation is mediated primarily by the delivery of factors to the cortex by noncentrosomal microtubules (MTs), as well as a midzone-derived phosphorylation gradient that is amplified by the concerted activities of mABK and a soluble pool of AAK.
Collapse
Affiliation(s)
- Anna A Ye
- Biology Department, and Molecular and Cellular Biology Graduate Group, University of Massachusetts, Amherst, Massachusetts, 01003
| | | | - Thomas J Maresca
- Biology Department, and Molecular and Cellular Biology Graduate Group, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
30
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Kotak S, Afshar K, Busso C, Gönczy P. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 2016; 129:3015-25. [PMID: 27335426 DOI: 10.1242/jcs.184416] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/16/2016] [Indexed: 01/04/2023] Open
Abstract
Accurate spindle positioning is essential for error-free cell division. The one-cell Caenorhabditis elegans embryo has proven instrumental for dissecting mechanisms governing spindle positioning. Despite important progress, how the cortical forces that act on astral microtubules to properly position the spindle are modulated is incompletely understood. Here, we report that the PP6 phosphatase PPH-6 and its associated subunit SAPS-1, which positively regulate pulling forces acting on spindle poles, associate with the Aurora A kinase AIR-1 in C. elegans embryos. We show that acute inactivation of AIR-1 during mitosis results in excess pulling forces on astral microtubules. Furthermore, we uncover that AIR-1 acts downstream of PPH-6-SAPS-1 in modulating spindle positioning, and that PPH-6-SAPS-1 negatively regulates AIR-1 localization at the cell cortex. Moreover, we show that Aurora A and the PP6 phosphatase subunit PPP6C are also necessary for spindle positioning in human cells. There, Aurora A is needed for the cortical localization of NuMA and dynein during mitosis. Overall, our work demonstrates that Aurora A kinases and PP6 phosphatases have an ancient function in modulating spindle positioning, thus contributing to faithful cell division.
Collapse
Affiliation(s)
- Sachin Kotak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Katayon Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
32
|
Late mitotic functions of Aurora kinases. Chromosoma 2016; 126:93-103. [DOI: 10.1007/s00412-016-0594-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
33
|
Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, Nicholas KR, Lindeman GJ, Visvader JE. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016; 7:11400. [PMID: 27102712 PMCID: PMC4844753 DOI: 10.1038/ncomms11400] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species.
Collapse
Affiliation(s)
- Anne C. Rios
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nai Yang Fu
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Jamieson
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Bhupinder Pal
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan Whitehead
- Imaging Laboratory, Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kevin R. Nicholas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey J. Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Lim NR, Yeap YYC, Zhao TT, Yip YY, Wong SC, Xu D, Ang CS, Williamson NA, Xu Z, Bogoyevitch MA, Ng DCH. Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules. J Cell Sci 2016; 128:527-40. [PMID: 25501809 DOI: 10.1242/jcs.157537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WD40-repeat protein 62 (WDR62) is a spindle pole protein required for normal cell division and neuroprogenitor differentiation during brain development. Microcephaly-associated mutations in WDR62 lead to mitotic mislocalization, highlighting a crucial requirement for precise WDR62 spatiotemporal distribution, although the regulatory mechanisms are unknown. Here, we demonstrate that the WD40-repeat region of WDR62 is required for microtubule association, whereas the disordered C-terminal region regulates cell-cycle-dependent compartmentalization. In agreement with a functional requirement for the WDR62–JNK1 complex during neurogenesis, WDR62 specifically recruits JNK1 (also known as MAPK8), but not JNK2 (also known as MAPK9), to the spindle pole. However, JNK-mediated phosphorylation of WDR62 T1053 negatively regulated microtubule association, and loss of JNK signaling resulted in constitutive WDR62 localization to microtubules irrespective of cell cycle stage. In contrast, we identified that Aurora A kinase (AURKA) and WDR62 were in complex and that AURKA-mediated phosphorylation was required for the spindle localization of WDR62 during mitosis. Our studies highlight complex regulation of WDR62 localization, with opposing roles for JNK and AURKA in determining its spindle association.
Collapse
|
35
|
Kobayashi A, Hashizume C, Dowaki T, Wong RW. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle 2016; 14:1447-58. [PMID: 25789545 DOI: 10.1080/15384101.2015.1021518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Akiko Kobayashi
- a Laboratory of Molecular and Cellular Biology; Department of Biology ; Faculty of Natural Systems; Kanazawa University ; Kanazawa , Ishikawa , Japan
| | | | | | | |
Collapse
|
36
|
Taverna E, Mora-Bermúdez F, Strzyz PJ, Florio M, Icha J, Haffner C, Norden C, Wilsch-Bräuninger M, Huttner WB. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep 2016; 6:21206. [PMID: 26879757 PMCID: PMC4754753 DOI: 10.1038/srep21206] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Felipe Mora-Bermúdez
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Paulina J Strzyz
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Marta Florio
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jaroslav Icha
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christiane Haffner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Caren Norden
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Wieland B Huttner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
37
|
Gallini S, Carminati M, De Mattia F, Pirovano L, Martini E, Oldani A, Asteriti IA, Guarguaglini G, Mapelli M. NuMA Phosphorylation by Aurora-A Orchestrates Spindle Orientation. Curr Biol 2016; 26:458-69. [PMID: 26832443 DOI: 10.1016/j.cub.2015.12.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial inhibition of its activity. Under these conditions, in metaphase NuMA and Dynein accumulate abnormally at the spindle poles and do not reach the cortex, while the cortical distribution of LGN remains unperturbed. FRAP experiments revealed that Aurora-A governs the dynamic exchange between the cytoplasmic and the spindle pole-localized pools of NuMA. We show that Aurora-A phosphorylates directly the C terminus of NuMA on three Ser residues, of which Ser1969 determines the dynamic behavior and the spindle orientation functions of NuMA. Most interestingly, we identify a new microtubule-binding domain of NuMA, which does not overlap with the LGN-binding motif. Our study demonstrates that in metaphase the direct phosphorylation of NuMA by Aurora-A controls its cortical enrichment, and that this is the major event underlying the spindle orientation functions of Aurora-A in transformed and non-transformed cells in culture. Phosphorylation of NuMA by Aurora-A does not affect its affinity for microtubules or for LGN but rather determines the mobility of the protein at the spindle poles. The finding that NuMA can associate concomitantly with LGN and microtubules suggests that its microtubule-binding activity contributes to anchor Dynein-loaded microtubule +TIPs at cortical sites with LGN.
Collapse
Affiliation(s)
- Sara Gallini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Manuel Carminati
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabiola De Mattia
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Laura Pirovano
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuele Martini
- Cogentech S.c.a.r.l., Via Adamello 16, 20139 Milan, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Amanda Oldani
- Cogentech S.c.a.r.l., Via Adamello 16, 20139 Milan, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
38
|
Asteriti IA, De Mattia F, Guarguaglini G. Cross-Talk between AURKA and Plk1 in Mitotic Entry and Spindle Assembly. Front Oncol 2015; 5:283. [PMID: 26779436 PMCID: PMC4688340 DOI: 10.3389/fonc.2015.00283] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
The Aurora kinase A (AURKA) is involved in different aspects of mitotic control, from mitotic entry to cytokinesis. Consistent with its pleiotropic roles, several AURKA interactors are able to modulate its activity, the best characterized being the microtubule-binding protein TPX2, the centrosomal protein Cep192, and Bora. Bora has been described as an essential cofactor of AURKA for phosphorylation-mediated activation of the mitotic kinase polo-like kinase 1 (Plk1) at the G2/M transition. A complex AURKA/Plk1 signaling axis is emerging, with multiple involved actors; recent data suggest that this control network is not restricted to mitotic entry only, but operates throughout mitosis. Here, we integrate available data from the literature to depict the complex interplay between AURKA and Plk1 in G2 and mitosis and how it contributes to their mitotic functions. We will particularly focus on how the activity of specifically localized AURKA/Plk1 pools is modulated in time and space by their reciprocal regulation to ensure the timely and coordinated unfolding of downstream mitotic events.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Fabiola De Mattia
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
39
|
Reboutier D, Benaud C, Prigent C. Aurora A's Functions During Mitotic Exit: The Guess Who Game. Front Oncol 2015; 5:290. [PMID: 26734572 PMCID: PMC4685928 DOI: 10.3389/fonc.2015.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022] Open
Abstract
Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.
Collapse
Affiliation(s)
- David Reboutier
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Christelle Benaud
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| | - Claude Prigent
- Unité Mixte de Recherche 6290, Équipe labellisée Ligue, Centre National de la Recherche Scientifique, Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
| |
Collapse
|
40
|
Asteriti IA, Di Cesare E, De Mattia F, Hilsenstein V, Neumann B, Cundari E, Lavia P, Guarguaglini G. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy. Oncotarget 2015; 5:6229-42. [PMID: 25153724 PMCID: PMC4171625 DOI: 10.18632/oncotarget.2190] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Erica Di Cesare
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Fabiola De Mattia
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Volker Hilsenstein
- Advanced Light Microscopy Facility, EMBL, Meyerhofstraße 1, Heidelberg, Germany
| | - Beate Neumann
- Advanced Light Microscopy Facility, EMBL, Meyerhofstraße 1, Heidelberg, Germany
| | - Enrico Cundari
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Patrizia Lavia
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Biology, Molecular Medicine and Nanobiotechnology (formerly Institute of Molecular Biology and Pathology), CNR National Research Council, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Min M, Mevissen TET, De Luca M, Komander D, Lindon C. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell 2015; 26:4325-32. [PMID: 26446837 PMCID: PMC4666129 DOI: 10.1091/mbc.e15-02-0102] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)-directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome--for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner.
Collapse
Affiliation(s)
- Mingwei Min
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Tycho E T Mevissen
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | - Maria De Luca
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | - Catherine Lindon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
42
|
Sumiyoshi E, Fukata Y, Namai S, Sugimoto A. Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis. Mol Biol Cell 2015; 26:4187-96. [PMID: 26378257 PMCID: PMC4642853 DOI: 10.1091/mbc.e15-05-0258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/09/2015] [Indexed: 01/14/2023] Open
Abstract
Female meiotic spindles are organized in the absence of centrosomes. Caenorhabditis elegans Aurora A (AIR-1) is dispensable for the initial assembly of meiotic microtubules within the oocyte nuclei, but its kinase activity is continuously required for the stabilization of meiotic spindle microtubules after germinal vesicle breakdown. In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.
Collapse
Affiliation(s)
- Eisuke Sumiyoshi
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuma Fukata
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Satoshi Namai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
43
|
Li S, Deng Z, Fu J, Xu C, Xin G, Wu Z, Luo J, Wang G, Zhang S, Zhang B, Zou F, Jiang Q, Zhang C. Spatial Compartmentalization Specializes the Function of Aurora A and Aurora B. J Biol Chem 2015; 290:17546-58. [PMID: 25987563 DOI: 10.1074/jbc.m115.652453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/20/2022] Open
Abstract
Aurora kinase A and B share great similarity in sequences, structures, and phosphorylation motif, yet they show different localizations and play distinct crucial roles. The factors that determine such differences are largely unknown. Here we targeted Aurora A to the localization of Aurora B and found that Aurora A phosphorylates the substrate of Aurora B and substitutes its function in spindle checkpoint. In return, the centrosome targeting of Aurora B substitutes the function of Aurora A in the mitotic entry. Expressing the chimera proteins of the Auroras with exchanged N termini in cells indicates that the divergent N termini are also important for their spatiotemporal localizations and functions. Collectively, we demonstrate that functional divergence of Aurora kinases is determined by spatial compartmentalization, and their divergent N termini also contribute to their spatial and functional differentiation.
Collapse
Affiliation(s)
- Si Li
- From the Ministry of Education Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064 and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoxuan Deng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingyan Fu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Caiyue Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhige Wu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Luo
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shuli Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fangdong Zou
- From the Ministry of Education Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064 and
| | - Qing Jiang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Gottardo M, Callaini G, Riparbelli MG. Aurora A inhibition by MNL8054 promotes centriole elongation during Drosophila male meiosis. Cell Cycle 2015; 14:2844-52. [PMID: 25785740 DOI: 10.1080/15384101.2015.1026488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aurora A kinase plays an important role in several aspects of cell division, including centrosome maturation and separation, a crucial step for the correct organization of the bipolar spindle. Although it has long been showed that this kinase accumulates at the centrosome throughout mitosis its precise contribution to centriole biogenesis and structure has until now not been reported. It is not surprising that so little is known, due to the small size of somatic centrioles, where only dramatic structural changes may be identified by careful electron microscopy analysis. Conversely, centrioles of Drosophila primary spermatocytes increase tenfold in length during the first prophase, thus making any change easily detectable. Therefore, we examined the consequence of the pharmacological inhibition of Aurora A by MLN8054 on centriole biogenesis during early Drosophila gametogenesis. Here, we show that depletion of this kinase results in longer centrioles, mainly during transition from prophase to prometaphase of the first meiosis. We also found abnormal ciliogenesis characterized by irregularly growing axonemal doublets. Our results represent the first documentation of a potential requirement of Aurora A in centriole integrity and elongation.
Collapse
Affiliation(s)
- Marco Gottardo
- a Department of Life Sciences ; University of Siena ; Siena , Italy
| | | | | |
Collapse
|
45
|
Lioutas A, Vernos I. Aurora A: Working from dawn to dusk in mitosis. Cell Cycle 2014; 13:499-500. [DOI: 10.4161/cc.27781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Lioutas A, Vernos I. Aurora A kinase and its substrate TACC3 are required for central spindle assembly. EMBO Rep 2013; 14:829-36. [PMID: 23887685 DOI: 10.1038/embor.2013.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022] Open
Abstract
Cell division entails a marked reorganization of the microtubule network to form the spindle, a molecular machine that ensures accurate chromosome segregation to the daughter cells. Spindle organization is highly dynamic throughout mitosis and requires the activity of several kinases and complex regulatory mechanisms. Aurora A (AurA) kinase is essential for the assembly of the metaphase bipolar spindle and, thus, it has been difficult to address its function during the last phases of mitosis. Here, we examine the consequences of inhibiting AurA in cells undergoing anaphase, and show that AurA kinase activity is necessary for the assembly of a robust central spindle during anaphase. We also identify TACC3 as an AurA substrate essential in central spindle formation.
Collapse
|