1
|
Ostalé CM, Azpiazu N, Peropadre A, Martín M, Ruiz-Losada M, López-Varea A, Viales RR, Girardot C, Furlong EEM, de Celis JF. A function of Spalt proteins in heterochromatin organization and maintenance of genomic DNA integrity. Development 2025; 152:dev204258. [PMID: 40326666 DOI: 10.1242/dev.204258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The conserved Spalt proteins regulate gene expression and cell fate choices during multicellular development, generally acting as transcriptional repressors in different gene regulatory networks. In addition to their roles as DNA sequence-specific transcription factors, Spalt proteins show a consistent localization to heterochromatic regions. Vertebrate Spalt-like proteins can act through the nucleosome remodeling and deacetylase complex to promote closing of open chromatin domains, but their activities also rely on interactions with DNA methyltransferases or with the lysine-specific histone demethylase LSD1, suggesting that they participate in multiple regulatory mechanisms. Here, we describe several consequences of loss of Spalt function in Drosophila cells, including changes in chromatin accessibility, generation of DNA damage, alterations in the localization of chromosomes within the nucleus in the salivary glands and misexpression of transposable elements. We suggest that these effects are related to roles of Spalt proteins in the regulation of heterochromatin formation and chromatin organization. We propose that Drosophila Spalt proteins have two complementary functions, acting as sequence-specific transcriptional repressors on specific target genes and regulating more global gene silencing through the generation or maintenance of heterochromatic domains.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Natalia Azpiazu
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Peropadre
- Department of Biology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mireya Ruiz-Losada
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rebecca R Viales
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Erickson JR, Walker SE, Arenas Gomez CM, Echeverri K. Sall4 regulates downstream patterning genes during limb regeneration. Dev Biol 2024; 515:151-159. [PMID: 39067503 PMCID: PMC11325254 DOI: 10.1016/j.ydbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Many salamanders can completely regenerate a fully functional limb. Limb regeneration is a carefully coordinated process involving several defined stages. One key event during the regeneration process is the patterning of the blastema to inform cells of what they must differentiate into. Although it is known that many genes involved in the initial development of the limb are re-used during regeneration, the exact molecular circuitry involved in this process is not fully understood. Several large-scale transcriptional profiling studies of axolotl limb regeneration have identified many transcription factors that are up-regulated after limb amputation. Sall4 is a transcription factor that has been identified to play essential roles in maintaining cells in an undifferentiated state during development and also plays a unique role in limb development. Inactivation of Sall4 during limb bud development results in defects in anterior-posterior patterning of the limb. Sall4 has been found to be up-regulated during limb regeneration in both Xenopus and salamanders, but to date it function has been untested. We confirmed that Sall4 is up-regulated during limb regeneration in the axolotl using qRT-PCR and identified that it is present in the skin cells and also in cells within the blastema. Using CRISPR technology we microinjected gRNAs specific for Sall4 complexed with cas9 protein into the blastema to specifically knockout Sall4 in blastema cells only. This resulted in limb regenerate defects, including missing digits, fusion of digit elements, and defects in the radius and ulna. This suggests that during regeneration Sall4 may play a similar role in regulating the specification of anterior-proximal skeletal elements.
Collapse
Affiliation(s)
- J R Erickson
- Department of Genetics, Dell Biology and Development, Stell Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - S E Walker
- Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA
| | - C M Arenas Gomez
- Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA
| | - K Echeverri
- Department of Genetics, Dell Biology and Development, Stell Cell Institute, University of Minnesota, Minneapolis, MN, USA; Marine Biological Laboratory, University of Chicago, Eugene Bell Center for Regeneration Biology and Tissue Engineering, Woods Hole, MA, USA.
| |
Collapse
|
4
|
Jiang F, Wang L, Dong Y, Nie W, Zhou H, Gao J, Zheng P. DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of Rev1 and Polq in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2023; 120:e2305187120. [PMID: 37459543 PMCID: PMC10372678 DOI: 10.1073/pnas.2305187120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.
Collapse
Affiliation(s)
- Fangjie Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University,Kunming650101, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Yuping Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Hu Zhou
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jing Gao
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- The Chinese University of Hong Kong and Kunming Institute of Zoology Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| |
Collapse
|
5
|
Lyu J, Li Z, Roberts JP, Qi YA, Xiong J. The short-chain fatty acid acetate coordinates with CD30 to modulate T-cell survival. Mol Biol Cell 2023; 34:br11. [PMID: 37163337 PMCID: PMC10398883 DOI: 10.1091/mbc.e23-01-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
As an important substrate for cell metabolism, the short-chain fatty acid acetate emerges as a regulator of cell fate and function. However, its role in T-cell survival and its underlying mechanisms remain largely unknown. Here, we demonstrate that acetate modulates T-cell apoptosis via potentiation of α-tubulin acetylation. We further show that acetate treatment effectively increases the expression of the tumor necrosis factor receptor (TNFR) family member CD30 by enhancing its gene transcription. Moreover, CD30 physically associates with and stabilizes the deacetylase HDAC6, which deacetylates α-tubulin to decrease microtubule stability. Proteomic profiling of CD30 knockout (Cd30-/-) T-cells reveals elevated expression of anti-apoptotic BCL2 family proteins and thus promotes T-cell survival via a microtubule-Bcl-2 axis. Taken together, our results demonstrate that acetate is a regulator of T-cell survival by controlling levels of acetylated α-tubulin. This suggests that therapeutic manipulation of acetate metabolism may facilitate optimal T-cell responses in pathological conditions.
Collapse
Affiliation(s)
- Junfang Lyu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Jessica P. Roberts
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Jianhua Xiong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701
| |
Collapse
|
6
|
Jing X, Lyu J, Xiong J. Acetate regulates GAPDH acetylation and T helper 1 cell differentiation. Mol Biol Cell 2023; 34:br10. [PMID: 37133968 PMCID: PMC10295475 DOI: 10.1091/mbc.e23-02-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
The short-chain fatty acid metabolite acetyl-coenzyme A (acetyl-CoA) has emerged as a major signal transducer that can broadly affect cell fate and function, at least partly by influencing acetylation of key proteins. The mechanism by which acetyl-CoA regulates CD4+ T-cell fate determination remains poorly understood. Herein, we report that acetate modulates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation and CD4+ T helper 1 (Th1) cell differentiation by altering acetyl-CoA levels. Our transcriptome profiling shows that acetate is a robust positive regulator of CD4+ T-cell gene expression typical of glycolysis. We further show that acetate potentiates GAPDH activity, aerobic glycolysis, and Th1 polarization through regulation of GAPDH acetylation levels. This acetate-dependent GAPDH acetylation occurs in a dose- and time-dependent manner, while decreasing acetyl-CoA levels by fatty acid oxidation inhibition results in a decline in acetyl-GAPDH levels. Thus, acetate functions as a potent metabolic regulator in CD4+ T-cells by promoting GAPDH acetylation and Th1 cell fate decision.
Collapse
Affiliation(s)
- Xizhong Jing
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701; Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701
| | - Junfang Lyu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701; Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701
| | - Jianhua Xiong
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701; Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701
| |
Collapse
|
7
|
Gong D, Wang L, Zhou H, Gao J, Zhang W, Zheng P. Long noncoding RNA Lnc530 localizes on R-loops and regulates R-loop formation and genomic stability in mouse embryonic stem cells. Stem Cell Reports 2023; 18:952-968. [PMID: 36931280 PMCID: PMC10147553 DOI: 10.1016/j.stemcr.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Embryonic stem cells (ESCs) are superior to differentiated cells to maintain genome stability, but the underlying mechanisms remain largely elusive. R-loops are constantly formed during transcription and are inducers of DNA damage if not resolved. Here we report that mouse ESCs (mESCs) can efficiently prevent unscheduled R-loop formation, and a long noncoding RNA Lnc530 plays regulatory role. Lnc530 is expressed in mESCs and localizes on R-loops. Depletion of Lnc530 in mESCs causes R-loop accumulation and DNA damage, whereas forced expression of Lnc530 in differentiated cells suppresses the R-loop formation. Mechanistically, Lnc530 associates with DDX5 and TDP-43 in an inter-dependent manner on R-loops. Formation of Lnc530-DDX5-TDP-43 complex substantially increases the local protein levels of DDX5 and TDP-43, both of which play critical roles in R-loop regulation. This study uncovers an efficient strategy to prevent R-loop accumulation and preserve genomic stability in mESCs and possibly other stem cell types.
Collapse
Affiliation(s)
- Daohua Gong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China.
| |
Collapse
|
8
|
Baněčková M, Cox D. Top 10 Basaloid Neoplasms of the Sinonasal Tract. Head Neck Pathol 2023; 17:16-32. [PMID: 36928732 PMCID: PMC10063752 DOI: 10.1007/s12105-022-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND Basaloid neoplasms of the sinonasal tract represent a significant group of tumors with histological overlap but often with different etiologies (i.e., viral, genetics), clinical management, and prognostic significance. METHODS Review. RESULTS "Basaloid" generally refers to cells with coarse chromatin in round nuclei and sparse cytoplasm, resembling cells of epithelial basal layers or imparting an "immature" appearance. Tumors with this characteristic in the sinonasal tract are represented by a spectrum of benign to high-grade malignant neoplasms, such as adenoid cystic carcinoma, NUT carcinoma, sinonasal undifferentiated carcinoma, SWI/SNF complex-deficient carcinomas, and adamantinoma-like Ewing sarcoma. CONCLUSION In some instances, histology alone may be sufficient for diagnosis. However, limited biopsy material or fine-needle aspiration specimens may be particularly challenging. Therefore, often other diagnostic procedures, including a combination of histology, immunohistochemistry (IHC), DNA and RNA testing, and molecular genetics are necessary to establish an accurate diagnosis.
Collapse
Affiliation(s)
- Martina Baněčková
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic.
- Bioptic Laboratory Ltd, Plzen, Czech Republic.
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic.
| | - Darren Cox
- University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
9
|
Tichy ED. Specialized Circuitry of Embryonic Stem Cells Promotes Genomic Integrity. Crit Rev Oncog 2023; 27:1-15. [PMID: 36734869 DOI: 10.1615/critrevoncog.2022042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) give rise to all cell types of the organism. Given the importance of these cells in this process, ESCs must employ robust mechanisms to protect genomic integrity or risk catastrophic propagation of mutations throughout the organism. Should such an event occur in daughter cells that will eventually contribute to the germline, the overall species health could dramatically decline. This review describes several key mechanisms employed by ESCs that are unique to these cells, in order to maintain their genomic integrity. Additionally, the contributions of cell cycle regulators in modulating ESC differentiation, after DNA damage exposure, are also examined. Where data are available, findings reported in ESCs are extended to include observations described in induced pluripotent stem cells (IPSCs).
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
10
|
Zhang W, Tang M, Wang L, Zhou H, Gao J, Chen Z, Zhao B, Zheng P. Lnc956-TRIM28-HSP90B1 complex on replication forks promotes CMG helicase retention to ensure stem cell genomic stability and embryogenesis. SCIENCE ADVANCES 2023; 9:eadf6277. [PMID: 36706191 PMCID: PMC9882984 DOI: 10.1126/sciadv.adf6277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Replication stress is a major source of endogenous DNA damage. Despite the identification of numerous proteins on replication forks to modulate fork or replication machinery activities, it remains unexplored whether noncoding RNAs can localize on stalled forks and play critical regulatory roles. Here, we identify an uncharacterized long noncoding RNA NONMMUT028956 (Lnc956 for short) predominantly expressed in mouse embryonic stem cells. Lnc956 is accumulated on replication forks to prevent fork collapse and preserve genomic stability and is essential for mouse embryogenesis. Mechanistically, it drives assembly of the Lnc956-TRIM28-HSP90B1 complex on stalled forks in an interdependent manner downstream of ataxia telangiectasia and Rad3-related (ATR) signaling. Lnc956-TRIM28-HSP90B1 complex physically associates with minichromosome maintenance proteins 2 (MCM2) to minichromosome maintenance proteins 7 (MCM7) hexamer via TRIM28 and directly regulates the CDC45-MCM-GINS (CMG) helicase retention on chromatin. The regulation of Lnc956-TRIM28-HSP90B1 on CMG retention is mediated by HSP90B1's chaperoning function. These findings reveal a player that actively regulates replisome retention to prevent fork collapse.
Collapse
Affiliation(s)
- Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Min Tang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhongliang Chen
- Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, China
| | - Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Ma H, Ning Y, Wang L, Zhang W, Zheng P. Lnc956 regulates mouse embryonic stem cell differentiation in response to DNA damage in a p53-independent pathway. SCIENCE ADVANCES 2023; 9:eade9742. [PMID: 36662856 PMCID: PMC9858519 DOI: 10.1126/sciadv.ade9742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Maintaining genomic stability is crucial for embryonic stem cells (ESCs). ESCs with unrepaired DNA damage are eliminated through differentiation and apoptosis. To date, only tumor suppressor p53 is known to be implicated in this quality control process. Here, we identified a p53-independent quality control factor lncRNA NONMMUT028956 (Lnc956 for short) in mouse ESCs. Lnc956 is prevalently expressed in ESCs and regulates the differentiation of ESCs after DNA damage. Mechanistically, Ataxia telangiectasia mutated (ATM) activation drives m6A methylation of Lnc956, which promotes its interaction with Krüppel-like factor 4 (KLF4). Lnc956-KLF4 association sequestrates the KLF4 protein and prevents KLF4's transcriptional regulation on pluripotency. This posttranslational mechanism favors the rapid shutdown of the regulatory circuitry of pluripotency. Thus, ATM signaling in ESCs can activate two pathways mediated by p53 and Lnc956, respectively, which act together to ensure robust differentiation and apoptosis in response to unrepaired DNA damage.
Collapse
Affiliation(s)
- Huaixiao Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuqi Ning
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
12
|
Wang L, Tan X, Chen L, Xu S, Huang W, Chen N, Wu Y, Wang C, Zhou D, Li M. Sall4 Guides p53-Mediated Enhancer Interference upon DNA Damage in Mouse Embryonic Stem Cells. Stem Cells 2022; 40:1008-1019. [PMID: 35977539 DOI: 10.1093/stmcls/sxac058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022]
Abstract
p53 plays a pivotal role in maintaining the genomic stability of mouse embryonic stem cells (mESCs) through transcriptionally activating and repressing target genes. However, how p53 recognizes its repressed targets remains largely unknown. Herein, we demonstrate that Sall4 negatively regulates DNA damage induced apoptosis (DIA) of mESCs through mediating p53 recruitment to enhancers of ESC-associated genes repressed by p53 from promoters of p53-activated genes. Upon DNA damage, Sall4 is transcriptionally repressed by p53 and plays an anti-apoptotic role without altering p53 activation. Moreover, Sall4 is identified as a novel p53-interacting partner. Consistently, Sall4 exerts its anti-apoptotic function in a p53-dependent manner. Intriguingly, Sall4 depletion not only promotes the transcriptional activation of several p53-regulated pro-apoptotic genes but also compromises p53-mediated repression of ESC master transcription factors in response to DNA damage. Mechanistically, Sall4 balances p53-binding affinity between p53-activated and -repressed genes through tethering p53 to ESC enhancers. In light of our study, Sall4 may contribute to tumorigenesis by antagonizing p53-mediated apoptosis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaojun Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Lu Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Sisi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Weiping Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Nan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Yizhou Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunyan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Daqiang Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Zhao Q, Liu K, Zhang L, Li Z, Wang L, Cao J, Xu Y, Zheng A, Chen Q, Zhao T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis 2022; 13:976. [PMID: 36402748 PMCID: PMC9675825 DOI: 10.1038/s41419-022-05413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) have a significantly lower mutation load compared to somatic cells, but the mechanisms that guard genomic integrity in ESCs remain largely unknown. Here we show that BNIP3-dependent mitophagy protects genomic integrity in mouse ESCs. Deletion of Bnip3 increases cellular reactive oxygen species (ROS) and decreases ATP generation. Increased ROS in Bnip3-/- ESCs compromised self-renewal and were partially rescued by either NAC treatment or p53 depletion. The decreased cellular ATP in Bnip3-/- ESCs induced AMPK activation and deteriorated homologous recombination, leading to elevated mutation load during long-term propagation. Whereas activation of AMPK in X-ray-treated Bnip3+/+ ESCs dramatically ascended mutation rates, inactivation of AMPK in Bnip3-/- ESCs under X-ray stress remarkably decreased the mutation load. In addition, enhancement of BNIP3-dependent mitophagy during reprogramming markedly decreased mutation accumulation in established iPSCs. In conclusion, we demonstrated a novel pathway in which BNIP3-dependent mitophagy safeguards ESC genomic stability, and that could potentially be targeted to improve pluripotent stem cell genomic integrity for regenerative medicine.
Collapse
Affiliation(s)
- Qian Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Kun Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Lin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zheng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Liang Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiani Cao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Youqing Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quan Chen
- grid.216938.70000 0000 9878 7032College of Life Sciences, Nankai University, Tianjin, 300073 China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
14
|
Current understanding of genomic stability maintenancein pluripotent stem cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:858-863. [PMID: 35713312 PMCID: PMC9828662 DOI: 10.3724/abbs.2022064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pluripotent stem cells (PSCs) are able to generate all cell types in the body and have wide applications in basic research and cell-based regenerative medicine. Maintaining stable genome in culture is the first priority for stem cell application in clinics. In addition, genomic instability in PSCs can cause developmental failure or abnormalities. Understanding how PSCs maintain genome stability is of critical importance. Due to their fundamental role in organism development, PSCs must maintain superior stable genome than differentiated cells. However, the underlying mechanisms are far from clear. Very limited studies suggest that PSCs utilize specific strategies and regulators to robustly improve genome stability. In this review, we summarize the current understandings of the unique properties of genome stability maintenance in PSCs.
Collapse
|
15
|
Wang L, Li J, Zhou H, Zhang W, Gao J, Zheng P. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nat Commun 2021; 12:5572. [PMID: 34552092 PMCID: PMC8458541 DOI: 10.1038/s41467-021-25827-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
RPA is a master regulator of DNA metabolism and RPA availability acts as a rate-limiting factor. While numerous studies focused on the post-translational regulations of RPA for its functions, little is known regarding how RPA availability is controlled. Here we identify a novel lncRNA Discn as the guardian of RPA availability in stem cells. Discn is induced upon genotoxic stress and binds to neucleolin (NCL) in the nucleolus. This prevents NCL from translocation into nucleoplasm and avoids undesirable NCL-mediated RPA sequestration. Thus, Discn-NCL-RPA pathway preserves a sufficient RPA pool for DNA replication stress response and repair. Discn loss causes massive genome instability in mouse embryonic stem cells and neural stem/progenigor cells. Mice depleted of Discn display newborn death and brain dysfunctions due to DNA damage accumulation and associated inflammatory reactions. Our findings uncover a key regulator of DNA metabolism and provide new clue to understand the chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jingzheng Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
16
|
Compton ML, Lewis JS, Faquin WC, Cipriani NA, Shi Q, Ely KA. SALL-4 and Beta-Catenin Expression in Sinonasal Teratocarcinosarcoma. Head Neck Pathol 2021; 16:229-235. [PMID: 34106411 PMCID: PMC9018936 DOI: 10.1007/s12105-021-01343-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Sinonasal teratocarcinosarcoma (SNTCS) is a rare, aggressive malignancy that displays a heterogeneous combination of malignant blastema-like, epithelial and mesenchymal components. Its exact histogenesis is unknown with hypotheses ranging from true germ cell derivation to origin from pluripotent stem cells. However, despite this tumor's multiphenotypic histology, which includes frequent glandular, squamous, and neuroectodermal differentiation similar to adnexal germ cell tumors, SNTCS appears to have some differences from adnexal teratomas. For example, unlike adnexal teratomas, SNTCS has never been described as a component in a mixed germ cell tumor. Accurate recognition of SNTCS is difficult due to its rarity and histologic overlap with other sinonasal tumors. It is even more problematic on biopsy, since not all elements may be present in small samples. SNTCS can also share similar staining patterns with other neoplasms in the differential diagnosis. A recent study found nuclear β-catenin expression in a single TCS, but this has yet to be confirmed in additional cases. SALL-4, a marker of germ cell tumors, has not been examined. We performed β-catenin and SALL-4 immunohistochemistry on whole sections of 7 SNTCS and 19 other sinonasal neoplasms to assess whether β-catenin and SALL-4 are of utility in establishing a diagnosis of SNTCS. Intensity of expression and percentage of staining was noted for each tumor. For SNTCS, distribution of staining within each histologic component (immature neuroectodermal, epithelial, and mesenchymal) was also documented. Nuclear β-catenin expression was not identified in any SNTCS, with all cases demonstrating membranous expression (6 cases) or cytoplasmic and membranous expression (1 case). SALL-4 immunohistochemistry, however, was relatively sensitive (85.7%) and specific (89.5%) for SNTCS. SALL-4 expression was also identified in one poorly differentiated neuroendocrine carcinoma and one case of sinonasal undifferentiated carcinoma. SALL-4 appears to have utility in distinguishing SNTCS from other high grade sinonasal tumors.
Collapse
Affiliation(s)
- Margaret L Compton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA.
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole A Cipriani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Qiuying Shi
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Kim A Ely
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
| |
Collapse
|
17
|
Shao M, Zhang J, Zhang J, Shi H, Zhang Y, Ji R, Mao F, Qian H, Xu W, Zhang X. SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell Int 2020; 20:188. [PMID: 32489324 PMCID: PMC7247129 DOI: 10.1186/s12935-020-01275-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/16/2020] [Indexed: 02/11/2023] Open
Abstract
Background The stem cell factor SALL4 is reactivated in human cancers. SALL4 plays diverse roles in tumor growth, metastasis, and drug resistance, but its role in tumor metabolism has not been well characterized. Methods The glycolytic levels of gastric cancer cells were detected by glucose uptake, lactate production, lactate dehydrogenase activity, ATP level, and hexokinase activity. QRT-PCR and western blot were used to detect the changes in the expression of glycolytic genes and proteins. The downstream target genes of SALL4 were identified by microarray. The regulation of hexokinase II (HK-2) by SALL4 was analyzed by luciferase reporter assay and chromatin immunoprecipitation assay. Transwell migration assay, matrigel invasion assay, cell counting assay and colony formation assay were used to study the roles of HK-2 regulation by SALL4 in gastric cancer cells in vitro. The effects of SALL4 on glycolysis and gastric cancer progression in vivo were determined by subcutaneous xenograft and peritoneal metastasis tumor models in nude mice. Results SALL4 knockdown inhibited glucose uptake, lactate production, lactate dehydrogenase activity, ATP level and hexokinase activity in gastric cancer cells, and decreased the expression of glycolytic genes and proteins. Microarray analysis showed that SALL4 knockdown affected glycolysis-related pathway. The regulation of HK-2 gene expression by SALL4 was confirmed by luciferase reporter assay and chromatin immunoprecipitation assay. HK-2 knockdown abrogated the promotion of glycolysis by SALL4 in gastric cancer cells, indicating that HK-2 acts as a downstream effector of SALL4. Moreover, HK-2 knockdown reversed the promoting role of SALL4 in gastric cancer cell proliferation, migration and invasion, suggesting that SALL4 drives gastric cancer progression by upregulating HK-2. Conclusions SALL4 promotes gastric cancer progression through HK-2-mediated glycolysis, which reveals a new mechanism for the oncogenic roles of SALL4 in cancer.
Collapse
Affiliation(s)
- Meng Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Runbi Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China.,Department of Clinical Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013 China
| |
Collapse
|
18
|
Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed Pharmacother 2020; 127:110114. [PMID: 32304852 DOI: 10.1016/j.biopha.2020.110114] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Thalidomide was first marketed in 1957 but soon withdrawn because of its notorious teratogenicity. Studies on the mechanism of action of thalidomide revealed the pleiotropic properties of this class of drugs, including their anti-inflammatory, antiangiogenic and immunomodulatory activities. Based on their notable activities, thalidomide and its analogues, lenalidomide and pomalidomide, have been repurposed to treat erythema nodosum leprosum, multiple myeloma and other haematological malignancies. Thalidomide analogues were recently found to hijack CRL4CRBN ubiquitin ligase to target a number of cellular proteins for ubiquitination and proteasomal degradation. Thalidomide-mediated degradation of SALL4 and p63, transcription factors essential for embryonic development, very likely plays a critical role in thalidomide embryopathy. In this review, we provide a brief retrospective summary of thalidomide-induced teratogenesis, the mechanism of thalidomide activity, and the latest advances in the molecular mechanism of thalidomide-induced birth malformations.
Collapse
|
19
|
Xu S, Kim J, Tang Q, Chen Q, Liu J, Xu Y, Fu X. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell 2020; 11:352-365. [PMID: 32170574 PMCID: PMC7196600 DOI: 10.1007/s13238-020-00699-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application.
Collapse
Affiliation(s)
- Shuxiang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Jinchul Kim
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Qingshuang Tang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Qu Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Jingfeng Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
- Shenzhen Children’s Hospital, Shenzhen, 518026 China
| |
Collapse
|
20
|
Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair. Proc Natl Acad Sci U S A 2020; 117:2519-2525. [PMID: 31964807 DOI: 10.1073/pnas.1915079117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The highly conserved COP9 signalosome (CSN), composed of 8 subunits (Cops1 to Cops8), has been implicated in pluripotency maintenance of human embryonic stem cells (ESCs). Yet, the mechanism for the CSN to regulate pluripotency remains elusive. We previously showed that Cops2, independent of the CSN, is essential for the pluripotency maintenance of mouse ESCs. In this study, we set out to investigate how Cops5 and Cops8 regulate ESC differentiation and tried to establish Cops5 and Cops8 knockout (KO) ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones were identified out of 127 clones, while three Cops8 KO ESC lines were established out of 70 clones. We then constructed an inducible Cops5 KO ESC line. Cops5 KO leads to decreased expression of the pluripotency marker Nanog, proliferation defect, G2/M cell-cycle arrest, and apoptosis of ESCs. Further analysis revealed dual roles of Cops5 in maintaining genomic stability of ESCs. On one hand, Cops5 suppresses the autophagic degradation of Mtch2 to direct cellular metabolism toward glycolysis and minimize reactive oxygen species (ROS) production, thereby reducing endogenous DNA damage. On the other hand, Cops5 is required for high DNA damage repair (DDR) activities in ESCs. Without Cops5, elevated ROS and reduced DDR activities lead to DNA damage accumulation in ESCs. Subsequently, p53 is activated to trigger G2/M arrest and apoptosis. Altogether, our studies reveal an essential role of Cops5 in maintaining genome integrity and self-renewal of ESCs by regulating cellular metabolism and DDR pathways.
Collapse
|
21
|
Srivastava M, Chen Z, Zhang H, Tang M, Wang C, Jung SY, Chen J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep 2019; 25:3869-3883.e4. [PMID: 30590055 PMCID: PMC6364303 DOI: 10.1016/j.celrep.2018.11.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Chen L, Yang Z, Wang Y, Du L, Li Y, Zhang N, Gao W, Peng R, Zhu F, Wang L, Li C, Li J, Wang F, Sun Q, Zhang D. Single xenotransplant of rat brown adipose tissue prolonged the ovarian lifespan of aging mice by improving follicle survival. Aging Cell 2019; 18:e13024. [PMID: 31389140 PMCID: PMC6826128 DOI: 10.1111/acel.13024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023] Open
Abstract
Prolonging the ovarian lifespan is attractive and challenging. An optimal clinical strategy must be safe, long-acting, simple, and economical. Allotransplantation of brown adipose tissue (BAT), which is most abundant and robust in infants, has been utilized to treat various mouse models of human disease. Could we use BAT to prolong the ovarian lifespan of aging mice? Could we try BAT xenotransplantation to alleviate the clinical need for allogeneic BAT due to the lack of voluntary infant donors? In the current study, we found that a single rat-to-mouse (RTM) BAT xenotransplantation did not cause systemic immune rejection but did significantly increase the fertility of mice and was effective for more than 5 months (equivalent to 10 years in humans). Next, we did a series of analysis including follicle counting; AMH level; estrous cycle; mTOR activity; GDF9, BMP15, LHR, Sirt1, and Cyp19a level; ROS and annexin V level; IL6 and adiponectin level; biochemical blood indices; body temperature; transcriptome; and DNA methylation studies. From these, we proposed that rat BAT xenotransplantation rescued multiple indices indicative of follicle and oocyte quality; rat BAT also improved the metabolism and general health of the aging mice; and transcriptional and epigenetic (DNA methylation) improvement in F0 mice could benefit F1 mice; and multiple KEGG pathways and GO classified biological processes the differentially expressed genes (DEGs) or differentially methylated regions (DMRs) involved were identical between F0 and F1. This study could be a helpful reference for clinical BAT xenotransplantation from close human relatives to the woman.
Collapse
Affiliation(s)
- Liang‐Jian Chen
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhi‐Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Lei Du
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Department of Center for Medical ExperimentsThird Xiang‐Ya Hospital of Central South UniversityChangshaChina
| | - Yan‐Ru Li
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Na‐Na Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen‐Yi Gao
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Rui‐Rui Peng
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Feng‐Yu Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Li‐Li Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Cong‐Rong Li
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jian‐Min Li
- Animal Core FacilityNanjing Medical UniversityNanjingChina
| | - Fu‐Qiang Wang
- Analysis & Test CenterNanjing Medical UniversityNanjingChina
| | - Qing‐Yuan Sun
- State Key Lab of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Animal Core FacilityNanjing Medical UniversityNanjingChina
| |
Collapse
|
23
|
|
24
|
TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun 2019; 10:4273. [PMID: 31537782 PMCID: PMC6753139 DOI: 10.1038/s41467-019-12126-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Recognition of specific chromatin modifications by distinct structural domains within “reader” proteins plays a critical role in the maintenance of genomic stability. However, the specific mechanisms involved in this process remain unclear. Here we report that the PHD-Bromo tandem domain of tripartite motif-containing 66 (TRIM66) recognizes the unmodified H3R2-H3K4 and acetylated H3K56. The aberrant deletion of Trim66 results in severe DNA damage and genomic instability in embryonic stem cells (ESCs). Moreover, we find that the recognition of histone modification by TRIM66 is critical for DNA damage repair (DDR) in ESCs. TRIM66 recruits Sirt6 to deacetylate H3K56ac, negatively regulating the level of H3K56ac and facilitating the initiation of DDR. Importantly, Trim66-deficient blastocysts also exhibit higher levels of H3K56ac and DNA damage. Collectively, the present findings indicate the vital role of TRIM66 in DDR in ESCs, establishing the relationship between histone readers and maintenance of genomic stability. TRIM66 protein has an N-terminal tripartite motif and a C-terminal PHD Bromodomain. Here the authors show the specific histone modification recognition of TRIM66-PHD-Bromodomain through crystallography and biochemistry assay, and further reveal that TRIM66 recognition of certain histone modification is important for DNA damage repair in ESCs.
Collapse
|
25
|
Liu X, Wang M, Jiang T, He J, Fu X, Xu Y. IDO1 Maintains Pluripotency of Primed Human Embryonic Stem Cells by Promoting Glycolysis. Stem Cells 2019; 37:1158-1165. [PMID: 31145821 DOI: 10.1002/stem.3044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022]
Abstract
Human embryonic stem cells (hESCs) depend on glycolysis for energy supply and pluripotency and switch to oxidative phosphorylation upon differentiation. The underlying mechanisms remain unclear. Here, we demonstrate that indoleamine 2,3-dioxygenase 1 (IDO1) is expressed in primed hESCs and its expression rapidly downregulated upon hESC differentiation. IDO1 is required to maintain pluripotency by suppressing mitochondria activity and promoting glycolysis through the increase of NAD+ /NADH ratio. The upregulation of IDO1 during hESC differentiation suppresses the differentiation of hESCs into certain lineages of cells such as cardiomyocytes, which depend on oxidative phosphorylation to satisfy their high energy demand. Therefore, IDO1 plays important roles in maintaining the pluripotency of hESCs. Stem Cells 2019;37:1158-1165.
Collapse
Affiliation(s)
- Xin Liu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Meiyan Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Tao Jiang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
26
|
Nie X, Guo E, Wu C, Liu D, Sun W, Zhang L, Long G, Mei Q, Wu K, Xiong H, Hu G. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med 2019; 8:1779-1792. [PMID: 30907073 PMCID: PMC6488116 DOI: 10.1002/cam4.2056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is the mainstay and primary curative treatment modality in nasopharyngeal carcinoma (NPC), whose efficacy is limited by the development of intrinsic and acquired radioresistance. Thus, deciphering new molecular targets and pathways is essential for enhancing the radiosensitivity of NPC. SALL4 is a vital factor in the development and prognosis of various cancers, but its role in radioresistance remains elusive. This study aimed to explore the association of SALL4 expression with radioresistance of NPC. It was revealed that SALL4 expression was closely correlated with advanced T classification of NPC patients. Inhibition of SALL4 reduced proliferation and sensitized cells to radiation both in vitro and in vivo. Furthermore, SALL4 silencing increased radiation-induced DNA damage, apoptosis, and G2/M arrest in CNE2 and CNE2R cells. Moreover, knockdown of SALL4 impaired the expression of p-ATM, p-Chk2, p-p53, and anti-apoptosis protein Bcl-2, while pro-apoptosis protein was upregulated. These findings indicate that SALL4 could induce radioresistance via ATM/Chk2/p53 pathway and its downstream proteins related to apoptosis. Targeting SALL4 might be a promising approach for the development of novel radiosensitizing therapeutic agents for radioresistant NPC patients.
Collapse
Affiliation(s)
- Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
27
|
Nakayama C, Yamamichi N, Tomida S, Takahashi Y, Kageyama‐Yahara N, Sakurai K, Takeuchi C, Inada K, Shiogama K, Nagae G, Ono S, Tsuji Y, Niimi K, Fujishiro M, Aburatani H, Tsutsumi Y, Koike K. Transduced caudal-type homeobox (CDX) 2/CDX1 can induce growth inhibition on CDX-deficient gastric cancer by rapid intestinal differentiation. Cancer Sci 2018; 109:3853-3864. [PMID: 30289576 PMCID: PMC6272106 DOI: 10.1111/cas.13821] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/04/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal metaplasia induced by ectopic expression of caudal-type homeobox (CDX)2 and/or CDX1 (CDX) is frequently observed around gastric cancer (GC). Abnormal expression of CDX is also observed in GC and suggests that inappropriate gastrointestinal differentiation plays essential roles in gastric tumorigenesis, but their roles on tumorigenesis remain unelucidated. Publicly available databases show that GC patients with higher CDX expression have significantly better clinical outcomes. We introduced CDX2 and CDX1 genes separately into GC-originated MKN7 and TMK1 cells deficient in CDX. Marked suppression of cell growth and dramatic morphological change into spindle-shaped flat form were observed along with induction of intestinal marker genes. G0-G1 growth arrest was accompanied by changed expression of cell cycle-related genes but not with apoptosis or senescence. Microarray analyses additionally showed decreased expression of gastric marker genes and increased expression of stemness-associated genes. Hierarchical clustering of 111 GC tissues and 21 non-cancerous gastric tissues by selected 18 signature genes based on our transcriptome analyses clearly categorized the 132 tissues into non-cancer, "CDX signature"-positive GC, and "CDX signature"-negative GC. Gene set enrichment analysis indicated that "CDX signature"-positive GC has lower malignant features. Immunohistochemistry of 89 GC specimens showed that 50.6% were CDX2-deficient, 66.3% were CDX1-deficient, and 44.9% were concomitant CDX2/CDX1-deficient, suggesting that potentially targetable GC cases by induced intestinal differentiation are quite common. In conclusion, exogenous expression of CDX2/CDX1 can lead to efficient growth inhibition of CDX-deficient GC cells. It is based on rapidly induced intestinal differentiation, which may be a future therapeutic strategy.
Collapse
Affiliation(s)
- Chiemi Nakayama
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobutake Yamamichi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Shuta Tomida
- Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yu Takahashi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | | | - Kouhei Sakurai
- Department of Diagnostic Pathology IIFujita Health University School of MedicineAichiJapan
| | - Chihiro Takeuchi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Ken‐ichi Inada
- Department of Diagnostic Pathology IIFujita Health University School of MedicineAichiJapan
| | - Kazuya Shiogama
- 1st Department of PathologyFujita Health University School of MedicineAichiJapan
| | - Genta Nagae
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Satoshi Ono
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yosuke Tsuji
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Keiko Niimi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Yutaka Tsutsumi
- 1st Department of PathologyFujita Health University School of MedicineAichiJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
28
|
Xia M, Chen K, Yao X, Xu Y, Yao J, Yan J, Shao Z, Wang G. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF. Cell Rep 2018; 20:1794-1804. [PMID: 28834744 DOI: 10.1016/j.celrep.2017.07.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/08/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases.
Collapse
Affiliation(s)
- Min Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Yao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yichi Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaying Yao
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Shao
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
29
|
Yang J. SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res 2018; 6:1. [PMID: 29308206 PMCID: PMC5751604 DOI: 10.1186/s40364-017-0115-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been substantial progress in our knowledge of the molecular pathways by which stem cell factor SALL4 regulates the embryonic stem cell (ESC) properties, developmental events, and human cancers. This review summarizes recent advances in the biology of SALL4 with a focus on its regulatory functions in normal and leukemic hematopoiesis. In the normal hematopoietic system, expression of SALL4 is mainly enriched in the bone marrow hematopoietic stem/progenitor cells (HSCs/HPCs), but is rapidly silenced following lineage differentiation. In hematopoietic malignancies, however, SALL4 expression is abnormally re-activated and linked with deteriorated disease status in patients. Further, SALL4 activation participates in the pathogenesis of tumor initiation and disease progression. Thus, a better understanding of SALL4's biologic functions and mechanisms will facilitate development of advanced targeted anti-leukemia approaches in future.
Collapse
Affiliation(s)
- Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
30
|
Adamowicz M. Breaking up with ATM. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-31. [PMID: 29652413 PMCID: PMC5892715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ATM kinase is a master regulator of the DNA damage response (DDR). A recently published report from the d'Adda di Fagagna laboratory1 sheds a light onto our understanding of ATM activation. In this short-commentary we will expand on this and other work to perceive better some of the aspects of ATM regulation.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK,Correspondence: Dr. Marek Adamowicz, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| |
Collapse
|
31
|
SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway. J Neurooncol 2017; 135:263-272. [PMID: 28887597 PMCID: PMC5663806 DOI: 10.1007/s11060-017-2589-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Spalt-like transcription factor 4 (SALL4), a oncogene, is known to participate in multiple carcinomas, and is up-regulated in glioma. However, its actual role and underlying mechanisms in the development of glioma remain unclear. The present study explored the molecular functions of SALL4 in promoting cell proliferation in glioma. The expression level of SALL4 in 69 human glioma samples and six non-tumor brain tissues was determined using real-time polymerase chain reaction (PCR). Then, we transfected U87 and U251 cell lines with siRNA, and assessed cellular proliferation and cell cycle to understand the function of SALL4, and the relationship between SALL4, PTEN and PI3K/AKT pathway. PCR confirmed that the expression of SALL4 was higher in the glioma samples than non-tumor brain tissues. Cellular growth and proliferation were dramatically reduced following inhibition of SALL4 expression. Western blot showed increase in PTEN expression when SALL4 was silenced, which in turn depressed the activation of PI3K/AKT pathway, suggesting that PTEN was a downstream target of SALL4 in glioma development. Therefore, SALL4 could act as a proto-oncogene by regulating the PTEN/PI3K/AKT signaling pathway, thereby facilitating proliferation of glioma cells.
Collapse
|
32
|
Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene 2017; 36:6472-6479. [DOI: 10.1038/onc.2017.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
|
33
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
34
|
Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA Damage in Stem Cells. Mol Cell 2017; 66:306-319. [DOI: 10.1016/j.molcel.2017.04.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
|
35
|
Suchorska WM, Augustyniak E, Łukjanow M. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation. Mol Med Rep 2017; 15:1952-1962. [PMID: 28259963 PMCID: PMC5364988 DOI: 10.3892/mmr.2017.6270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment-associated purposes. Therefore, the aim of the present study was to examine and compare early IR-induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non-homologous end-joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC-based clinical protocols.
Collapse
Affiliation(s)
| | - Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | - Magdalena Łukjanow
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| |
Collapse
|
36
|
Fu X, Cui K, Yi Q, Yu L, Xu Y. DNA repair mechanisms in embryonic stem cells. Cell Mol Life Sci 2017; 74:487-493. [PMID: 27614628 PMCID: PMC11107665 DOI: 10.1007/s00018-016-2358-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/28/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various functional cells in the human body, ESCs hold great promise for human cell therapy. During the rapid proliferation of ESCs in culture, DNA damage, such as DNA double-stranded breaks, will occur in ESCs. Therefore, to realize the potential of ESCs in human cell therapy, it is critical to understand the mechanisms how ESCs activate DNA damage response and DNA repair to maintain genomic stability, which is a prerequisite for their use in human therapy. In this context, it has been shown that ESCs harbor much fewer spontaneous mutations than somatic cells. Consistent with the finding that ESCs are genetically more stable than somatic cells, recent studies have indicated that ESCs can mount more robust DNA damage responses and DNA repair than somatic cells to ensure their genomic integrity.
Collapse
Affiliation(s)
- Xuemei Fu
- Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| | - Ke Cui
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuxiang Yi
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lili Yu
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
37
|
Erickson JR, Gearhart MD, Honson DD, Reid TA, Gardner MK, Moriarity BS, Echeverri K. A novel role for SALL4 during scar-free wound healing in axolotl. NPJ Regen Med 2016; 1. [PMID: 28955504 PMCID: PMC5612448 DOI: 10.1038/npjregenmed.2016.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human response to serious cutaneous damage is limited to relatively primitive wound healing, whereby collagenous scar tissue fills the wound bed. Scars assure structural integrity at the expense of functional regeneration. In contrast, axolotls have the remarkable capacity to functionally regenerate full thickness wounds. Here, we identified a novel role for SALL4 in regulating collagen transcription after injury that is essential for perfect skin regeneration in axolotl. Furthermore, we identify miR-219 as a molecular regulator of Sall4 during wound healing. Taken together, our work highlights one molecular mechanism that allows for efficient cutaneous wound healing in the axolotl.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Drew D Honson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Taylor A Reid
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Center for Genome Engineering, University of Minnesota, Masonic Cancer Center, University of Minnesota, Minnesota, MN USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| |
Collapse
|
38
|
SALL4 promotes gastric cancer progression through activating CD44 expression. Oncogenesis 2016; 5:e268. [PMID: 27819668 PMCID: PMC5141291 DOI: 10.1038/oncsis.2016.69] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
The stem cell factor SALL4 (Sal-like protein 4) plays important roles in the development and progression of cancer. SALL4 is critically involved in tumour growth, metastasis and therapy resistance. However, the underlying mechanisms responsible for the oncogenic roles of SALL4 have not been well characterized. In this study, we demonstrated that SALL4 knockdown by short hairpin RNA greatly inhibited the proliferation, migration and invasion of gastric cancer cells. We further confirmed the inhibitory effects of SALL4 knockdown on gastric cancer cells by using a tetracycline-inducible system. Mechanistically, SALL4 knockdown downregulated the expression of CD44. The results of luciferase assay and chromatin immunoprecipitation study showed that SALL4 bound to CD44 promoter region and transcriptionally activated CD44. The results of rescue study revealed that CD44 overexpression antagonized SALL4 knockdown-mediated inhibition of gastric cancer cell proliferation, migration, and invasion in vitro and gastric cancer growth in vivo. Collectively, our findings indicate that SALL4 promotes gastric cancer progression through directly activating CD44 expression, which suggests a novel mechanism for the oncogenic roles of SALL4 in gastric cancer and represents a new target for gastric cancer therapy.
Collapse
|
39
|
Jia X, Qian R, Zhang B, Zhao S. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer. J Thorac Dis 2016; 8:2682-2688. [PMID: 27867542 DOI: 10.21037/jtd.2016.09.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 (SALL4) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. METHODS In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS), and a fusion gene of the echinoderm microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK). RESULTS The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS. In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. CONCLUSIONS SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR, which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis.
Collapse
Affiliation(s)
- Xiangbo Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou 450003, China
| | - Binbin Zhang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou 450003, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
40
|
Lee HJ, Gutierrez‐Garcia R, Vilchez D. Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 2016; 284:391-398. [DOI: 10.1111/febs.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - Ricardo Gutierrez‐Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| |
Collapse
|
41
|
Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene 2016; 584:111-9. [PMID: 26892498 DOI: 10.1016/j.gene.2016.02.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
Abstract
There is a growing body of evidence supporting that cancer cells share many similarities with embryonic stem cells (ESCs). For example, aggressive cancers and ESCs share a common gene expression signature that includes hundreds of genes. Since ESC genes are not present in most adult tissues, they could be ideal candidate targets for cancer-specific diagnosis and treatment. This is an exciting cancer-targeting model. The major hurdle to test this model is to identify the key factors/pathway(s) within ESCs that are responsible for the cancer phenotype. SALL4 is one of few genes that can establish this link. The first publication of SALL4 is on its mutation in a human inherited disorder with multiple developmental defects. Since then, over 300 papers have been published on various aspects of this gene in stem cells, development, and cancers. This review aims to summarize our current knowledge of SALL4, including a SALL4-based approach to classify and target cancers. Many questions about this important gene still remain unanswered, specifically, on how this gene regulates cell fates at a molecular level. Understanding SALL4's molecular functions will allow development of specific targeted approaches in the future.
Collapse
Affiliation(s)
- Hiro Tatetsu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Gao Chong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine (MD6), #12-01, 14 Medical Drive, 117599, Singapore; Harvard Stem Cell Institute, Center for Life Science Room 437, 3 Blackfan Circle Room 437, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Hao L, Zhao Y, Wang Z, Yin H, Zhang X, He T, Song S, Sun S, Wang B, Li Z, Su Q. Expression and clinical significance of SALL4 and β-catenin in colorectal cancer. J Mol Histol 2016; 47:117-28. [DOI: 10.1007/s10735-016-9656-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
|
43
|
Virant-Klun I. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans. Stem Cells Dev 2015; 25:101-13. [PMID: 26494182 DOI: 10.1089/scd.2015.0275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Center Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
44
|
Baumann K. Linking stemness to low DNA damage. Nat Rev Mol Cell Biol 2015. [DOI: 10.1038/nrm3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Xiong J, Todorova D, Su N, Kim J, Lee P, Shen Z, Briggs S, Xu Y. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. J Exp Med 2015. [DOI: 10.1084/jem.2123oia6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Leslie M. Sall4 won’t give stem cells a break. J Biophys Biochem Cytol 2015. [PMCID: PMC4347637 DOI: 10.1083/jcb.2085iti1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|