1
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Mai C, Fukui A, Saeki S, Takeyama R, Yamaya A, Shibahara H. Expression of NKp46 and other activating inhibitory receptors on uterine endometrial NK cells in females with various reproductive failures: A review. Reprod Med Biol 2025; 24:e12610. [PMID: 39807425 PMCID: PMC11725765 DOI: 10.1002/rmb2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition. Methods This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures. Main Findings Numerous studies have indicated that the natural cytotoxic receptors, killer cell immunoglobulin-like receptors, and C-type lectin receptors, particularly those expressed on uNK cells, play crucial roles in successful pregnancy. Conclusion As studies on human uNK cells are limited owing to the low availability of fertile samples, and the extrapolation of animal models has certain limitations, the in vivo role of uNK cells has not yet been fully elucidated. However, immunotherapies focusing on modulating uNK cell function have been controversial in terms of pregnancy outcomes. Further research is required to elucidate the role of uNK cells in reproduction.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesFirst Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Shinichiro Saeki
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ryu Takeyama
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ayano Yamaya
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| |
Collapse
|
3
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Kaur K, Jewett A. Osteoclasts and Probiotics Mediate Significant Expansion, Functional Activation and Supercharging in NK, γδ T, and CD3+ T Cells: Use in Cancer Immunotherapy. Cells 2024; 13:213. [PMID: 38334605 PMCID: PMC10854567 DOI: 10.3390/cells13030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Our previous studies have introduced osteoclasts (OCs) as major activators of NK cells. It was found that OCs exhibit the capabilities of inducing cell expansion as well as increasing the cytotoxic activity of NK cells by granule release and increasing the secretion of TNF-α and TRAIL, leading to increased lysis of tumors in short-term as well as long-term periods, respectively. OC- induced expanded NK cells were named supercharged NK cells (sNK) due to their significantly high functional activity as well as their significantly higher cell expansion rate. It is, however, unclear whether the OC-mediated effect in NK cells is specific or whether other cytotoxic immune cells can also be expanded and activated by OCs. We chose to focus on γδ T cells and pan T cells, which also include CD8+ T cells. In this paper, we report that OCs are capable of expanding and functionally activating both γδ T cells and pan T cells. Expanded γδ T and pan T cells were capable of secreting high levels of INF-γ, albeit with different dynamics to those of NK cells, and, moreover, they are unable to kill NK-specific targets. Since we used humanized-BLT (hu-BLT) mice as a model of human disease, we next determined whether NK and T cell activation through OCs is also evident in cells obtained from hu-BLT mice. Similar to humans, OCs were capable of increasing the cell expansion and secretion of IFN-γ in the culture of either NK or T cells from hu-BLT mice, providing yet further evidence that these mice are appropriate models to study human disease. Therefore, these studies indicated that CD3+ T or γδ T cells can proliferate and be supercharged by OCs similar to the NK cells; thus, they can be used individually or in combination in the cell therapy of cancers.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, School of Dentistry and Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, School of Dentistry and Medicine, University of California, Los Angeles, CA 90095, USA;
- The Jonsson Comprehensive Cancer Center, School of Dentistry and Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
6
|
De Barra C, O'Shea D, Hogan AE. NK cells vs. obesity: A tale of dysfunction & redemption. Clin Immunol 2023; 255:109744. [PMID: 37604354 DOI: 10.1016/j.clim.2023.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Natural killer (NK) cells are critical in protecting the body against infection and cancer. NK cells can rapidly respond to these threats by directly targeting the infected or transformed cell using their cytotoxic machinery or by initiating and amplifying the immune response via their production of cytokines. Additionally, NK cells are resident across many tissues including adipose, were their role extends from host protection to tissue homeostasis. Adipose resident NK cells can control macrophage polarization via cytokine production, whilst also regulating stressed adipocyte fate using their cytotoxic machinery. Obesity is strongly associated with increased rates of cancer and a heightened susceptibility to severe infections. This is in part due to significant obesity-related immune dysregulation, including defects in both peripheral and adipose tissue NK cells. In this review, we detail the literature to date on NK cells in the setting of obesity - outlining the consequences, mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland; National Children's Research Centre, Dublin 12, Ireland.
| |
Collapse
|
7
|
Okamoto M, Sasai M, Kuratani A, Okuzaki D, Arai M, Wing JB, Sakaguchi S, Yamamoto M. A genetic method specifically delineates Th1-type Treg cells and their roles in tumor immunity. Cell Rep 2023; 42:112813. [PMID: 37440410 DOI: 10.1016/j.celrep.2023.112813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Regulatory T (Treg) cells expressing the transcription factor (TF) Foxp3 also express other TFs shared by T helper (Th) subsets under certain conditions. Here, to determine the roles of T-bet-expressing Treg cells, we generate a mouse strain, called VeDTR, in which T-bet/Foxp3 double-positive cells are engineered to be specifically labeled and depleted by a combination of Cre- and Flp-recombinase-dependent gene expression control. Characterization of T-bet+Foxp3+ cells using VeDTR mice reveals high resistance under oxidative stress, which is involved in accumulation of T-bet+Foxp3+ cells in tumor tissues. Moreover, short-term depletion of T-bet+Foxp3+ cells leads to anti-tumor immunity but not autoimmunity, whereas that of whole Treg cells does both. Although ablation of T-bet+Foxp3+ cells during Toxoplasma infection slightly enhances Th1 immune responses, it does not affect the course of the infection. Collectively, the intersectional genetic method reveals the specific roles of T-bet+Foxp3+ cells in suppressing tumor immunity.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Arai
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Human Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Jiménez-Fernández M, de la Fuente H, Martín P, Cibrián D, Sánchez-Madrid F. Unraveling CD69 signaling pathways, ligands and laterally associated molecules. EXCLI JOURNAL 2023; 22:334-351. [PMID: 37223078 PMCID: PMC10201016 DOI: 10.17179/excli2022-5751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 05/25/2023]
Abstract
CD69 is an early leukocyte activation marker involved in the regulation of the immune response. Initial in vitro studies evaluated its function using monoclonal antibodies until knock-out mice were developed. Subsequently, four ligands for CD69 have been identified, namely galectin-1, S100A8/S100A9 complex, myosin light chains 9 and 12, and oxidized low-density lipoproteins. In addition, several molecules are laterally associated with and regulated by CD69, including calreticulin and two transmembrane receptors, sphingosine-1-phosphate receptor (S1P1) and the heterodimeric amino acid transporter complex SLC7A5-SLC3A2 (LAT1-CD98). Recently, CD69 engagement has been shown to induce the expression of the immunoregulatory receptor programmed cell death-1 (PD-1) in T cells. The molecular signaling induced by CD69 has been explored in different scenarios and cell types. This review provides a perspective on the molecular pathways, ligands and cellular functions known to be regulated by CD69.
Collapse
Affiliation(s)
- María Jiménez-Fernández
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Hortensia de la Fuente
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Danay Cibrián
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Harvey AG, Graves AM, Uppalapati CK, Matthews SM, Rosenberg S, Parent EG, Fagerlie MH, Guinan J, Lopez BS, Kronstad LM. Dendritic cell-natural killer cell cross-talk modulates T cell activation in response to influenza A viral infection. Front Immunol 2022; 13:1006998. [PMID: 36618376 PMCID: PMC9815106 DOI: 10.3389/fimmu.2022.1006998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses lead to substantial morbidity and mortality including ~3-5 million cases of severe illness and ~290,000-650,000 deaths annually. One of the major hurdles regarding influenza vaccine efficacy is generating a durable, robust cellular immune response. Appropriate stimulation of the innate immune system is key to generating cellular immunity. Cross-talk between innate dendritic cells (DC) and natural killer (NK) cells plays a key role in activating virus-specific T cells, yet the mechanisms used by influenza A viruses (IAV) to govern this process remain incompletely understood. Here, we used an ex vivo autologous human primary immune cell culture system to evaluate the impact of DC-NK cell cross-talk and subsequent naïve T cell activation at steady-state and after exposure to genetically distinct IAV strains-A/California/07/2009 (H1N1) and A/Victoria/361/2011 (H3N2). Using flow cytometry, we found that exposure of DCs to IAV in co-culture with NK cells led to a decreased frequency of CD83+ and CD86+ cells on DCs and an increased frequency of HLA-DR+ on both DCs and NK cells. We then assessed the outcome of DC-NK cell cross-talk on T cell activation. At steady-state, DC-NK cell cross-talk increased pan T cell CD69 and CD25 expression while exposure to either IAV strain reduced pan T cell CD25 expression and suppressed CD4+ and CD8+ T cell IFN-γ and TNF production, following chemical stimulation with PMA/Ionomycin. Moreover, exposure to A/Victoria/361/2011 elicited lower IFN-γ production by CD4+ and CD8+ T cells compared with A/California/07/2009. Overall, our results indicate a role for DC-NK cell cross-talk in T cell priming in the context of influenza infection, informing the immunological mechanisms that could be manipulated for the next generation of influenza vaccines or immunotherapeutics.
Collapse
Affiliation(s)
- Abigail G. Harvey
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Athens M. Graves
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Chandana K. Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Saoirse M. Matthews
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Stephanie Rosenberg
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Emma G. Parent
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Madison H. Fagerlie
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Jack Guinan
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Brina S. Lopez
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Lisa M. Kronstad
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States,*Correspondence: Lisa M. Kronstad,
| |
Collapse
|
10
|
Hamisu TM, Aliyu HB, Tan SW, Hair-Bejo M, Omar AR, Ideris A. Expression Profiles of Immune-Related Genes and Apoptosis Study of Avian Intraepithelial-Natural Killer Cells in Chickens Inoculated with Vaccine Strain of Newcastle Disease Virus (NDV) and Challenged with Virulent NDV. Avian Dis 2022; 66. [PMID: 36198006 DOI: 10.1637/aviandiseases-d-22-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
In spite of the available information on the role of natural killer (NK) cells in several viral infections, the interactions between chicken intraepithelial-NK (IEL-NK) cells and Newcastle disease virus (NDV) are poorly understood. In this study, we investigated these interactions following the inoculation of chickens with NDV vaccine strain LaSota and subsequent challenge with velogenic NDV (vNDV) genotype VII (GVII) and VIII (GVIII), through quantification of IEL-NK cell's apoptosis and expression profiling of its surface receptors. Specific-pathogen-free chickens were randomly divided into six groups, as follows: one group of an uninfected control, one group infected with NDV LaSota, two groups each infected with either GVII or GVIII, and two groups inoculated with NDV LaSota and challenged with either GVII (LaSota-genotype VII [LSGVII]) or GVIII (LaSota-genotype VIII [LSGVIII]). Avian intraepithelial lymphocytes (IEL) were isolated from the duodenal loops, and CD3- cells were characterized. Immunophenotyping and apoptosis analysis of CD3-/CD25+/CD45+IEL NK cells were conducted using a flow cytometer. In addition, a gene expression study was conducted using real-time quantitative PCR. Data were analyzed using two-way analysis of variance. The results showed that vNDV GVII or GVIII caused apoptosis of IEL-NK cells; however, following inoculation of LSGVII or LSGVIII, the effect of vNDV GVII and GVIII to cause a reduction in the population of viable IEL-NK cells was significantly reduced. Furthermore, the expression profiles of activating receptors CD69, NK-lysin, and IFN-γ, were generally upregulated in chickens inoculated with LSGVII or LSGVIII. In contrast, B-NK, an inhibitory receptor, was downregulated in these treatment groups. In NDV GVII- and GVIII-challenged groups, however, B-NK was upregulated, whereas the other receptors were generally downregulated. The findings of this study showed that NDV vaccine strain LaSota may prevent apoptosis and cause upregulation of activating receptors of chicken IEL-NK cells in velogenic virus-challenged settings.
Collapse
Affiliation(s)
- Tasiu Mallam Hamisu
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Hayatuddeen Bako Aliyu
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Avian Unit, Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - Sheau Wei Tan
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Tian Y, Hao Y, Dong M, Li S, Wang D, Jiang F, Wang Q, Hao X, Yang Y, Chen N, Zhu J, Guo J, Wu J, Shang S, Zhou J. Development of a Monoclonal Antibody to Pig CD69 Reveals Early Activation of T Cells in Pig after PRRSV and ASFV Infection. Viruses 2022; 14:v14061343. [PMID: 35746813 PMCID: PMC9231377 DOI: 10.3390/v14061343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The CD69 molecule, as an early activation marker of lymphocytes, is often used to assess the activation of cellular immunity. However, for pigs, an anti-pig CD69 antibody is not yet available for this purpose after infection or vaccination. In this study, a monoclonal antibody (mAb) against pig CD69 was produced by peptide immunization and hybridoma technique. One mAb (5F12) showed good reactivity with pig CD69 that was expressed in transfected-HEK-293T cells and on mitogen-activated porcine peripheral blood mononuclear cells (PBMCs) by indirect immunofluorescence assay and flow cytometry. This mAb did not cross-react with activated lymphocytes from mouse, bovine, and chicken. Epitope mapping showed that the epitope recognized by this mAb was located at amino acid residues 147–161 of pig CD69. By conjugating with fluorochrome, this mAb was used to detect the early activation of lymphocytes in PRRSV- and ASFV-infected pigs by flow cytometry. The results showed that PRRSV infection induced the dominant activation of CD4 T cells in mediastinal lymph nodes and CD8 T cells in the spleen at 14 days post-infection, in terms of CD69 expression. In an experiment on ASFV infection, we found that ASFV infection resulted in the early activation of NK cells, B cells, and distinct T cell subsets with variable magnitude in PBMCs, spleen, and submandibular lymph nodes. Our study revealed an early event of lymphocyte and T cell activation after PRRSV and ASFV infections and provides an important immunological tool for the in-depth analysis of cellular immune response in pigs after infection or vaccination.
Collapse
Affiliation(s)
- Yunfei Tian
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Yuxin Hao
- The Biosafety High-Level Laboratory Management Office, China Animal Disease Control Center, Beijing 102609, China; (Y.H.); (D.W.); (F.J.); (Q.W.)
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Shuai Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Dongyue Wang
- The Biosafety High-Level Laboratory Management Office, China Animal Disease Control Center, Beijing 102609, China; (Y.H.); (D.W.); (F.J.); (Q.W.)
| | - Fei Jiang
- The Biosafety High-Level Laboratory Management Office, China Animal Disease Control Center, Beijing 102609, China; (Y.H.); (D.W.); (F.J.); (Q.W.)
| | - Qingqing Wang
- The Biosafety High-Level Laboratory Management Office, China Animal Disease Control Center, Beijing 102609, China; (Y.H.); (D.W.); (F.J.); (Q.W.)
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Nanhua Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
| | - Jianzhong Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China;
| | - Jiajun Wu
- The Biosafety High-Level Laboratory Management Office, China Animal Disease Control Center, Beijing 102609, China; (Y.H.); (D.W.); (F.J.); (Q.W.)
- Correspondence: (J.W.); (S.S.)
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.T.); (M.D.); (S.L.); (X.H.); (Y.Y.); (N.C.); (J.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (J.W.); (S.S.)
| | - Jiyong Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
12
|
Koyaman-Nasu R, Wang Y, Hasegawa I, Endo Y, Nakayama T, Kimura MY. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol 2022; 34:555-561. [PMID: 35689672 DOI: 10.1093/intimm/dxac024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy utilizes our immune system to attack cancer cells and is an extremely promising strategy for cancer treatment. Although immune-checkpoint blockade, such as anti-PD-1 antibody (Ab), has demonstrated significant enhancement of anti-tumor immunity and has induced notable clinical outcomes, its response rates remain low, and adverse effects are always a matter of concern; therefore, new targets for cancer immunotherapy are always desired. In this situation, new concepts are needed to fuel the investigation of new target molecules for cancer immunotherapy. We propose that CD69 is one such target molecule. CD69 is known to be an activation marker of leukocytes and is also considered a crucial regulator of various immune responses through its interacting proteins. CD69 promotes T cell retention in lymphoid tissues via sphingosine-1-phosphate receptor 1 (S1P1) internalization and also plays roles in the pathogenesis of inflammatory disorders through interacting with its functional ligands Myl9/12 (myosin light chains 9, 12a and 12b). In anti-tumor immunity, CD69 is known to be expressed on T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (TDLNs). We revealed that CD69 negatively regulates the effector function of intratumoral T cells and importantly controls the 'exhaustion' of CD8 T cells. In addition, we and others showed that either CD69 deficiency or the administration of anti-CD69 monoclonal antibody enhances anti-tumor immunity. Thus, CD69 is an attractive target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryo Koyaman-Nasu
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yangsong Wang
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichita Hasegawa
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yukihiro Endo
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Motoko Y Kimura
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
13
|
Meggyes M, Nagy DU, Balassa T, Godony K, Peterfalvi A, Szereday L, Polgar B. Influence of Galectin-9 Treatment on the Phenotype and Function of NK-92MI Cells in the Presence of Different Serum Supplements. Biomolecules 2021; 11:biom11081066. [PMID: 34439744 PMCID: PMC8391477 DOI: 10.3390/biom11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Galectins are one of the critical players in the tumor microenvironment-tumor crosstalk and the regulation of local immunity. Galectin-9 has been in the limelight in tumor immunology. Galectin-9 possesses its multiplex biological functions both extracellularly and intracellularly, plays a pivotal role in the modulation of adaptive and innate immunity, and induces immune tolerance. NK-92MI cell lines against different malignancies were extensively studied, and recently published trials used genetically chimeric antigen receptor-transfected NK-92MI cells in tumor immunotherapy. Besides the intensive research in tumor immunotherapy, limited information is available on their immune-checkpoint expression and the impact of checkpoint ligands on their effector functions. To uncover the therapeutic potential of modulating Galectin-9-related immunological pathways in NK-cell-based therapy, we investigated the dose-dependent effect of soluble Galectin-9 on the TIM-3 checkpoint receptor and NKG2D, CD69, FasL, and perforin expression of NK-92MI cells. We also examined how their cytotoxicity and cytokine production was altered after Gal-9 treatment and in the presence of different serum supplements using flow cytometric analysis. Our study provides evidence that the Galectin-9/TIM-3 pathway plays an important role in the regulation of NK cell function, and about the modulatory role of Galectin-9 on the cytotoxicity and cytokine production of NK-92MI cells in the presence of different serum supplements. We hope that our results will aid the development of novel NK-cell-based strategies that target Galectin-9/TIM-3 checkpoint in tumors resistant to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence: ; Tel.: +3672-536001/1907
| | - David U Nagy
- Medical Centre, Cochrane Hungary, University of Pecs, 7623 Pecs, Hungary;
| | - Timea Balassa
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, University of Pecs, 17 Edesanyak Street, 7624 Pecs, Hungary;
| | - Agnes Peterfalvi
- Department of Laboratory Medicine, Medical School, University of Pecs, 13 Ifjusag Street, 7624 Pecs, Hungary;
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary; (T.B.); (L.S.); (B.P.)
- Janos Szentagothai Research Centre, University of Pecs, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
14
|
Menasche BL, Davis EM, Wang S, Ouyang Y, Li S, Yu H, Shen J. PBRM1 and the glycosylphosphatidylinositol biosynthetic pathway promote tumor killing mediated by MHC-unrestricted cytotoxic lymphocytes. SCIENCE ADVANCES 2020; 6:eabc3243. [PMID: 33246952 PMCID: PMC7695474 DOI: 10.1126/sciadv.abc3243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Major histocompatibility complex (MHC)-unrestricted cytotoxic lymphocytes (CLs) such as natural killer (NK) cells can detect and destroy tumor and virus-infected cells resistant to T cell-mediated killing. Here, we performed genome-wide genetic screens to identify tumor-intrinsic genes regulating killing by MHC-unrestricted CLs. A group of genes identified in our screens encode enzymes for the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is not involved in tumor response to T cell-mediated cytotoxicity. Another gene identified in the screens was PBRM1, which encodes a subunit of the PBAF form of the SWI/SNF chromatin-remodeling complex. PBRM1 mutations in tumor cells cause resistance to MHC-unrestricted killing, in contrast to their sensitizing effects on T cell-mediated killing. PBRM1 and the GPI biosynthetic pathway regulate the ligands of NK cell receptors in tumor cells and promote cytolytic granule secretion in CLs. The regulators identified in this work represent potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Bridget L Menasche
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Eric M Davis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Ouyang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
15
|
Erokhina SA, Streltsova MA, Kanevskiy LM, Grechikhina MV, Sapozhnikov AM, Kovalenko EI. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J Leukoc Biol 2020; 109:327-337. [PMID: 32421903 DOI: 10.1002/jlb.3ru0420-668rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
HLA-DR-expressing cells comprise an intriguing group of NK cells, which combine phenotypic characteristics of both NK cells and dendritic cells. These cells can be found in humans and mice; they are present in blood and tissues in healthy conditions and can expand in a spectrum of pathologies. HLA-DR+ NK cells are functionally active: they produce proinflammatory cytokines, degranulate, and easily proliferate in response to stimuli. Additionally, HLA-DR+ NK cells seem able to take in and then present certain antigens to CD4+ and CD8+ T cells, inducing their activation and proliferation, which puts them closer to professional antigen-presenting cells. It appears that these NK cells should be considerable players of the innate immune system, both due to their functional activity and regulation of the innate and adaptive immune responses. In this review, for the first time, we provide a detailed description and analysis of the available data characterizing phenotypic, developmental, and functional features of the HLA-DR+ NK cells in a healthy condition and a disease.
Collapse
Affiliation(s)
- Sofya A Erokhina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Leonid M Kanevskiy
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria V Grechikhina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
16
|
Luo P, Deng S, Ye H, Yu X, Deng Q, Zhang Y, Jiang L, Li J, Yu Y, Han W. The IL-33/ST2 pathway suppresses murine colon cancer growth and metastasis by upregulating CD40 L signaling. Biomed Pharmacother 2020; 127:110232. [PMID: 32559854 DOI: 10.1016/j.biopha.2020.110232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, participating in both helper T1 (Th1)- and Th2-type immune responses, but its ambiguous effects on tumor growth and related immune mechanisms remain unclear. Here, we report that recombinant mouse IL-33 (mIL-33) significantly inhibited colon cancer growth and metastasis to lung and liver in a murine CT26 or MC38 tumor-cell engraftment model. This effect could be associated with CD4+ T cells and CD40 L signaling, as depletion of CD4+ T cells or blocking CD40 L signaling in vivo partly abolished the antitumor function of IL-33. In addition, IL-33 treatment upregulated CD40 L expression on tumor-infiltrating lymphocytes, and promoted the activation of CD4+ T, CD8+ T and natural killer cells via CD40 L signaling. Furthermore, IL-33 was sufficient to induce the ST2 expression on CD4+ T cells, but not on CD8+ T and natural killer cells, indicating that IL-33 acted on CD4+ T cells via a positive-feedback loop. Our findings shed new light on the IL-33-mediated antitumor effects and mechanisms of Th1 action, and also suggest that IL-33 may serve as an activator to boost anticancer immune responses in singular or combinatory therapies.
Collapse
Affiliation(s)
- Ping Luo
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaorong Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolan Yu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinjie Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liya Jiang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jingjing Li
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
17
|
Fontela MG, Notario L, Alari-Pahissa E, Lorente E, Lauzurica P. The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1. Genes (Basel) 2019; 10:genes10090651. [PMID: 31466317 PMCID: PMC6770821 DOI: 10.3390/genes10090651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 02/02/2023] Open
Abstract
The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes and is strongly regulated at the transcriptional level. We previously described that, in addition to the CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter. Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study, we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2. Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer core of mouse CNS2, which includes the Oct1 TFBS. This enhancer core establishes cooperative interactions with the 3′ and 5′ flanking regions, which contain RUNX1 BS. In agreement with the luciferase reporter data, the inhibition of RUNX1 and Oct1 TF expression by siRNA suggests that they synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene transcription enhancer.
Collapse
Affiliation(s)
- Miguel G. Fontela
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Notario
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Elisenda Alari-Pahissa
- Department of Experimental and Health Science, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Elena Lorente
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Lauzurica
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: ; Tel.: +34-918222720
| |
Collapse
|
18
|
Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel) 2019; 11:cancers11040573. [PMID: 31018563 PMCID: PMC6521109 DOI: 10.3390/cancers11040573] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.
Collapse
|
19
|
Kulemzin SV, Matvienko DA, Sabirov AH, Sokratyan AM, Chernikova DS, Belovezhets TN, Chikaev AN, Taranin AV, Gorchakov AA. Design and analysis of stably integrated reporters for inducible transgene expression in human T cells and CAR NK-cell lines. BMC Med Genomics 2019; 12:44. [PMID: 30871576 PMCID: PMC6417161 DOI: 10.1186/s12920-019-0489-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. Methods Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. Results In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in “resting” non-activated cells. Conclusions Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences. Electronic supplementary material The online version of this article (10.1186/s12920-019-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Daria A Matvienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Artur H Sabirov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Arpine M Sokratyan
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Daria S Chernikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
20
|
Azargoon A, Mirrasouli Y, Shokrollahi Barough M, Barati M, Kokhaei P. The State of Peripheral Blood Natural Killer Cells and Cytotoxicity in Women with Recurrent Pregnancy Loss and Unexplained Infertility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:12-17. [PMID: 30644239 PMCID: PMC6334012 DOI: 10.22074/ijfs.2019.5503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/02/2018] [Indexed: 12/04/2022]
Abstract
Background The prognostic value of peripheral natural killer (pNK) cells, as a screening test in women with recur-
rent pregnancy loss (RPL) and unexplained infertility, is still a matter for discussion. The purpose of this study was to
compare the percentage of circulating CD56+NK cells, CD69 and perforin markers between women with unexplained
infertility and RPL with the healthy control group. Materials and Methods In this case-control study, the percentage of CD56+NK cells and activation markers (CD69
and perforin levels) in the peripheral blood were measured in 25 women with unexplained infertility, 24 women with
idiopathic RPL and 26 women from the healthy control group, using specific monoclonal antibodies by flow cytometry. Results The percentage of CD56+NK cells was significantly higher in patients with infertility in comparison with
the healthy control group (P=0.007). There were not significant differences either in the total number of CD56+cells
between the RPL group and the control group (P=0.2) or between the RPL group and the infertile group (P=0.36).
The percentage of CD69+lymphocytes in RPL group was significantly higher than in the infertility group (P=0.004).
There was a statistically significant difference in Perforin levels between RLP and control (P=0.001) as well as RPL
and infertile (P=0.002) groups. Conclusion An increased percentage of CD56+NK cells in patients with unexplained infertility, an elevated expression
of CD69 on NK cells in patients with RPL and infertility and a high level of perforin on CD56+cells in the RPL group
might be considered as immunological risk factors in these women.
Collapse
Affiliation(s)
- Azam Azargoon
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Infertility, Amir-AL-Momenin Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Yasaman Mirrasouli
- Department of Infertility, Amir-AL-Momenin Hospital, Semnan University of Medical Sciences, Semnan, Iran.,Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdieh Shokrollahi Barough
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Immunotherapy and Regenerative Medicine Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mehdi Barati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. Electronic Address: .,Immune and Gene therapy Lab, CCK, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
21
|
Ferreira LS, Portuondo DL, Polesi MC, Carlos IZ. Natural killer cells are pivotal for in vivo protection following systemic infection by Sporothrix schenckii. Immunology 2018; 155:467-476. [PMID: 30030839 DOI: 10.1111/imm.12986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells are one of the first cell types to enter inflammation sites and have been historically known as key effector cells against tumours and viruses; now, accumulating evidence shows that NK cells are also capable of direct in vitro activity and play a protective role against clinically important fungi in vivo. However, our understanding of NK cell development, maturation and activation in the setting of fungal infections is preliminary at best. Sporotrichosis is an emerging worldwide-distributed subcutaneous mycosis endemic in many countries, affecting humans and other animals and caused by various related thermodimorphic Sporothrix species, whose prototypical member is Sporothrix schenckii. We show that following systemic infection of BALB/c mice with S. schenckii sensu stricto, NK cells displayed a more mature phenotype as early as 5 days post-infection as judged by CD11b/CD27 expression. At 10 days post-infection, NK cells had increased expression of CD62 ligand (CD62L) and killer cell lectin-like receptor subfamily G member 1 (KLRG1), but not of CD25 or CD69. Depletion of NK cells with anti-asialo GM1 drastically impaired fungal clearance, leading to a more than eightfold increase in splenic fungal load accompanied by heightened systemic inflammation, as shown by augmented production of the pro-inflammatory cytokines tumour necrosis factor-α, interferon-γ and interleukin-6, but not interleukin-17A, in the spleen and serum. Our study is, to the best of our knowledge, the first to demonstrate that a fungal infection can drive NK cell maturation in vivo and that such cells are pivotal for in vivo protection against S. schenckii.
Collapse
Affiliation(s)
- Lucas Souza Ferreira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University (FCF/UNESP), Araraquara, Brazil
| | - Deivys Leandro Portuondo
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University (FCF/UNESP), Araraquara, Brazil
| | - Marisa Campos Polesi
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University (FCF/UNESP), Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University (FCF/UNESP), Araraquara, Brazil
| |
Collapse
|
22
|
Abdolmaleki M, Yeap SK, Tan SW, Satharasinghe DA, Bello MB, Jahromi MZ, Bejo MH, Omar AR, Ideris A. Effects of Newcastle Disease Virus Infection on Chicken Intestinal Intraepithelial Natural Killer Cells. Front Immunol 2018; 9:1386. [PMID: 29973933 PMCID: PMC6019501 DOI: 10.3389/fimmu.2018.01386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
The intestinal intraepithelial natural killer cells (IEL-NK) are among the earliest effectors of antiviral immunity in chicken. Unfortunately, their role during Newcastle disease virus (NDV) infection remains obscure. Previous study has reported the development of a monoclonal antibody (mAb) known as 28-4, which is specifically directed against the CD3- IEL-NK cells. In the present study, we used this mAb to investigate the effects of velogenic and lentogenic NDV infection on avian IEL-NK cells. Our findings revealed that chickens infected with velogenic NDV strains have a reduced population of purified CD3-/28-4+ IEL-NK cells as determined by flow cytometry. Furthermore, the CD3-/28-4+ IEL-NK cells from chicken infected with velogenic NDV strains were shown to have a downregulated expression of activating receptors (CD69 and B-Lec), effector peptide (NK-LYSIN), and IFN gamma. On the contrary, the expression of the inhibitory receptor (B-NK) and bifunctional receptor (CHIR-AB1) were upregulated on these purified CD3-/28-4+ IEL-NK cells following velogenic NDV infection. Meanwhile, the lentogenic NDV demonstrated insignificant effects on both the total population of CD3-/28-4+ IEL-NK cells and the expression of their surface receptors. In addition, using real-time PCR and transmission electron microscopy, we showed that CD3-/28-4+ IEL-NK cells were susceptible to velogenic but not lentogenic NDV infection. These findings put together demonstrate the ability of different strains of NDV to manipulate the activating and inhibitory receptors of CD3-/28-4+ IEL-NK cells following infection. Further studies are, however, required to ascertain the functional importance of these findings during virulent or avirulent NDV infection.
Collapse
Affiliation(s)
- Mostafa Abdolmaleki
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- China Asean College of Marine Science, Xiamen University Malaysia, Sepang, Malaysia
| | - Sheau Wei Tan
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dilan Amila Satharasinghe
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Bashir Bello
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammad Zareian Jahromi
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Hair Bejo
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Frutoso M, Morisseau S, Tamzalit F, Quéméner A, Meghnem D, Leray I, Jacques Y, Mortier E. Emergence of NK Cell Hyporesponsiveness after Two IL-15 Stimulation Cycles. THE JOURNAL OF IMMUNOLOGY 2018; 201:493-506. [PMID: 29848756 DOI: 10.4049/jimmunol.1800086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
IL-15 is a cytokine playing a crucial role in the function of immune cells, including NK and CD8 T cells. In this study, we demonstrated that in vivo, in mice, IL-15-prestimulated NK cells were no longer able to respond to a second cycle of IL-15 stimulation. This was illustrated by defects in cell maturation, proliferation, and activation, seemingly linked to the environment surrounding NK cells but not related to the presence of CD4 regulatory T cells, TGF-β, or IL-10. Moreover, NK cells from immunodeficient mice could respond to two cycles of IL-15 stimulation, whereas an adoptive transfer of CD44+CD8+ cells impaired their responsiveness to the second cycle. Conversely, in immunocompetent mice, NK cell responsiveness to a second IL-15 stimulation was restored by the depletion of CD8+ cells. These biological findings refine our understanding of the complex mode of action of NK cells in vivo, and they should be taken into consideration for IL-15-based therapy.
Collapse
Affiliation(s)
- Marie Frutoso
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Sébastien Morisseau
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and.,Centre Hospitalier Universitaire, 44000 Nantes, France
| | - Fella Tamzalit
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Agnès Quéméner
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Dihia Meghnem
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Isabelle Leray
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Yannick Jacques
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Erwan Mortier
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| |
Collapse
|
24
|
Mandó P, Rizzo M, Roberti MP, Juliá EP, Pampena MB, Pérez de la Puente C, Loza CM, Ponce C, Nadal J, Coló FA, Mordoh J, Levy EM. High neutrophil to lymphocyte ratio and decreased CD69 +NK cells represent a phenotype of high risk in early-stage breast cancer patients. Onco Targets Ther 2018; 11:2901-2910. [PMID: 29844687 PMCID: PMC5961634 DOI: 10.2147/ott.s160911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Breast cancer (BC) is a highly heterogeneous disease presenting a broad range of clinical and molecular characteristics. In the past years, a growing body of evidence demonstrated that immune response plays a significant role in cancer outcome. However, immune prognostic markers are not completely validated in clinical practice in BC patients. Materials and methods With the aim to characterize immune features, several parameters were analyzed in peripheral blood at diagnosis of 85 nonmetastatic BC patients between April 2011 and July 2014. Results With a median follow-up of 38.6 months, peripheral blood analysis of BC patients (stages I, II, and III) showed that total lymphocyte and T lymphocyte counts were augmented in nonrelapsed patients. Also, a higher neutrophil-to-lymphocytes ratio was associated with prolonged disease-free survival. Natural killer cell receptor analysis revealed that early activation receptor CD69 was associated with a better outcome. Conclusion This preliminary evidence is in accordance with the concept of immune surveillance. We suggest an “immune phenotype” that provides relevant prognostic information in early-stage BC patients and which could be useful in the decision-making process.
Collapse
Affiliation(s)
- Pablo Mandó
- Oncology Research Center CIO-FUCA, Buenos Aires, Argentina
| | - Manglio Rizzo
- Alexander Fleming Institute, Buenos Aires, Argentina
| | | | | | | | | | | | | | - Jorge Nadal
- Alexander Fleming Institute, Buenos Aires, Argentina
| | | | - José Mordoh
- Oncology Research Center CIO-FUCA, Buenos Aires, Argentina.,Alexander Fleming Institute, Buenos Aires, Argentina.,Biochemical Research Institute of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology 2018; 519:131-144. [PMID: 29715623 DOI: 10.1016/j.virol.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NKLCMV) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NKVACV) exhibited weaker cytolytic activity against each of these target cells. Relative to NKLCMV cells, NKVACV cells exhibited a more immature (CD11b-CD27+) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NKVACV cells expressed higher levels of the inhibitory molecule NKG2A than NKLCMV cells. Consistent with this apparent lethargy, NKVACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells.
Collapse
|
26
|
Kimura MY, Hayashizaki K, Tokoyoda K, Takamura S, Motohashi S, Nakayama T. Crucial role for CD69 in allergic inflammatory responses: CD69-Myl9 system in the pathogenesis of airway inflammation. Immunol Rev 2018; 278:87-100. [PMID: 28658550 DOI: 10.1111/imr.12559] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD69 has been known as an early activation marker of lymphocytes; whereas, recent studies demonstrate that CD69 also has critical functions in immune responses. Early studies using human samples revealed the involvement of CD69 in various inflammatory diseases including asthma. Moreover, murine disease models using Cd69-/- mice and/or anti-CD69 antibody (Ab) treatment have revealed crucial roles for CD69 in inflammatory responses. However, it had not been clear how the CD69 molecule contributes to the pathogenesis of inflammatory diseases. We recently elucidated a novel mechanism, in which the interaction between CD69 and its ligands, myosin light chain 9, 12a and 12b (Myl9/12) play a critical role in the recruitment of activated T cells into the inflammatory lung. In this review, we first summarize CD69 function based on its structure and then introduce the evidence for the involvement of CD69 in human diseases and murine disease models. Then, we will describe how we discovered CD69 ligands, Myl9 and Myl12, and how the CD69-Myl9 system regulates airway inflammation. Finally, we will discuss possible therapeutic usages of the blocking Ab to the CD69-Myl9 system.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hayashizaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Tokoyoda
- Department of Osteoimmunology, German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Hayashi Y, Okutani M, Ogawa S, Tsukahara T, Inoue R. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis. Anim Sci J 2018; 89:825-832. [DOI: 10.1111/asj.12989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Yumiko Hayashi
- Laboratory of Animal Science; Department of Agricultural and Life Sciences; Kyoto Prefectural University; Sakyo Kyoto Japan
| | - Mie Okutani
- Laboratory of Animal Science; Department of Agricultural and Life Sciences; Kyoto Prefectural University; Sakyo Kyoto Japan
| | - Shohei Ogawa
- Laboratory of Animal Science; Department of Agricultural and Life Sciences; Kyoto Prefectural University; Sakyo Kyoto Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science; Department of Agricultural and Life Sciences; Kyoto Prefectural University; Sakyo Kyoto Japan
| |
Collapse
|
28
|
Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C, Schleicher U. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Front Immunol 2018; 9:24. [PMID: 29472914 PMCID: PMC5810259 DOI: 10.3389/fimmu.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite.
Collapse
Affiliation(s)
- Helena Messlinger
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Heidi Sebald
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules. mBio 2017; 8:mBio.00741-17. [PMID: 28765218 PMCID: PMC5539423 DOI: 10.1128/mbio.00741-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.
Collapse
|
30
|
Dobbs K, Tabellini G, Calzoni E, Patrizi O, Martinez P, Giliani SC, Moratto D, Al-Herz W, Cancrini C, Cowan M, Bleesing J, Booth C, Buchbinder D, Burns SO, Chatila TA, Chou J, Daza-Cajigal V, Ott de Bruin LM, de la Morena M, Di Matteo G, Finocchi A, Geha R, Goyal RK, Hayward A, Holland S, Huang CH, Kanariou MG, King A, Kaplan B, Kleva A, Kuijpers TW, Lee BW, Lougaris V, Massaad M, Meyts I, Morsheimer M, Neven B, Pai SY, Parvaneh N, Plebani A, Prockop S, Reisli I, Soh JY, Somech R, Torgerson TR, Kim YJ, Walter JE, Gennery AR, Keles S, Manis JP, Marcenaro E, Moretta A, Parolini S, Notarangelo LD. Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56 bright NKG2A +++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content. Front Immunol 2017; 8:798. [PMID: 28769923 PMCID: PMC5511964 DOI: 10.3389/fimmu.2017.00798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag−/− natural killer (NK) cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16−/int CD57− cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT.
Collapse
Affiliation(s)
- Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Calzoni
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paula Martinez
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvia Clara Giliani
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Daniele Moratto
- "A. Nocivelli Institute for Molecular Medicine", Pediatric Clinic, University of Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Caterina Cancrini
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Morton Cowan
- Pediatric Allergy Immunology and Blood and Marrow Transplant Division, University of California San Francisco, Benioff Children's Hospital, San Francisco, CA, United States
| | - Jacob Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Claire Booth
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - David Buchbinder
- Division of Pediatric Hematology, Children's Hospital Orange County, University of California Irvine, Orange County, CA, United States
| | - Siobhan O Burns
- Institute for Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Vanessa Daza-Cajigal
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Lisa M Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - MaiteTeresa de la Morena
- Division of Allergy and Immunology, Southwestern Medical Center, University of Texas, Dallas, TX, United States
| | - Gigliola Di Matteo
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,School of Medicine, University of Tor Vergata, Rome, Italy
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Rakesh K Goyal
- Division of Hematology/Oncology/BMT, Children's Mercy Hospital & Clinics, Kansas City, MO, United States
| | - Anthony Hayward
- Department of Pediatrics, Brown University, Providence, RI, United States
| | - Steven Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chiung-Hui Huang
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Maria G Kanariou
- Department of Immunology-Histocompatibility, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alejandra King
- Division of Pediatric Immunology, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Blanka Kaplan
- Department of Pediatrics, Division of Allergy and Immunology, Hofstra Northwell School of Medicine, Hofstra University, Great Neck, NY, United States
| | - Anastasiya Kleva
- Department of Pediatrics, Division of Allergy and Immunology, Hofstra Northwell School of Medicine, Hofstra University, Great Neck, NY, United States
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Bee Wah Lee
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Michel Massaad
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Megan Morsheimer
- Transplantation Branch, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Benedicte Neven
- Pediatric Hematology-Immunology Department, Hospital Necker-Enfants Malades, Institut Imagine, AP-HP, Paris Descartes University, Sorbonne-Paris-Cité, Paris, France
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States
| | | | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Susan Prockop
- Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ismail Reisli
- Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jian Yi Soh
- Department of Paediatrics, National University Hospital, Singapore, Singapore
| | - Raz Somech
- Pediatric Immunology Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Troy R Torgerson
- Department of Pediatrics and Immunology, Seattle Children's Hospital, University of Washingtin, Seattle, WA, United States
| | - Yae-Jaen Kim
- Division of Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Andrew R Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle Upon Tyne, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sevgi Keles
- Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Emanuela Marcenaro
- Molecular Immunology Laboratories, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Moretta
- Molecular Immunology Laboratories, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Pantic JM, Jovanovic IP, Radosavljevic GD, Gajovic NM, Arsenijevic NN, Conlon JM, Lukic ML. The frog skin host-defense peptide frenatin 2.1S enhances recruitment, activation and tumoricidal capacity of NK cells. Peptides 2017; 93:44-50. [PMID: 28526557 DOI: 10.1016/j.peptides.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
Abstract
Frog skin is a source of peptides with various biological properties. Frenatin 2.1S, derived from norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus, exhibits immunostimulatory effects as demonstrated by the promotion of proinflammatory phenotypes of mononuclear cells in mouse peritoneal cavity and spleen. The aim of this study was to identify the populations of host cells sensitive to the action of frenatin 2.1S in vivo and to study its effects on their functional antitumor capacity. A single injection of frenatin 2.1S (100μg) in BALB/c mice increased the presence of peritoneal CD11c+ dendritic cells and CD3+ T cells 24h after administration and there was a significant increase in the number of IL-17 and CXCR3 expressing inflammatory T cells. Frenatin 2.1S treatment also increased the number of TNF-α expressing F4/80+ proinflammatory M1 macrophages. The most striking finding of the study is the marked increase of the number of peritoneal natural killer (NK) cells following frenatin 2.1S injection. Further, frenatin 2.1S administration led to activation of NK cells as evaluated by increased expression of NKG2D, FasL, CD69 and CD107a. The increased ratio of interferon-γ vs. IL-10 producing NK cells is further indication of the proinflammatory action of frenatin 2.1S. Peptide treatment enhanced the tumoricidal action of peritoneal NK cells on 4T1 mouse mammary carcinoma cells as revealed by the real-time automated monitoring of cell status. Our data demonstrate that frenatin 2.1S promotes activation and cytotoxic capacity of NK cells and should be regarded as a candidate for antitumor immunotherapy.
Collapse
Affiliation(s)
- Jelena M Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena M Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
32
|
Mazorra Z, Lavastida A, Concha-Benavente F, Valdés A, Srivastava RM, García-Bates TM, Hechavarría E, González Z, González A, Lugiollo M, Cuevas I, Frómeta C, Mestre BF, Barroso MC, Crombet T, Ferris RL. Nimotuzumab Induces NK Cell Activation, Cytotoxicity, Dendritic Cell Maturation and Expansion of EGFR-Specific T Cells in Head and Neck Cancer Patients. Front Pharmacol 2017; 8:382. [PMID: 28674498 PMCID: PMC5474456 DOI: 10.3389/fphar.2017.00382] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Survival benefit and long-term duration of clinical response have been seen using the epidermal growth factor receptor (EGFR)-targeted monoclonal antibody (mAb) nimotuzumab. Blocking EGFR signaling may not be the only mechanism of action underlying its efficacy. As an IgG1 isotype mAb, nimotuzumab's capacity of killing tumor cells by antibody dependent cellular cytotoxicity (ADCC) and to induce an immune response in cancer patients have not been studied. ADCC-induced by nimotuzumab was determined using a 51Cr release assay. The in vitro effect of nimotuzumab on natural killer (NK) cell activation and dendritic cell (DC) maturation and the in vivo frequency of circulating regulatory T cells (Tregs) and NK cells were assessed by flow cytometry. Cytokine levels in supernatants were determined by ELISA. ELISpot was carried out to quantify EGFR-specific T cells in nimotuzumab-treated head and neck cancer (HNSCC) patients. Nimotuzumab was able to kill EGFR+ tumor cells by NK cell-mediated ADCC. Nimotuzumab-activated NK cells promoted DC maturation and EGFR-specific CD8+ T cell priming. Interestingly, nimotuzumab led to upregulation of some immune checkpoint molecules on NK cells (TIM-3) and DC (PD-L1), to a lower extent than another EGFR mAb, cetuximab. Furthermore, circulating EGFR-specific T cells were identified in nimotuzumab-treated HNSCC patients. Notably, nimotuzumab combined with cisplatin-based chemotherapy and radiation increased the frequency of peripheral CD4+CD39+FOXP3+Tregs which otherwise were decreased to baseline values when nimotuzumab was used as monotherapy. The frequency of circulating NK cells remained constant during treatment. Nimotuzumab-induced, NK cell-mediated DC priming led to induction of anti-EGFR specific T cells in HNSCC patients. The association between EGFR-specific T cells and patient clinical benefit with nimotuzumab treatment should be investigated.
Collapse
Affiliation(s)
- Zaima Mazorra
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Anabel Lavastida
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Anet Valdés
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Tatiana M García-Bates
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, PittsburghPA, United States
| | - Esperanza Hechavarría
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Zuyen González
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Amnely González
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Iván Cuevas
- National Institute of Oncology and RadiobiologyHavana, Cuba
| | - Carlos Frómeta
- National Institute of Oncology and RadiobiologyHavana, Cuba
| | | | - Maria C Barroso
- Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Tania Crombet
- Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, PittsburghPA, United States.,Department of Otolaryngology, University of Pittsburgh, PittsburghPA, United States.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, PittsburghPA, United States
| |
Collapse
|
33
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
34
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
35
|
Moran AE, Polesso F, Weinberg AD. Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ. THE JOURNAL OF IMMUNOLOGY 2016; 197:2509-21. [PMID: 27503208 DOI: 10.4049/jimmunol.1502659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
Abstract
Cancer cells harbor high-affinity tumor-associated Ags capable of eliciting potent antitumor T cell responses, yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and programmed death-1 (PD-1) have been used. We report in this study that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor Ag-specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Coexpression of Nur77GFP and OX40 identifies a polyclonal population of high-affinity tumor-associated Ag-specific CD8(+) T cells, which produce more IFN-γ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or programmed death ligand-1. Moreover, expansion of these high-affinity CD8 T cells prolongs survival of tumor-bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired, and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor-resident CD8 T cells, thereby increasing the frequency of cytotoxic, high-affinity, tumor-associated Ag-specific cells.
Collapse
Affiliation(s)
- Amy E Moran
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland Providence Medical Center, Portland, OR 97213
| | - Fanny Polesso
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland Providence Medical Center, Portland, OR 97213
| | - Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland Providence Medical Center, Portland, OR 97213
| |
Collapse
|
36
|
T-Cell Surface Antigens and sCD30 as Biomarkers of the Risk of Rejection in Solid Organ Transplantation. Ther Drug Monit 2015; 38 Suppl 1:S29-35. [PMID: 26495982 DOI: 10.1097/ftd.0000000000000259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.
Collapse
|
37
|
Pantic JM, Radosavljevic GD, Jovanovic IP, Arsenijevic NN, Conlon JM, Lukic ML. In vivo administration of the frog skin peptide frenatin 2.1S induces immunostimulatory phenotypes of mouse mononuclear cells. Peptides 2015; 71:269-75. [PMID: 25861850 DOI: 10.1016/j.peptides.2015.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023]
Abstract
Host-defense peptides secreted by epithelial cells exhibit cytotoxic and immunoregulatory effects in order to protect the organism against invading microorganisms. Antimicrobial peptides derived from frog skin display both immunostimulatory and immunosuppressive actions as demonstrated by in vitro cytokine production by macrophages. Frenatin 2.1S, first isolated from skin secretions of the frog, Sphaenorhynchus lacteus (Hylidae), enhances the in vitro production of pro-inflammatory IL-1β, TNF-α and IL-23 by mouse peritoneal cells. In order to test whether the immunostimulatory action of frenatin 2.1S may be reproduced in vivo, effects of intraperitoneal injections of this peptide on mononuclear cells in the peritoneum and spleen were determined 24h after administration. The data indicate that frenatin 2.1S enhances the activation state and homing capacity of Th1 type lymphocytes and NKT cells in the mouse peritoneal cavity, as evaluated by increased expression of early activation marker CD69 among T and NKT cells and chemokine receptor CXCR3 among T cells. Frenatin 2.1S significantly increases the percentage of (F4/80(+)CD11c(+)CD206(+)) pro-inflammatory M1 macrophages and enhances the expression of MHC class II molecules on F4/80(+)CD11c(+) macrophages in the mouse peritoneal cavity. Additionally, injection of frenatin 2.1S, in the presence or absence of lipopolysaccharide, increases the percentage of peritoneal B cells of the (CD19(+)CD11b(+)CD5(+)) B1a phenotype thus contributing to an inflammatory milieu. We suggest that the immunostimulatory effect of frenatin 2.1S may have therapeutic relevance in disease states, such as certain types of cancer, in which an enhanced inflammatory response may be beneficial.
Collapse
Affiliation(s)
- Jelena M Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
38
|
Xu Y, Evaristo C, Alegre ML, Gurbuxani S, Kee BL. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage. PLoS One 2015; 10:e0125211. [PMID: 25923440 PMCID: PMC4414598 DOI: 10.1371/journal.pone.0125211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.
Collapse
Affiliation(s)
- Yiying Xu
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cesar Evaristo
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Maria-Luisa Alegre
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara L. Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Katano I, Takahashi T, Ito R, Kamisako T, Mizusawa T, Ka Y, Ogura T, Suemizu H, Kawakami Y, Ito M. Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse. THE JOURNAL OF IMMUNOLOGY 2015; 194:3513-25. [PMID: 25712215 DOI: 10.4049/jimmunol.1401323] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγ(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-IL-2 Tg (hu-HSC NOG-IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood-derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG-IL-2 Tg produced IFN-γ upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG-IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4(+) Hodgkin's lymphoma cell line was inoculated s.c. into hu-HSC NOG-IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG-IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo.
Collapse
Affiliation(s)
- Ikumi Katano
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Tsutomu Kamisako
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Takuma Mizusawa
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Yuyo Ka
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan; and
| |
Collapse
|
40
|
Chaput N, Flament C, Locher C, Desbois M, Rey A, Rusakiewicz S, Poirier-Colame V, Pautier P, Le Cesne A, Soria JC, Paci A, Rosenzwajg M, Klatzmann D, Eggermont A, Robert C, Zitvogel L. Phase I clinical trial combining imatinib mesylate and IL-2: HLA-DR + NK cell levels correlate with disease outcome. Oncoimmunology 2014; 2:e23080. [PMID: 23525357 PMCID: PMC3601178 DOI: 10.4161/onci.23080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We performed a Phase I clinical trial from October 2007 to October 2009, enrolling patients affected by refractory solid tumors, to determine the maximum tolerated dose (MTD) of interleukin (IL)-2 combined with low dose cyclophosphamide (CTX) and imatinib mesylate (IM). In a companion paper published in this issue of OncoImmunology, we show that the MTD of IL-2 is 6 MIU/day for 5 consecutive days, and that IL-2 increases the impregnation of both IM and of its main metabolite, CGP74588. Among the secondary objectives, we wanted to determine immunological markers that might be associated with progression-free survival (PFS) and/or overall survival (OS). The combination therapy markedly reduced the absolute counts of B, CD4+ T and CD8+ T cells in a manner that was proportional to IL-2 dose. There was a slight (less than 2-fold) increase in the proportion of regulatory T cells (Tregs) among CD4+ T cells in response to IM plus IL-2. The natural killer (NK)-cell compartment was activated, exhibiting a significant upregulation of HLA-DR, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and CD56. The abundance of HLA-DR+ NK cells after one course of combination therapy positively correlated with both PFS and OS. The IL-2-induced rise of the CD4+:CD8+ T-cell ratio calculated after the first cycle of treatment was also positively associated with OS. Overall, the combination of IM and IL-2 promoted the rapid expansion of HLA-DR+ NK cells and increased the CD4+:CD8+ T-cell ratio, both being associated with clinical benefits. This combinatorial regimen warrants further investigation in Phase II clinical trials, possibly in patients affected by gastrointestinal stromal tumors, a setting in which T and NK cells may play an important therapeutic role.
Collapse
Affiliation(s)
- Nathalie Chaput
- Institut de Cancérologie Gustave Roussy; Villejuif, France ; Centre d'Investigation Clinique Biothérapie CICBT 507; Institut de Cancérologie Gustave Roussy; Villejuif, France ; Unité de Thérapie Cellulaire; Institut de Cancérologie Gustave Roussy; Villejuif, France ; Institut National de la Santé et de la Recherche Médicale; U1015; Institut de Cancérologie Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, Latgé JP, Elbim C. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5332-42. [PMID: 24790151 DOI: 10.4049/jimmunol.1303180] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis. In this study, we show that PMN apoptosis occurs via a new NK cell-dependent mechanism. Reactive oxygen species, induced by the presence of GG, play an indispensable role in this apoptotic effect by increasing MHC class I chain-related molecule A expression at the PMN surface. This increased expression enables interaction between MHC class I chain-related molecule A and NKG2D, leading to NK cell activation, which in turn generates a Fas-dependent apoptosis-promoting signal in PMNs. Taken together, our results demonstrate that the crosstalk between PMNs and NK cells is essential to GG-induced PMN apoptosis. NK cells might thus play a role in the induction of PMN apoptosis in situations such as unexplained neutropenia or autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Robinet
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Florence Baychelier
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | | | - Capucine Picard
- Centre D'étude des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, L'hôpital Necker - Enfants Malades, 75743 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, 75015 Paris, France; and
| | - Patrice Debré
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France; Département d'Immunologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vincent Vieillard
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Carole Elbim
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France;
| |
Collapse
|
42
|
The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol 2014; 34:2479-87. [PMID: 24752896 DOI: 10.1128/mcb.00348-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD69 is involved in immune cell homeostasis, regulating the T cell-mediated immune response through the control of Th17 cell differentiation. However, natural ligands for CD69 have not yet been described. Using recombinant fusion proteins containing the extracellular domain of CD69, we have detected the presence of a ligand(s) for CD69 on human dendritic cells (DCs). Pulldown followed by mass spectrometry analyses of CD69-binding moieties on DCs identified galectin-1 as a CD69 counterreceptor. Surface plasmon resonance and anti-CD69 blocking analyses demonstrated a direct and specific interaction between CD69 and galectin-1 that was carbohydrate dependent. Functional assays with both human and mouse T cells demonstrated the role of CD69 in the negative effect of galectin-1 on Th17 differentiation. Our findings identify CD69 and galectin-1 to be a novel regulatory receptor-ligand pair that modulates Th17 effector cell differentiation and function.
Collapse
|
43
|
Lund H, Boysen P, Hope JC, Sjurseth SK, Storset AK. Natural Killer Cells in Afferent Lymph Express an Activated Phenotype and Readily Produce IFN-γ. Front Immunol 2013; 4:395. [PMID: 24319444 PMCID: PMC3837235 DOI: 10.3389/fimmu.2013.00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are motile cells that migrate between peripheral blood (PB), lymph nodes (LNs), and various organs. Domestic animals have frequently been used to study cellular migration, and offer unique opportunities for such studies. The aim of this study was to characterize the phenotype and cytokine producing capacity of NK cells in bovine skin-draining lymph. NKp46/NCR1+ CD3− cells constituted 2–11% of mononuclear cells in afferent lymph (AL), a majority of cells were CD16+, CD8α+, and CD2−/low, and elevated CD25 and CD44 expression indicated an activated phenotype. Interestingly, significantly fewer AL NK cells expressed the early activation marker CD69 compared to PB NK cells. A large proportion of lymph and blood NK cells produced interferon (IFN)-γ following stimulation with IL-2 and IL-12. Notably, in AL, but not blood, a similar amount of IFN-γ+ NK cells was observed when cells were stimulated with IL-12 alone. Overall, AL NK cells were more similar to LN-residing NK cells than those circulating in PB. We conclude that AL appears to be an important migration route for tissue-activated NK cells, and may represent an alternative route for NK cell traffic to LNs. These findings may have important implications in the development of adjuvant strategies that aim to target NK cells in a vaccine response.
Collapse
Affiliation(s)
- Hege Lund
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science , Oslo , Norway
| | | | | | | | | |
Collapse
|
44
|
Kim EK, Ahn YO, Kim S, Kim TM, Keam B, Heo DS. Ex vivo activation and expansion of natural killer cells from patients with advanced cancer with feeder cells from healthy volunteers. Cytotherapy 2013; 15:231-241.e1. [PMID: 23321334 DOI: 10.1016/j.jcyt.2012.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/03/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Culturing natural killer (NK) cells from patients with advanced cancer is difficult and has restricted the generation of sufficient cell numbers for autologous adoptive NK-cell therapy. The aim of this study was to establish a novel method for ex vivo NK-cell expansion from patients with cancer. METHODS NK cells (CD3(-)CD56(+)) were isolated from peripheral blood mononuclear cells from healthy volunteers and cancer patients, and NK(-) fractions were used as feeder cells. Purified NK cells were co-cultured with feeder cells in AIM-V medium (Invitrogen, Carlsbad, CA, USA) supplemented with 5% human serum and 1000 units/mL human interleukin-2. RESULTS NK cells co-cultured with feeder cells from healthy volunteers (feeder-HV) expanded more than NK cells co-cultured with feeder cells from cancer patients (feeder-CP). During the 14-day culture period, NK cells from patients with advanced cancer co-cultivated with feeder-HV expanded on average 300-fold. NK cells co-cultivated with feeder-CP expanded on average 169.4-fold. Cultures grown in the presence of feeder-HV contained 93.8 ± 7.0% (mean ± standard deviation; n = 6) CD3(-)CD56(+) NK cells, and cultures grown in the presence of feeder-CP contained 83.6 ± 15.9% CD3(-)CD56(+) NK cells. Feeder-HV caused a relative increase in CD3(+)CD4(+) T cells, whereas feeder-CP did not induce changes. Interleukin-15, a cytokine that induces NK-cell proliferation, was detected in the culture supernatants of feeder-HV but not in those of feeder-CP. CONCLUSIONS Feeder cells obtained from healthy volunteers have the potential to expand and activate NK cells from patients with advanced cancer. The novel NK-cell expansion method described here provides a technique for acquiring the large numbers of highly active NK cells from patients with cancer for autologous adoptive immunotherapy.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Cancer Research Institute, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Pierini R, Perret M, Djebali S, Juruj C, Michallet MC, Förster I, Marvel J, Walzer T, Henry T. ASC controls IFN-γ levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida. THE JOURNAL OF IMMUNOLOGY 2013; 191:3847-57. [PMID: 23975862 DOI: 10.4049/jimmunol.1203326] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The inflammasome is a signaling platform that is central to the innate immune responses to bacterial infections. Francisella tularensis is a bacterium replicating within the host cytosol. During F. tularensis subspecies novicida infection, AIM2, an inflammasome receptor sensing cytosolic DNA, activates caspase-1 in an ASC-dependent manner, leading to both pyroptosis and release of the proinflammatory cytokines IL-1β and IL-18. Activation of this canonical inflammasome pathway is key to limit F. novicida infection. In this study, by comparing the immune responses of AIM2 knockout (KO), ASC(KO), and Casp1(KO) mice in response to F. novicida infection, we observed that IFN-γ levels in the serum of Casp1(KO) mice were much higher than the levels observed in AIM2(KO) and ASC(KO) mice. This difference in IFN-γ production was due to a large production of IFN-γ by NK cells in Casp1(KO) mice that was not observed in ASC(KO) mice. The deficit in IFN-γ production observed in ASC(KO) mice was not due to a reduced Dock2 expression or to an intrinsic defect of ASC(KO) NK cells. We demonstrate that in infected Casp1(KO) mice, IFN-γ production is due to an ASC-dependent caspase-1-independent pathway generating IL-18. Furthermore, we present in vitro data suggesting that the recently described AIM2/ASC/caspase-8 noncanonical pathway is responsible for the caspase-1-independent IL-18 releasing activity. To our knowledge, this study is the first in vivo evidence of an alternative pathway able to generate in a caspase-1-independent pathway bioactive IL-18 to boost the production of IFN-γ, a cytokine critical for the host antibacterial response.
Collapse
Affiliation(s)
- Roberto Pierini
- Centre International de Recherche en Infectiologie, Université de Lyon, Lyon 69007, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bacher P, Scheffold A. Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 2013; 83:692-701. [PMID: 23788442 DOI: 10.1002/cyto.a.22317] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/20/2022]
Abstract
The cytometric enumeration and characterization of antigen-specific lymphocytes, as introduced about 15 years ago, has contributed significantly to our understanding of adaptive immune responses in health and disease. Despite the development of several technologies, allowing to directly or indirectly analyze many aspects of lymphocyte specificity and function, several unresolved issues remain, due to the low frequency of certain antigen-specific lymphocyte subsets and the complexity of T cell antigen recognition. This is especially true for CD4(+) conventional as well as regulatory T cells, which bring major contributions to immune protection and pathology. Here we review the current technologies for the analysis of antigen specific T cells within the physiologic T cell repertoire and with a special focus on recent technologies addressing the analysis of rare antigen-specific T cell populations including naive and regulatory T cells.
Collapse
Affiliation(s)
- Petra Bacher
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | |
Collapse
|
47
|
Fogel LA, Sun MM, Geurs TL, Carayannopoulos LN, French AR. Markers of nonselective and specific NK cell activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6269-76. [PMID: 23656738 DOI: 10.4049/jimmunol.1202533] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.
Collapse
Affiliation(s)
- Leslie A Fogel
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
48
|
Natural killer cells and their activation status in normal pregnancy. Int J Reprod Med 2013; 2013:906813. [PMID: 25763390 PMCID: PMC4334074 DOI: 10.1155/2013/906813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/22/2013] [Accepted: 03/03/2013] [Indexed: 01/18/2023] Open
Abstract
Increased peripheral blood-activated NK cell counts are associated with increased risk of miscarriage and failed in vitro fertilization treatment. However, assessment of activated peripheral NK cells in normal and pathological pregnancies beyond implantation and early miscarriage has not been described. Total CD69 expressing NK cells counts were measured by flow cytometry in healthy women with singleton pregnancies, including 45 at 11+6–13+6 weeks' gestation, 46 at 20+0–22+4 weeks, and 42 at 31+6–33+5 weeks. The number of peripheral blood NK cells decreased, whereas the percentage of activated CD69 expressing NK cells increased from the first to the third trimester of pregnancy. This study shows the course of peripheral blood NK cells and activated CD69 expressing NK cells in uncomplicated nulliparous singleton pregnancies. This is a first step in understanding their implication in pathological pregnancies.
Collapse
|
49
|
Abstract
Natural killer (NK) cells are emerging as a new tool for cell therapy of cancer. However, some cancer subtypes are relatively resistant to NK cell cytotoxicity. Expression of anti-CD19 chimeric signaling receptors can enhance NK-cell reactivity against CD19+ leukemia and lymphoma cells. Here we describe a method to enforce expression of such receptors in human NK cells relying on electroporation of mRNA and compare it to retroviral transduction of cDNA. These methods are applicable to the reprogramming of NK cells with chimeric receptors specific for other antigens expressed on cancer cells as well as with molecules that can modulate NK cell function.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
50
|
Ornstein BW, Hill EB, Geurs TL, French AR. Natural killer cell functional defects in pediatric patients with severe and recurrent herpesvirus infections. J Infect Dis 2012; 207:458-68. [PMID: 23175766 DOI: 10.1093/infdis/jis701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells play a critical role in the host defense against herpesviruses. Although herpesviruses are ubiquitous in human populations, only a minority of people experience severe recurrent infections. We hypothesize that uncharacterized NK cell functional deficits predispose individuals to more significant or frequent herpesvirus infections and reactivations. To investigate this hypothesis, we broadly analyzed NK cell phenotype and functional responses in a cohort of predominantly pediatric patients with recurrent and/or severe herpesvirus infections and compared them to a healthy control population. Our results identified no global differences in cytolysis, degranulation, interferon-γ production, or surface receptor upregulation following cytokine stimulation. However, abnormal NK cell functional responses were observed in nearly one-third of patients (including 3 with hyporesponsiveness to activating signals and 1 with markedly decreased CD11b expression associated with reduced cytotoxicity and degranulation), which might contribute to those individuals' susceptibility to herpesvirus infections.
Collapse
Affiliation(s)
- Bradley W Ornstein
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|