1
|
Morey TM, Benatar T, Xu SX, Wang L, Ip P, Nitya-Nootan T, Thakor G, Bader AG, Helsen CW, Houry WA. Tuning TCR complex recruitment to the T cell antigen coupler (TAC) enhances TAC-T cell function. Sci Rep 2025; 15:6769. [PMID: 40000726 PMCID: PMC11861912 DOI: 10.1038/s41598-025-87944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The T cell antigen coupler (TAC) receptor is a novel synthetic receptor designed to maximize the therapeutic potential of T cells in the absence of tonic signaling or receptor-related toxicities. Prior studies indicated that TACs provide safe and long-lasting anti-tumor immunity in multiple preclinical models of solid tumors supported by mounting clinical evidence. TAC receptors function by targeting a cancer associated surface antigen while recapitulating natural T cell receptor (TCR) signaling, which involves both TCR/CD3 recruitment and intracellular CD4 co-receptor activity. While other receptor designs exist that redirect TCR signaling towards cancer associated antigens, the TAC technology is unique in that antigen binding is distinctly separated from TCR/CD3 complex recruitment. In the present study, we show that single amino-acid changes in the TAC domain responsible for TCR recruitment of a Claudin 18.2-directed TAC receptor led to enhanced in vivo functionality. Analyzing biophysical properties of the receptor suggests that TAC receptors with high TCR affinities are suboptimal compared to receptor constructs that show lower TCR affinities with notably fast off-rates. This work demonstrates that balancing TCR recruitment is critical when designing effective TAC T cell receptors, a concept that may apply more broadly to other therapeutic approaches relying on TCR signaling.
Collapse
Affiliation(s)
- Trevor M Morey
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada
| | - Tania Benatar
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Stacey X Xu
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Ling Wang
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Philbert Ip
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | | | - Gargi Thakor
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Andreas G Bader
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Christopher W Helsen
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada.
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
2
|
Wei C, Huang X, Xu T, Fang Y, Wang F, He Q, Zhang P, Yu Q, Zhang Y, Zheng B, Gao Y, Chen Y, Zhuge Q, Zhao A, Gao J, Jiang J. NECTIN-4-redirected T cell Antigen Coupler T cells bearing CD28 show superior antitumor responses against solid tumors. Front Immunol 2024; 15:1456443. [PMID: 39735536 PMCID: PMC11681620 DOI: 10.3389/fimmu.2024.1456443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity. Methods To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo. Results We demonstrated NECTIN-4 TAC28-Tcells could be effectively activated by NECTIN-4 protein-coated magnetic beads (NECTIN-4-beads), and further revealed that the incorporated CD28 co-stimulatory domain enhanced their activation and proliferation capabilities. Notably, NECTIN-4 TAC28-T cells exhibited better anti-tumor effects both in vitro and in vivo than the original NECTIN-4 TAC-T cells. Discussion Our data highlighted that NECTIN-4 TAC28-T cells may represent a promising, safe and effective cell therapy for NECTIN-4-overexpressing solid tumors.
Collapse
Affiliation(s)
- Cheng Wei
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianlong Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinan Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fabao Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaolin He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyuan Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianjin Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binjiao Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| | - Jinhong Jiang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
3
|
Sridhar S, Modica JA, Sykora DJ, Berns EJ, Mrksich M. Synthesis and Activity of T-Cell Tumor-Directing MegaMolecules. J Am Chem Soc 2024; 146:26801-26807. [PMID: 39167468 DOI: 10.1021/jacs.4c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This paper describes the synthesis, characterization, and functional activity of 26 MegaMolecule-based bispecific antibody mimics for T-cell redirection toward HER2+ cancer cells. The work reports functional bispecific MegaMolecules that bind both receptor targets, and recruit and activate T-cells resulting in lysis of the target tumor cells. Changing the orientation of linkage between Fabs against either HER2 or CD3ε results in an approximately 150-fold range in potency. Increasing scaffold valency from Fab dimers up to tetramers improves the potency of the antibody mimics up to 5-fold, but with diminishing returns in effective dose beyond trimeric formats. Antibody mimics that present either one or two Fabs against either receptor target allows for initial engagement of one cell type over the other. Finally, the antibody mimics significantly reduce HER2+ tumor volumes in a humanized xenograft model of breast cancer.
Collapse
Affiliation(s)
- Sraeyes Sridhar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Cell & Developmental Biology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Gully BS, Ferreira Fernandes J, Gunasinghe SD, Vuong MT, Lui Y, Rice MT, Rashleigh L, Lay CS, Littler DR, Sharma S, Santos AM, Venugopal H, Rossjohn J, Davis SJ. Structure of a fully assembled γδ T cell antigen receptor. Nature 2024; 634:729-736. [PMID: 39146975 PMCID: PMC11485255 DOI: 10.1038/s41586-024-07920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
T cells in jawed vertebrates comprise two lineages, αβ T cells and γδ T cells, defined by the antigen receptors they express-that is, αβ and γδ T cell receptors (TCRs), respectively. The two lineages have different immunological roles, requiring that γδ TCRs recognize more structurally diverse ligands1. Nevertheless, the receptors use shared CD3 subunits to initiate signalling. Whereas the structural organization of αβ TCRs is understood2,3, the architecture of γδ TCRs is unknown. Here, we used cryogenic electron microscopy to determine the structure of a fully assembled, MR1-reactive, human Vγ8Vδ3 TCR-CD3δγε2ζ2 complex bound by anti-CD3ε antibody Fab fragments4,5. The arrangement of CD3 subunits in γδ and αβ TCRs is conserved and, although the transmembrane α-helices of the TCR-γδ and -αβ subunits differ markedly in sequence, packing of the eight transmembrane-helix bundles is similar. However, in contrast to the apparently rigid αβ TCR2,3,6, the γδ TCR exhibits considerable conformational heterogeneity owing to the ligand-binding TCR-γδ subunits being tethered to the CD3 subunits by their transmembrane regions only. Reducing this conformational heterogeneity by transfer of the Vγ8Vδ3 TCR variable domains to an αβ TCR enhanced receptor signalling, suggesting that γδ TCR organization reflects a compromise between efficient signalling and the ability to engage structurally diverse ligands. Our findings reveal the marked structural plasticity of the TCR on evolutionary timescales, and recast it as a highly versatile receptor capable of initiating signalling as either a rigid or flexible structure.
Collapse
MESH Headings
- Animals
- Humans
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CHO Cells
- Cricetulus
- Cryoelectron Microscopy
- HEK293 Cells
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/ultrastructure
- Ligands
- Models, Molecular
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Protein Subunits/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/ultrastructure
- Signal Transduction
Collapse
Affiliation(s)
- Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - João Ferreira Fernandes
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mai T Vuong
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yuan Lui
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Liam Rashleigh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chan-Sien Lay
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sumana Sharma
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ana Mafalda Santos
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hariprasad Venugopal
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Simon J Davis
- Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Liu H, Bai L, Huang L, Ning N, Li L, Li Y, Dong X, Du Q, Xia M, Chen Y, Zhao L, Li Y, Meng Q, Wang J, Duan Y, Ming J, Yuan AQ, Yang XP. Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003468. [PMID: 34599021 PMCID: PMC8488747 DOI: 10.1136/jitc-2021-003468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a subtype of breast cancers with poor prognosis and targeted drug therapies are limited. To develop novel and efficacious therapies for TNBC, we developed a bispecific antibody F7AK3 that recognizes both trophoblast cell surface antigen 2 (TROP2) and CD3 and evaluated its antitumor activities both in vitro and in vivo. METHODS The binding affinities of F7AK3 to the two targets, TROP2 and CD3, were evaluated by surface plasmon resonance. Binding of F7AK3 to TNBC cells and T cells were evaluated by flow cytometry. Immunofluorescent staining was performed to demonstrate the interactions between T cells with TNBC cells. The cytotoxicity of T cells against TNBC cell lines and primary tumor cells mediated by F7AK3 were determined in vitro. In vivo antitumor activity of F7AK3 was investigated in a xenograft TNBC tumor model, using immunodeficient mice that were reconstituted with human peripheral blood mononuclear cells. RESULTS We demonstrated that F7AK3 binds specifically to human TROP2 and CD3 antigens, as well as TNBC cell lines and primary tumor cells. Human T cells can only be activated by F7AK3 in the presence of target tumor cells. F7AK3 recruits T cells to TROP2+ tumor cells in vitro and into tumor tissues in vivo. Antitumor growth activity of F7AK3 is observed in a xenograft TNBC tumor model. CONCLUSION This study showed the antitumor potential of an anti-TROP2xCD3 bispecific antibody F7AK3 to TNBC tumor cells both in vitro and in vivo. These data demonstrate that F7AK3 has the potential to treat TNBC patients, which warrants further preclinical and clinical evaluation of the F7AK3 in advanced or metastatic TNBC patients.
Collapse
Affiliation(s)
- Huicheng Liu
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Lili Bai
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Na Ning
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Lin Li
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yijia Li
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Xuejiao Dong
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Qiuyang Du
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yufei Chen
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Likun Zhao
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Yanhu Li
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Qingwu Meng
- Excyte Biopharma Ltd, Beijing, Haidian Dist, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yaqi Duan
- Department of Pathology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China.,Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | | | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| |
Collapse
|
6
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Poussin M, Sereno A, Wu X, Huang F, Manro J, Cao S, Carpenito C, Glasebrook A, Powell Jr DJ, Demarest SJ. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. J Immunother Cancer 2021; 9:e002444. [PMID: 34253637 PMCID: PMC8276301 DOI: 10.1136/jitc-2021-002444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bispecific T cell engagers represent the majority of bispecific antibodies (BsAbs) entering the clinic to treat metastatic cancer. The ability to apply these agents safely and efficaciously in the clinic, particularly for solid tumors, has been challenging. Many preclinical studies have evaluated parameters related to the activity of T cell engaging BsAbs, but many questions remain. MAIN BODY This study investigates the impact of affinity of T cell engaging BsAbs with regards to potency, efficacy, and induction of immunomodulatory receptors/ligands using HER-2/CD3 BsAbs as a model system. We show that an IgG BsAb can be as efficacious as a smaller BsAb format both in vitro and in vivo. We uncover a dichotomous relationship between tumor-associated antigen (TAA) affinity and CD3 affinity requirements for cells that express high versus low levels of TAA. HER-2 affinity directly correlated with the CD3 engager lysis potency of HER-2/CD3 BsAbs when HER-2 receptor numbers are high (~200 K/cell), while the CD3 affinity did not impact potency until its binding affinity was extremely low (<600 nM). When HER-2 receptor numbers were lower (~20 K/cell), both HER-2 and CD3 affinity impacted potency. The high affinity anti-HER-2/low CD3 affinity BsAb also demonstrated lower cytokine induction levels in vivo and a dosing paradigm atypical of extremely high potency T cell engaging BsAbs reaching peak efficacy at doses >3 mg/kg. This data confirms that low CD3 affinity provides an opportunity for improved safety and dosing for T cell engaging BsAbs. T cell redirection also led to upregulation of Programmed cell death 1 (PD-1) and 4-1BB, but not CTLA-4 on T cells, and to Programmed death-ligand 1 (PD-L1) upregulation on HER-2HI SKOV3 tumor cells, but not on HER-2LO OVCAR3 tumor cells. Using this information, we combined anti-PD-1 or anti-4-1BB monoclonal antibodies with the HER-2/CD3 BsAb in vivo and demonstrated significantly increased efficacy against HER-2HI SKOV3 tumors via both combinations. CONCLUSIONS Overall, these studies provide an informational dive into the optimization process of CD3 engaging BsAbs for solid tumors indicating that a reduced affinity for CD3 may enable a better therapeutic index with a greater selectivity for the target tumor and a reduced cytokine release syndrome. These studies also provide an additional argument for combining T cell checkpoint inhibition and co-stimulation to achieve optimal efficacy. BACKGROUND
Collapse
Affiliation(s)
- Mathilde Poussin
- Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene Sereno
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
| | - Xiufeng Wu
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
| | - Flora Huang
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
| | - Jason Manro
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
| | - Shanshan Cao
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
| | - Carmine Carpenito
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
- Stelexis, New York, New York, USA
| | - Andrew Glasebrook
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
- Toralgen, San Diego, California, USA
| | - Daniel J Powell Jr
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Demarest
- Eli Lilly and Company Biotechnology Center San Diego, San Diego, California, USA
- Tentarix, San Diego, California, USA
| |
Collapse
|
8
|
Bezverbnaya K, Moogk D, Cummings D, Baker CL, Aarts C, Denisova G, Sun M, McNicol JD, Turner RC, Rullo AF, Foley SR, Bramson JL. Development of a B-cell maturation antigen-specific T-cell antigen coupler receptor for multiple myeloma. Cytotherapy 2021; 23:820-832. [PMID: 34217618 DOI: 10.1016/j.jcyt.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS T cells engineered with synthetic receptors have delivered powerful therapeutic results for patients with relapsed/refractory hematologic malignancies. The authors have recently described the T-cell antigen coupler (TAC) receptor, which co-opts the endogenous T-cell receptor (TCR) and activates engineered T cells in an HLA-independent manner. Here the authors describe the evolution of a next-generation TAC receptor with a focus on developing a TAC-engineered T cell for multiple myeloma. METHODS To optimize the TAC scaffold, the authors employed a bona fide antigen-binding domain derived from the B-cell maturation antigen-specific monoclonal antibody C11D5.3, which has been used successfully in the clinic. The authors first tested humanized versions of the UCHT1 domain, which is used by the TAC to co-opt the TCR. The authors further discovered that the signal peptide affected surface expression of the TAC receptor. Higher density of the TAC receptor enhanced target binding in vitro, which translated into higher levels of Lck at the immunological synapse and stronger proliferation when only receptor-ligand interactions were present. RESULTS The authors observed that the humanized UCHT1 improved surface expression and in vivo efficacy. Using TAC T cells derived from both healthy donors and multiple myeloma patients, the authors determined that despite the influence of receptor density on early activation events and effector function, receptor density did not impact late effector functions in vitro, nor did the receptor density affect in vivo efficacy. CONCLUSIONS The modifications to the TAC scaffold described herein represent an important step in the evolution of this technology, which tolerates a range of expression levels without impacting therapeutic efficacy.
Collapse
Affiliation(s)
- Ksenia Bezverbnaya
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Duane Moogk
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Derek Cummings
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Christopher L Baker
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Craig Aarts
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Galina Denisova
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Michael Sun
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Jamie D McNicol
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Rebecca C Turner
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Anthony F Rullo
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - S Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada; Juravinski Hospital and Cancer Centre, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada.
| |
Collapse
|
9
|
Douglass J, Hsiue EHC, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH, Miller MS, Wright KM, Azurmendi PA, Wang Q, Paul S, Schaefer A, Skora AD, Molin MD, Konig MF, Liu Q, Watson E, Li Y, Murphy MB, Pardoll DM, Bettegowda C, Papadopoulos N, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6:6/57/eabd5515. [PMID: 33649101 DOI: 10.1126/sciimmunol.abd5515] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
Collapse
Affiliation(s)
- Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Aitana Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Qing Wang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Complete Omics Inc., Baltimore, MD 21227, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Annika Schaefer
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marco Dal Molin
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qiang Liu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Abstract
Bispecific antibodies (bsAbs) target two different epitopes. These are an up-and-coming class of biologics, with two such therapeutics (emicizumab and blinatumomab) FDA approved and on the market, and many more in clinical trials. While the first reported bsAbs were constructed by chemical methods, this approach has fallen out of favour with the advent of modern genetic engineering techniques and, nowadays, the vast majority of bsAbs are produced by protein engineering. However, in recent years, relying on innovations in the fields of bioconjugation and bioorthogonal click chemistry, new chemical methods have appeared that have the potential to be competitive with protein engineering techniques and, indeed, hold some advantages. These approaches offer modularity, reproducibility and batch-to-batch consistency, as well as the integration of handles, whereby additional cargo molecules can be attached easily, e.g. to generate bispecific antibody-drug conjugates. The linker between the antibodies/antibody fragments can also be easily varied, and new formats (types, defined by structural properties or by construction methodology) can be generated rapidly. These attributes offer the potential to revolutionize the field. Here, we review chemical methods for the generation of bsAbs, showing that the newest examples of these techniques are worthy competitors to the industry-standard expression-based strategies.
Collapse
|
11
|
Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2018; 154:102-117. [PMID: 30395966 DOI: 10.1016/j.ymeth.2018.10.026] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific molecules redirecting the cytotoxicity of T-cells are a growing class of therapeutics with numerous molecules being tested in clinical trials. However, it has been a long way since the proof of concept studies in the mid 1980's. In the process we have learnt about the impact of different variables related to the bispecific molecule and the target antigen on the potency of this type of drugs. This work reviews the insights gained and how that knowledge has been used to design more potent bispecific T-cell engagers. The more recent advancement of antibodies with this modality into safety studies in non-human primates and as well as in clinical studies has revealed potential toxicity liabilities for the mode of action. Modifications in existing antibody formats and new experimental molecules designed to mitigate these problems are discussed.
Collapse
|
12
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
13
|
Helsen CW, Hammill JA, Lau VWC, Mwawasi KA, Afsahi A, Bezverbnaya K, Newhook L, Hayes DL, Aarts C, Bojovic B, Denisova GF, Kwiecien JM, Brain I, Derocher H, Milne K, Nelson BH, Bramson JL. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun 2018; 9:3049. [PMID: 30076299 PMCID: PMC6076291 DOI: 10.1038/s41467-018-05395-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
Engineering T cells with chimeric antigen receptors (CARs) is an effective method for directing T cells to attack tumors, but may cause adverse side effects such as the potentially lethal cytokine release syndrome. Here the authors show that the T cell antigen coupler (TAC), a chimeric receptor that co-opts the endogenous TCR, induces more efficient anti-tumor responses and reduced toxicity when compared with past-generation CARs. TAC-engineered T cells induce robust and antigen-specific cytokine production and cytotoxicity in vitro, and strong anti-tumor activity in a variety of xenograft models including solid and liquid tumors. In a solid tumor model, TAC-T cells outperform CD28-based CAR-T cells with increased anti-tumor efficacy, reduced toxicity, and faster tumor infiltration. Intratumoral TAC-T cells are enriched for Ki-67+ CD8+ T cells, demonstrating local expansion. These results indicate that TAC-T cells may have a superior therapeutic index relative to CAR-T cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD28 Antigens/immunology
- Cell Line, Tumor
- Cytokines/blood
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Female
- Genetic Engineering
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Lentivirus/genetics
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Protein Engineering
- Receptor, ErbB-2/immunology
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Recombinant Proteins/immunology
- Single-Domain Antibodies
- T-Cell Antigen Receptor Specificity/genetics
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vision, Ocular
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Christopher W Helsen
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Joanne A Hammill
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Vivian W C Lau
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Kenneth A Mwawasi
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Arya Afsahi
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Ksenia Bezverbnaya
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Lisa Newhook
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Danielle L Hayes
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Craig Aarts
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Bojana Bojovic
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Galina F Denisova
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
- Department of Clinical Pathomorphology, Medical University of Lublin, Racławickie 1 Street, 20-059, Lublin, Poland
| | - Ian Brain
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Heather Derocher
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Ave, Victoria, BC, V8R 6V5, Canada
| | - Katy Milne
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Ave, Victoria, BC, V8R 6V5, Canada
| | - Brad H Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Ave, Victoria, BC, V8R 6V5, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
14
|
Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proc Natl Acad Sci U S A 2018; 115:E5467-E5476. [PMID: 29844189 DOI: 10.1073/pnas.1719905115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell-engaging bispecific antibodies (biAbs) present a promising strategy for cancer immunotherapy, and numerous bispecific formats have been developed for retargeting cytolytic T cells toward tumor cells. To explore the therapeutic utility of T cell-engaging biAbs targeting the receptor tyrosine kinase ROR1, which is expressed by tumor cells of various hematologic and solid malignancies, we used a bispecific ROR1 × CD3 scFv-Fc format based on a heterodimeric and aglycosylated Fc domain designed for extended circulatory t1/2 and diminished systemic T cell activation. A diverse panel of ROR1-targeting scFv derived from immune and naïve rabbit antibody repertoires was compared in this bispecific format for target-dependent T cell recruitment and activation. An ROR1-targeting scFv with a membrane-proximal epitope, R11, revealed potent and selective antitumor activity in vitro, in vivo, and ex vivo and emerged as a prime candidate for further preclinical and clinical studies. To elucidate the precise location and engagement of this membrane-proximal epitope, which is conserved between human and mouse ROR1, the 3D structure of scFv R11 in complex with the kringle domain of ROR1 was determined by X-ray crystallography at 1.6-Å resolution.
Collapse
|
15
|
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett 2018; 16:1259-1266. [PMID: 29963199 DOI: 10.3892/ol.2018.8698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen-binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell-mediated HER2-specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.
Collapse
Affiliation(s)
- Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Shu
- Ying Rui, Inc., Guangzhou, Guangdong 510009, P.R. China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510009, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
16
|
Sugiyama A, Umetsu M, Nakazawa H, Niide T, Asano R, Hattori T, Kumagai I. High-throughput cytotoxicity and antigen-binding assay for screening small bispecific antibodies without purification. J Biosci Bioeng 2018; 126:153-161. [PMID: 29548844 DOI: 10.1016/j.jbiosc.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/11/2018] [Indexed: 12/12/2022]
Abstract
The cytotoxicity of T cell-recruiting antibodies with their potential to damage late-stage tumor masses is critically dependent on their structural and functional properties. Recently, we reported a semi-high-throughput process for screening highly cytotoxic small bispecific antibodies (i.e., diabodies). In the present study, we improved the high-throughput performance of this screening process by removing the protein purification stage and adding a stage for determining the concentrations of the diabodies in culture supernatant. The diabodies were constructed by using an Escherichia coli expression system, and each diabody contained tandemly arranged peptide tags at the C-terminus, which allowed the concentration of diabodies in the culture supernatant to be quantified by using a tag-sandwich enzyme-linked immunosorbent assay. When estimated diabody concentrations were used to determine the cytotoxicity of unpurified antibodies, results comparable to those of purified antibodies were obtained. In a surface plasmon resonance spectroscopy-based target-binding assay, contaminants in the culture supernatant prevented us from conducting a quantitative binding analysis; however, this approach did allow relative binding affinity to be determined, and the relative binding affinities of the unpurified diabodies were comparable to those of the purified antibodies. Thus, we present here an improved high-throughput process for the simultaneous screening and determination of the binding parameters of highly cytotoxic bispecific antibodies.
Collapse
Affiliation(s)
- Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
17
|
Köhler M, Greil C, Hudecek M, Lonial S, Raje N, Wäsch R, Engelhardt M. Current developments in immunotherapy in the treatment of multiple myeloma. Cancer 2018; 124:2075-2085. [PMID: 29409124 DOI: 10.1002/cncr.31243] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/23/2017] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and represents approximately 10% of all hematological neoplasms. Standard therapy consists of induction therapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) or, if ASCT cannot be performed, standard doublet, triplet, or quadruplet, novel agent-containing induction treatment until progression. Although MM is still regarded as mostly incurable by current standards, the development of several novel compounds, combination therapies, and immunotherapy approaches has raised great hopes about transforming MM into an indolent, chronic disease and possibly achieving a cure for individual patients. Several new inhibitory and immunological agents have been approved or are under intensive investigation and may lead to new therapeutic options for patients with relapsed/refractory MM, for patients ineligible for ASCT, and for patients after ASCT. Especially in the field of immunotherapy, including monoclonal antibodies, checkpoint inhibition, and chimeric antigen receptor T cells, current advances are rapid and highly promising. This review aims to summarize the newest and most promising immunotherapeutic agents for MM, their clinical efficacy, their adverse event (AE) profiles, and the ways in which these AEs can best be overcome or avoided. Cancer 2018;124:2075-85. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ralph Wäsch
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Abstract
Harnessing the power of the human immune system to treat cancer is the essence of immunotherapy. Monoclonal antibodies engage the innate immune system to destroy targeted cells. For the last 30years, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity have been the main mechanisms of anti-tumor action of unconjugated antibody drugs. Efforts to exploit the potentials of other immune cells, in particular T cells, culminated in the recent approval of two T cell engaging bispecific antibody (T-BsAb) drugs, thereby stimulating new efforts to accelerate similar platforms through preclinical and clinical trials. In this review, we have compiled the worldwide effort in exploring T cell engaging bispecific antibodies. Our special emphasis is on the lessons learned, with the hope to derive insights in this fast evolving field with tremendous clinical potential.
Collapse
Affiliation(s)
- Z Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - N V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
19
|
Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:195-208. [PMID: 29403265 PMCID: PMC5784585 DOI: 10.2147/dddt.s151282] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies (Abs) containing two different antigen-binding sites in one molecule are called bispecific. Bispecific Abs (BsAbs) were first described in the 1960s, the first monoclonal BsAbs were generated in the 1980s by hybridoma technology, and the first article describing the therapeutic use of BsAbs was published in 1992, but the number of papers devoted to BsAbs has increased significantly in the last 10 years. Particular interest in BsAbs is due to their therapeutic use. In the last decade, two BsAbs - catumaxomab in 2009 and blinatumomab in 2014, were approved for therapeutic use. Papers published in recent years have been devoted to various methods of BsAb generation by genetic engineering and chemical conjugation, and describe preclinical and clinical trials of these drugs in a variety of diseases. This review considers diverse BsAb-production methods, describes features of therapeutic BsAbs approved for medical use, and summarizes the prospects of practical application of promising new BsAbs.
Collapse
Affiliation(s)
- Sergey E Sedykh
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Victor V Prinz
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Valentina N Buneva
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
20
|
Mandikian D, Takahashi N, Lo AA, Li J, Eastham-Anderson J, Slaga D, Ho J, Hristopoulos M, Clark R, Totpal K, Lin K, Joseph SB, Dennis MS, Prabhu S, Junttila TT, Boswell CA. Relative Target Affinities of T-Cell-Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model. Mol Cancer Ther 2018; 17:776-785. [PMID: 29339550 DOI: 10.1158/1535-7163.mct-17-0657] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
Abstract
Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Amy A Lo
- Genentech, Inc., South San Francisco, California
| | - Ji Li
- Genentech, Inc., South San Francisco, California
| | | | | | - Jason Ho
- Genentech, Inc., South San Francisco, California
| | | | - Robyn Clark
- Genentech, Inc., South San Francisco, California
| | - Klara Totpal
- Genentech, Inc., South San Francisco, California
| | - Kedan Lin
- Department of Clinical Pharmacology, NGM Biopharmaceuticals Inc., South San Francisco, California
| | - Sean B Joseph
- Department of Pharmacology, Calibr, La Jolla, California
| | - Mark S Dennis
- Denali Therapeutics Inc., South San Francisco, California
| | | | | | | |
Collapse
|
21
|
Wada S, Yada E, Ohtake J, Sasada T. Personalized peptide vaccines for cancer therapy: current progress and state of the art. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1403286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Satoshi Wada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Erica Yada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Junya Ohtake
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Tetsuro Sasada
- Cancer Immunotherapy, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| |
Collapse
|
22
|
Xing J, Lin L, Li J, Liu J, Zhou C, Pan H, Shu R, Dong B, Cao D, Li Q, Wang Z. BiHC, a T-Cell-Engaging Bispecific Recombinant Antibody, Has Potent Cytotoxic Activity Against Her2 Tumor Cells. Transl Oncol 2017; 10:780-785. [PMID: 28797938 PMCID: PMC5548338 DOI: 10.1016/j.tranon.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Among different cancer immunotherapy approaches, bispecific antibodies (BsAbs) are of great interest due to their ability to recruit immune cells to kill tumor cells directly. Various BsAbs against Her2 tumor cells have been proposed with potent cytotoxic activities. However, most of these formats require extensive processing to obtain heterodimeric bispecific antibodies. In this study, we describe a bispecific antibody, BiHC (bispecific Her2-CD3 antibody), constructed with a single-domain anti-Her2 and a single-chain Fv (variable fragment) of anti-CD3 in an IgG-like format. In contrast to most IgG-like BsAbs, the two arms in BiHC have different molecular weights, making it easier to separate hetero- or homodimers. BiHC can be expressed in Escherichia coli and purified via Protein A affinity chromatography. The purified BiHC can recruit T cells and induce specific cytotoxicity of Her2-expressing tumor cells in vitro. The BiHC can also efficiently inhibit the tumor growth in vivo. Thus, BiHC is a promising candidate for the treatment of Her2-positive cancers.
Collapse
Affiliation(s)
- Jieyu Xing
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Rui Shu
- Ying Rui Inc., Guangzhou, Guangdong, China 510009.
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong pharmaceutical University, Guangzhou, Guangdong, China 510009.
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China 510317.
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China 510006; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, China 510006.
| |
Collapse
|
23
|
Sugiyama A, Umetsu M, Nakazawa H, Niide T, Onodera T, Hosokawa K, Hattori S, Asano R, Kumagai I. A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity. Sci Rep 2017; 7:2862. [PMID: 28588218 PMCID: PMC5460266 DOI: 10.1038/s41598-017-03101-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/24/2017] [Indexed: 01/13/2023] Open
Abstract
Small bispecific antibodies that induce T-cell-mediated cytotoxicity have the potential to damage late-stage tumor masses to a clinically relevant degree, but their cytotoxicity is critically dependent on their structural and functional properties. Here, we constructed an optimized procedure for identifying highly cytotoxic antibodies from a variety of the T-cell-recruiting antibodies engineered from a series of antibodies against cancer antigens of epidermal growth factor receptor family and T-cell receptors. By developing and applying a set of rapid operations for expression vector construction and protein preparation, we screened the cytotoxicity of 104 small antibodies with diabody format and identified some with 103-times higher cytotoxicity than that of previously reported active diabody. The results demonstrate that cytotoxicity is enhanced by synergistic effects between the target, epitope, binding affinity, and the order of heavy-chain and light-chain variable domains. We demonstrate the importance of screening to determine the critical rules for highly cytotoxic antibodies.
Collapse
Affiliation(s)
- Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Tomoko Onodera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Shuhei Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
24
|
Lopez-Albaitero A, Xu H, Guo H, Wang L, Wu Z, Tran H, Chandarlapaty S, Scaltriti M, Janjigian Y, de Stanchina E, Cheung NKV. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. Oncoimmunology 2017; 6:e1267891. [PMID: 28405494 PMCID: PMC5384386 DOI: 10.1080/2162402x.2016.1267891] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
T-cell-based therapies have emerged as one of the most clinically effective ways to target solid and non-solid tumors. HER2 is responsible for the oncogenesis and treatment resistance of several human solid tumors. As a member of the HER family of tyrosine kinase receptors, its over-activity confers unfavorable clinical outcome. Targeted therapies directed at this receptor have achieved responses, although development of resistance is common. We explored a novel HER2/CD3 bispecific antibody (HER2-BsAb) platform that while preserving the anti-proliferative effects of trastuzumab, it recruits and activates non-specific circulating T-cells, promoting T cell tumor infiltration and ablating HER2(+) tumors, even when these are resistant to standard HER2-targeted therapies. Its in vitro tumor cytotoxicity, when expressed as EC50, correlated with the surface HER2 expression in a large panel of human tumor cell lines, irrespective of lineage or tumor type. HER2-BsAb-mediated cytotoxicity was relatively insensitive to PD-1/PD-L1 immune checkpoint inhibition. In four separate humanized mouse models of human breast cancer and ovarian cancer cell line xenografts, as well as human breast cancer and gastric cancer patient-derived xenografts (PDXs), HER2-BsAb was highly effective in promoting T cell infiltration and suppressing tumor growth when used in the presence of human peripheral blood mononuclear cells (PBMC) or activated T cells (ATC). The in vivo and in vitro antitumor properties of this BsAb support its further clinical development as a cancer immunotherapeutic.
Collapse
Affiliation(s)
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linlin Wang
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhihao Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hoa Tran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Patke S, Li J, Wang P, Slaga D, Johnston J, Bhakta S, Panowski S, Sun LL, Junttila T, Scheer JM, Ellerman DA. bisFabs: Tools for rapidly screening hybridoma IgGs for their activities as bispecific antibodies. MAbs 2017; 9:430-437. [PMID: 28125314 DOI: 10.1080/19420862.2017.1281504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3-4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates.
Collapse
Affiliation(s)
- Sanket Patke
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Ji Li
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Peiyin Wang
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Dion Slaga
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Jennifer Johnston
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Sunil Bhakta
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Siler Panowski
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Liping L Sun
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Teemu Junttila
- b Department of Translational Oncology , Genentech , South San Francisco , CA , USA
| | - Justin M Scheer
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Diego A Ellerman
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA
| |
Collapse
|
26
|
Wada S, Yada E, Ohtake J, Fujimoto Y, Uchiyama H, Yoshida S, Sasada T. Current status and future prospects of peptide-based cancer vaccines. Immunotherapy 2016; 8:1321-1333. [PMID: 27993087 DOI: 10.2217/imt-2016-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy has attracted attention worldwide owing to the recent development of immune checkpoint inhibitors. However, these therapies have shown limited efficacy, and further advancements are needed before these modalities can progress to widespread use. Immune checkpoint inhibitors are a type of nonspecific cancer immunotherapy, and antitumor effects are only observed when cancer-specific T cells are found within the nonspecifically activated T-cell group. In order to facilitate the development of potent immunotherapies, selective enhancement of cancer-specific T cells is essential. In this report, we discuss current and future perspectives, including the latest clinical trials of cancer-specific immunotherapies, particularly cancer peptide vaccines.
Collapse
Affiliation(s)
- Satoshi Wada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Erika Yada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Junya Ohtake
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yuki Fujimoto
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hidemi Uchiyama
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Shintaro Yoshida
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
27
|
Dillon M, Yin Y, Zhou J, McCarty L, Ellerman D, Slaga D, Junttila TT, Han G, Sandoval W, Ovacik MA, Lin K, Hu Z, Shen A, Corn JE, Spiess C, Carter PJ. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs 2016; 9:213-230. [PMID: 27929752 PMCID: PMC5297516 DOI: 10.1080/19420862.2016.1267089] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.
Collapse
Affiliation(s)
- Michael Dillon
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Yiyuan Yin
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Jianhui Zhou
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Luke McCarty
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Diego Ellerman
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Dionysos Slaga
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Teemu T Junttila
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Guanghui Han
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Wendy Sandoval
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Meric A Ovacik
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Kedan Lin
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Zhilan Hu
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Amy Shen
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Jacob E Corn
- g Department of Early Discovery Biochemistry, Genentech, Inc. , South San Francisco , CA , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Paul J Carter
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| |
Collapse
|
28
|
Kristeleit H, Parton M, Beresford M, Macpherson IR, Sharma R, Lazarus L, Kelleher M. Long-term Follow-up Data from Pivotal Studies of Adjuvant Trastuzumab in Early Breast Cancer. Target Oncol 2016; 11:579-591. [PMID: 27181019 PMCID: PMC5054055 DOI: 10.1007/s11523-016-0438-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The addition of adjuvant trastuzumab therapy for 1 year to standard chemotherapy significantly improved disease-free survival and overall survival versus chemotherapy alone in a number of pivotal early breast cancer studies. Here we review long-term follow-up data on the efficacy, cardiac safety, and general safety of trastuzumab in these pivotal studies. We also evaluate ongoing phase II/III adjuvant trials with newer HER2-targeted agents and the efficacy and safety of the recently developed subcutaneous (SC) formulation of trastuzumab in early breast cancer. Long-term follow-up data confirm the significant survival benefit afforded by the addition of trastuzumab to chemotherapy in patients with HER2-positive disease, with an acceptable safety profile. Long-term cardiac safety data suggest that the incidence of cardiac adverse events is maintained at a relatively low level with continued follow-up. At this present time, 1 year of trastuzumab treatment remains the standard of care in HER2-positive early breast cancer. Future adjuvant trastuzumab treatment strategies should focus on reducing cardiotoxicity, particularly in elderly patients, by identifying potential predictive biomarkers of cardiac dysfunction. Clinicians must also decide whether to omit trastuzumab in women who would achieve little benefit from treatment to avoid cardiotoxicity.![]()
Collapse
Affiliation(s)
| | - Marina Parton
- Royal Marsden NHS Foundation Trust and Kingston NHS Foundation Trust, London, UK
| | - Mark Beresford
- Royal United Hospital, Bath, UK.,Bath University, Bath, UK
| | | | | | | | | |
Collapse
|
29
|
Bumbaca Yadav D, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, Urban K, Ulufatu S, Khawli LA, Prabhu S, Joseph S, Kelley RF. Evaluating the Use of Antibody Variable Region (Fv) Charge as a Risk Assessment Tool for Predicting Typical Cynomolgus Monkey Pharmacokinetics. J Biol Chem 2015; 290:29732-41. [PMID: 26491012 DOI: 10.1074/jbc.m115.692434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 11/06/2022] Open
Abstract
The pharmacokinetic (PK) behavior of monoclonal antibodies in cynomolgus monkeys (cynos) is generally translatable to that in humans. Unfortunately, about 39% of the antibodies evaluated for PKs in cynos have fast nonspecific (or non-target-mediated) clearance (in-house data). An empirical model relating variable region (Fv) charge and hydrophobicity to cyno nonspecific clearance was developed to gauge the risk an antibody would have for fast nonspecific clearance in the monkey. The purpose of this study was to evaluate the predictability of this empirical model on cyno nonspecific clearance with antibodies specifically engineered to have either high or low Fv charge. These amino acid changes were made in the Fv region of two test antibodies, humAb4D5-8 and anti-lymphotoxin α. The humAb4D5-8 has a typical nonspecific clearance in cynos, and by making it more positively charged, the antibody acquires fast nonspecific clearance, and making it less positively charged did not impact its clearance. Anti-lymphotoxin α has fast nonspecific clearance in cynos, and making it more positively charged caused it to clear even faster, whereas making it less positively charged caused it to clear slower and within the typical range. These trends in clearance were also observed in two other preclinical species, mice and rats. The effect of modifying Fv charge on subcutaneous bioavailability was also examined, and in general bioavailability was inversely related to the direction of the Fv charge change. Thus, modifying Fv charge appears to impact antibody PKs, and the changes tended to correlate with those predicted by the empirical model.
Collapse
Affiliation(s)
| | | | | | | | - Devin Tesar
- Drug Delivery, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | | | | | | | - Leslie A Khawli
- From the Departments of Preclinical and Translational Pharmacokinetics
| | - Saileta Prabhu
- From the Departments of Preclinical and Translational Pharmacokinetics
| | - Sean Joseph
- From the Departments of Preclinical and Translational Pharmacokinetics
| | - Robert F Kelley
- Drug Delivery, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
30
|
Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106. [DOI: 10.1016/j.molimm.2015.01.003] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
|
31
|
Vaishampayan U, Thakur A, Rathore R, Kouttab N, Lum LG. Phase I Study of Anti-CD3 x Anti-Her2 Bispecific Antibody in Metastatic Castrate Resistant Prostate Cancer Patients. Prostate Cancer 2015; 2015:285193. [PMID: 25802762 PMCID: PMC4352947 DOI: 10.1155/2015/285193] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 01/24/2023] Open
Abstract
Background. New nontoxic targeted approaches are needed for patients with castrate resistant prostate cancer (CRPC). Our preclinical studies show that activated T cells (ATC) armed with anti-CD3 x anti-Her2 bispecific antibody (Her2Bi) kill prostate cancer cells lines, induce a Th1 cytokine pattern upon engagement of tumor cells, prevent the development of prostate tumors, and retard tumor growth in immunodeficient mice. These studies provided strong rationale for our phase I dose-escalation pilot study to test ATC armed with Her2Bi (aATC) for safety in men with CRPC. Methods. Seven of 8 men with CRPC were evaluable after receiving two infusions per week for 4 weeks. The men received 2.5, 5 or 10 × 10(9) aATC per infusion with low dose interleukin-2 and granulocyte-macrophage colony stimulating factor. Results. There were no dose limiting toxicities, and there was 1 partial responder and 3 of 7 patients had significant decreases in their PSA levels and pain scores. Immune evaluations of peripheral blood mononuclear cells in 2 patients before and after immunotherapy showed increases in IFN-γ EliSpot responses and Th1 serum cytokines. Conclusions. These results provide a strong rationale for developing phase II trials to determine whether aATC are effective for treating CRPC.
Collapse
Affiliation(s)
- Ulka Vaishampayan
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
- Department of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Archana Thakur
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ritesh Rathore
- Roger Williams Medical Center, Providence, RI 02908, USA
| | - Nicola Kouttab
- Department of Pathology, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Lawrence G. Lum
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
- Department of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Arias-Romero LE, Chernoff J. p21-activated kinases in Erbb2-positive breast cancer: A new therapeutic target? Small GTPases 2014; 1:124-128. [PMID: 21686266 DOI: 10.4161/sgtp.1.2.14109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 02/03/2023] Open
Abstract
The activation of receptor tyrosine kinases, particularly ErbB2, has been linked to the genesis and progression of breast cancer. Two of the central signaling pathways activated by ErbB2 are the Ras/Raf-1/Mek/Erk pathway, which plays an important role in tumor cell growth and migration, and the PI3K/Akt pathway, which plays an important role in cell survival. Recently, we and others have shown that signaling through the Ras-Erk pathway can be influenced by p21-activated kinase 1 (Pak1), an effector of the Rho family GTP ases Rac and Cdc42. Expression of activated forms of Rac promotes activation of Erk through mechanisms involving Pak1 phosphorylation of Raf-1 and Mek1. In addition, Pak1 has also been implicated in the activation of Akt. However, our understanding regarding the degree to which Rho GTPases, and their effectors such as Pak1, contribute to ErbB2-mediated signaling is very limited.Recent results from our laboratory indicate that ErbB2 expression correlates with Pak activation in estrogen receptor negative human breast tumor samples. Using a three-dimensional (3D) culture of human MCF-10A mammary epithelial cells, we found that activation of Rac-Pak pathway by ErbB2 induces growth factor independent proliferation and promotes disruption of acini-like structures through the activation of the Erk and Akt pathways. We also observed that blocking Pak1 activity by small molecule inhibitors impeded the ability of activated ErbB2 to transform these cells and to activate its associated downstream signaling targets. In addition, we found that suppressing Pak activity in ErbB2-amplified breast cancer cells delayed tumor formation and downregulated Erk and Akt signaling in vivo. These results support a model in which Pak, by activating Erk and Akt, cooperates with ErbB2 in transforming mammary epithelial cells.
Collapse
|
33
|
Abstract
Transformation of a normal cell to a cancer cell is caused by mutations in genes that regulate proliferation, apoptosis, and invasion. Small GTPases such as Ras, Rho, Rac and Cdc42 orchestrate many of the signals that are required for malignant transformation. The p21-activated kinases (PAKs) are effectors of Rac and Cdc42. PAKs are a family of serine/threonine protein kinases comprised of six isoforms (PAK1–6), and they play important roles in cytoskeletal dynamics, cell survival and proliferation. They act as key signal transducers in several cancer signaling pathways, including Ras, Raf, NFκB, Akt, Bad and p53. Although PAKs are not mutated in cancers, they are overexpressed, hyperactivated or amplified in several human tumors and their role in cell transformation make them attractive therapeutic targets. This review discusses the evidence that PAK is important for cell transformation and some key signaling pathways it regulates. This review primarily discusses Group I PAKs (PAK1, PAK2 and PAK3) as Group II PAKs (PAK4, PAK5 and PAK6) are discussed elsewhere in this issue (by Minden).
Collapse
Affiliation(s)
- Diana Zi Ye
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
34
|
van Vught R, Pieters RJ, Breukink E. Site-specific functionalization of proteins and their applications to therapeutic antibodies. Comput Struct Biotechnol J 2014; 9:e201402001. [PMID: 24757499 PMCID: PMC3995230 DOI: 10.5936/csbj.201402001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022] Open
Abstract
Protein modifications are often required to study structure and function relationships. Instead of the random labeling of lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for therapeutic antibodies.
Collapse
Affiliation(s)
- Remko van Vught
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology. Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
35
|
Targeting the EGFR family of receptor tyrosine kinases. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Bispecific small molecule-antibody conjugate targeting prostate cancer. Proc Natl Acad Sci U S A 2013; 110:17796-801. [PMID: 24127589 DOI: 10.1073/pnas.1316026110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ~ 100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors.
Collapse
|
37
|
Herrington-Symes AP, Farys M, Khalili H, Brocchini S. Antibody fragments: Prolonging circulation half-life special issue-antibody research. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.45090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Renner C, Pfreundschuh M. Status of Bispecific Monoclonal Antibodies for Cancer Therapy. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Figini M, Orlandi R. New Techniques for the Production of Therapeutic Recombinant Human Monoclonal Antibodies. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Cui H, Thomas JD, Burke TR, Rader C. Chemically programmed bispecific antibodies that recruit and activate T cells. J Biol Chem 2012; 287:28206-14. [PMID: 22761439 DOI: 10.1074/jbc.m112.384594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bispecific antibodies (biAbs) that mediate cytotoxicity by recruiting and activating endogenous immune cells are an emerging class of next-generation antibody therapeutics. Of particular interest are biAbs of relatively small size (∼50 kDa) that can redirect cytotoxic T cells through simultaneous binding of tumor cells. Here we describe a conceptually unique class of biAbs in which the tumor cell specificity of a humanized antibody fragment that recognizes CD3 on T cells is chemically programmed through a C-terminal selenocysteine (Sec) residue. We demonstrate that through chemically programmed specificity for integrin α(4)β(1) or folate receptor 1 (FOLR1), and common specificity for CD3, these hybrid molecules exert potent and specific in vitro and ex vivo cytotoxicity toward tumor cell lines and primary tumor cells in the presence of primary T cells. Importantly, the generic nature of chemical programming allows one to apply our approach to virtually any specificity, promising a broad utility of chemically programmed biAbs in cancer therapy.
Collapse
Affiliation(s)
- Huiting Cui
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Bispecific antibodies (BiAbs) offer a unique opportunity to redirect immune effector cells to kill cancer cells. BiAbs combine the benefits of different binding specificities of two monoclonal antibodies (mAbs) into a single construct. This unique feature of BiAbs enables approaches that are not possible with single mAbs. Advances in antibody engineering and antigen profiling of malignant cells have led to the development of a number of BiAb formats and their combinations for redirecting effector cells to tumor targets. There have been significant advances in the design and application of BiAbs for intravenous and local injection.The initial barrier of cytokine storm has been partially overcome by more recent constructs that have improved clinical effectiveness without dose-limiting toxicities. Since the recent revival of BiAbs, there has been multiple, ongoing, phase I/II and III trials, and some promising clinical outcomes have been reported in completed clinical studies. This review focuses on arming T cells with BiAbs to create the 'poor man's cytotoxic lymphocyte'.
Collapse
Affiliation(s)
- Lawrence G Lum
- Department of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Center, Detroit, MI, USA
| | | |
Collapse
|
42
|
Haidar JN, Yuan QA, Zeng L, Snavely M, Luna X, Zhang H, Zhu W, Ludwig DL, Zhu Z. A universal combinatorial design of antibody framework to graft distinct CDR sequences: a bioinformatics approach. Proteins 2011; 80:896-912. [PMID: 22180101 DOI: 10.1002/prot.23246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/15/2011] [Accepted: 11/04/2011] [Indexed: 12/20/2022]
Abstract
Antibody (Ab) humanization is crucial to generate clinically relevant biologics from hybridoma-derived monoclonal antibodies (mAbs). In this study, we integrated antibody structural information from the Protein Data Bank with known back-to-mouse mutational data to build a universal consensus of framework positions (10 heavy and 7 light) critical for the preservation of the functional conformation of the Complimentarity Determining Region of antibodies. On the basis of FR consensus, we describe here a universal combinatorial library suitable for humanizing exogenous antibodies by CDR-grafting. The six CDRs of the murine anti-human EGFR Fab M225 were grafted onto a distinct (low FR sequence similarity to M225) human FR sequence that incorporates at the 17 FR consensus positions the permutations of the naturally observed amino acid diversities. Ten clones were selected from the combinatorial library expressing phage-displayed humanized M225 Fabs. Surprisingly, 2 of the 10 clones were found to bind EGFR with stronger affinity than M225. Cell-based assays demonstrated that the 10 selected clones retained epitope specificity by blocking EGFR phosphorylation and thus hindering cellular proliferation. Our results suggest that there is a universal and structurally rigid near-CDR set of FR positions that cooperatively support the binding conformation of CDRs.
Collapse
Affiliation(s)
- Jaafar N Haidar
- Department of Antibody Technology, ImClone Systems, a Wholly-Owned Subsidiary of Eli Lilly and Company, Alexandria Center for Life Sciences, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Serebrovskaya EO, Stremovsky OA, Chudakov DM, Lukyanov KA, Deyev SM. Genetically encoded immunophotosensitizer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:137-44. [DOI: 10.1134/s1068162011010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Lauterlein JJL, Petersen ER, Olsen DA, Østergaard B, Brandslund I. Quantification of HER2 autoantibodies in the amplification phenomenon of HER2 in breast cancer. Clin Chem Lab Med 2011; 49:877-83. [DOI: 10.1515/cclm.2011.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, Chernoff J. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 2010; 29:5839-49. [PMID: 20711231 PMCID: PMC2965784 DOI: 10.1038/onc.2010.318] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/16/2010] [Accepted: 06/24/2010] [Indexed: 11/18/2022]
Abstract
The activation of receptor tyrosine kinases, particularly ErbB2, has an important role in the genesis of breast cancer. ErbB2 kinase activity promotes Ras-mediated stimulation of downstream protein kinase cascades, including the Ras/Raf-1/MAPK/ERK kinase (Mek)/extracellular signal-regulated kinase (Erk) pathway, leading to tumor cell growth and migration. Signaling through the Ras-Erk pathway can be influenced by p21-activated kinase-1 (Pak1), an effector of the Rho family GTPases Rac and Cdc42. In this study, we asked if ErbB2 expression correlates with Pak1 and Erk activity in human breast cancer specimens, and if Pak1 signaling is required for ErbB2 transformation in a three-dimensional (3D) in vitro setting and in xenografts. We found a correlation between ErbB2 expression and activation of Pak in estrogen receptor-positive human breast tumor samples and observed that in 3D cultures, activation of Rac-Pak1 pathway by ErbB2 homodimers induced growth factor-independent proliferation and promoted disruption of 3D mammary acinar-like structures through activation of the Erk and Akt pathways. Further, we found that inhibition of Pak1 by small molecules compromised activation of Erk and Akt, resulting in reversion of the malignant phenotype and restoration of normal acinar architecture. Finally, ErbB2-amplified breast cancer cells expressing a specific Pak inhibitor showed delayed tumor formation and downregulation of Erk and Akt signaling in vivo. These data imply that the Rac-Pak pathway is vital to ErbB2-mediated transformation and that Pak inhibitors represent plausible drug targets in breast cancers in which ErbB2 signaling is activated.
Collapse
Affiliation(s)
| | | | - Almudena Pacheco
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rachelle Kosoff
- Cancer Biology Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Huang
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | - Jonathan Chernoff
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| |
Collapse
|
46
|
Sheikholeslami F, Rasaee MJ, Shokrgozar MA, Dizaji MM, Rahbarizadeh F, Ahmadvande D. Isolation of a Novel Nanobody Against HER-2/neuUsing Phage Displays Technology. Lab Med 2010. [DOI: 10.1309/lm0wxkm0r0dvuzwf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
47
|
Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc Natl Acad Sci U S A 2009; 106:9221-5. [PMID: 19458251 DOI: 10.1073/pnas.0904140106] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody-photosensitizer chemical conjugates are used successfully to kill cancer cells in photodynamic therapy. However, chemical conjugation of photosensitizers presents several limitations, such as poor reproducibility, aggregation, and free photosensitizer impurities. Here, we report a fully genetically encoded immunophotosensitizer, consisting of a specific anti-p185(HER-2-ECD) antibody fragment 4D5scFv fused with the phototoxic fluorescent protein KillerRed. Both parts of the recombinant protein preserved their functional properties: high affinity to antigen and light activation of sensitizer. 4D5scFv-KillerRed showed fine targeting properties and efficiently killed p185(HER-2-ECD)-expressing cancer cells upon light irradiation. It also showed a remarkable additive effect with the commonly used antitumor agent cisplatin, further demonstrating the potential of the approach.
Collapse
|
48
|
Tiwari A, Khanna N, Acharya SK, Sinha S. Humanization of high affinity anti-HBs antibody by using human consensus sequence and modification of selected minimal positional template and packing residues. Vaccine 2009; 27:2356-66. [PMID: 19428851 DOI: 10.1016/j.vaccine.2009.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 11/26/2022]
Abstract
We had earlier reported the construction and characterization of a high affinity recombinant scFv generated from a potential neutralizing mouse monoclonal antibody against the Hepatitis B surface antigen. In this report we describe the humanization of this scFv by grafting its antigen binding site onto framework of the human consensus sequence of highest similarity. We have used molecular modeling to alter not only the clearly permissible residues but also several minimal positional template and V(H)/V(L) interface residues. The humanized scFv retains the binding characteristic of the mouse monoclonal even under conditions that usually destabilize antigen antibody interactions. This high affinity humanized scFv provides a basis for the development of prophylactic/therapeutic molecules.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Department of Biochemistry, All India Institute of Medial Sciences, New Delhi, 110029, India.
| | | | | | | |
Collapse
|
49
|
Robinson MK, Hodge KM, Horak E, Sundberg ÅL, Russeva M, Shaller CC, von Mehren M, Shchaveleva I, Simmons HH, Marks JD, Adams GP. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99:1415-25. [PMID: 18841159 PMCID: PMC2576487 DOI: 10.1038/sj.bjc.6604700] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 11/09/2022] Open
Abstract
Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.
Collapse
Affiliation(s)
- M K Robinson
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - K M Hodge
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - E Horak
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Å L Sundberg
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - M Russeva
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - C C Shaller
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - M von Mehren
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - I Shchaveleva
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - H H Simmons
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J D Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - G P Adams
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
50
|
Segal DM, Bast BJ. Production of bispecific antibodies. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 2:2.13.1-2.13.16. [PMID: 18432765 DOI: 10.1002/0471142735.im0213s14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bispecific antibodies (bsAbs) contain two different binding specificities within a single molecule and can specifically bind two different molecules together. BsAbs can be produced by chemically cross-linking purified antibodies or Fab fragments with reducible disulfide bonds or nonreducible thioether bonds, both of which are described in this unit. Protocols are also presented for producing BsAbs by fusing two antibody-producing hybridomas that can be selected for based on drug resistance, or by double labeling with fluorochromes and FACS. Support protocols describe screening and purification of bsAbs.
Collapse
Affiliation(s)
- D M Segal
- National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|