1
|
Afu KC, Durkee AS. Treatment of Methotrexate-Associated Lymphoproliferative Disorder With Biological Therapies. Cureus 2025; 17:e76751. [PMID: 39897234 PMCID: PMC11785414 DOI: 10.7759/cureus.76751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Lymphoproliferative disorders may arise as a complication of immunosuppressant medications, such as methotrexate. This case report describes a patient who developed a rare subtype of methotrexate-associated lymphoproliferative disorder. His disease initially responded well to the withdrawal of methotrexate. However, several months after diagnosis, surveillance testing revealed progressive lymphadenopathy. Owing to his multiple comorbidities and resultant poor baseline functional status, he was not a candidate for cytotoxic chemotherapy. Based on key histopathological characteristics of his rare disorder, his care team devised an alternative therapy, consisting of rituximab and brentuximab, a unique protocol that is not well-described in the lymphoma literature. The patient achieved a brief but complete remission from this therapy.
Collapse
Affiliation(s)
- Kava C Afu
- Department of Internal Medicine, San Antonio Uniformed Services Health Education Consortium, San Antonio, USA
| | - Andrew S Durkee
- Department of Hematology and Oncology, William Beaumont Army Medical Center, Fort Bliss, USA
- Department of Hematology and Oncology, San Antonio Uniformed Services Health Education Consortium, San Antonio, USA
| |
Collapse
|
2
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Jo HA, Hyun SJ, Hyun YS, Lee YH, Kim SM, Baek IC, Sohn HJ, Kim TG. Comprehensive Analysis of Epstein-Barr Virus LMP2A-Specific CD8 + and CD4 + T Cell Responses Restricted to Each HLA Class I and II Allotype Within an Individual. Immune Netw 2023; 23:e17. [PMID: 37179751 PMCID: PMC10166658 DOI: 10.4110/in.2023.23.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 05/15/2023] Open
Abstract
Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.
Collapse
Affiliation(s)
- Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Joo Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Mi Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jung Sohn
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
4
|
Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, Longo F, Rega RA, Salzano G, Pontone M, Marciano ML, Piccirillo A, Montano M, Fasano M, Ciardiello F, Della Vittoria Scarpati G, Ionna F. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers (Basel) 2023; 15:1626. [PMID: 36900413 PMCID: PMC10000842 DOI: 10.3390/cancers15051626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical, physical, and infectious agents may induce carcinogenesis, and in the latter case, viruses are involved in most cases. The occurrence of virus-induced carcinogenesis is a complex process caused by an interaction across multiple genes, mainly depending by the type of the virus. Molecular mechanisms at the basis of viral carcinogenesis, mainly suggest the involvement of a dysregulation of the cell cycle. Among the virus-inducing carcinogenesis, Epstein Barr Virus (EBV) plays a major role in the development of both hematological and oncological malignancies and importantly, several lines of evidence demonstrated that nasopharyngeal carcinoma (NPC) is consistently associated with EBV infection. Cancerogenesis in NPC may be induced by the activation of different EBV "oncoproteins" which are produced during the so called "latency phase" of EBV in the host cells. Moreover, EBV presence in NPC does affect the tumor microenvironment (TME) leading to a strongly immunosuppressed status. Translational implications of the above-mentioned statements are that EBV-infected NPC cells can express proteins potentially recognized by immune cells in order to elicit a host immune response (tumor associated antigens). Three immunotherapeutic approaches have been implemented for the treatment of NPC including active, adoptive immunotherapy, and modulation of immune regulatory molecules by use of the so-called checkpoint inhibitors. In this review, we will highlight the role of EBV infection in NPC development and analyze its possible implications on therapy strategies.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | | | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Roberta Fusco
- Medical Oncology Division, IGEA SPA, 41012 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Francesco Longo
- Otolaryngology and Maxillofacial Surgery Surgery Unit, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Rosalia Anna Rega
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Giovanni Salzano
- Maxillofacial Surgery Surgery Unit, Reproductive and Odontostomatological Science, University of Naples Federico II, 80138 Napoli, Italy
| | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Arianna Piccirillo
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Massimo Montano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Morena Fasano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Franco Ionna
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| |
Collapse
|
5
|
Comprehensive Profiling of EBV Gene Expression and Promoter Methylation Reveals Latency II Viral Infection and Sporadic Abortive Lytic Activation in Peripheral T-Cell Lymphomas. Viruses 2023; 15:v15020423. [PMID: 36851637 PMCID: PMC9960980 DOI: 10.3390/v15020423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) latency patterns are well defined in EBV-associated epithelial, NK/T-cell, and B-cell malignancies, with links between latency stage and tumorigenesis deciphered in various studies. In vitro studies suggest that the oncogenic activity of EBV in T-cells might be somewhat different from that in EBV-tropic B lymphoid cells, prompting us to study this much less investigated viral gene expression pattern and its regulation in nine EBV+ peripheral T-cell lymphoma (PTCL) biopsies. Using frozen specimens, RT-PCR showed 6/7 cases with a latency II pattern of EBV gene expression. Analyses of EBNA1 promoter usage and CpG methylation status in these six cases showed that only Qp was used, while Cp, Wp, and Fp were all silent. However, the remaining case showed an exceptionally unique latency III type with lytic activation, as evidenced by EBV lytic clonality and confirmed by the full usage of Cp and Qp as well as weakly lytic Fp and Wp, fully unmethylated Cp and marginally unmethylated Wp. Further immunostaining of the eight cases revealed a few focally clustered LMP1+ cells in 7/8 cases, with rare isolated LMP1+ cells detected in another case. Double immunostaining confirmed that the LMP1+ cells were of the T-cell phenotype (CD3+). In 6/8 cases, sporadically scattered Zta+ cells were detected. Double staining of EBER-ISH with T-cell (CD45RO/UCHL1) or B-cell (CD20) markers confirmed that the vast majority of EBER+ cells were of the T-cell phenotype. Predominant type-A EBV variant and LMP1 30-bp deletion variant were present, with both F and f variants detected. In summary, the EBV gene expression pattern in PTCL was found to be mainly of latency II (BART+EBNA1(Qp)+LMP1+LMP2A+BZLF1+), similar to that previously reported in EBV-infected nasopharyngeal epithelial, NK/T-cell, and Hodgkin malignancies; however, fully lytic infection could also be detected in occasional cases. Rare cells with sporadic immediate-early gene expression were commonly detected in PTCL. These findings have implications for the future development of EBV-targeting therapeutics for this cancer.
Collapse
|
6
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Impact of Tumour Epstein–Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers (Basel) 2022; 14:cancers14174297. [PMID: 36077832 PMCID: PMC9454639 DOI: 10.3390/cancers14174297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) contributes to different forms of human cancer, including a subset of classical Hodgkin lymphoma (cHL), a B-cell lymphoma with unusual histological features. Although the pathogenesis of EBV-associated cHL remains to be elucidated, biological investigations point to an important aetiological role for the virus in the development of this tumour. This is even more relevant now considering the potential opportunities that exist to treat EBV-associated disorders, for example, with immunotherapeutics or small molecule inhibitors targeting viral proteins. For this reason, we believe it is now timely to review the association between EBV and cHL and in particular to re-evaluate the impact of EBV status on clinical outcomes in cHL patients. Herein, we also report the impact of EBV on clinical outcomes in a cohort of children and adolescents with cHL. Abstract In this study, we have re-evaluated how EBV status influences clinical outcome. To accomplish this, we performed a literature review of all studies that have reported the effect of EBV status on patient outcome and also explored the effect of EBV positivity on outcome in a clinical trial of children with cHL from the UK. Our literature review revealed that almost all studies of older adults/elderly patients have reported an adverse effect of an EBV-positive status on outcome. In younger adults with cHL, EBV-positive status was either associated with a moderate beneficial effect or no effect, and the results in children and adolescents were conflicting. Our own analysis of a series of 166 children with cHL revealed no difference in overall survival between EBV-positive and EBV-negative groups (p = 0.942, log rank test). However, EBV-positive subjects had significantly longer event-free survival (p = 0.0026). Positive latent membrane protein 1 (LMP1) status was associated with a significantly lower risk of treatment failure in a Cox regression model (HR = 0.21, p = 0.005). In models that controlled for age, gender, and stage, EBV status had a similar effect size and statistical significance. This study highlights the age-related impact of EBV status on outcome in cHL patients and suggests different pathogenic effects of EBV at different stages of life.
Collapse
|
8
|
HLA Expression in Relation to HLA Type in Classic Hodgkin Lymphoma Patients. Cancers (Basel) 2021; 13:cancers13225833. [PMID: 34830986 PMCID: PMC8616181 DOI: 10.3390/cancers13225833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (cHL) is a B-cell malignancy with involvement of Epstein–Barr virus (EBV) in about 30% of the European population. The risk to develop cHL is strongly linked to genetic variants in the human leukocyte antigen (HLA) genomic region and to certain HLA alleles. This may be caused by the function of HLA alleles, or by genetic linkage to non-HLA genes. HLA can present EBV-derived and tumour-cell specific antigens and this may lead to anti-tumour immune responses. However, the tumour cells downregulate HLA expression in a proportion of the cases, which may result in immune escape. In this study, we tested whether the loss of HLA expression is related to the presence of certain protective HLA alleles. We found that loss and retention of HLA expression is indeed associated with presence of known susceptibility HLA alleles. These findings suggest that HLA itself is involved in development of cHL. Abstract Several human leukocyte antigen (HLA) alleles are strongly associated with susceptibility to classic Hodgkin lymphoma (cHL), also in subgroups stratified for presence of the Epstein–Barr virus (EBV). We tested the hypothesis that the pressure on cHL tumour cells to lose HLA expression is associated with HLA susceptibility alleles. A meta-analysis was carried out to identify consistent protective and risk HLA alleles in a combined cohort of 839 cHL patients from the Netherlands and the United Kingdom. Tumour cell HLA expression was studied in 338 cHL cases from these two cohorts and correlated to the presence of specific susceptibility HLA alleles. Carriers of the HLA-DRB1*07 protective allele frequently lost HLA class II expression in cHL overall. Patients carrying the HLA-DRB1*15/16 (DR2) risk allele retained HLA class II expression in EBV− cHL and patients with the HLA-B*37 risk allele retained HLA class I expression more frequently than non-carriers in EBV+ cHL. The other susceptibility alleles showed no significant differences in expression. Thus, HLA expression by tumour cells is associated with a subset of the protective and risk alleles. This strongly suggests that HLA associations in cHL are related to peptide binding capacities of specific HLA alleles.
Collapse
|
9
|
Alonso-Álvarez S, Colado E, Moro-García MA, Alonso-Arias R. Cytomegalovirus in Haematological Tumours. Front Immunol 2021; 12:703256. [PMID: 34733270 PMCID: PMC8558552 DOI: 10.3389/fimmu.2021.703256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The exquisite coupling between herpesvirus and human beings is the result of millions of years of relationship, coexistence, adaptation, and divergence. It is probably based on the ability to generate a latency that keeps viral activity at a very low level, thereby apparently minimising harm to its host. However, this evolutionary success disappears in immunosuppressed patients, especially in haematological patients. The relevance of infection and reactivation in haematological patients has been a matter of interest, although one fundamentally focused on reactivation in the post-allogeneic stem cell transplant (SCT) patient cohort. Newer transplant modalities have been progressively introduced in clinical settings, with successively more drugs being used to manipulate graft composition and functionality. In addition, new antiviral drugs are available to treat CMV infection. We review the immunological architecture that is key to a favourable outcome in this subset of patients. Less is known about the effects of herpesvirus in terms of mortality or disease progression in patients with other malignant haematological diseases who are treated with immuno-chemotherapy or new molecules, or in patients who receive autologous SCT. The absence of serious consequences in these groups has probably limited the motivation to deepen our knowledge of this aspect. However, the introduction of new therapeutic agents for haematological malignancies has led to a better understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B lymphocytes interact, and of the role of CMV infection in the context of recently introduced drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis and recommendations regarding these scenarios.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Enrique Colado
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Marco A Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
10
|
Hodgkin Lymphoma in People Living with HIV. Cancers (Basel) 2021; 13:cancers13174366. [PMID: 34503176 PMCID: PMC8430611 DOI: 10.3390/cancers13174366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a non-AIDS defining neoplasm, but people living with HIV (PLWH) have between a 5- and 26-fold higher risk of developing it than the general population. Epstein-Barr virus is present in almost all HIV-related HL cases, and plays an important role in its etiopathogenesis. Despite the aggressive characteristics, the prognosis of HL affecting PLWH is similar to that of the general population if patients are treated following the same recommendations. Administration of cART concomitantly with chemotherapy is highly recommended. However, this combination may be challenging due to drug–drug interactions and overlapping toxicity. Thus, interdisciplinary collaboration between hemato-oncologists and HIV specialists is crucial for the optimal treatment of both lymphoma and HIV infection. Abstract Despite widespread use of combined antiretroviral therapy (cART) and increased life expectancy in people living with HIV (PLWH), HIV-related lymphomas (HRL) remain a leading cause of cancer morbidity and mortality for PLWH, even in patients optimally treated with cART. While the incidence of aggressive forms of non-Hodgkin lymphoma decreased after the advent of cART, incidence of Hodgkin lymphoma (HL) has increased among PLWH in recent decades. The coinfection of Epstein–Barr virus plays a crucial role in the pathogenesis of HL in the HIV setting. Currently, PLWH with HRL, including HL, are treated similarly to HIV-negative patients and, importantly, the prognosis of HL in PLWH is approaching that of the general population. In this regard, effective cART during chemotherapy is strongly recommended since it has been shown to improve survival rates in all lymphoma subtypes, including HL. As a consequence, interdisciplinary collaboration between HIV specialists and hemato-oncologists for the management of potential drug–drug interactions and overlapping toxicities between antiretroviral and antineoplastic drugs is crucial for the optimal treatment of PLWH with HL. In this article the authors review and update the epidemiological, clinical and biological aspects of HL presenting in PLWH with special emphasis on advances in prognosis and the factors that have contributed to it.
Collapse
|
11
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
12
|
Avilala J, Becnel D, Abdelghani R, Nanbo A, Kahn J, Li L, Lin Z. Role of Virally Encoded Circular RNAs in the Pathogenicity of Human Oncogenic Viruses. Front Microbiol 2021; 12:657036. [PMID: 33959113 PMCID: PMC8093803 DOI: 10.3389/fmicb.2021.657036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human oncogenic viruses are a group of important pathogens that etiologically contribute to at least 12% of total cancer cases in the world. As an emerging class of non-linear regulatory RNA molecules, circular RNAs (circRNAs) have gained increasing attention as a crucial player in the regulation of signaling pathways involved in viral infection and oncogenesis. With the assistance of current circRNA enrichment and detection technologies, numerous novel virally-encoded circRNAs (vcircRNAs) have been identified in the human oncogenic viruses, initiating an exciting new era of vcircRNA research. In this review, we discuss the current understanding of the roles of vcircRNAs in the respective viral infection cycles and in virus-associated pathogenesis.
Collapse
Affiliation(s)
- Janardhan Avilala
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - David Becnel
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Ramsy Abdelghani
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Jacob Kahn
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - Li Li
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| |
Collapse
|
13
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
14
|
Essential role of the linear ubiquitin chain assembly complex and TAK1 kinase in A20 mutant Hodgkin lymphoma. Proc Natl Acad Sci U S A 2020; 117:28980-28991. [PMID: 33139544 DOI: 10.1073/pnas.2014470117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
More than 70% of Epstein-Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.
Collapse
|
15
|
Werner L, Dreyer JH, Hartmann D, Barros MHM, Büttner-Herold M, Grittner U, Niedobitek G. Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome. Sci Rep 2020; 10:9410. [PMID: 32523087 PMCID: PMC7287068 DOI: 10.1038/s41598-020-66010-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Commonly attributed to the prevalence of M2 macrophages, tumor-associated macrophages (TAM) are linked to poor outcome in Hodgkin lymphoma (HL). MYC is supposed to control the expression of M2-specific genes in macrophages, and deficiency in MYC-positive macrophages inhibits tumor growth in mouse models. To verify this hypothesis for HL, seventy-six samples were subjected to immunohistochemical double staining using CD68 or CD163 macrophage-specific antibodies and a reagent detecting MYC. For each cell population, labelled cells were grouped according to low, intermediate and high numbers and related to disease-free survival (DFS) and overall survival (OS). MYC+ cells accounted for 21% and 18% of CD68+ and CD163+ cells, respectively. Numbers of MYC- macrophages were significantly higher in EBV+ cases while no differences were observed for MYC+ macrophages between EBV+ and EBV- cases. Cases with highest numbers of macrophages usually showed worst DFS and OS. In most scenarios, intermediate numbers of macrophages were associated with better outcome than very low or very high numbers. Our observations are reminiscent of the "hormesis hypothesis" and suggest that a relative lack of TAM may allow HL growth while macrophages display an inhibitory effect with increasing numbers. Above a certain threshold, TAM may again support tumor growth.
Collapse
Affiliation(s)
- Laura Werner
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany.
| | | | - David Hartmann
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
| | | | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Gerald Niedobitek
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany.,Institute for Pathology, Sana Klinikum Lichtenberg, Berlin, Germany
| |
Collapse
|
16
|
An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood 2019; 134:591-596. [DOI: 10.1182/blood.2019000568] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Although a pathogenic role for the Epstein-Barr virus (EBV) is largely undisputed for tumors that are consistently EBV genome positive (eg, nasopharyngeal carcinoma, endemic Burkitt lymphoma), this is not the case for classical Hodgkin lymphoma (cHL), a tumor with only a variable EBV association. In light of recent developments in immunotherapeutics and small molecules targeting EBV, we believe it is now timely to reevaluate the role of EBV in cHL pathogenesis.
Collapse
|
17
|
Nabel CS, Sameroff S, Shilling D, Alapat D, Ruth JR, Kawano M, Sato Y, Stone K, Spetalen S, Valdivieso F, Feldman MD, Chadburn A, Fosså A, van Rhee F, Lipkin WI, Fajgenbaum DC. Virome capture sequencing does not identify active viral infection in unicentric and idiopathic multicentric Castleman disease. PLoS One 2019; 14:e0218660. [PMID: 31242229 PMCID: PMC6594611 DOI: 10.1371/journal.pone.0218660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
Castleman disease (CD) describes a spectrum of heterogeneous disorders defined by characteristic lymph node histopathology. Enlarged lymph nodes demonstrating CD histopathology can occur in isolation (unicentric CD; UCD) sometimes accompanied by mild symptoms, or at multiple sites (multicentric CD, MCD) with systemic inflammation and cytokine-driven multi-organ dysfunction. The discovery that Kaposi sarcoma herpesvirus/human herpesvirus (HHV)-8 drives MCD in a subset of patients has led to the hypotheses that UCD and MCD patients with negative HHV-8 testing by conventional methods may represent false negatives, or that these cases are driven by another virus, known or unknown. To investigate these hypotheses, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform was employed to detect RNA transcripts from known and novel viruses in fresh frozen lymph node tissue from CD patients (12 UCD, 11 HHV-8-negative MCD [idiopathic MCD; iMCD], and two HHV-8-positive MCD) and related diseases (three T cell lymphoma and three Hodgkin lymphoma). This assay detected HHV-8 in both HHV-8-positive cases; however, HHV-8 was not found in clinically HHV-8-negative iMCD or UCD cases. Additionally, no novel viruses were discovered, and no single known virus was detected with apparent association to HHV-8-negative CD cases. Herpesviridae family members, notably including Epstein-Barr virus (EBV), were detected in 7 out of 12 UCD and 5 of 11 iMCD cases with apparent correlations with markers of disease severity in iMCD. Analysis of a separate cohort of archival formalin-fixed, paraffin-embedded lymph node tissue by In situ hybridization revealed significantly fewer EBV-positive cells in UCD and iMCD compared to tissue from HHV-8-positive MCD and EBV-associated lymphoproliferative disorder. In an additional cohort, quantitative testing for EBV by PCR in peripheral blood during disease flare did not detect systemic EBV viremia, suggesting detection lymph node tissue is due to occult, local reactivation in UCD and iMCD. This study confirms that HHV-8 is not present in UCD and iMCD patients. Further, it fails to establish a clear association between any single virus, novel or known, and CD in HHV-8-negative cases. Given that distinct forms of CD exist with viral and non-viral etiological drivers, CD should be considered a group of distinct and separate diseases with heterogeneous causes worthy of further study.
Collapse
Affiliation(s)
- Christopher S. Nabel
- Dana-Farber Cancer Institute, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Stephen Sameroff
- Columbia University, New York, New York, United States of America
| | - Dustin Shilling
- Castleman Disease Collaborative Network, Philadelphia, Pennsylvania, United States of America
| | - Daisy Alapat
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jason R. Ruth
- Castleman Disease Collaborative Network, Philadelphia, Pennsylvania, United States of America
| | | | - Yasuharu Sato
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Katie Stone
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Federico Valdivieso
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael D. Feldman
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | | | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - W. Ian Lipkin
- Columbia University, New York, New York, United States of America
| | - David C. Fajgenbaum
- Castleman Disease Collaborative Network, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Li G, Ding L, Ma X, Cai Q, Ying T, Wei F. Establishment of Novel Monoclonal Fabs Specific for Epstein-Barr Virus Encoded Latent Membrane Protein 1. Virol Sin 2019; 34:467-470. [PMID: 30949961 DOI: 10.1007/s12250-019-00103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/23/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gaoxin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ling Ding
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojing Ma
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
20
|
Jiang L, Xie C, Lung HL, Lo KW, Law GL, Mak NK, Wong KL. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Am J Cancer Res 2018; 8:5307-5319. [PMID: 30555548 PMCID: PMC6276081 DOI: 10.7150/thno.26823] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of humans worldwide and establishes lifelong latent infection in the hosts. It is closely associated with endemic forms of a wide range of human cancers and directly contributes to the formation of some. Despite its critical role in cancer development, no EBV- or EBV latent protein-targeted therapy is available. The EBV-encoded latent protein, Epstein-Barr nuclear antigen 1 (EBNA1), is expressed in all EBV-associated tumors and acts as the only latent protein in some of these tumors. This versatile protein functions in the maintenance, replication, and segregation of the EBV genome and can therefore serve as an attractive therapeutic target to treat EBV-associated cancers. In the last decades, efforts have been made for designing specific EBNA1 inhibitors to decrease EBNA1 expression or interfere with EBNA1-dependent functions. In this review, we will briefly introduce the salient features of EBNA1, summarize its functional domains, and focus on the recent developments in the identification and design of EBNA1 inhibitors related to various EBNA1 domains as well as discuss their comparative merits.
Collapse
|
21
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
22
|
Vrzalikova K, Ibrahim M, Nagy E, Vockerodt M, Perry T, Wei W, Woodman C, Murray P. Co-Expression of the Epstein-Barr Virus-Encoded Latent Membrane Proteins and the Pathogenesis of Classic Hodgkin Lymphoma. Cancers (Basel) 2018; 10:cancers10090285. [PMID: 30149502 PMCID: PMC6162670 DOI: 10.3390/cancers10090285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is present in the tumour cells of a subset of patients with classic Hodgkin lymphoma (cHL), yet the contribution of the virus to the pathogenesis of these tumours remains only poorly understood. The EBV genome in virus-associated cHL expresses a limited subset of genes, restricted to the non-coding Epstein-Barr virus-encoded RNAs (EBERs) and viral miRNA, as well as only three virus proteins; the Epstein-Barr virus nuclear antigen-1 (EBNA1), and the two latent membrane proteins, known as LMP1 and LMP2, the latter of which has two isoforms, LMP2A and LMP2B. LMP1 and LMP2A are of particular interest because they are co-expressed in tumour cells and can activate cellular signalling pathways, driving aberrant cellular transcription in infected B cells to promote lymphomagenesis. This article seeks to bring together the results of recent studies of the latent membrane proteins in different B cell systems, including experiments in animal models as well as a re-analysis of our own transcriptional data. In doing so, we summarise the potentially co-operative and antagonistic effects of the LMPs that are relevant to B cell lymphomagenesis.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Correspondence: ; Tel.: +44-121-414-4021
| | - Maha Ibrahim
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Eszter Nagy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Martina Vockerodt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Institute of Anatomy and Cell Biology, Georg-August University of Göttingen, 37099 Göttingen, Germany
| | - Tracey Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S102HQ, UK
| | - Ciaran Woodman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Paul Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic
| |
Collapse
|
23
|
Wu S, Liu W, Li H, Zhao Z, Yang Y, Xiao H, Song Y, Luo B. Conservation and polymorphism of EBV RPMS1 gene in EBV-associated tumors and healthy individuals from endemic and non-endemic nasopharyngeal carcinoma areas in China. Virus Res 2018; 250:75-80. [PMID: 29665370 DOI: 10.1016/j.virusres.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
As a member of the BamHI-A rightward transcripts family of the Epstein-Barr virus (EBV), RPMS1 expression has been confirmed in all EBV-associated tumors. However, few studies have investigated the single-nucleotide polymorphisms (SNPs) of RPMS1, and only one SNP site (g155391a) has been reported to be associated with nasopharyngeal carcinoma occurrence. The objective of this study was to investigate the polymorphism of RPMS1 in EBV-associated tumors (gastric carcinoma, nasopharyngeal carcinoma, and lymphoma). In this research, nested-PCR was performed to analyze DNA sequences of 420 EBV-associated samples. Phylogenetic analysis revealed four RPMS1 genotypes (RPMS1-A, RPMS1-B, RPMS1-C, and RPMS1-D). A significant difference (p < 0.05) among northern and southern China samples was observed. Furthermore, there was a significant difference between EBV-associated tumors and healthy controls for RPMS1 (p < 0.05). These findings demonstrated that RPMS1 variation was not only tumor-specific but also geographically restricted in EBV-associated samples.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Wen Liu
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hong Li
- Department of Pathology of Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zhenzhen Zhao
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yang Yang
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hua Xiao
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yingying Song
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Bing Luo
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
24
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
25
|
Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J Microbiol 2017; 55:319-329. [PMID: 28455586 DOI: 10.1007/s12275-017-7075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the human herpesvirus family. Unlike alpha- and beta-herpesvirus subfamily members, gamma-herpesviruses, including Epstein-Barr virus (EBV) and KSHV, cause various tumors in humans. KSHV primarily infects endothelial and B cells in vivo, and is associated with at least three malignancies: Kaposi's sarcoma and two B cell lymphomas, respectively. Although KSHV readily infects endothelial cells in vitro and thus its pathogenic mechanisms have been extensively studied, B cells had been refractory to KSHV infection. As such, functions of KSHV genes have mostly been elucidated in endothelial cells in the context of viral infection but not in B cells. Whether KSHV oncogenes, defined in endothelial cells, play the same roles in the tumorigenesis of B cells remains an open question. Only recently, through a few ground-breaking studies, B cell infection models have been established. In this review, those models will be compared and contrasted and putative mechanisms of KSHV-induced B cell transformation will be discussed.
Collapse
|
26
|
Abstract
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- Institute of Cancer and Genomic Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis. Biomolecules 2016; 6:biom6040046. [PMID: 27886133 PMCID: PMC5197956 DOI: 10.3390/biom6040046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV), the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.
Collapse
|
28
|
PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathog 2016; 12:e1005642. [PMID: 27186886 PMCID: PMC4871349 DOI: 10.1371/journal.ppat.1005642] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) infection causes B cell lymphomas in humanized mouse models and contributes to a variety of different types of human lymphomas. T cells directed against viral antigens play a critical role in controlling EBV infection, and EBV-positive lymphomas are particularly common in immunocompromised hosts. We previously showed that EBV induces B cell lymphomas with high frequency in a cord blood-humanized mouse model in which EBV-infected human cord blood is injected intraperitoneally into NOD/LtSz-scid/IL2Rγnull (NSG) mice. Since our former studies showed that it is possible for T cells to control the tumors in another NSG mouse model engrafted with both human fetal CD34+ cells and human thymus and liver, here we investigated whether monoclonal antibodies that block the T cell inhibitory receptors, PD-1 and CTLA-4, enhance the ability of cord blood T cells to control the outgrowth of EBV-induced lymphomas in the cord-blood humanized mouse model. We demonstrate that EBV-infected lymphoma cells in this model express both the PD-L1 and PD-L2 inhibitory ligands for the PD-1 receptor, and that T cells express the PD-1 and CTLA-4 receptors. Furthermore, we show that the combination of CTLA-4 and PD-1 blockade strikingly reduces the size of lymphomas induced by a lytic EBV strain (M81) in this model, and that this anti-tumor effect requires T cells. PD-1/CTLA-4 blockade markedly increases EBV-specific T cell responses, and is associated with enhanced tumor infiltration by CD4+ and CD8+ T cells. In addition, PD-1/CTLA-4 blockade decreases the number of both latently, and lytically, EBV-infected B cells. These results indicate that PD-1/CTLA-4 blockade enhances the ability of cord blood T cells to control outgrowth of EBV-induced lymphomas, and suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-induced diseases in humans. EBV is a human herpesvirus that remains in the host for life, but is normally well controlled by the host immune response. Nevertheless, EBV causes lymphomas in certain individuals, particularly when T cell function is impaired. Antibodies against two different inhibitory receptors on T cells, PD-1 and CTLA-4, have been recently shown to improve T cell cytotoxic function against a subset of non-virally associated tumors. Here we have used an EBV-infected cord blood-humanized mouse model to show that EBV-infected lymphomas express both the PD-L1 and PD-L2 inhibitory ligands for PD-1. Importantly, we find that the combination of PD-1 and CTLA-4 blockade decreases the growth of EBV-induced lymphomas in this model, and demonstrate that this anti-tumor effect requires T cells and enhances their responses to EBV. Our results suggest that PD-1/CTLA-4 blockade might be useful for treating certain EBV-associated diseases in humans.
Collapse
|
29
|
Jones K, Wockner L, Brennan RM, Keane C, Chattopadhyay PK, Roederer M, Price DA, Cole DK, Hassan B, Beck K, Gottlieb D, Ritchie DS, Seymour JF, Vari F, Crooks P, Burrows SR, Gandhi MK. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma. Clin Exp Immunol 2015; 183:206-20. [PMID: 26422112 PMCID: PMC4711160 DOI: 10.1111/cei.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein–Barr virus (EBV) latency‐II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV+cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA‐A*02 is protective in EBV+cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA‐A*02–versus HLA‐A*02+ EBV+cHL patients, suggesting that LMP2A‐specific CD8+ T cell anti‐tumoral immunity may be relatively ineffective in HLA‐A*02– EBV+cHL. To ascertain the impact of HLA class I on EBV latency antigen‐specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV+cHL, the magnitude of ex‐vivo LMP1/2A‐specific CD8+ T cell responses was elevated in HLA‐A*02+ patients. Furthermore, in a controlled in‐vitro assay, LMP2A‐specific CD8+ T cells from healthy HLA‐A*02 heterozygotes expanded to a greater extent with HLA‐A*02‐restricted compared to non‐HLA‐A*02‐restricted cell lines. In an extensive analysis of HLA class I‐restricted immunity, immunodominant EBNA3A/3B/3C‐specific CD8+ T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A‐specific responses were confined largely to HLA‐A*02. Our results demonstrate that HLA‐A*02 mediates a modest, but none the less stronger, EBV‐specific CD8+ T cell response than non‐HLA‐A*02 alleles, an effect confined to EBV latency‐II antigens. Thus, the protective effect of HLA‐A*02 against EBV+cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency‐II antigen‐specific CD8+ T cell hierarchies.
Collapse
Affiliation(s)
- K Jones
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L Wockner
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - R M Brennan
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - C Keane
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| | - P K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - B Hassan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - K Beck
- Tissue Engineering and Reparative Dentistry, Cardiff University School of Dentistry, Cardiff, UK
| | - D Gottlieb
- Blood and Marrow Transplant Service, Westmead Hospital, Sydney, Australia
| | - D S Ritchie
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - J F Seymour
- University of Melbourne, Melbourne, Australia
| | - F Vari
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - P Crooks
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - S R Burrows
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - M K Gandhi
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
30
|
Ali AS, Al-Shraim M, Al-Hakami AM, Jones IM. Epstein- Barr Virus: Clinical and Epidemiological Revisits and Genetic Basis of Oncogenesis. Open Virol J 2015; 9:7-28. [PMID: 26862355 PMCID: PMC4740969 DOI: 10.2174/1874357901509010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/08/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancies
Collapse
Affiliation(s)
- Abdelwahid Saeed Ali
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Musa Al-Hakami
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ian M Jones
- Department of Biomedical Sciences, School of Biological Sciences, Faculty of Life Sciences, University of Reading, G37 AMS Wing, UK
| |
Collapse
|
31
|
Jones K, Wockner L, Thornton A, Gottlieb D, Ritchie DS, Seymour JF, Kumarasinghe G, Gandhi MK. HLA class I associations with EBV+ post-transplant lymphoproliferative disorder. Transpl Immunol 2015; 32:126-30. [DOI: 10.1016/j.trim.2015.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
32
|
Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, Murray PG. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 2015; 235:312-22. [PMID: 25294567 DOI: 10.1002/path.4459] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.
Collapse
Affiliation(s)
- Martina Vockerodt
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 2015; 391:61-117. [PMID: 26428372 DOI: 10.1007/978-3-319-22834-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance. This indicates that the EBNA3s are critical in EBV persistence in the B cell system and in modulating B cell lymphomagenesis. EBNA3A and EBNA3C are necessary for the efficient proliferation of EBV-infected B cells because they target important tumour suppressor pathways--so operationally they are considered oncoproteins. In contrast, it is emerging that EBNA3B restrains the oncogenic capacity of EBV, so it can be considered a tumour suppressor--to our knowledge the first to be described in a tumour virus. Here, we provide a general overview of the EBNA3 genes and proteins. In particular, we describe recent research that has highlighted the complexity of their functional interactions with each other, with specific sites on the human genome and with the molecular machinery that controls transcription and epigenetic states of diverse host genes.
Collapse
|
34
|
Murray P, Bell A. Contribution of the Epstein-Barr Virus to the Pathogenesis of Hodgkin Lymphoma. Curr Top Microbiol Immunol 2015; 390:287-313. [PMID: 26424651 DOI: 10.1007/978-3-319-22822-8_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The morphology of the pathognomonic Hodgkin and Reed-Sternberg cells (HRS) of Hodgkin lymphoma was described over a century ago, yet it was only relatively recently that the B-cell origin of these cells was identified. In a proportion of cases, HRS cells harbour monoclonal forms of the B lymphotropic Epstein-Barr virus (EBV). This review summarises current knowledge of the pathogenesis of Hodgkin lymphoma with a particular emphasis on the contribution of EBV.
Collapse
Affiliation(s)
- Paul Murray
- School of Cancer Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TT, UK.
| | - Andrew Bell
- School of Cancer Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
35
|
Abstract
Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.
Collapse
|
36
|
Tierney RJ, Shannon-Lowe CD, Fitzsimmons L, Bell AI, Rowe M. Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology 2015; 474:117-30. [PMID: 25463610 PMCID: PMC4266535 DOI: 10.1016/j.virol.2014.10.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 11/25/2022]
Abstract
We have validated a flexible, high-throughput and relatively inexpensive RT-QPCR array platform for absolute quantification of Epstein-Barr virus transcripts in different latent and lytic infection states. Several novel observations are reported. First, during infection of normal B cells, Wp-initiated latent gene transcripts remain far more abundant following activation of the Cp promoter than was hitherto suspected. Second, EBNA1 transcript levels are remarkably low in all forms of latency, typically ranging from 1 to 10 transcripts per cell. EBNA3A, -3B and -3C transcripts are likewise very low in Latency III, typically at levels similar to or less than EBNA1 transcripts. Thirdly, a subset of lytic gene transcripts is detectable in Burkitt lymphoma lines at low levels, including: BILF1, which has oncogenic properties, and the poorly characterized LF1, LF2 and LF3 genes. Analysis of seven African BL biopsies confirmed this transcription profile but additionally revealed significant expression of LMP2 transcripts.
Collapse
MESH Headings
- B-Lymphocytes/virology
- Burkitt Lymphoma/virology
- Cell Line, Tumor
- Epstein-Barr Virus Nuclear Antigens/genetics
- Gene Expression Regulation, Viral
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Humans
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Receptors, G-Protein-Coupled/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription, Genetic
- Viral Proteins/genetics
- Virion/genetics
- Virus Latency/genetics
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Claire D Shannon-Lowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Leah Fitzsimmons
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
37
|
Abstract
Since its discovery 50 years ago, Epstein-Barr virus (EBV) has been linked to the development of cancers originating from both lymphoid and epithelial cells. Approximately 95% of the world's population sustains an asymptomatic, life-long infection with EBV. The virus persists in the memory B-cell pool of normal healthy individuals, and any disruption of this interaction results in virus-associated B-cell tumors. The association of EBV with epithelial cell tumors, specifically nasopharyngeal carcinoma (NPC) and EBV-positive gastric carcinoma (EBV-GC), is less clear and is currently thought to be caused by the aberrant establishment of virus latency in epithelial cells that display premalignant genetic changes. Although the precise role of EBV in the carcinogenic process is currently poorly understood, the presence of the virus in all tumor cells provides opportunities for developing novel therapeutic and diagnostic approaches. The study of EBV and its role in carcinomas continues to provide insight into the carcinogenic process that is relevant to a broader understanding of tumor pathogenesis and to the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Lawrence S Young
- Warwick Medical School, The University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
38
|
Klein E, Nagy N, Rasul AE. EBV genome carrying B lymphocytes that express the nuclear protein EBNA-2 but not LMP-1: Type IIb latency. Oncoimmunology 2014; 2:e23035. [PMID: 23526738 PMCID: PMC3601171 DOI: 10.4161/onci.23035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The potentially oncogenic Epstein-Barr virus (EBV) is carried by almost all humans in a well equilibrated coexistence. The phenotype of the cells that carry EBV genomes is determined by virally-encoded and cellular proteins. B lymphocyte is the main target of the virus and latent infection of this cell induces proliferation. Nine virus-encoded genes participate in the “growth program” that is expressed in a narrow differentiation window of the B cell. Such cells have the potential to develop malignant proliferations. However, several control mechanism eliminate this danger and the general chronic virus carrier state is most often asymptomatic. One mechanism exploits the normal regulation in the immune system, the T cell mediated modulation of the B cell differentiation state. Another is based on cognate recognition and elimination of the infected cells. The expression of EBV encoded genes in B lymphocytes can be also “restricted,” they do not express all components of the viral growth program. Here, we discuss a rare viral expression in B cells that has not been connected with malignant transformation yet.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Rowe M, Raithatha S, Shannon-Lowe C. Counteracting effects of cellular Notch and Epstein-Barr virus EBNA2: implications for stromal effects on virus-host interactions. J Virol 2014; 88:12065-76. [PMID: 25122803 PMCID: PMC4178707 DOI: 10.1128/jvi.01431-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/01/2014] [Indexed: 01/29/2023] Open
Abstract
A number of diverse environmental cues have been linked to B lymphocyte differentiation and activation. One such cue, Notch-2, may be particularly relevant to the biology of infection with Epstein-Barr virus (EBV), which colonizes the B cell compartment. Activated Notch and EBV nuclear antigen 2 (EBNA2) both function as transcriptional activators by virtue of their interactions with the transcription factor RBP-Jκ. Although EBNA2 and activated Notch appear to have partially overlapping functions, we now report that activated Notch counteracts a crucial EBNA2 function both in newly infected primary B cells and in lymphoblastoid cell lines (LCLs). EBNA2 is directly responsible for the initiation of transcription of the majority of EBV proteins associated with type III latency, leading to the outgrowth of LCLs. One of the key proteins driving this outgrowth is latent membrane protein 1 (LMP1), which is regulated by an EBNA2-responsive element within its ED-L1 promoter. Activation of Notch-2 via Delta-like ligand 1 inhibits EBNA2-mediated initiation of LMP1 transcription. Furthermore, ligated Notch-2 also efficiently turns off LMP1 expression from the ED-L1 promoter in LCLs already expressing LMP1. Modulation of EBV gene expression by Notch was not confined to EBNA2-dependent events. Activated Notch-2 also inhibited EBV entry into the lytic cycle in a B cell non-Hodgkin's lymphoma line by upregulating the cellular transcription factor Zeb2, which represses the transcription of BZLF1. These results support the concept that in vivo, cumulative signals from the microenvironment downregulate EBV gene expression in B cells to the latency 0 gene expression profile observed in B cells entering the peripheral blood. Importance: Experimental infection of resting B cells by Epstein-Barr virus leads to the growth transformation program of virus gene expression and the outgrowth of lymphoblastoid cell lines. Previous studies at the single-cell level revealed complex cellular and viral signaling networks regulating transcription of the viral genome. This study demonstrates that viral gene expression can also be radically altered by molecules expressed on stromal cells in the microenvironment of lymphoid tissue, specifically, Delta-like ligand 1 on stromal cells ligating Notch-2 on infected B cells. Activation of Notch interferes with the transactivation function of EBNA2, downregulates the expression of LMP1 and LMP2a, and inhibits the activation of lytic virus replication in a B cell non-Hodgkin's lymphoma line by preventing expression of BZLF1. The significance of these observations is that they indicate new mechanisms whereby the microenvironment in normal lymphoid tissue may facilitate the repression of viral gene expression, enabling establishment of true latency in memory B cells.
Collapse
Affiliation(s)
- Martin Rowe
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Sweta Raithatha
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Claire Shannon-Lowe
- School of Cancer Sciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 2013; 122:4237-45. [DOI: 10.1182/blood-2013-04-499004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Key Points
Expression of the EBV oncogene LMP1 in primary human germinal center B cells, upregulates DDR1, a receptor tyrosine kinase activated by collagen Primary HRS cells overexpress DDR1, and its activation significantly increases lymphoma cell survival in vitro
Collapse
|
41
|
Gharbaran R, Park J, Kim C, Goy A, Suh KS. Circulating tumor cells in Hodgkin's lymphoma - a review of the spread of HL tumor cells or their putative precursors by lymphatic and hematogenous means, and their prognostic significance. Crit Rev Oncol Hematol 2013; 89:404-17. [PMID: 24176672 DOI: 10.1016/j.critrevonc.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/26/2013] [Accepted: 09/20/2013] [Indexed: 01/05/2023] Open
Abstract
About 15% of patients diagnosed with classical Hodgkin's lymphoma (cHL) are considered high risk with unfavorable prognosis. The biology of the disease bears a direct relationship to its clinical course. However, some aspects of the disease are still being debated. Related topics include origin of neoplastic cells as circulating precursor versus germinal center B cell, and disease metastasis via hematogenous routes and the effect of HL circulation on relapse potential and further spread of the disease. The terminally differentiated giant neoplastic Hodgkin Reed-Sternberg (HRS) cells (HRSC) have limited proliferation and lack mobility. Therefore, they are unable to penetrate epithelium. Thus, the clinical aggressiveness of HRSCs that disseminate via both lymphatic and hematogenous may be determined by their molecular composition. This review discusses in detail the historical perspectives on scientific and clinical evidences of precursors of circulating HL cells and the prognostic importance of these circulating cells for predicting outcome.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - Jongwhan Park
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - Chris Kim
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - A Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, United States.
| |
Collapse
|
42
|
Ahmed W, Khan G. The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 2013; 24:3-14. [PMID: 24105992 DOI: 10.1002/rmv.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Epstein-Barr Virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of a number of human malignancies. However, the mechanism by which EBV leads to malignant transformation is not clear. A number of viral latent gene products, including non-protein coding small RNAs, are believed to be involved. Epstein-Barr virus-encoded RNA 1 (EBER1) and EBER2 are two such RNA molecules that are abundantly expressed (up to 10(7) copies) in all EBV-infected cells, but their function remains poorly understood. These polymerase III transcripts have extensive secondary structure and exist as ribonucleoproteins. An accumulating body of evidence suggests that EBERs play an important role, directly or indirectly, in EBV-induced oncogenesis. Here, we summarize the current understanding of the complex interactions of EBERs with various cellular factors and the potential pathways by which these small RNAs are able to influence EBV-infected cells to proliferate and to induce tumorigenesis. The exosome pathway is probably involved in the cellular excretion of EBERs and facilitating some of their biological effects.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
43
|
KIMURA HIROSHI, KAWADA JUNICHI, ITO YOSHINORI. Epstein-Barr virus-associated lymphoid malignancies: the expanding spectrum of hematopoietic neoplasms. NAGOYA JOURNAL OF MEDICAL SCIENCE 2013; 75:169-79. [PMID: 24640173 PMCID: PMC4345668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ubiquitous Epstein-Barr virus (EBV) infects not only B cells but also T and NK cells, and is associated with various lymphoid malignancies. The spectrum of EBV-associated lymphoid malignancies is expanding from Burkitt lymphoma to the newly defined systemic EBV+ T cell lymphoproliferative disease of childhood and hydroa vacciniforme-like lymphoma. However, some EBV-associated malignancies are not defined well and overlap other diseases. Furthermore, the role of EBV in tumorigenesis of lymphoid malignancies is still not clear. Further studies are necessary to clarify the pathogenesis of EBV-associated lymphoid malignancies for a better classification of each disease and for the establishment of effective treatment.
Collapse
Affiliation(s)
- HIROSHI KIMURA
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - JUN-ICHI KAWADA
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - YOSHINORI ITO
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
44
|
Fogg M, Murphy JR, Lorch J, Posner M, Wang F. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein-Barr virus associated nasopharyngeal carcinoma. Virology 2013; 441:107-13. [PMID: 23601786 DOI: 10.1016/j.virol.2013.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients.
Collapse
Affiliation(s)
- Mark Fogg
- Department of Medicine, Brigham and Women's Hospital, USA
| | | | | | | | | |
Collapse
|
45
|
Yeo KS, Mohidin TBM, Ng CC. Epstein-Barr virus-encoded latent membrane protein-1 upregulates 14-3-3σ and Reprimo to confer G(2)/M phase cell cycle arrest. C R Biol 2012; 335:713-21. [PMID: 23312294 DOI: 10.1016/j.crvi.2012.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/30/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous tumor-causing virus which infects more than 90% of the world population asymptomatically. Recent studies suggest that LMP-1, -2A and -2B cooperate in the tumorigenesis of EBV-associated epithelial cancers such as nasopharygeal carcinoma, oral and gastric cancer. In this study, LMPs were expressed in the HEK293T cell line to reveal their oncogenic mechanism via investigation on their involvement in the regulation of the cell cycle and genes that are involved. LMPs were expressed in HEK293T in single and co-expression manner. The transcription of cell cycle arrest genes were examined via real-time PCR. Cell cycle progression was examined via flow cytometry. 14-3-3σ and Reprimo were upregulated in all LMP-1 expressing cells. Moreover, cell cycle arrest at G(2)/M progression was detected in all LMP-1 expressing cells. Therefore, we conclude that LMP-1 may induce cell cycle arrest at G(2)/M progression via upregulation of 14-3-3σ and Reprimo.
Collapse
Affiliation(s)
- Kok-Siong Yeo
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
46
|
Lim KH, Yang Y, Staudt LM. Pathogenetic importance and therapeutic implications of NF-κB in lymphoid malignancies. Immunol Rev 2012; 246:359-78. [PMID: 22435566 DOI: 10.1111/j.1600-065x.2012.01105.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be 'addicted' to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
47
|
White RE, Rämer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, Savoldo B, Coutinho R, Bödör C, Gribben J, Ibrahim HA, Bower M, Nourse JP, Gandhi MK, Middeldorp J, Cader FZ, Murray P, Münz C, Allday MJ. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 2012; 122:1487-502. [PMID: 22406538 DOI: 10.1172/jci58092] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr virus (EBV) persistently infects more than 90% of the human population and is etiologically linked to several B cell malignancies, including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B cell lymphoma (DLBCL). Despite its growth transforming properties, most immune-competent individuals control EBV infection throughout their lives. EBV encodes various oncogenes, and of the 6 latency-associated EBV-encoded nuclear antigens, only EBNA3B is completely dispensable for B cell transformation in vitro. Here, we report that infection with EBV lacking EBNA3B leads to aggressive, immune-evading monomorphic DLBCL-like tumors in NOD/SCID/γc-/- mice with reconstituted human immune system components. Infection with EBNA3B-knockout EBV (EBNA3BKO) induced expansion of EBV-specific T cells that failed to infiltrate the tumors. EBNA3BKO-infected B cells expanded more rapidly and secreted less T cell-chemoattractant CXCL10, reducing T cell recruitment in vitro and T cell-mediated killing in vivo. B cell lines from 2 EBV-positive human lymphomas encoding truncated EBNA3B exhibited gene expression profiles and phenotypic characteristics similar to those of tumor-derived lines from the humanized mice, including reduced CXCL10 secretion. Screening EBV-positive DLBCL, HL, and BL human samples identified additional EBNA3B mutations. Thus, EBNA3B is a virus-encoded tumor suppressor whose inactivation promotes immune evasion and virus-driven lymphomagenesis.
Collapse
Affiliation(s)
- Robert E White
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Everly D, Sharma-Walia N, Sadagopan S, Chandran B. Herpesviruses and Cancer. CANCER ASSOCIATED VIRUSES 2012:133-167. [DOI: 10.1007/978-1-4614-0016-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
49
|
Wang FW, Wu XR, Liu WJ, Liang YJ, Huang YF, Liao YJ, Shao CK, Zong YS, Mai SJ, Xie D. The nucleotide polymorphisms within the Epstein-Barr virus C and Q promoters from nasopharyngeal carcinoma affect transcriptional activity in vitro. Eur Arch Otorhinolaryngol 2011; 269:931-8. [PMID: 22146864 DOI: 10.1007/s00405-011-1862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/22/2011] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human gamma herpesvirus that is associated with Burkitt's lymphoma (BL), gastric carcinoma, nasopharyngeal carcinoma (NPC), and NK/T-cell lymphoma. Two viral promoters, Cp and Qp, are important for EBV latent infection. The latency Cp, which is used in primary infection, drives expression of the full spectrum of EBV nuclear antigens. Qp is active in EBV-associated tumors and drives the latency I/II expression pattern. In this study, we determined nucleotides polymorphisms in the Cp and Qp promoter regions in peripheral blood mononuclear cells (PBMCs) from Cantonese healthy carriers and in biopsies of NPC, nasal NK/T lymphoma, BL, and gastric carcinoma. The sequence changes of -12G>T and +69 C>T in Cp and -197 G>A and +1 G>C in Qp were frequently identified in NPC. Transient transfection studies using luciferase gene reporters revealed a significant reduction (57.11%) in gene expression from the Cp +69T variant and increased expression (43.5%) from the Qp +1C variant compared to the prototype, suggesting that these sequence variations affect promoter activity. Our results indicate that the nucleotides polymorphisms in Cp and Qp occur frequently in NPC and might contribute to the oncogenesis of EBV.
Collapse
Affiliation(s)
- Feng-Wei Wang
- The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou, 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 2011; 119:1008-17. [PMID: 22160379 DOI: 10.1182/blood-2011-06-362434] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Induction of EBV lytic-phase gene expression, combined with exposure to an antiherpes viral drug, represents a promising targeted therapeutic approach to EBV-associated lymphomas. Short-chain fatty acids or certain chemotherapeutics have been used to induce EBV lytic-phase gene expression in cultured cells and mouse models, but these studies generally have not translated into clinical application. The recent success of a clinical trial with the pan-histone deacetylase (pan-HDAC) inhibitor arginine butyrate and the antiherpes viral drug ganciclovir in the treatment of EBV lymphomas prompted us to investigate the potential of several HDAC inhibitors, including some new, highly potent compounds, to sensitize EBV(+) human lymphoma cells to antiviral agents in vitro. Our study included short-chain fatty acids (sodium butyrate and valproic acid); hydroxamic acids (oxamflatin, Scriptaid, suberoyl anilide hydroxamic acid, panobinostat [LBH589], and belinostat [PXD101]); the benzamide MS275; the cyclic tetrapeptide apicidin; and the recently discovered HDAC inhibitor largazole. With the exception of suberoyl anilide hydroxamic acid and PXD101, all of the other HDAC inhibitors effectively sensitized EBV(+) lymphoma cells to ganciclovir. LBH589, MS275, and largazole were effective at nanomolar concentrations and were 10(4) to 10(5) times more potent than butyrate. The effectiveness and potency of these HDAC inhibitors make them potentially applicable as sensitizers to antivirals for the treatment of EBV-associated lymphomas.
Collapse
|