1
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
2
|
Tran VG, Venkatasubramaniam A, Adhikari RP, Krishnan S, Wang X, Le VTM, Le HN, Vu TTT, Schneider-Smith E, Aman MJ, Diep BA. Efficacy of Active Immunization With Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. J Infect Dis 2020; 221:267-275. [PMID: 31504652 DOI: 10.1093/infdis/jiz437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.
Collapse
Affiliation(s)
- Vuvi G Tran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | - Xing Wang
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Vien T M Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Hoan N Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Trang T T Vu
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Erika Schneider-Smith
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - M Javad Aman
- Integrated Biotherapeutics, Inc, Rockville, Maryland
| | - Binh An Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
3
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
4
|
Wen Y, Chen S, Jiang Z, Wang Z, Tan J, Hu T, Wang Q, Zhou X, Zhang Y, Liu Q, Yang D. Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish. Cell Microbiol 2019; 21:e13010. [DOI: 10.1111/cmi.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| |
Collapse
|
5
|
Smith IDM, Milto KM, Doherty CJ, Amyes SGB, Simpson AHRW, Hall AC. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res 2018; 7:457-467. [PMID: 30123495 PMCID: PMC6076354 DOI: 10.1302/2046-3758.77.bjr-2017-0165.r1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Staphylococcus aureus (S. aureus) is the most commonly implicated organism in septic arthritis, a condition that may be highly destructive to articular cartilage. Previous studies investigating laboratory and clinical strains of S. aureus have demonstrated that potent toxins induced significant chondrocyte death, although the precise toxin or toxins that were involved was unknown. In this study, we used isogenic S. aureus mutants to assess the influence of alpha (Hla)-, beta (Hlb)-, and gamma (Hlg)-haemolysins, toxins considered important for the destruction of host tissue, on in situ bovine chondrocyte viability. Methods Bovine cartilage explants were cultured with isogenic S. aureus mutants and/or their culture supernatants. Chondrocyte viability was then assessed within defined regions of interest in the axial and coronal plane following live- and dead-cell imaging using the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, respectively, and confocal laser-scanning microscopy. Results Hla-producing mutants caused substantial chondrocyte death compared with the toxin-deficient control (Hla-Hlb-Hlg-), whilst mutants producing Hlb and Hlg in the absence of Hla induced minimal chondrocyte death. Coronal studies established that Hla-induced chondrocyte death started in the superficial zone of cartilage and spread to deeper layers, whereas Hlb and Hlg toxins were without significant effect. Conclusion This study identified Hla as a highly potent S. aureus toxin that caused rapid chondrocyte death in bovine cartilage, with other toxins or metabolic products produced by the bacteria playing a minor role. The identification of Hla in mediating chondrocyte death may assist in the development of therapeutic strategies aimed at reducing the extent of cartilage damage during and after an episode of septic arthritis. Cite this article: I. D. M. Smith, K. M. Milto, C. J. Doherty, S. G. B. Amyes, A. H. R. W. Simpson, A. C. Hall. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res 2018;7:457–467. DOI: 10.1302/2046-3758.77.BJR-2017-0165.R1.
Collapse
Affiliation(s)
- I D M Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - K M Milto
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - C J Doherty
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | - S G B Amyes
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | - A H R W Simpson
- Musculoskeletal Research Unit, Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - A C Hall
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|
7
|
Chavez C, Recio-Tótoro B, Flores-Escobar B, Lanz-Mendoza H, Sanchez J, Soberón M, Bravo A. Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae. Peptides 2015; 68:134-9. [PMID: 25063056 DOI: 10.1016/j.peptides.2014.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) produced by the nitric oxide synthase (NOS) enzyme is a reactive oxygen molecule widely considered as important participant in the immune system of different organisms to confront microbial infections. In insects the NO molecule has also been implicated in immune response against microbial pathogens. Bacillus thuringiensis (Bt) is an insect-pathogenic bacterium that produces insecticidal proteins such as Cry toxins. These proteins kill insects because they form pores in the larval-midgut cells. Here we show that intoxication of Manduca sexta larvae with Cry1Ab activates expression of NOS with a corresponding increase in NO. This effect is not observed with a non-toxic mutant toxin Cry1Ab-E129K that is affected in pore formation. The increased production of NO triggered by intoxication with LC50 dose of Cry1Ab toxin is not associated with higher expression of antimicrobial peptides. NO participates in Cry1Ab toxicity since inhibition of NOS by selective l-NAME inhibitor prevented NO production and resulted in reduced mortality of the larvae. The fact that mortality was not completely abolished by L-NAME indicates that other processes participate in toxin action and induction of NO production upon Cry1Ab toxin administration accounts only for a part of the toxicity of this protein to M. sexta larvae.
Collapse
Affiliation(s)
- Carolina Chavez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos 62100, Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Biviana Flores-Escobar
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos 62100, Mexico.
| | - Jorge Sanchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| |
Collapse
|
8
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
The psmα locus regulates production of Staphylococcus aureus alpha-toxin during infection. Infect Immun 2014; 82:3350-8. [PMID: 24866799 DOI: 10.1128/iai.00089-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Staphylococcus aureus is a leading cause of human bacterial infection, causing a wide spectrum of disease ranging from skin and soft tissue infections to life-threatening pneumonia and sepsis. S. aureus toxins play an essential role in disease pathogenesis, contributing to both immunomodulation and host tissue injury. Prominent among these toxins are the membrane-active pore-forming cytolysin alpha-toxin (Hla) and the amphipathic α-helical phenol-soluble modulin (PSM) peptides. As deletion of either the hla or psm locus leads to a phenotypically similar virulence defect in skin and soft tissue infection, we sought to determine the relative contribution of each locus to disease pathogenesis. Here we show that production of Hla can be modulated by PSM expression. An S. aureus mutant lacking PSM expression exhibits a transcriptional delay in hla mRNA production and therefore fails to secrete normal levels of Hla at early phases of growth. This leads to attenuation of virulence in vitro and in murine skin and lung models of infection, correlating with reduced recovery of Hla from host tissues. Production of Hla and restoration of staphylococcal virulence can be achieved in the psm mutant by plasmid-driven overexpression of hla. Our study suggests the coordinated action of Hla and PSMs in host tissue during early pathogenesis, confirming a major role for Hla in epithelial injury during S. aureus infection. These findings highlight the possibility that therapeutics targeting PSM production may simultaneously prevent Hla-mediated tissue injury.
Collapse
|
10
|
Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014; 355:657-73. [PMID: 24599335 PMCID: PMC7102256 DOI: 10.1007/s00441-014-1821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
The lungs provide a large inner surface to guarantee respiration. In lung alveoli, a delicate membrane formed by endo- and epithelial cells with their fused basal lamina ensures rapid and effective gas exchange between alveolar and vascular compartments while concurrently forming a robust barrier against inhaled particles and microbes. However, upon infectious or sterile inflammatory stimulation, tightly regulated endothelial barrier leakiness is required for leukocyte transmigration. Further, endothelial barrier disruption may result in uncontrolled extravasation of protein-rich fluids. This brief review summarizes some important mechanisms of pulmonary endothelial barrier regulation and disruption, focusing on the role of specific cell populations, coagulation and complement cascades and mediators including angiopoietins, specific sphingolipids, adrenomedullin and reactive oxygen and nitrogen species for the regulation of pulmonary endothelial barrier function. Further, current therapeutic perspectives against development of lung injury are discussed.
Collapse
|
11
|
Abstract
Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Collapse
Affiliation(s)
- Bryan J. Berube
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
- Department of Pediatrics, The University of Chicago, 5721 S. Maryland Ave. Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-834-9763; Fax: +1-773-834-8150
| |
Collapse
|
12
|
Baronetti JL, Villegas NA, Aiassa V, Paraje MG, Albesa I. Hemolysin from Escherichia coli induces oxidative stress in blood. Toxicon 2013; 70:15-20. [PMID: 23567037 DOI: 10.1016/j.toxicon.2013.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 02/05/2023]
Abstract
Hemolysin (HlyA) produced by some stains of Escherichia coli is considered to be an important virulence factor of those bacteria. On the other hand, reactive oxygen species (ROS) have been reported to be involved in the pathogenesis of different diseases via oxidative stress generation. The purpose of this study was to analyze the capacity of HlyA to induce oxidative stress in whole blood cultures (WBCs). To this end, ROS production, the damage induced in lipids and proteins, and the antioxidant defense system was evaluated in blood cultures exposed to low concentrations of HlyA. We found that HlyA increased the level of free radicals detected by chemiluminescence assay. Moreover, lipid peroxidation and protein damage was significantly increased in cultures treated with HlyA in comparation with those found in control cultures. On the other hand, a decrease in total antioxidant capacity of plasma and in the activity of superoxide dismutase (SOD) was observed in plasma from blood treated with HlyA. Collectively, our data demonstrate that low concentrations of E. coli hemolysin induced oxidative stress in WBCs with the induction of different oxidative damage biomarkers.
Collapse
Affiliation(s)
- José Luis Baronetti
- Department of Pharmacy, IMBIV-CONICET, Faculty of Chemical Sciences, National University of Córdoba, Haya de la Torre y Medina Allende, University Campus, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
13
|
Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response. Infect Immun 2012; 80:3161-9. [PMID: 22733574 DOI: 10.1128/iai.00191-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lungs to define the host response to wild-type S. aureus compared with the response to an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at 4 and at 24 h postinfection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting staphylococci was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent Th17 response to the wild-type pathogen. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary Th17 response to the secretion of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease.
Collapse
|
14
|
Legrand M, Klijn E, Payen D, Ince C. The response of the host microcirculation to bacterial sepsis: does the pathogen matter? J Mol Med (Berl) 2010; 88:127-33. [PMID: 20119709 PMCID: PMC2832870 DOI: 10.1007/s00109-009-0585-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/25/2009] [Accepted: 12/21/2009] [Indexed: 12/05/2022]
Abstract
Sepsis results from the interaction between a host and an invading pathogen. The microcirculatory dysfunction is now considered central in the development of the often deadly multiple organ dysfunction syndrome in septic shock patients. The microcirculatory flow shutdown and flow shunting leading to oxygen demand and supply mismatch at the cellular level and the local activation of inflammatory pathways resulting from the leukocyte–endothelium interactions are both features of the sepsis-induced microcirculatory dysfunction. Although the host response through the inflammatory and immunologic response appears to be critical, there are also evidences that Gram-positive and Gram-negative bacteria can exert different effects at the microcirculatory level. In this review we discuss available data on the potential bacterial-specific microcirculatory alterations observed during sepsis.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Intensive Care, Erasmus Medical Center, Erasmus University of Rotterdam, s Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Craven RR, Gao X, Allen IC, Gris D, Wardenburg JB, McElvania-TeKippe E, Ting JP, Duncan JA. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 2009; 4:e7446. [PMID: 19826485 PMCID: PMC2758589 DOI: 10.1371/journal.pone.0007446] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022] Open
Abstract
Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal alpha-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus alpha-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant alpha-hemolysin, we now demonstrate that alpha-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant alpha-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to alpha-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by alpha-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1beta and IL-18. Additionally, alpha-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.
Collapse
Affiliation(s)
- Robin R. Craven
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xi Gao
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irving C. Allen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Denis Gris
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States of America
| | - Erin McElvania-TeKippe
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jenny P. Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph A. Duncan
- Department of Medicine-Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Staphylococcus aureus α-toxin and Escherichia coli hemolysin impair cardiac regional perfusion and contractile function by activating myocardial eicosanoid metabolism in isolated rat hearts. Crit Care Med 2009; 37:2025-32. [DOI: 10.1097/ccm.0b013e31819fff00] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yarovinsky TO, Monick MM, Husmann M, Hunninghake GW. Interferons increase cell resistance to Staphylococcal alpha-toxin. Infect Immun 2008; 76:571-7. [PMID: 18070901 PMCID: PMC2223481 DOI: 10.1128/iai.01088-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/18/2007] [Accepted: 11/28/2007] [Indexed: 12/28/2022] Open
Abstract
Many bacterial pathogens, including Staphylococcus aureus, use a variety of pore-forming toxins as important virulence factors. Staphylococcal alpha-toxin, a prototype beta-barrel pore-forming toxin, triggers the release of proinflammatory mediators and induces primarily necrotic death in susceptible cells. However, whether host factors released in response to staphylococcal infections may increase cell resistance to alpha-toxin is not known. Here we show that prior exposure to interferons (IFNs) prevents alpha-toxin-induced membrane permeabilization, the depletion of ATP, and cell death. Moreover, pretreatment with IFN-alpha decreases alpha-toxin-induced secretion of interleukin 1beta (IL-1beta). IFN-alpha, IFN-beta, and IFN-gamma specifically protect cells from alpha-toxin, whereas tumor necrosis factor alpha (TNF-alpha), IL-6, and IL-4 have no effects. Furthermore, we show that IFN-alpha-induced protection from alpha-toxin is not dependent on caspase-1 or mitogen-activated protein kinases, but requires protein synthesis and fatty acid synthase activity. Our results demonstrate that IFNs may increase cell resistance to staphylococcal alpha-toxin via the regulation of lipid metabolism and suggest that interferons play a protective role during staphylococcal infections.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale University School of Medicine, Department of Immunobiology, TAC S555, 300 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
18
|
Hocke AC, Temmesfeld-Wollbrueck B, Schmeck B, Berger K, Frisch EM, Witzenrath M, Brell B, Suttorp N, Hippenstiel S. Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin. Histochem Cell Biol 2006; 126:305-16. [PMID: 16596365 DOI: 10.1007/s00418-006-0174-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Endothelial hyperpermeability is a hallmark of an inflammatory reaction and contributes to tissue damage in severe infections. Loss of endothelial cell-cell adhesion leads to intercellular gap formation allowing paracellular fluid flux. Although Staphylococcus aureus alpha-toxin significantly contributed to staphylococci disease, little is known about its mechanism of endothelial hyperpermeability induction. Here, we demonstrate that in a model of isolated perfused rat ileum discontinuation of capillary vascular-endothelial-cadherin (VE-cadherin) was observed after bolus application of S. aureus alpha-toxin being inhibited by the endogenous peptide adrenomedullin (ADM). In vitro, alpha-toxin exposure induced loss of immunoreactivity of VE-cadherin and occludin in human cultured umbilical vein endothelial cells. Likewise, ADM blocked alpha-toxin-related junctional protein disappearance from intercellular sites. Additionally, cyclic AMP elevation was shown to stabilize endothelial barrier function after alpha-toxin application. Although no RhoA activation was noted after endothelial alpha-toxin exposure, inhibition of Rho kinase and myosin light chain kinase blocked loss of immunoreactivity of VE-cadherin and occludin as well as intercellular gap formation. In summary, stabilization of endothelial junctional integrity as indicated by interendothelial immunostaining might be an interesting approach to stabilize endothelial barrier function in severe S. aureus infections.
Collapse
Affiliation(s)
- Andreas C Hocke
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brell B, Hippenstiel S, Dávid I, Pries AR, Habazettl H, Schmeck B, Suttorp N, Temmesfeld-Wollbrück B. Adrenomedullin treatment abolishes ileal mucosal hypoperfusion induced by Staphylococcus aureus α-toxin—An intravital microscopic study on an isolated rat ileum. Crit Care Med 2005; 33:2810-016. [PMID: 16352964 DOI: 10.1097/01.ccm.0000190625.14268.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Disturbances of intestinal microcirculation associated with sepsis and septic shock result in diminished mucosal oxygenation. Tissue hypoxia as well as mediator formation may lead to intestinal mucosa dysfunction. As a consequence, bacteria and their products as well as gut-derived inflammatory mediators may further perpetuate septic and inflammatory events. Adrenomedullin is produced in the mucosa of the gastrointestinal tract and has been shown to improve survival in experimental sepsis. Using pore-forming Staphylococcus aureus alpha-toxin as a potent initiator of inflammatory reactions, we tested the hypothesis that exogenously added adrenomedullin improves ileal mucosal perfusion. DESIGN Prospective, experimental study. SETTING University laboratory. SUBJECTS Isolated perfused ileum from male Sprague-Dawley rats INTERVENTIONS Adrenomedullin treatment of S. aureus alpha-toxin infused ileum. MEASUREMENT AND MAIN RESULTS An infusion of alpha-toxin (0.05 microg/mL) induced a significant decrease of red blood cell velocity in villus terminal arterioles from 1.7 to 0.7 mm/sec assessed by intravital microscopy. This was accompanied by a significant reduction of mucosal hemoglobin oxygenation from 71.8% to 17.5% and impaired oxygen uptake. At constant bulk flow and oxygen delivery, these data indicate a redistribution of blood perfusion away from mucosa. Subsequent intervention with 0.1 microM adrenomedullin redistributed blood flow back toward the mucosa, causing an improvement of mucosal hemoglobin oxygenation and of organ oxygen uptake. CONCLUSION These data suggest that exogenously added adrenomedullin protects ileum mucosa by diminishing alpha-toxin-induced microcirculatory disturbances. Further investigations will have to clarify the therapeutic potential of adrenomedullin in sepsis-related gut dysfunction.
Collapse
Affiliation(s)
- Bernhard Brell
- Department of Internal Medicine/Infectious Diseases, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Brell B, Temmesfeld-Wollbrück B, Altzschner I, Frisch E, Schmeck B, Hocke AC, Suttorp N, Hippenstiel S. Adrenomedullin reduces Staphylococcus aureus alpha-toxin-induced rat ileum microcirculatory damage. Crit Care Med 2005; 33:819-26. [PMID: 15818111 DOI: 10.1097/01.ccm.0000159194.53695.7a] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Increased microvascular permeability and perfusion mismatch are hallmarks of sepsis or septic shock. The intestinal mucosa is very sensitive to tissue hypoxia. Intestinal mucosa dysfunction may allow translocation of bacteria and their products, thereby perpetuating sepsis and inflammation. Staphylococcus aureus alpha-toxin is a major pathogenicity determinant of this bacterium, provoking cardiovascular collapse. Current evidence suggests that the endogenous peptide adrenomedullin stabilizes circulatory homeostasis in systemic inflammatory response. Using alpha-toxin as a well-defined strong initiator of an inflammatory reaction, we tested the hypothesis that exogenously applied adrenomedullin stabilizes gut microcirculation. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Isolated, perfused ileum from male Sprague-Dawley rats and human umbilical vein endothelial cells. INTERVENTIONS Administration of S. aureus alpha-toxin before or after infusion of adrenomedullin. MEASUREMENTS AND MAIN RESULTS Injection of a bolus of 1 microg of alpha-toxin in the superior mesenteric artery in a constant-flow, blood-perfused preparation of rat ileum increased perfusion pressure and relative hemoglobin concentration and decreased mucosal hemoglobin oxygen saturation. Continuous infusion of adrenomedullin (0.1 micromol/L) significantly reduced these alpha-toxin-related effects. Severe microvascular hyperpermeability observed in alpha-toxin-exposed ileum was abolished by adrenomedullin pretreatment. In addition, adrenomedullin blocked alpha-toxin-induced endothelial myosin light chain phosphorylation, endothelial cell contraction, and subsequent loss of endothelial barrier function in vitro. Treatment of alpha-toxin (infusion of 0.05 microg/mL)-exposed ileum with adrenomedullin (0.1 micromol/L) started 10 mins after onset of toxin application also significantly reduced superior mesenteric artery pressure and permeability increase. CONCLUSIONS In summary, these data suggest that exogenous adrenomedullin protects ileum by reducing alpha-toxin-induced microcirculatory disturbances and by stabilizing endothelial barrier function.
Collapse
Affiliation(s)
- Bernhard Brell
- Department of Internal Medicine/Infectious Diseases, University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Bürger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, Schütte H, Hippenstiel S, Suttorp N. Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 2005; 105:3569-76. [PMID: 15650061 DOI: 10.1182/blood-2004-07-2729] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pleiotropic cytokine tumor necrosis factor-alpha (TNF-alpha) and thrombin lead to increased endothelial permeability in sepsis. Numerous studies demonstrated the significance of intracellular cyclic nucleotides for the maintenance of endothelial barrier function. Actions of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are terminated by distinct cyclic nucleotide phosphodiesterases (PDEs). We hypothesized that TNF-alpha could regulate PDE activity in endothelial cells, thereby impairing endothelial barrier function. In cultured human umbilical vein endothelial cells (HUVECs), we found a dramatic increase of PDE2 activity following TNF-alpha stimulation, while PDE3 and PDE4 activities remained unchanged. Significant PDE activities other than PDE2, PDE3, and PDE4 were not detected. TNF-alpha increased PDE2 expression in a p38 mitogen-activated protein kinase (MAPK)-dependent manner. Endothelial barrier function was investigated in HUVECs and in isolated mice lungs. Selective PDE2 up-regulation sensitized HUVECs toward the permeability-increasing agent thrombin. In isolated mice lungs, we demonstrated that PDE2 inhibition was effective in preventing thrombin-induced lung edema, as shown with a reduction in both lung wet-to-dry ratio and albumin flux from the vascular to bronchoalveolar compartment. Our findings suggest that TNF-alpha-mediated up-regulation of PDE2 may destabilize endothelial barrier function in sepsis. Inhibition of PDE2 is therefore of potential therapeutic interest in sepsis and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Joachim Seybold
- Charité Universitätsmedizin Berlin, Humboldt-University, Department of Internal Medicine/Infectious Diseases, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Suttorp N, Ehreiser P, Hippenstiel S, Fuhrmann M, Krüll M, Tenor H, Schudt C. Hyperpermeability of pulmonary endothelial monolayer: protective role of phosphodiesterase isoenzymes 3 and 4. Lung 2004; 174:181-94. [PMID: 8830194 DOI: 10.1007/bf00173310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of endothelial permeability is poorly understood. An increase in endothelial permeability in the pulmonary microvasculature, however, is critical in noncardiogenic pulmonary edema and other diffuse inflammatory reactions. In the present study thrombin and Escherichia coli hemolysin (HlyA), a membrane-perturbing bacterial exotoxin, were used to alter hydraulic permeability of porcine pulmonary artery and human endothelial cell monolayers. We also investigated the pharmacological approach of adenylyl cyclase activation/phosphodiesterase (PDE) inhibition to block endothelial hyperpermeability. Thrombin (1-5 units/ml) and HlyA (0.5-3 hemolytic units/ml) dose and time dependently (> 15 min) increased endothelial permeability. Forskolin, cholera toxin, and prostaglandin E1, which all stimulate adenylyl cyclase activity, abrogated this effect. One mM dibutyryl cAMP, a cell membrane-permeable cAMP analogue, was similarly active. Endothelial hyperpermeability was also reduced dose dependently by inhibitors of different PDE isoenzymes (motapizone, rolipram, and zardaverine, which block PDE3 and/or PDE4). The effectiveness of PDE inhibitors was increased in the presence of adenylyl cyclase activators. Analysis of cyclic nucleotide hydrolyzing PDE activity in lysates of human umbilical vein endothelial cells showed high activities of PDE isoenzymes 2, 3, and 4. Consistent with the functional data PDE3 and PDE4 were the major cAMP hydrolysis enzymes in intact endothelial cells. We conclude that the hyperpermeability of pulmonary endothelial monolayers, evoked by thrombin or HlyA, can be blocked by the simultaneous activation of adenylyl cyclase and inhibition of PDEs, especially of PDE3 and PDE4. The demonstration of PDE isoenzymes 2-4 in human endothelial cells will help optimize this therapeutic approach.
Collapse
Affiliation(s)
- N Suttorp
- Department of Internal Medicine, Justus Liebig-University of Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Sibelius U, Grandel U, Buerke M, Kiss L, Klingenberger P, Heep M, Bournelis E, Seeger W, Grimminger F. Leukotriene-mediated coronary vasoconstriction and loss of myocardial contractility evoked by low doses of Escherichia coli hemolysin in perfused rat hearts. Crit Care Med 2003; 31:683-8. [PMID: 12626969 DOI: 10.1097/01.ccm.0000050072.69509.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE hemolysin has been implicated as an important pathogenic factor in extraintestinal infections including sepsis. We investigated the effects of coronary administration of hemolysin on cardiac function in isolated rat hearts perfused at constant flow. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Isolated hearts from male Wistar rats. INTERVENTIONS Isolated hearts were perfused with purified hemolysin for 60 min. MEASUREMENTS AND MAIN RESULTS Low concentrations of the toxin in the perfusate (0.1-0.2 hemolytic units/mL) caused a dose-dependent coronary vasoconstriction with a marked increase in coronary perfusion pressure, which was paralleled by a decrease in left ventricular developed pressure (and the maximum rate of left ventricular pressure increase). Moreover, 0.2 hemolytic units/mL hemolysin evoked ventricular fibrillation within 10 mins of toxin application. These events were accompanied by the liberation of leukotrienes (LTC4, LTD4, LTE4, and LTB4), thromboxane A2, prostaglandin I2, and the cell necrosis markers lactate dehydrogenase and creatine kinase into the recirculating perfusate. The lipoxygenase inhibitor MK-886 fully blocked the toxin-induced coronary vasoconstrictor response and the loss of myocardial contractility and reduced the release of lactate dehydrogenase and creatine kinase. In contrast to this, the cyclooxygenase inhibitor indomethacin was entirely ineffective. In addition, hemolysin elicited an increase in heart weight and left ventricular end-diastolic pressure, the latter again being suppressed by MK-886. CONCLUSIONS Low doses of hemolysin cause strong coronary vasoconstriction, linked with loss of myocardial performance, release of cell injury enzymes, and electrical instability, with all events being largely attributable to toxin-elicited leukotriene generation in the coronary vasculature. Bacterial exotoxins such as hemolysin thus may be implicated in the cardiac abnormalities encountered in septic shock.
Collapse
Affiliation(s)
- Ulf Sibelius
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krüll M, Seybold J, Seeger W, Rascher W, Schütte H, Suttorp N. Adrenomedullin reduces endothelial hyperpermeability. Circ Res 2002; 91:618-25. [PMID: 12364390 DOI: 10.1161/01.res.0000036603.61868.f9] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial hyperpermeability induced by inflammatory mediators is a hallmark of sepsis and adult respiratory distress syndrome. Increased levels of the regulatory peptide adrenomedullin (ADM) have been found in patients with systemic inflammatory response. We analyzed the effect of ADM on the permeability of cultured human umbilical vein endothelial cell (HUVEC) and porcine pulmonary artery endothelial cell monolayers. ADM dose-dependently reduced endothelial hyperpermeability induced by hydrogen peroxide (H2O2), thrombin, and Escherichia coli hemolysin. Moreover, ADM pretreatment blocked H2O2-related edema formation in isolated perfused rabbit lungs and increased cAMP levels in lung perfusate. ADM bound specifically to HUVECs and porcine pulmonary artery endothelial cells and increased cellular cAMP levels. Simultaneous inhibition of cAMP-degrading phosphodiesterase isoenzymes 3 and 4 potentiated ADM-dependent cAMP accumulation and synergistically enhanced ADM-dependent reduction of thrombin-induced hyperpermeability. However, ADM showed no effect on endothelial cGMP content, basal intracellular Ca2+ levels, or the H2O2-stimulated, thrombin-stimulated, or Escherichia coli hemolysin-stimulated Ca2+ increase. ADM diminished thrombin- and H2O2-related myosin light chain phosphorylation as well as stimulus-dependent stress fiber formation and gap formation in HUVECs, suggesting that ADM may stabilize the barrier function by cAMP-dependent relaxation of the microfilament system. These findings identify a new function of ADM and point to ADM as a potential interventional agent for the reduction of vascular leakage in sepsis and adult respiratory distress syndrome.
Collapse
Affiliation(s)
- Stefan Hippenstiel
- Charité, Department of Internal Medicine, Humboldt-University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Skidgel RA, Gao XP, Brovkovych V, Rahman A, Jho D, Predescu S, Standiford TJ, Malik AB. Nitric oxide stimulates macrophage inflammatory protein-2 expression in sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2093-101. [PMID: 12165537 DOI: 10.4049/jimmunol.169.4.2093] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NO is a crucial mediator of the inflammatory response, but its in vivo role as a determinant of lung inflammation remains unclear. We addressed the in vivo role of NO in regulating the activation of NF-kappaB and expression of inflammatory proteins using an in vivo mouse model of sepsis induced by i.p. injection of Escherichia coli. We observed time-dependent degradation of IkappaB and activation of NF-kappaB accompanied by increases in inducible NOS, macrophage inflammatory protein-2 (MIP-2), and ICAM-1 expression after E. coli challenge, which paralleled the ability of lung tissue to produce high-output NO. To determine the role of NO in this process, mice were pretreated with the NO synthase (NOS) inhibitor NG-methyl-L-arginine. Despite having relatively modest effects on NF-kappaB activation and ICAM-1 or inducible NOS expression, the NOS inhibitor almost completely inhibited expression of MIP-2 in response to E. coli challenge. These responses were associated with the inhibition of migration of neutrophils in lung tissue and increased permeability induced by E. coli. In mice pretreated with NG-methyl-L-arginine, coadministration of E. coli with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate substantially restored MIP-2 expression but decreased ICAM-1 expression. The results suggest that NO generated after administration of E. coli serves as an important proinflammatory signal to up-regulate MIP-2 expression in vivo. Thus, NO production in high quantities may be important in the mechanism of amplification of the lung inflammatory response associated with sepsis.
Collapse
Affiliation(s)
- Randal A Skidgel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kang MK, Jhee EC, Koo BS, Yang JY, Park BH, Kim JS, Rho HW, Kim HR, Park JW. Induction of nitric oxide synthase expression by Vibrio vulnificus cytolysin. Biochem Biophys Res Commun 2002; 290:1090-5. [PMID: 11798187 DOI: 10.1006/bbrc.2001.6311] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pore-forming cytolysin of Vibrio vulnificus (VVC) causes severe hypotension and vasodilatation in vivo. Under the condition of bacterial sepsis, large amounts of nitric oxide (NO) produced by inducible NO synthase (iNOS) can contribute to host-induced tissue damage causing hypotension and septic shock. In this study, we investigated the effect of purified VVC on NO production in mouse peritoneal macrophages. VVC induced NO production in the presence of interferon-gamma. Increased NO production was not affected by polymyxin B, and heat inactivation of cytolysin abolished the NO-inducing capability. NO production was induced at the same concentration range of cytolysin for pore formation, as evidenced by the release of preloaded 2-deoxy-d-[(3)H]glucose. At the higher concentrations of cytolysin causing the depletion of cellular ATP, no NO production was observed. Increased expression of iNOS and activation of NFkappaB by VVC were confirmed by Western blotting and gel shift assay, respectively. These results suggest the role of cytolysin as an inducer of iNOS and NO production in macrophage and as a possible virulence determinant in V. vulnificus infection.
Collapse
Affiliation(s)
- Mi-Kyung Kang
- Department of Biochemistry, Institutes for Medical Sciences, Chonju, 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rose F, Zeller SA, Chakraborty T, Domann E, Machleidt T, Kronke M, Seeger W, Grimminger F, Sibelius U. Human endothelial cell activation and mediator release in response to Listeria monocytogenes virulence factors. Infect Immun 2001; 69:897-905. [PMID: 11159983 PMCID: PMC97967 DOI: 10.1128/iai.69.2.897-905.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Accepted: 11/15/2000] [Indexed: 11/20/2022] Open
Abstract
The interaction of Listeria monocytogenes with endothelial cells represents a crucial step in the pathogenesis of listeriosis. Incubation of human umbilical vein endothelial cells (HUVEC) with wild-type L. monocytogenes (EGD) provoked immediate strong NO synthesis, attributable to listerial presentation of listeriolysin O (LLO), as the NO release was missed upon employment of a deletion mutant for LLO (EGD hly mutant) and was reproduced by purified LLO. Studies of conditions lacking extracellular Ca(2+) suggested LLO-elicited Ca(2+) flux as the underlying mechanism. In addition, HUVEC incubation with EGD turned out to be a potent stimulus for sustained (>12-h) upregulation of proinflammatory cytokine generation (interleukin 6 [IL-6], IL-8, and granulocyte-macrophage colony-stimulating factor). Use of deletion mutants for LLO (EGD hly mutant), listerial phosphatidylinositol-specific phospholipase C (EGD plcA mutant), broad-spectrum phospholipase C (EGD plcB mutant) and internalin B (EGD inlB mutant), as well as purified LLO, identified LLO as largely responsible for the cytokine response. Endothelial cells responded with diacylglycerole and ceramide generation as well as nuclear translocation of NF-kappa B to the stimulation with the LLO-producing strains EGD and Listeria innocua. The endothelial PC-phospholipase C inhibitor tricyclodecan-9-yl-xanthogenate as well as two independent inhibitors of NF-kappa B activation, pyrolidine dithiocarbamate and caffeic acid phenethyl ester, suppressed both the NF-kappa B translocation and the upregulation of cytokine synthesis. We conclude that L. monocytogenes is a potent stimulus of NO release and sustained upregulation of proinflammatory cytokine synthesis in human endothelial cells, both events being largely attributable to LLO presentation. LLO-induced transmembrane Ca(2+) flux as well as a sequence of endothelial phospholipase activation and the appearance of diacylglycerole, ceramide, and NF-kappa B are suggested as underlying host signaling events. These endothelial responses to L. monocytogenes may well contribute to the pathogenic sequelae in severe listerial infection and sepsis.
Collapse
Affiliation(s)
- F Rose
- Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Grandel U, Sibelius U, Schrickel J, Schmidt D, Buerke M, Fink L, Bournelis E, Heep M, Mayer K, Bohle RM, Seeger W, Grimminger F. Biosynthesis of constitutive nitric oxide synthase-derived nitric oxide attenuates coronary vasoconstriction and myocardial depression in a model of septic heart failure induced by Staphylococcus aureus alpha-toxin. Crit Care Med 2001; 29:1-7. [PMID: 11176149 DOI: 10.1097/00003246-200101000-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Myocardial depression, which frequently occurs in the course of septic shock, has been attributed to the cardiodepressant properties of nitric oxide (NO) generated by either the inducible NO synthase (iNOS) or the constitutive isoform (cNOS). We have previously demonstrated that alpha-toxin from Staphylococcus aureus induces thromboxane-mediated vasoconstriction accompanied by severe cardiodepression in isolated rat hearts. In the present study, we investigated the role of NO in the alpha-toxin-induced vascular and contractile abnormalities. DESIGN Prospective, experimental study. SETTING Research laboratory at a university hospital. SUBJECTS Isolated hearts from male Wistar rats. INTERVENTIONS Isolated hearts were perfused with purified staphylococcal alpha-toxin for 60 mins. MEASUREMENTS AND MAIN RESULTS At a concentration of 0.25 and 0.5 microg/mL, alpha-toxin induced a rise in coronary perfusion pressure, depressed myocardial contractility, and caused edema formation. Simultaneously, a time- and dose-dependent rapid release of NO into the perfusate was noted as quantified by a chemiluminescence technique. L-NMMA, a nonselective inhibitor of NOS, but not PBITU, an iNOS-selective inhibitor, blocked NO synthesis, markedly increased the rise in coronary perfusion pressure and the loss in contractility, and enhanced edema formation in response to alpha-toxin. In contrast, zaprinast, a selective inhibitor of phosphodiesterase type V that is used for stabilization of cyclic guanosine monophosphate, attenuated the toxin-induced coronary vasoconstrictor response and the myocardial depression. L-arginine, the substrate of NOS, had similar, yet less potent, effects as zaprinast and slightly increased the release of NO caused by alpha-toxin. Immunohistochemical analysis of the myocardium at the end of the perfusion period demonstrated a positive staining for cNOS but not for iNOS. In addition, no up-regulation of iNOS mRNA was detected in the tissue of toxin-exposed hearts. CONCLUSIONS Staphylococcal alpha-toxin provokes NO biosynthesis via activation of cNOS in rat hearts. NO partly antagonizes the deleterious effects of this pathogenicity factor on coronary vasoregulation and myocardial performance.
Collapse
Affiliation(s)
- U Grandel
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Steinthorsdottir V, Halldórsson H, Andrésson OS. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microb Pathog 2000; 28:45-50. [PMID: 10623563 DOI: 10.1006/mpat.1999.0323] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-toxin is one of the lethal toxins of Clostridium perfringens. It shares sequence homology with the pore-forming alpha-toxin of Staphylococcus aureus and structural homology has been indicated by mutagenesis studies. Human endothelial cells are sensitive to the toxic effect of alpha-toxin and in order to investigate the function of beta-toxin we have looked at the effect of the protein on human umbilical vein endothelial cells. We show that like alpha-toxin beta-toxin induces release of arachidonic acid in a dose dependent manner. In addition we show that both toxins cause leakage of inositol from the cells, consistent with the formation of transmembrane pores. The effect of toxin mutants on endothelial cells correlates with the lethal dose of each mutant in mice. Furthermore, we demonstrate the formation of heat stable toxin multimers in the cell membrane. Multimer formation was not observed on other cell types tested. We conclude that beta-toxin is a cell specific pore-forming toxin, structurally and functionally related to alpha-toxin of Staphylococcus aureus.
Collapse
Affiliation(s)
- V Steinthorsdottir
- Institute for Experimental Pathology, University of Iceland, Reykjavik, Keldur, 112, Iceland.
| | | | | |
Collapse
|
31
|
Krüll M, Klucken AC, Wuppermann FN, Fuhrmann O, Magerl C, Seybold J, Hippenstiel S, Hegemann JH, Jantos CA, Suttorp N. Signal Transduction Pathways Activated in Endothelial Cells Following Infection with Chlamydia pneumoniae. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Chlamydia pneumoniae is an important respiratory pathogen. Recently, its presence has been demonstrated in atherosclerotic lesions. In this study, we characterized C. pneumoniae-mediated activation of endothelial cells and demonstrated an enhanced expression of endothelial adhesion molecules followed by subsequent rolling, adhesion, and transmigration of leukocytes (monocytes, granulocytes). These effects were blocked by mAbs against endothelial and/or leukocyte adhesion molecules (β1 and β2 integrins). Additionally, activation of different signal transduction pathways in C. pneumoniae-infected endothelial cells was shown: protein tyrosine phosphorylation, up-regulation of phosphorylated p42/p44 mitogen-activated protein kinase, and NF-κB activation/translocation occurred within 10–15 min. Increased mRNA and surface expression of E-selectin, ICAM-1, and VCAM-1 were noted within hours. Thus, C. pneumoniae triggers a cascade of events that could lead to endothelial activation, inflammation, and thrombosis, which in turn may result in or may promote atherosclerosis.
Collapse
Affiliation(s)
- Matthias Krüll
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Andrea C. Klucken
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Oliver Fuhrmann
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christian Magerl
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Joachim Seybold
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan Hippenstiel
- *Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Johannes H. Hegemann
- ‡Institute of Microbiology, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - Christian A. Jantos
- †Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Norbert Suttorp
- §Charite, Department of Internal Medicine, Humboldt-University, Berlin, Germany
| |
Collapse
|
32
|
Nilsson IM, Hartford O, Foster T, Tarkowski A. Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 1999; 67:1045-9. [PMID: 10024541 PMCID: PMC96427 DOI: 10.1128/iai.67.3.1045-1049.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septic arthritis is a common and feared complication of staphylococcal infections. Staphylococcus aureus produces a number of potential virulence factors including certain adhesins and enterotoxins. In this study we have assessed the roles of cytolytic toxins in the development of septic arthritis by inoculating mice with S. aureus wild-type strain 8325-4 or isogenic mutants differing in the expression of alpha-, beta-, and gamma-toxin production patterns. Mice inoculated with either an alpha- or beta-toxin mutant showed degrees of inflammation, joint damage, and weight decrease similar to wild-type-inoculated mice. In contrast, mice inoculated with either double (alpha- and gamma-toxin-deficient)- or triple (alpha-, beta-, and gamma-toxin-deficient)-mutant S. aureus strains showed lower frequency and severity of arthritis, measured both clinically and histologically, than mice inoculated with the wild-type strain. We conclude that simultaneous production of alpha- and gamma-toxin is a virulence factor in S. aureus arthritis.
Collapse
Affiliation(s)
- I M Nilsson
- Department of Rheumatology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
33
|
Fuhrmann M, Jahn HU, Seybold J, Neurohr C, Barnes PJ, Hippenstiel S, Kraemer HJ, Suttorp N. Identification and function of cyclic nucleotide phosphodiesterase isoenzymes in airway epithelial cells. Am J Respir Cell Mol Biol 1999; 20:292-302. [PMID: 9922221 DOI: 10.1165/ajrcmb.20.2.3140] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells actively participate in inflammatory airway disease by liberating mediators such as arachidonate metabolites and cytokines. Inhibition of phosphodiesterases (PDEs) may be a useful anti-inflammatory approach. The PDE isoenzyme pattern and the effects of PDE inhibition on mediator generation were analyzed in primary cultures of human and porcine airway epithelial cells (AEC) and in the bronchial epithelial cell line BEAS-2B. PDE4 and PDE5 were detected in lysates of all cell types studied. In primary cultures of human AEC, the PDE4 variants PDE4A5, PDE4C1, PDE4D2, and PDE4D3 were identified by polymerase chain reaction analysis. Evidence of the recently described PDE7 was obtained by rolipram- insensitive cyclic adenosine monophosphate (cAMP) degradation, and its presence was verified by the demonstration of PDE7 messenger RNA. Primary cultures of human airway epithelium also expressed PDE1. Enhanced epithelial cAMP levels, induced by forskolin and PDE4 inhibition, increased formation of prostaglandin E2 (PGE2), but not of interleukin (IL)-8 or 15-hydroxyeicosatetraenoic acid (15-HETE) in airway epithelial cells. Increased cyclic guanosine monophosphate levels in these cells provoked by sodium nitroprusside and the PDE5 inhibitor zaprinast reduced the PGE2 synthesis, whereas 15-HETE and IL-8 formation were unchanged. The data suggest that PDE isoenzymes are important in airway inflammation and that PDE inhibitors exert anti-inflammatory effects by acting on AEC.
Collapse
Affiliation(s)
- M Fuhrmann
- Department of Internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schwarzer N, Nöst R, Seybold J, Parida SK, Fuhrmann O, Krüll M, Schmidt R, Newton R, Hippenstiel S, Domann E, Chakraborty T, Suttorp N. Two Distinct Phospholipases C of Listeria monocytogenes Induce Ceramide Generation, Nuclear Factor-κB Activation, and E-Selectin Expression in Human Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Infection of endothelial cells by Listeria monocytogenes is an essential step in the pathogenesis of listeriosis. We recently reported that L. monocytogenes induces up-regulation of E-selectin and other endothelial adhesion molecules and subsequent polymorphonuclear leukocyte (PMN) adhesion into cultured human endothelial cells. In the present study, we characterized the mechanisms of enhanced E-selectin expression using L. monocytogenes wild type (EGD), the isogenic in-frame deletion mutants for phosphatidylcholine (PC)- and phosphatidylinositol (PI)-specific phospholipases EGDΔplcA and EGDΔplcB, as well as the nonvirulent control strain Listeria innocua. Infection of endothelial cells with EGDΔplcA or EGDΔplcB for 6 h induced, as compared with EGD wild type, intermediate levels of E-selectin mRNA and protein as well as PMN rolling and adhesion at a shear rate of 1 dyne/cm2, indicating that both bacterial phospholipases are required for a maximal effect. Similarly, ceramide content and NF-κB activity were increased in L. monocytogenes-exposed endothelial cells, but only to intermediate levels for PC- or PI-phospholipase C (PLC)-deficient listerial mutants. Phospholipase effects could be mimicked by exogenously added ceramides or bacterial sphingomyelinase. The data presented indicate that PI-PLC and PC-PLC are important virulence factors for L. monocytogenes infections that induce accumulation of ceramides that in turn may act as second messengers to control host cell signal-transduction pathways leading to persistent NF-κB activation, increased E-selectin expression, and enhanced PMN rolling/adhesion. The ability of L. monocytogenes to stimulate PMN adhesion to endothelial cells may be an important mechanism in the pathogenesis of severe listeriosis.
Collapse
Affiliation(s)
| | | | | | - Shreemanta K. Parida
- †Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany; and
| | | | | | | | - Robert Newton
- ‡Imperial College School of Medicine, National Heart and Lung Institute, Department of Thoracic Medicine, London, United Kingdom
| | | | - Eugen Domann
- †Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany; and
| | - Trinad Chakraborty
- †Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany; and
| | | |
Collapse
|
35
|
Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998; 62:309-33. [PMID: 9618444 PMCID: PMC98917 DOI: 10.1128/mmbr.62.2.309-333.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a "double-anchor" motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
36
|
Klockmann MT, Jahn HU, Hippenstiel S, Krämer HJ, Suttorp N. Interaction of human neutrophils with airway epithelial cells: reduction of leukotriene B4 generation by epithelial cell derived prostaglandin E2. J Cell Physiol 1998; 175:268-75. [PMID: 9572471 DOI: 10.1002/(sici)1097-4652(199806)175:3<268::aid-jcp4>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Airway epithelial cells (AEC) play an active role in the regulation of inflammatory airway disease. In the present study we analyzed the interaction of AEC with polymorphonuclear leukocytes (PMN) in coincubation with respect to their arachidonic acid (AA) metabolism using reversed phase-HPLC and post-HPLC-ELISA. Primary cultures of porcine AEC released predominantly PGE2, PGF2a, and 15-hydroxyeicosatetraenoic acid (15-HETE), whereas the major human PMN-derived AA metabolite was the chemotactic factor leukotriene B4 (LTB4). In AEC-PMN cocultures stimulated with the calcium ionophore A23187, PMN-related 5-lipoxygenase products were decreased by 45%. This reduction in LTB4 formation in the presence of AEC was mainly due to PGE2 generated by the epithelial cells, whereas 15-HETE made a minor contribution. Most of the effect was inhibited by AEC pretreatment with acetylsalicylic acid and restored by addition of equivalent amounts of exogenous PGE2. LTB4 degradation was not enhanced in PMN-AEC coincubations. Moreover, reduction of LTB4 formation in this system did not require an intimate cell-to-cell contact as shown by studies involving filter membranes for PMN-AEC separation. Superoxide anion concentrations were also decreased in PMN-AEC coincubations; this effect, however, was unrelated to PGE2 for quantitative reasons and was probably due to O2- degradation by epithelial cells. In summary, epithelially derived PGE2 is the major mediator in the coincubation of porcine AEC and human PMN that downregulates neutrophil responses by activating receptors on the neutrophil. A minor contributor in this course of PMN-AEC interaction may be the 15-HETE transcellular pathway. Overall, airway epithelium appears to play an antiinflammatory role by damping the proinflammatory potential of neutrophils.
Collapse
Affiliation(s)
- M T Klockmann
- Department of Internal Medicine, Justus-Liebig-University of Giessen, Germany
| | | | | | | | | |
Collapse
|
37
|
Hippenstiel S, Kratz T, Krüll M, Seybold J, von Eichel-Streiber C, Suttorp N. Rho protein inhibition blocks protein kinase C translocation and activation. Biochem Biophys Res Commun 1998; 245:830-4. [PMID: 9588200 DOI: 10.1006/bbrc.1998.8525] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small GTP-binding proteins of the Ras and Rho family participate in various important signalling pathways. Large clostridial cytotoxins inactivate GTPases by UDP-glucosylation. Using Clostridium difficile toxin B-10463 (TcdB) for inactivation of Rho proteins (RhoA/Rac/Cdc42) and Clostridium sordellii lethal toxin-1522 (TcsL) for inactivation of Ras-proteins (Ras/Rac/Ral, Rap) the role of these GTPases in protein kinase C (PKC) stimulation was studied. Phorbol-myristate-acetate (PMA) induced a rapid PKC translocation to and activation in the particulate cell fraction as determined by PKC-activity measurements and Western blots for PKC alpha. These effects were blocked by TcdB inhibiting Rho proteins in endothelial cells, but not in TcsL-treated cells (i.e., cells without Ras activity), suggesting that Rho GTPases (RhoA and/or Cdc42) are the most likely GTP-binding proteins responsible for PKC activation. The Rho requirement for PKC activation/translocation was also verified for human epithelial cells and for lipopolysaccharide-stimulated endothelial cells. In summary, the data presented indicate that Rho protein inhibition blocked PKC translocation/activation in endothelial and epithelial cells.
Collapse
Affiliation(s)
- S Hippenstiel
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schütte H, Mayer K, Gessler T, Rühl M, Schlaudraff J, Burger H, Seeger W, Grimminger F. Nitric oxide biosynthesis in an exotoxin-induced septic lung model: role of cNOS and impact on pulmonary hemodynamics. Am J Respir Crit Care Med 1998; 157:498-504. [PMID: 9476864 DOI: 10.1164/ajrccm.157.2.9702094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is an important vasodilator that is produced by constitutive (cNOS) as well as inducible (iNOS) isoforms of nitric oxide synthase. The pore-forming hemolysin of Escherichia coli (HlyA), an important virulence factor in extraintestinal E. coli infections, was found to be a potent stimulator of NO liberation in isolated endothelial cells, and that it also causes thromboxane generation and related vasoconstriction in rabbit lungs. We investigated the effect of different concentrations of HlyA on pulmonary NO synthesis in buffer-perfused rabbit lungs. NO release into the alveolar as well as the intravascular compartment was monitored on-line by chemiluminescence detection of expired NO and by measurement of (peroxy-)nitrite/nitrate release into the perfusate. HlyA induced a pressor response and an immediate dose-dependent increase of exhalative and intravascular NO liberation, further enhanced by the addition of the NOS substrate L-arginine. The nonspecific NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA), but not the iNOS selective inhibitors aminoguanidine and 2-(2-aminoethyl)-2-thiopseudourea-dihydrobromide, blocked the HlyA-evoked NO liberation into both the alveolar and the intravascular compartments. Enhancement of NO formation (L-arginine) slightly reduced, and inhibition of NO synthesis (L-NMMA) amplified greatly, the HlyA-elicited vasoconstrictor response. Inhibition of the pressor response by a thromboxane receptor antagonist did not interfere with the exotoxin-elicited NO formation. We conclude (1) that marked NO biosynthesis occurs in this model of the septic lung, (2) that the signal transduction in response to HlyA proceeds via activation of cNOS directly related to exotoxin activity and not to secondary changes in shear stress, and (3) that this vasodilator release mitigates the HlyA-induced pulmonary vasoconstriction. These findings may have important implications for therapeutic approaches using NOS inhibitors in sepsis.
Collapse
Affiliation(s)
- H Schütte
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Schütte H, Rosseau S, Czymek R, Ermert L, Walmrath D, Krämer HJ, Seeger W, Grimminger F. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs. Am J Respir Crit Care Med 1997; 156:819-24. [PMID: 9309999 DOI: 10.1164/ajrccm.156.3.9611010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.
Collapse
Affiliation(s)
- H Schütte
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sugimoto N, Haque A, Horiguchi Y, Matsuda M. Botulinolysin, a thiol-activated hemolysin produced by Clostridium botulinum, inhibits endothelium-dependent relaxation of rat aortic ring. Toxicon 1997; 35:1011-23. [PMID: 9248000 DOI: 10.1016/s0041-0101(97)00002-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of botulinolysin (Blyn), a thiol-activated hemolysin produced by Clostridium botulinum, on contractility of rat aortic ring were studied in order to clarify an underlying mechanism of vasoconstriction by the toxin observed previously as an increase in perfusion pressure in isolated rat organs. Blyn (30 hemolytic units/ml; HU/ml) itself did not elicit any apparent change in resting tension of the ring. Contractile tension elicited by a high concentration of phenylephrine in endothelium-intact rings increased significantly after treatment with Blyn (30 HU/ml), while phenylephrine-induced contraction of endothelium-denuded rings was not influenced by toxin treatment. In rings with intact endothelium, acetylcholine (ACh)-induced relaxation was significantly inhibited after treatment with Blyn (30, 10, 1 HU/ml). In contrast, relaxation of denuded rings by sodium nitroprusside was not affected by toxin treatment (30 HU/ml). Arginine (10(-4) M) partly reversed the inhibition of ACh-induced relaxation by the toxin (1 HU/ml). Endothelium-dependent relaxation by histamine or adenosine triphosphate was also inhibited by Blyn (1 HU/ml), but the relaxation elicited by calcium ionophore A23187 was not influenced by the toxin. The results indicate that Blyn acts on endothelium and inhibits agonist-induced endothelium-dependent relaxation of blood vessels.
Collapse
Affiliation(s)
- N Sugimoto
- Department of Bacterial Toxicology, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | |
Collapse
|
41
|
Dassy B, Fournier JM. Respiratory activity is essential for post-exponential-phase production of type 5 capsular polysaccharide by Staphylococcus aureus. Infect Immun 1996; 64:2408-14. [PMID: 8698459 PMCID: PMC174090 DOI: 10.1128/iai.64.7.2408-2414.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Capsule formation is believed to have a significant role in bacterial virulence. To examine the possible involvement of capsular polysaccharide (CP) from Staphylococcus aureus in the pathological mechanisms associated with staphylococcal infections, we investigated the influence of respiratory activity on type 5 CP production by S. aureus grown in the presence of various concentrations of dissolved oxygen or nitrate. The effects of several metabolic inhibitors (arsenite, cyanide, azide, trimethylamine N-oxide, 2-heptyl-4-hydroxyquinoline N-oxide, and 2,4-dinitrophenol) were also tested. The metabolism of the bacteria was estimated by measuring their reductive capacity and by monitoring the pH and concentrations of fermentation products. Type 5 CP was always produced by S. aureus during the exponential phase of growth under all culture conditions tested. In contrast, post-exponential-phase CP production appeared to be strictly dependent on the respiratory activity. Since post-exponential-phase CP production contributes at least two-thirds of the total CP obtained, the influence of S. aureus respiration on CP production might be of some importance in the process of infection.
Collapse
Affiliation(s)
- B Dassy
- Département d'Ecologie, Insitut Pasteur, Paris, France
| | | |
Collapse
|
42
|
Stevens PK, Czuprynski CJ. Pasteurella haemolytica leukotoxin induces bovine leukocytes to undergo morphologic changes consistent with apoptosis in vitro. Infect Immun 1996; 64:2687-94. [PMID: 8698496 PMCID: PMC174127 DOI: 10.1128/iai.64.7.2687-2694.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infection of the bovine lung with Pasteurella haemolytica results in an acute respiratory disorder known as pneumonic pasteurellosis. One of the key virulence determinants used by this bacterium is secretion of an exotoxin that is specific for ruminant leukocytes (leukotoxin). At low concentrations, the leukotoxin can activate ruminant leukocytes, whereas at higher concentrations, it inhibits leukocyte functions and is cytolytic, presumably as a result of pore formation and subsequent membrane permeabilization. We have investigated the possibility that the activation-inhibition paradox is explained in part by leukotoxin-mediated apoptosis (i.e., activation-induced cell death) of bovine leukocytes. Incubation of bovine leukocytes with P. haemolytica leukotoxin caused marked cytoplasmic membrane blebbing (zeiosis) and chromatin condensation and margination, both of which are hallmarks of apoptosis. The observed morphologic changes in bovine leukocytes were leukotoxin dependent, because they were significantly diminished in the presence of an anti-leukotoxin monoclonal antibody. In addition, bovine leukocytes incubated with culture supernatant from a mutant strain of P. haemolytica that does not produce any detectable leukotoxin failed to exhibit the morphologic changes characteristic of cells undergoing apoptosis. These observations may represent an important mechanism by which P. haemolytica overwhelms host defenses, contributing to the fibrinous pleuropneumonia characteristic of bovine pasteurellosis.
Collapse
Affiliation(s)
- P K Stevens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
43
|
Henderson B, Poole S, Wilson M. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 1996; 60:316-41. [PMID: 8801436 PMCID: PMC239446 DOI: 10.1128/mr.60.2.316-341.1996] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support.
Collapse
Affiliation(s)
- B Henderson
- Maxillofacial Surgery Research Unit, University College London, United Kingdom.
| | | | | |
Collapse
|
44
|
Bhakdi S, Walev I, Jonas D, Palmer M, Weller U, Suttorp N, Grimminger F, Seeger W. Pathogenesis of sepsis syndrome: possible relevance of pore-forming bacterial toxins. Curr Top Microbiol Immunol 1996; 216:101-18. [PMID: 8791737 DOI: 10.1007/978-3-642-80186-0_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Bhakdi
- Institute of Medical Microbiology and Hygiene, University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
RTX toxins are a family of related exotoxins with hemolytic, leukotoxi c and leukocyte-stimulating activities that are produced by a diverse array of Gram-negative bacteria. Lipopolysaccharide might be required for the maximal production of some RTX toxins and might be a cofactor in some of the biological effects of RTX toxins.
Collapse
Affiliation(s)
- C J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | |
Collapse
|
46
|
Laher I, Thorin-Trescases N, Ding A, Laporte R, Osol G. alpha-Toxin perfusion: a new method for selective impairment of endothelial function in isolated vessels or intact vascular beds. Can J Physiol Pharmacol 1995; 73:1669-73. [PMID: 8789422 DOI: 10.1139/y95-729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe a method for selectively permeabilizing endothelial cells, using the membrane pore forming exoprotein Staphylococcus aureus alpha-toxin. Experiments were performed in rabbit central ear artery or its main side branch under isometric conditions, on the isolated perfused kidney, or in cannulated pressurized renal arteries. In presence of alpha-toxin, endothelial-dependent vasodilator responses elicited by acetylcholine or A23187 were abolished, whereas the sensitivity of smooth muscle cells to constrictors (norepinephrine, phenylephrine, or KCl) or dilators (sodium nitroprusside) was not affected. The results indicate that restricting the alpha-toxin to the luminal surface induces selective impairment of vascular endothelial function. This method of eliminating endothelium-dependent vasodilator responses may prove to be useful in the study of endothelial-smooth muscle interactions of isolated small arteries and intact vascular beds.
Collapse
Affiliation(s)
- I Laher
- Department of Pharmacology, University of Vermont, Burlington 05405-0068, USA
| | | | | | | | | |
Collapse
|
47
|
Francoeur C, Denis M. Nitric oxide and interleukin-8 as inflammatory components of cystic fibrosis. Inflammation 1995; 19:587-98. [PMID: 8543373 DOI: 10.1007/bf01539138] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the production of reactive nitrogen intermediates in the tracheo-bronchial tree of patients with cystic fibrosis (CF). Examination of the soluble phase of sputa from 17 CF patients revealed the presence of high levels of NO2-/NO3- assayed by the Greiss reaction. We also examined the presence of the chemotactic cytokine interleukin-8 (IL-8) in these samples so as to assess another important inflammatory marker; high levels of IL-8 were present in the sputa of cystic fibrosis subjects. The elevated nitrite was not produced by the presence of Pseudomonas bacteria in the sputa, inasmuch as bacteria in culture released undetectable amounts of nitrite in culture media. Neutrophils from the sputa of CF patients with disease exacerbation released higher amounts of nitrite and IL-8. Neutrophils from the sputa were also shown to spontaneously release substantial amounts of nitrite in the supernatants, and this release was partly blocked by the antagonist NG-mono-methyl-L-arginine (L-NMMA). Blood neutrophils were shown to release nitrite only in response to challenge with CF-associated strains of Pseudomonas, and not exposure to cytokines. There was no significant differences in nitrite release between normal and CF blood polymorphonuclear leucocytes (PMNs). A study of upper airway epithelial cell lines showed that these cells released low amounts of nitrite after infection with CF-associated strains of Pseudomonas but not after cytokine exposure. Epithelial cell lines with CF or normal phenotypes were shown to release similar quantities of nitrite, upon stimulation with Pseudomonas. These data demonstrate that elevated levels of reactive nitrogen intermediates and IL-8 are produced in the tracheo-bronchial tree of subjects with CF. Levels of IL-8 and nitrite were higher in the secretions of CF subjects with disease exacerbation. The involvement of nitric oxide and other reactive nitrogen intermediates produced by neutrophils and other cells in the tissue damaging processes in CF deserves further investigation.
Collapse
Affiliation(s)
- C Francoeur
- Département d'Anatomie et de Biologie Cellulaire Centre Hospitalier Universitaire de Sherbrooke, Fleurimont, Quebec
| | | |
Collapse
|
48
|
Hu J, Fridlund J, el-Fakahany EE. Regulation of neuronal nitric oxide synthase by histone, protamine, and myelin basic protein. Neurochem Res 1995; 20:497-503. [PMID: 7544448 DOI: 10.1007/bf00973107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the effects of endogenous basic proteins rich in the amino acid L-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influx of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism of L-arginine into L-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.
Collapse
Affiliation(s)
- J Hu
- Division of Neuroscience Research in Psychiatry, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | |
Collapse
|
49
|
Abstract
Animal viruses permeabilize cells at two well-defined moments during infection: (1) early, when the virus gains access to the cytoplasm, and (2) during the expression of the virus genome. The molecular mechanisms underlying both events are clearly different; early membrane permeability is induced by isolated virus particles, whereas late membrane leakiness is produced by newly synthesized virus protein(s) that possess activities resembling ionophores or membrane-active toxins. Detailed knowledge of the mechanisms, by which animal viruses permeabilize cells, adds to our understanding of the steps involved in virus replication. Studies on early membrane permeabilization give clues about the processes underlying entry of animal viruses into cells; understanding gained on the modification by viral proteins of membrane permeability during virus replication indicates that membrane leakiness is required for efficient virus release from infected cells or virus budding, in the case of enveloped viruses. In addition, the activity of these membrane-active virus proteins may be related to virus interference with host cell metabolism and with the cytopathic effect that develops after virus infection.
Collapse
Affiliation(s)
- L Carrasco
- Centro de Biologia Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| |
Collapse
|
50
|
Walmrath D, Ghofrani HA, Rosseau S, Schütte H, Cramer A, Kaddus W, Grimminger F, Bhakdi S, Seeger W. Endotoxin "priming" potentiates lung vascular abnormalities in response to Escherichia coli hemolysin: an example of synergism between endo- and exotoxin. J Exp Med 1994; 180:1437-43. [PMID: 7931076 PMCID: PMC2191678 DOI: 10.1084/jem.180.4.1437] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pore-forming hemolysin of Escherichia coli (HlyA), an important virulence factor in extraintestinal E. coli infections, causes thromboxane generation and related vasoconstriction in perfused rabbit lungs (Seeger, W., H. Walter, N. Suttorp, M. Muhly, and S. Bhakdi. 1989. J. Clin. Invest. 84:220). We investigated the influence of pulmonary vascular "priming" with endotoxin on the responsiveness of the lung to a low-dose HlyA challenge. Rabbit lungs were perfused with Krebs Henseleit buffer containing 0.1-100 ng/ml Salmonella abortus equii lipopolysaccharide (LPS) for 60-180 min. This treatment caused protracted release of tumor necrosis factor into the recirculating medium, but did not induce significant alterations of pulmonary hemodynamics and fluid balance. At a dose of 1 ng/ml, HlyA elicited only moderate thromboxane release (< 200 pg/ml) and pulmonary artery pressure increase (< or = 6 mmHg) in control lungs. Acceleration and potentiation of both the metabolic and vasoconstrictor response occurred in lungs primed with LPS. This priming effect displayed dose (threshold integral of 0.1-1 ng/ml LPS) and time dependencies (threshold integral of 60-90 min LPS incubation). Maximum thromboxane release and pulmonary artery pressure increase surpassed the responses to HlyA in nonprimed lungs by more than 15-fold. Cyclooxygenase inhibition and thromboxane-receptor antagonism blocked these effects. These data demonstrate that LPS priming synergizes with HlyA challenge to provoke vascular abnormalities that are possibly relevant to the pathogenesis of organ failure in severe local and systemic infections.
Collapse
Affiliation(s)
- D Walmrath
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|