1
|
Khosravi-Maharlooei M, Li HW, Sykes M. T Cell Development and Responses in Human Immune System Mice. Annu Rev Immunol 2025; 43:83-112. [PMID: 39705163 PMCID: PMC12031645 DOI: 10.1146/annurev-immunol-082223-041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| | - Megan Sykes
- Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| |
Collapse
|
2
|
Schuettfort G, Röther C, Berger A, Fokas E, Fraunholz I, Groh A, Haberl A, Khaykin P, Martin D, Rödel C, Vehreschild M, Stephan C. Differences in the Course of CD4 and CD8 Cells After Chemoradiotherapy in People Living with HIV with Anal Cancer. AIDS Res Hum Retroviruses 2024; 40:198-203. [PMID: 37756364 DOI: 10.1089/aid.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Incidence of anal carcinoma (AC) in people living with HIV (PLWH) is increased compared to the general population. Adverse effects of chemoradiotherapy (CRT) on the immune system are associated with a significant detrimental prognosis on overall survival in patients receiving CRT for solid tumors. The aim of this study was to evaluate immunological factors, in particular the differences in recovery of CD4+ and CD8+ cell counts before and after CRT for AC in PLWH. Retrospective single-center chart review extraction to analyze immunological data collected from PLWH with AC; descriptive statistics were used. Thirty-six PLWH with histologically proven AC were included in the analysis. Absolute CD4 cell count 60 months after CRT was 67.2% of the value at the beginning of CRT, whereas the CD8 cell count reached 82.3%. These differences were statistically significant (p = .048), whereas CD4/CD8-ratio remained stable. The findings of the presented study regarding CD4+ and CD8+ cell recovery after CRT are congruent with results from prior studies in non-HIV infected patients. Although not reaching the level of prior CRT T cell numbers, the ability to generate CD8+ cells seems to be better recovered, while CD4+ regeneration is more impaired. These observations are best explained by faster recovery of CD8+ cells via thymic-independent pathways, which are not available for regeneration of CD4+ cells. Further studies with larger numbers of patients are required to analyze the specific CD4+ and CD8+ cell subsets.
Collapse
Affiliation(s)
- Gundolf Schuettfort
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Annemarie Berger
- Department of Virology and University Hospital Frankfurt, Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingeborg Fraunholz
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Ana Groh
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Annette Haberl
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Daniel Martin
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Maria Vehreschild
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Stephan
- Department of Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Rosichini M, Bordoni V, Silvestris DA, Mariotti D, Matusali G, Cardinale A, Zambruno G, Condorelli AG, Flamini S, Genah S, Catanoso M, Del Nonno F, Trezzi M, Galletti L, De Stefanis C, Cicolani N, Petrini S, Quintarelli C, Agrati C, Locatelli F, Velardi E. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J Allergy Clin Immunol 2023; 151:911-921. [PMID: 36758836 PMCID: PMC9907790 DOI: 10.1016/j.jaci.2023.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Bordoni
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Domenico Alessandro Silvestris
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Davide Mariotti
- Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Giulia Matusali
- Virology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Flamini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Shirley Genah
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Matteo Trezzi
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Galletti
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Pathology Unit, Core Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Medicine and Surgery, University of Naples Federico II, Rome, Italy
| | - Chiara Agrati
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Savino W, Durães J, Maldonado-Galdeano C, Perdigon G, Mendes-da-Cruz DA, Cuervo P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front Nutr 2022; 9:948488. [PMID: 36225882 PMCID: PMC9549110 DOI: 10.3389/fnut.2022.948488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonathan Durães
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina Maldonado-Galdeano
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Perdigon
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Patricia Cuervo
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
7
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
8
|
McCune JM, Weissman IL. The Ban on US Government Funding Research Using Human Fetal Tissues: How Does This Fit with the NIH Mission to Advance Medical Science for the Benefit of the Citizenry? Stem Cell Reports 2020; 13:777-786. [PMID: 31722191 PMCID: PMC6895704 DOI: 10.1016/j.stemcr.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Some have argued that human fetal tissue research is unnecessary and/or immoral. Recently, the Trump administration has taken the drastic––and we believe misguided––step to effectively ban government-funded research on fetal tissue altogether. In this article, we show that entire lines of research and their clinical outcomes would not have progressed had fetal tissue been unavailable. We argue that this research has been carried out in a manner that is ethical and legal, and that it has provided knowledge that has saved lives, particularly those of pregnant women, their unborn fetuses, and newborns. We believe that those who support a ban on the use of fetal tissue are halting medical progress and therefore endangering the health and lives of many, and for this they should accept responsibility. At the very least, we challenge them to be true to their beliefs: if they wish to short-circuit a scientific process that has led to medical advances, they should pledge to not accept for themselves the health benefits that such advances provide.
Collapse
Affiliation(s)
- Joseph M McCune
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Research, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Vongpipatana T, Nakahama T, Shibuya T, Kato Y, Kawahara Y. ADAR1 Regulates Early T Cell Development via MDA5-Dependent and -Independent Pathways. THE JOURNAL OF IMMUNOLOGY 2020; 204:2156-2168. [DOI: 10.4049/jimmunol.1900929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022]
|
10
|
Lewkiewicz SM, Chuang YL, Chou T. Dynamics of T cell receptor distributions following acute thymic atrophy and resumption. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2019; 17:28-55. [PMID: 31731338 PMCID: PMC8788929 DOI: 10.3934/mbe.2020002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Naive human T cells are produced and developed in the thymus, which atrophies abruptly and severely in response to physical or psychological stress. To understand how an instance of stress affects the size and "diversity" of the peripheral naive T cell pool, we derive a mean-field autonomous ODE model of T cell replenishment that allows us to track the clone abundance distribution (the mean number of different TCRs each represented by a specific number of cells). We identify equilibrium solutions that arise at different rates of T cell production, and derive analytic approximations to the dominant eigenvalues and eigenvectors of the mathematical model linearized about these equilibria. From the forms of the eigenvalues and eigenvectors, we estimate rates at which counts of clones of different sizes converge to and depart from equilibrium values-that is, how the number of clones of different sizes "adjusts" to the changing rate of T cell production. Under most physiological realizations of our model, the dominant eigenvalue (representing the slowest dynamics of the clone abundance distribution) scales as a power law in the thymic output for low output levels, but saturates at higher T cell production rates. Our analysis provides a framework for quantitatively understanding how the clone abundance distribution evolves under small changes in the overall T cell production rate.
Collapse
Affiliation(s)
| | - Yao-Li Chuang
- Department of Mathematics, CalState Northridge, Northridge, CA 91330, USA
| | - Tom Chou
- Department of Mathematics, UCLA, Los Angeles, CA, 90095-1555, USA
- Department of Biomathematics, UCLA, Los Angeles, CA, 90095-1766, USA
| |
Collapse
|
11
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
12
|
Thymic HIV-2 infection uncovers posttranscriptional control of viral replication in human thymocytes. J Virol 2014; 89:2201-8. [PMID: 25473058 DOI: 10.1128/jvi.03047-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED A unique HIV-host equilibrium exists in untreated HIV-2-infected individuals. This equilibrium is characterized by low to undetectable levels of viremia throughout the disease course, despite the establishment of disseminated HIV-2 reservoirs at levels comparable to those observed in untreated HIV-1 infection. Although the clinical spectrum is similar in the two infections, HIV-2 infection is associated with a much lower rate of CD4 T-cell decline and has a limited impact on the mortality of infected adults. Here we investigated HIV-2 infection of the human thymus, the primary organ for T-cell production. Human thymic tissue and suspensions of total or purified CD4 single-positive thymocytes were infected with HIV-2 or HIV-1 primary isolates using either CCR5 or CXCR4 coreceptors. We found that HIV-2 infected both thymic organ cultures and thymocyte suspensions, as attested to by the total HIV DNA and cell-associated viral mRNA levels. Nevertheless, thymocytes featured reduced levels of intracellular Gag viral protein, irrespective of HIV-2 coreceptor tropism and cell differentiation stage, in agreement with the low viral load in culture supernatants. Our data show that HIV-2 is able to infect the human thymus, but the HIV-2 replication cycle in thymocytes is impaired, providing a new model to identify therapeutic targets for viral replication control. IMPORTANCE HIV-1 infects the thymus, leading to a decrease in CD4 T-cell production that contributes to the characteristic CD4 T-cell loss. HIV-2 infection is associated with a very low rate of progression to AIDS and is therefore considered a unique naturally occurring model of attenuated HIV disease. HIV-2-infected individuals feature low to undetectable plasma viral loads, in spite of the numbers of circulating infected T cells being similar to those found in patients infected with HIV-1. We assessed, for the first time, the direct impact of HIV-2 infection on the human thymus. We show that HIV-2 is able to infect the thymus but that the HIV-2 replication cycle in thymocytes is impaired. We propose that this system will be important to devise immunotherapies that target viral production, aiding the design of future therapeutic strategies for HIV control.
Collapse
|
13
|
Chidgey A. Effects of growth hormone in enhancing thymic regrowth and T-cell reconstitution. Expert Rev Clin Immunol 2014; 4:433-9. [DOI: 10.1586/1744666x.4.4.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Fantauzzi A, Falasca F, d’Ettorre G, Cavallari EN, Turriziani O, Vullo V, Mezzaroma I. Microbial translocation, residual viremia and immune senescence in the pathogenesis of HIV-1 infection. World J Clin Infect Dis 2013; 3:47-57. [DOI: 10.5495/wjcid.v3.i4.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/16/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
The pathophysiological mechanisms that underlie the progression of human immunodeficiency virus-1 (HIV-1) disease to full-blown AIDS are not well understood. Findings suggest that, during HIV-1 infection, plasma lipopolysaccharide (LPS) levels, which are used as an indicator of microbial translocation (MT), are elevated throughout the acute and chronic phases of HIV-1 disease. The translocation of bacterial products through the damaged gastrointestinal barrier into the systemic circulation has been described as a driver of immune activation. In contrast, comorbidities that are associated with HIV-1 infection have been attributed to chronic inflammation and immune system dysfunction secondary to MT or low-level HIV-1 replication in plasma and cell reservoirs. Moreover, accelerated aging is significantly associated with chronic inflammation, immune activation, and immune senescence. In this review, we aimed to investigate the role of inflammation as a pivotal marker in the pathogenesis of HIV-1 disease. We will discuss the key features of chronic inflammation and immune activation that are observed during the natural course of the disease and those features that are detected in cART-modified infection. The review will focus on the following aspects of HIV-1 infection: (1) MT; (2) the role of residual viremia; and (3) “immune senescence” or “inflammaging.” Many questions remain unanswered about the potential mechanisms that are involved in HIV-1 pathogenesis. Further studies are needed to better investigate the mechanisms that underlie immune activation and their correlation with HIV-1 disease progression.
Collapse
|
15
|
Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J 2013; 7:57-71. [PMID: 23986795 PMCID: PMC3751038 DOI: 10.2174/1874357920130621001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France
| | | |
Collapse
|
16
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
17
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
18
|
Chen S, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Cui H, Zhou Y, Wang Y, Xu Z, Chen Z, Chen X, Wang X. Apoptosis induced in vivo by new type gosling viral enteritis virus. J Vet Sci 2012; 12:333-9. [PMID: 22122899 PMCID: PMC3232392 DOI: 10.4142/jvs.2011.12.4.333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, apoptosis was induced by new type gosling viral enteritis virus (NGVEV) in experimentally infected goslings is reported in detail for the first time. After 3-day-old goslings were orally inoculated with a NGVEV-CN strain suspension, the time course of NGVEV effects on apoptotic morphological changes of the internal tissues was evaluated. These changes were observed by histological analysis with light microscopy and ultrastructural analysis with transmission electron microscopy. DNA fragmentation was assessed with a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and DNA ladder analysis. A series of characteristic apoptotic morphological changes including chromatin condensation and margination, cytoplasmic shrinkage, plasma membrane blebbing, and formation of apoptotic bodies were noted. Apoptosis was readily observed in the lymphoid and gastrointestinal organs, and sporadically occurred in other organs after 3 days post-infection (PI). The presence and quantity of TUNEL-positive cells increased with infection time until 9 days PI. DNA extracted from the NGVEV-infected gosling cells displayed characteristic 180~200 bp ladders. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages, monocytes, and epithelial and intestinal cells. Necrosis was subsequently detected during the late NGVEV-infection phase, which was characterized by cell swelling, plasma membrane collapse, and rapidly lysis. Our results suggested that apoptosis may play an important role in the pathogenesis of NGVE disease.
Collapse
Affiliation(s)
- Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Young CD, Angel JB. HIV infection of thymocytes inhibits IL-7 activity without altering CD127 expression. Retrovirology 2011; 8:72. [PMID: 21920046 PMCID: PMC3182983 DOI: 10.1186/1742-4690-8-72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thymic function is altered in HIV infection and characterized by dysregulation of the thymic epithelial network, reduced thymic output and ultimately an impaired naïve T-cell pool. The IL-7/IL-7 receptor (IL-7R) signalling pathway is critical for the maturation and differentiation of thymocytes. HIV infection is associated with a decrease in IL-7Rα (CD127) expression and impaired CD127 signalling in circulating CD8+ T-cells; however, little is known about the effect of HIV on CD127 expression and IL-7 activity in the thymus. Therefore, the effect of in vitro HIV infection on CD127 expression and IL-7-mediated function in thymocytes was investigated. FINDINGS In vitro HIV infection of thymocytes did not affect CD127 expression on either total thymocytes or on single positive CD4 or single positive CD8 subsets. However, HIV infection resulted in a decrease in the level of IL-7-induced STAT-5 phosphorylation and Bcl-2 expression in unfractionated thymocytes. CONCLUSION These findings indicate that HIV infection alters IL-7 responsiveness of thymocytes by a mechanism other than CD127 downregulation and potentially explain the disruption in thymopoiesis observed in HIV infection.
Collapse
Affiliation(s)
- Charlene D Young
- Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa, Canada
| | | |
Collapse
|
21
|
Sato K, Koyanagi Y. The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med (Maywood) 2011; 236:977-85. [PMID: 21750016 DOI: 10.1258/ebm.2011.010294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), which is the causative agent of acquired immunodeficiency syndrome, is a human-specific virus. Because HIV-1 cannot infect and cause disorders in other animals, it has been an arduous struggle to study the dynamics of HIV-1 infection in vivo. To understand and elucidate HIV-1 pathogenesis in vivo, several small animal models for HIV-1 infection have been established and improved over the last 20 years. Recently, a novel murine model, 'humanized mouse', has been generated. A humanized mouse has the potential to maintain human hematopoiesis including human CD4(+) leukocytes and, therefore, is able to support persistent HIV-1 infection in vivo. We herein describe the current state-of-the-art in HIV-1-infected humanized mice and introduce insights and perspectives of their use for HIV-1 studies in vivo.
Collapse
Affiliation(s)
- Kei Sato
- Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
22
|
Abstract
OBJECTIVE The contribution of naive CD4⁺ T cells to the pool of HIV-infected cells remains poorly described. This study aimed at evaluating HIV infection in naive T-cell subsets in viremic and HAART-treated patients, together with various parameters implicated in naive T-cell homeostasis, in order to better understand infection in these subsets. DESIGN AND METHODS HIV provirus was quantified in various FACS-sorted CD4/CD8 T-cell subsets [recent thymic emigrants (RTEs), non-RTE naives and memory T cells] purified from peripheral blood cells of untreated viremic and HAART-treated aviremic HIV-infected patients. HIV proviral DNA was quantified using a highly sensitive real-time PCR assay allowing detection of one HIV copy in 10⁵ cells. Intrathymic precursor T-cell proliferation and circulating T-cell cycling were, respectively, evaluated through measurement of the sj/βTREC ratio (signal joint T-Cell Receptor Excision Circle frequency divided by DβJβTREC frequency) and Ki-67 expression. Plasma interleukin (IL)-7 concentrations were measured by ELISA. RESULTS RTEs and non-RTEs were equally HIV infected. Altogether, naive CD4⁺ T cells represented 0.24%-60% of the infected cells. In contrast, HIV DNA was undetectable in naive CD8⁺ T cells. RTE infection rate directly correlated with IL-7 plasma levels (r = 0.607, P = 0.0035) but was independent from plasma viral load, peripheral T-cell cycling and intrathymic precursor T-cell proliferation. CONCLUSION We demonstrated that RTEs are effectively HIV infected. The similar infection rate observed in RTEs and other naive T cells, its relationship with plasma IL-7 levels, together with the lack of correlation between RTE infection and either thymic or peripheral proliferation, strongly suggests that RTE infection occurs either late during thymopoiesis or early on during their extrathymic maturation.
Collapse
|
23
|
HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 2011; 117:5142-51. [PMID: 21436070 DOI: 10.1182/blood-2011-01-331306] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms of CD4(+) T-cell count decline, the hallmark of HIV disease progression, and its relationship to elevated levels of immune activation are not fully understood. Massive depletion of CD4(+) T cells occurs during the course of HIV-1 infection, so that maintenance of adequate CD4(+) T-cell levels probably depends primarily on the capacity to renew depleted lymphocytes, that is, the lymphopoiesis. We performed here a comprehensive study of quantitative and qualitative attributes of CD34(+) hematopoietic progenitor cells directly from the blood of a large set of HIV-infected persons compared with uninfected donors, in particular the elderly. Our analyses underline a marked impairment of primary immune resources with the failure to maintain adequate lymphocyte counts. Systemic immune activation emerges as a major correlate of altered lymphopoiesis, which can be partially reversed with prolonged antiretroviral therapy. Importantly, HIV disease progression despite elite control of HIV replication or virologic success on antiretroviral treatment is associated with persistent damage to the lymphopoietic system or exhaustion of lymphopoiesis. These findings highlight the importance of primary hematopoietic resources in HIV pathogenesis and the response to antiretroviral treatments.
Collapse
|
24
|
Rämer PC, Chijioke O, Meixlsperger S, Leung CS, Münz C. Mice with human immune system components as in vivo models for infections with human pathogens. Immunol Cell Biol 2011; 89:408-16. [PMID: 21301484 PMCID: PMC3087174 DOI: 10.1038/icb.2010.151] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many pathogens relevant to human disease do not infect other animal species. Therefore, animal models that reconstitute or harbor human tissues are explored as hosts for these. In this review, we will summarize recent advances to utilize mice with human immune system components, reconstituted from hematopoietic progenitor cells in vivo. Such mice can be used to study human pathogens that replicate in leukocytes. In addition to studying the replication of these pathogens, the reconstituted human immune system components can also be analyzed for initiating immune responses and control against these infections. Moreover, these new animal models of human infectious disease should replicate the reactivity of the human immune system to vaccine candidates and, especially, the adjuvants contained in them, more faithfully.
Collapse
Affiliation(s)
- Patrick C Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, Estes JD, Burton GF, Silvestri G, Lifson JD, Carlis JV, Haase AT. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest 2011; 121:998-1008. [PMID: 21393864 PMCID: PMC3049394 DOI: 10.1172/jci45157] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/20/2010] [Indexed: 01/19/2023] Open
Abstract
The hallmark of HIV-1 and SIV infections is CD4(+) T cell depletion. Both direct cell killing and indirect mechanisms related to immune activation have been suggested to cause the depletion of T cells. We have now identified a mechanism by which immune activation-induced fibrosis of lymphoid tissues leads to depletion of naive T cells in HIV-1 infected patients and SIV-infected rhesus macaques. The T regulatory cell response to immune activation increased procollagen production and subsequent deposition as fibrils via the TGF-β1 signaling pathway and chitinase 3-like-1 activity in fibroblasts in lymphoid tissues from patients infected with HIV-1. Collagen deposition restricted T cell access to the survival factor IL-7 on the fibroblastic reticular cell (FRC) network, resulting in apoptosis and depletion of T cells, which, in turn, removed a major source of lymphotoxin-β, a survival factor for FRCs during SIV infection in rhesus macaques. The resulting loss of FRCs and the loss of IL-7 produced by FRCs may thus perpetuate a vicious cycle of depletion of T cells and the FRC network. Because this process is cumulative, early treatment and antifibrotic therapies may offer approaches to moderate T cell depletion and improve immune reconstitution during HIV-1 infection.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony J. Smith
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen W. Wietgrefe
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter J. Southern
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W. Schacker
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cavan S. Reilly
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jacob D. Estes
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory F. Burton
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guido Silvestri
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey D. Lifson
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John V. Carlis
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashley T. Haase
- Department of Microbiology and
Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
AIDS and Cancer Virus Program, Science Applications International Corporation–Frederick Inc., National Cancer Institute, Frederick, Maryland, USA.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
Yerkes National Primate Research Center, and Emory University, Atlanta, Georgia, USA.
Department of Computer Science and Engineering, Institute of Technology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Rozmyslowicz T, Murphy SL, Conover DO, Gaulton GN. HIV-1 infection inhibits cytokine production in human thymic macrophages. Exp Hematol 2010; 38:1157-66. [PMID: 20817073 PMCID: PMC3034405 DOI: 10.1016/j.exphem.2010.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/13/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The thymus serves as a critical site of T-lymphocyte ontogeny and selection. Thymic infection by HIV-1 is known to disrupt thymocyte maturation by both direct and indirect means; however, the mechanism behind these effects remains poorly defined. Macrophages represent one of the most important peripheral targets of HIV-1 infection, are resident in the thymic stroma, and play a central role in thymocyte maturation. MATERIALS AND METHODS Studies presented here define three primary features and outcomes of thymic macrophages (TM) and HIV-1 infection: (1) The distinctive TM phenotype (surface markers and cytokine production measured by immunofluorescence, fluorescence-activated cell sorting, and reverse transcriptase polymerase chain reaction) relative to macrophages from other sources (blood [monocyte-derived macrophages] and bone marrow); (2) infection of TM by different HIV-1 subtypes (X4, R5, and X4/R5) measured by enzyme-linked immunosorbent assay and polymerase chain reaction; and (3) consequences of HIV-1 infection on cytokine production by TM measured by reverse transcriptase polymerase chain reaction. RESULTS The results demonstrate that TM display a distinctive phenotype of HIV-1 receptors (CD4(lo), CXCR4(lo), CCR5(med), CCR3(hi)), chemokine production (macrophage inflammatory protein-1α(+); regulated on activation, normal T expressed and secreted(+); macrophage inflammatory protein-1b(-); stromal cell-derived factor -1(-)); and cytokine production (tumor necrosis factor-α(+), interleukin-8(+), macrophage colony-stimulating factor(+), interleukin-6(-)) relative to either monocyte-derived macrophages or bone marrow. TM were infected in vitro with R5 and X4/R5-tropic HIV-1 subtypes, and developed syncytia formation during long-term X4/R5 culture. In contrast, TM supported only transient replication of X4-tropic HIV-1. Lastly, infection of TM with HIV-1 abolished the production of all cytokines tested in long-term in vitro cultures. CONCLUSIONS Taken together, these results indicate that TM are a potential direct target of in situ HIV-1 infection, and that this infection may result in the disruption of macrophage functions that govern normal thymocyte maturation.
Collapse
Affiliation(s)
- Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
Chrobak P, Simard MC, Bouchard N, Ndolo TM, Guertin J, Hanna Z, Dave V, Jolicoeur P. HIV-1 Nef Disrupts Maturation of CD4+T Cells through CD4/Lck Modulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3948-59. [DOI: 10.4049/jimmunol.1001064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Chen S, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Cui H, Zhou Y, Wang Y, Xu Z, Chen Z, Chen X, Wang X. Histopathology, immunohistochemistry, in situ apoptosis, and ultrastructure characterization of the digestive and lymphoid organs of new type gosling viral enteritis virus experimentally infected gosling. Poult Sci 2010; 89:668-80. [DOI: 10.3382/ps.2009-00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Hooker DJ, Cherry CL. Apoptosis: a clinically useful measure of antiretroviral drug toxicity? Expert Opin Drug Metab Toxicol 2010; 5:1543-53. [PMID: 19785516 DOI: 10.1517/17425250903282781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antiretroviral therapy (ART) has improved life expectancy with HIV infection, but long-term toxicities associated with these medications are now a major global disease burden. There is a clear need to develop useful methods for monitoring patients on antiretroviral drugs for early signs of toxicity. Assays with predictive utility -- allowing therapy to be changed before serious end organ damage occurs -- would be ideal. Attempts to develop biochemical methods of monitoring ART toxicity have concentrated on the mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors and have not generally lead to assays with widespread clinical applications. For example, plasma lactate and peripheral blood measurements of mitochondrial DNA associate with exposure to potentially toxic nucleoside analogue reverse transcriptase inhibitors but have not reliably predicted clinical toxicity. Better assays are needed, including markers of toxicity from additional drug classes. Apoptosis may be a potential marker of ART toxicity. Increased apoptosis has been demonstrated both in vitro and in vivo in association with various antiretroviral drug classes and a range of clinical toxicities. However, quantifying apoptosis on biopsy specimens of tissue (such as adipose tissue) is impractical for patient monitoring. Novel assays have been described that can quantify apoptosis using minute tissue samples and initial results from clinical samples suggest peripheral blood may have utility in predicting ART toxicities. The limitations and potential of such techniques for monitoring patients for drug side effects will be discussed.
Collapse
|
30
|
The heptad repeat 2 domain is a major determinant for enhanced human immunodeficiency virus type 1 (HIV-1) fusion and pathogenicity of a highly pathogenic HIV-1 Env. J Virol 2009; 83:11715-25. [PMID: 19726524 DOI: 10.1128/jvi.00649-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-mediated depletion of CD4+ lymphocytes in an infected individual is the hallmark of progression to AIDS. However, the mechanism for this depletion remains unclear. To identify mechanisms of HIV-1-mediated CD4 T-cell death, two similar viral isolates obtained from a rapid progressor patient with significantly different pathogenic phenotypes were studied. One isolate (R3A) demonstrates enhanced pathogenesis in both in vivo models and relevant ex vivo lymphoid organ model systems compared to another isolate, R3B. The pathogenic determinants were previously mapped to the V5-gp41 envelope region, correlating functionally with enhanced fusion activity and elevated CXCR4 binding affinity. To further elucidate specific differences between R3A and R3B within the V5-gp41 domains that enhance CD4 depletion, R3A-R3B chimeras to study the V5-gp41 region were developed. Our data demonstrate that six residues in the ectodomain of R3A provide the major determinant for both enhanced Env-cell fusion and pathogenicity. Furthermore, three amino acid differences in the heptad repeat 2 (HR-2) domain of R3A determined its fusion activity and significantly elevated its pathogenic activity. The chimeric viruses with enhanced fusion activity, but not elevated CXCR4 affinity, correlated with high pathogenicity in the thymus organ. We conclude that the functional domain of a highly pathogenic HIV-1 Env is determined by mutations in the HR-2 region that contribute to enhanced fusion and CD4 T-cell depletion.
Collapse
|
31
|
Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 2009; 6:76. [PMID: 19674458 PMCID: PMC2743631 DOI: 10.1186/1742-4690-6-76] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/12/2009] [Indexed: 01/10/2023] Open
Abstract
The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2rγ-/-, and NOD/SCID β2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-γc-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol 2009; 83:9743-58. [PMID: 19605470 DOI: 10.1128/jvi.00125-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that CD4C/human immunodeficiency virus (HIV)(Nef) transgenic (Tg) mice, expressing Nef in CD4(+) T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4(+) T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4(+) T cells, DCs, and macrophages (CD4E/HIV(Nef)); in CD4(+) T cells and DCs (mCD4/HIV(Nef) and CD4F/HIV(Nef)); in macrophages and DCs (CD68/HIV(Nef)); or mainly in DCs (CD11c/HIV(Nef)). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIV(Nef) Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4(+) T cells showed CD4(+) T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4(+) T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.
Collapse
|
33
|
Abstract
A complex relationship exists between HIV and its cellular targets. The lethal effect of HIV on circulating CD4(+) helper T lymphocytes parallels the degree of the infected individual's immunodeficiency and ultimately the transition to AIDS and death. However, as with other members of the Lentivirus family of retroviruses, the ubiquitous, mobile macrophage is also a prime target for HIV infection, and apparently, in most instances, is the initial infected cell, since most people are infected with a CCR5 chemokine-tropic virus. Unlike the lymphocyte, the macrophage is apparently a more stable viral host, capable of a long infected life as an HIV reservoir and a chronic source of infectious virus. Published in vitro studies have indicated that whereas lymphocytes replicate HIV solely on their plasma membrane, macrophages have been envisaged to predominantly replicate HIV within cytoplasmic vacuoles, and thus have been likened to a "Trojan horse," when it comes to the immune system. Recent studies have revealed an ingenious way by which the cultured monocyte-derived macrophage (MDM) replicates HIV and releases it into the medium. The key macrophage organelle appears to be what is alternatively referred to as the "late endosome" (LE) or the "multivesicular body" (MVB), which have a short and a long history, respectively. Proof of the association is that chemically, LE/MVB and their vesicles possess several pathopneumonic membrane markers (e.g., CD63) that are found on released HIV particles. The hypothesis is that HIV usurps this vesicle-forming mechanism and employs it for its own replication. Release of the intravacuolar virus from the cell is hypothesized to occur by a process referred to as exocytosis, resulting from the fusion of virus-laden LE/MVB with the plasma membrane of the macrophage. Interestingly, LE/MVB are also involved in the infection stage of MDM by HIV. Close review of the literature reveals that along with the Golgi, which contributes to the formation of LE/MVB, the MVB was first identified as a site of HIV replication by macrophages many years ago, but the full implication of this observation was not appreciated at the time. As in many other areas of HIV research, what has been totally lacking is an in vivo confirmation of the in vitro phenomenon. Herein, the ultrastructure of HIV interaction with cells in vitro and in vivo is explored. It is shown that while HIV is regularly found in LE/MVB in vitro, it is infrequently the case in vivo. Therefore, the results challenge the "Trojan horse" concept.
Collapse
Affiliation(s)
- Jan Marc Orenstein
- Department of Pathology, George Washington University Medical Center, Washington, DC 20037-2336, USA.
| |
Collapse
|
34
|
Ahmad N. THE VERTICAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1: Molecular and Biological Properties of the Virus. Crit Rev Clin Lab Sci 2008; 42:1-34. [PMID: 15697169 DOI: 10.1080/10408360490512520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertical (mother-to-infant) transmission of human immunodeficiency virus type 1 (HIV-1 ) occurs at an estimated rate of more than 30% and is the major cause of AIDS in children. Numerous maternal parameters, including advanced dinical stages, low CD4+ lymphocte counts, high viral load, immune response, and disease progression have been implicated in an increased risk of vertical transmission. While the use of antiretroviral therapy (ART) during pregnancy has been shown to reduce the risk of vertical transmission, selective transmission of ART-resistant mutants has also been documented. Elucidation of the molecular mechanisms of vertical transmission might provide relevant information for the development of effective strategies for prevention and treatment. By using HIV-1 infected mother-infant pairs as a transmitter-recipient model, the minor genotypes of HIV-1 with macrophage-tropic and non-syncytium-inducing phenotypes (R5 viruses) in infected mothers were found to be transmitted to their infants and were initially maintained in the infants with the same properties. In addition, the transmission of major and multiple genotypes has been suggested. Furthermore, HIV-1 sequences found in non-transmitting mothers (mothers who failed to transmit HIV-1 to their infants in the absence of ART) were less heterogeneous than those from transmitting mothers, suggesting that viral heterogeneity may play an important role in vertical transmission. In the analysis of other regions of the HIV-1 genome, we have shown a high conservation of intact and functional gag p17, vif, vpr, vpu, tat, and nef open reading frames following mother-to-infant transmission. Moreover the accessory genes, vif and vpr, were less functionally conserved in the isolates of non-transmitting mothers than transmitting mothers and their infants. We, therefore, should target the properties of transmitted viruses to develop new and more effective strategies for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| |
Collapse
|
35
|
Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol 2008; 214:231-41. [PMID: 18161758 DOI: 10.1002/path.2276] [Citation(s) in RCA: 553] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thorough research on HIV is progressively enabling us to understand the intricate mechanisms that link HIV-1 infection to the onset of immunodeficiency. The infection and depletion of CD4(+) T cells represent the most fundamental events in HIV-1 infection. However, in recent years, the role played by chronic immune activation and inflammation in HIV pathogenesis has become increasingly apparent: quite paradoxically, immune activation levels are directly associated with HIV-1 disease progression. In addition, HIV-1-infected patients present intriguing similarities with individuals of old age: their immune systems are characterized by a loss of regenerative capacity and an accumulation of ageing T cells. In this review, we discuss the potential reasons for the establishment of sustained immune activation and inflammation from the early stages of HIV-1 infection, as well as the long-term consequences of this process on the host immune system and health. A simplified model of HIV pathogenesis is proposed, which links together the three major facets of HIV-1 infection: the massive depletion of CD4(+) T cells, the paradoxical immune activation and the exhaustion of regenerative capacity.
Collapse
Affiliation(s)
- V Appay
- Cellular Immunology Laboratory, INSERM U543, Hopital Pitie-Salpetriere, Université Pierre et Marie Curie-Paris6, Paris, France.
| | | |
Collapse
|
36
|
Abstract
Inbred mice with specific genetic defects have greatly facilitated the analysis of complex biological events. Several humanized mouse models using the C.B.-17 scid/scid mouse (referred to as the SCID mouse) have been created from two transplantation protocols, and these mice have been utilized for the investigation of human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) pathogenesis and the evaluation of antiviral compounds. To generate a more prominent small animal model for human retrovirus infection, especially for examination of the pathological process and the immune reaction, a novel immunodeficient mouse strain derived from the NOD SCID mouse was created by backcrossing with a common gamma chain (gamma(c))-knockout mouse. The NOD-SCID gamma(c)null (NOG) mouse has neither functional T and B cells nor NK cells and has been used as a recipient in humanized mouse models for transplantation of human immune cells particularly including hematopoietic stem cells (HSC). From recent advances in development of humanized mice, we are now able to provide a new version of the animal model for human retrovirus infection and human immunity.
Collapse
|
37
|
Ahmad N. Molecular Mechanisms of HIV-1 Vertical Transmission and Pathogenesis in Infants. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:453-508. [DOI: 10.1016/s1054-3589(07)56015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Nonprimate models of HIV-1 infection and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:399-422. [PMID: 18086419 DOI: 10.1016/s1054-3589(07)56013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN, Moreno ME, Rivera JM, Ronquillo RE, Sloan B, Black PL. Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS One 2007; 2:e655. [PMID: 17668043 PMCID: PMC1925140 DOI: 10.1371/journal.pone.0000655] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/20/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals. METHODOLOGY/PRINCIPAL FINDINGS Endpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions. CONCLUSION Given the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Gladstone Institute of Virology and Immunology, University of California at San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 2006; 3:76. [PMID: 17078891 PMCID: PMC1635423 DOI: 10.1186/1742-4690-3-76] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022] Open
Abstract
Background The currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2-/-γc-/- mouse model (RAG-hu) created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis. Results Here we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation. Conclusion The humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this model mirrors the main features of HIV infection in the human. Thus, the RAG-hu mouse model of HIV-1 infection shows great promise for future in vivo pathogenesis studies, evaluation of new drug treatments, vaccines and novel gene therapy strategies.
Collapse
Affiliation(s)
- Bradford K Berges
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - William H Wheat
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Elizabeth Connick
- Division of Infectious Disease, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
41
|
Choudhary SK, Walker RM, Powell DM, Planelles V, Walsh C, Camerini D. CXCR4 tropic human immunodeficiency virus type 1 induces an apoptotic cascade in immature infected thymocytes that resembles thymocyte negative selection. Virology 2006; 352:268-84. [PMID: 16777169 DOI: 10.1016/j.virol.2006.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/05/2006] [Accepted: 04/27/2006] [Indexed: 11/25/2022]
Abstract
HIV-1 often replicates in the thymus of infected individuals, causing thymocyte depletion and thymic dysfunction. Nevertheless, the mechanisms by which thymocyte depletion occurs are not clear. Here we report that HIV-1 infection induced apoptosis primarily in productively infected thymocytes; aldrithiol-2 or Efavirenz treatment largely abrogated HIV-1-induced apoptosis. Moreover, X4-HIV-1 induced apoptosis primarily in immature CD4+ CD8+ (DP) thymocytes whereas most mature CD4 or CD8 single-positive (SP) thymocytes were resistant to X4 HIV-1-induced apoptosis despite infection. Consistent with this, we observed significant induction of several genes involved in negative selection of DP thymocytes. Furthermore, treatment of thymocytes with cycloheximide abrogated HIV-1-induced apoptosis, implying a requirement for de novo protein synthesis. Our results suggest that HIV-1-induced apoptosis of thymocytes requires the activation of caspases and the participation of mitochondrial apoptosis effectors, which serve to amplify the apoptotic signal, a process similar to that elaborated during thymocyte negative selection.
Collapse
Affiliation(s)
- Shailesh K Choudhary
- Department of Molecular Biology and Biochemistry, Center for Immunology and Center for Virus Research, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lopez MC, Watson RR. Alterations in mesenteric lymph node T cell phenotype and cytokine secretion are associated with changes in thymocyte phenotype after LP-BM5 retrovirus infection. Clin Dev Immunol 2006; 12:249-57. [PMID: 16584110 PMCID: PMC2270737 DOI: 10.1080/17402520500303339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7(+) cells and an increase in the percentage of IL-16(+) cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-gamma secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-gamma secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4(+)CD8(-) or CD4(-)CD8(+) cells was due to accumulation of both immature (CD3(-)) and mature (CD3(+)) single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cytokines/metabolism
- Female
- Immunophenotyping
- Leukemia Virus, Murine/immunology
- Leukemia, Experimental/immunology
- Leukemia, Experimental/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Mice, Inbred C57BL
- Receptors, Interleukin-7/biosynthesis
- Receptors, Interleukin-7/genetics
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Retroviridae Infections/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Maria C Lopez
- Health Promotion Sciences, Enid and Mel Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
43
|
Schmitt N, Nugeyre MT, Scott-Algara D, Cumont MC, Barré-Sinoussi F, Pancino G, Israël N. Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection. AIDS 2006; 20:533-42. [PMID: 16470117 DOI: 10.1097/01.aids.0000210607.63138.bc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Human thymus can be infected by HIV-1 with potential consequences on immune regeneration and homeostasis. We previously showed that CD4 thymocytes preferentially replicate CXCR4 tropic (X4) HIV-1 dependently on interleukin (IL)-7. Here we addressed the susceptibility of thymic dendritic cells (DC) to HIV-1 infection. METHODS We investigated the replication ability of CXCR4 or CCR5 (R5) tropic HIV-1 in thymic micro-explants as well as in isolated thymic CD11clowCD14- DC, CD11chighCD14+ DC and plasmacytoid DC subsets. RESULTS Thymic tissue was productively infected by both X4 and R5 viruses. However, X4 but not R5 HIV-1 replication was enhanced by IL-7 in thymic micro-explants, suggesting that R5 virus replication occurred in cells other than thymocytes. Indeed, we found that R5 HIV-1 replicated efficiently in DC isolated from thymic tissue. The replicative capacity of X4 and R5 viruses differed according to the different DC subsets. R5 but not X4 HIV-1 efficiently replicated in CD11chighCD14+ DC. In contrast, no HIV-1 replication was detected in CD11clowCD14- DC. Both X4 and R5 viruses efficiently replicated in plasmacytoid DC, which secreted interferon-alpha upon HIV-1 exposure. Productive HIV-1 infection also caused DC loss, consistent with different permissivity of each DC subset. CONCLUSIONS Thymic DC sustain high levels of HIV-1 replication. DC might thus be the first target for R5 HIV-1 infection of thymus, acting as a Trojan horse for HIV-1 spread to thymocytes. Furthermore, DC death induced by HIV-1 infection may affect thymopoiesis.
Collapse
Affiliation(s)
- Nathalie Schmitt
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Meireles-de-Souza LR, Shattock RJ. Therapeutic role of CD8+ T cells in HIV-1 infection: targets and suppressors of viral replication. Expert Opin Biol Ther 2005; 5:321-32. [PMID: 15833070 DOI: 10.1517/14712598.5.3.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD8+ T cells are pivotal in controlling viral replication in HIV-1-infected subjects. However, in chronic infection, HIV-1-specific CD8+ T cells fail to adequately control infection, presenting incomplete maturation and more severe functional impairment with advanced disease. Accumulating evidence has shown that CD8+ T cells can also be productively infected by HIV-1. Whether HIV-1 infection of CD8+ T lymphocytes impacts on their antiviral activity remains to be determined. This review explores the potential mechanisms of HIV-1 infection of CD8+ T cells, its likely contribution to the immunopathogenesis of HIV-1 infection and potential therapeutic interventions.
Collapse
|
45
|
Affiliation(s)
- I L Weissman
- Departments of Pathology and Developmental Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
46
|
Koka PS, Kitchen CMR, Reddy ST. Targeting c-Mpl for revival of human immunodeficiency virus type 1-induced hematopoietic inhibition when CD34+ progenitor cells are re-engrafted into a fresh stromal microenvironment in vivo. J Virol 2004; 78:11385-92. [PMID: 15452260 PMCID: PMC521839 DOI: 10.1128/jvi.78.20.11385-11392.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of multilineage hematopoiesis which occurs in the severe combined immunodeficiency mouse with transplanted human fetal thymus and liver tissues (SCID-hu Thy/Liv) due to human immunodeficiency virus type 1 (HIV-1) infection is also accompanied by a severe loss of c-Mpl expression on these progenitor cells. Inhibition of colony-forming activity (CFA) of the CD34(+) progenitor cells is partially revived to about 40% of mock-infected Thy/Liv implants, following reconstitution of the CD34(+) cells that were exposed to HIV-1 infection, in a new Thy/Liv stromal microenvironment of irradiated secondary SCID-hu recipients at 3 weeks post-re-engraftment. In addition, in these reconstituted animals, the proportion of c-Mpl(+) CD34(+) cells relative to c-Mpl(-) CD34(+) cells increased by about 25%, to 35% of mock-infected implants, suggesting a reacquirement of c-Mpl phenotype by the c-Mpl(-) CD34(+) cells. These results suggest a correlation between c-Mpl expression and multilineage CFA of the human CD34(+) progenitor cells that have experienced the effects of HIV-1 infection. Treatment of the secondary-recipient animals with the c-Mpl ligand, thrombopoietin (Tpo), further increased c-Mpl expression and CFA of re-engrafted CD34(+) cells previously exposed to virus in the primary implants to about 50 to 70% over that of those re-engrafted CD34(+) cells derived from implants of untreated animals. Blocking of c-Mpl with anti-c-Mpl monoclonal antibody in vivo by injecting the SCID-hu animals resulted in the reduction or loss of CFA. Thus, inhibition, absence, or loss of c-Mpl expression as in the c-Mpl(-) CD34(+) subset of cells is the likely cause of CFA inhibition. Further, CFA of the CD34(+) cells segregates with their c-Mpl expression. Therefore, c-Mpl may play a role in hematopoietic inhibition during HIV-1 infection, and control of its expression levels may aid in hematopoietic recovery and thereby reduce the incidence of cytopenias occurring in infected individuals.
Collapse
Affiliation(s)
- Prasad S Koka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California-Los Angeles, 23-120 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095-1735.
| | | | | |
Collapse
|
47
|
Resino S, Galán I, Pérez A, León JA, Seoane E, Gurbindo D, Muñoz-Fernandez MA. HIV-infected children with moderate/severe immune-suppression: changes in the immune system after highly active antiretroviral therapy. Clin Exp Immunol 2004; 137:570-7. [PMID: 15320908 PMCID: PMC1809144 DOI: 10.1111/j.1365-2249.2004.02583.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to monitor the changes in the immune system of HIV-infected children with moderate or severe immunodeficiency after highly active antiretroviral therapy (HAART), comprising a follow-up study in 14 HIV-infected children on HAART at two time points separated approximately by 11.8 +/- 0.4 (9.9; 15.4) months. HIV-infected children had significantly lower TREC levels than the control group, but 1 year after HAART the levels increased significantly (P < 0.05). In contrast, viral load (VL) did not change significantly. A positive correlation between T cell receptor excision circle (TREC) levels and both CD4(+) T cell absolute counts (r = 0.558; P = 0.05) and percentages (r = 0.625; P = 0.030) was found. During follow-up on HAART, the percentages and absolute counts of naive CD4(+) and CD8(+) T cell subsets were increased significantly (P < 0.05). CD4(+) CD45RA(hi+) CD62L(+), CD4(+) CD45RA(+) and CD4(+) CD38(+) percentages, and the CD8(+) CD45RA(hi+) CD62L(+) counts reached similar values to the control group. Also, CD8(+) CD45RO(+) CD38(+) and CD8(+) CD45RO(+) percentages, and CD8(+) CD45RO(+) CD38(+) absolute counts (P < 0.05) decreased with respect to the baseline. Lymphoproliferative responses to pokeweed mitogen (PWM) before HAART were lower in HIV-infected children than the control group, but they recovered to normal levels after a year on HAART. Tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma production by PHA-activated peripheral blood mononuclear cells (PBMC) was lower before HAART (P < 0.001), but reached similar levels to the control group 1 year after HAART. In HIV-infected children IgG, IgG(1) and IgG(3) plasma levels decreased significantly after HAART. The immune system reconstitution induced by HAART in HIV-infected children seems to be the consequence of decreased immune system activation and naive T cell reconstitution, mainly of thymic origin.
Collapse
Affiliation(s)
- S Resino
- Immunobiology Molecular Laboratory, Hospital General Universitario Gregorio Maranón Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The hematopoietic system generally has reserve sufficient to tolerate significant insult and regenerative capacity to overcome most damage due to infectious agents. However, HIV infection results in a progressive decline in hematopoietic function and even in the context of potent, anti-retroviral therapy is able to only incompletely reconstitute immune function. The ability of the immune system to respond to HIV itself remains compromised, a defect that leaves infected individuals with a lifelong dependence on medications. The capability of stem cells and the thymus to restore function and their limitations in the context of HIV infection are discussed in this review.
Collapse
Affiliation(s)
- David T Scadden
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
49
|
Pires A, Pido-Lopez J, Moyle G, Gazzard B, Gotch F, Imami N. Enhanced T-Cell Maturation, Differentiation and Function in HIV-1-Infected Individuals after Growth Hormone and Highly Active Antiretroviral Therapy. Antivir Ther 2004. [DOI: 10.1177/135965350400900110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Strong virus-specific helper and cytotoxic T-cell responses correlate with non-progression during HIV-1 infection. Administration of antiretroviral therapy (ART) during the chronic phases of HIV-1 infection fails to restore these responses in most patients. Design and methods We assessed the changes in immune function of 12 HIV-1-positive individuals treated with ART for over 4 years, who received 4 mg/day of recombinant human growth hormone (rhGH) for 12 weeks and were then randomized into groups receiving either placebo, twice weekly or alternate day dosing of rhGH. Peripheral blood was drawn for phenotypic analysis and functional assays at time points 0, 12 and 24 weeks. Results At week 12, we observed significant increases in naive CD4 T cells ( P<0.01) and effector CD8 T cells based on CD45RA and CCR7 expression ( P<0.02). In addition, we observed a rise in HIV-1 antigen-specific CD4 ( P<0.005) and CD8 ( P<0.05) T-cell responses. Twelve weeks post-randomization into placebo, alternate day or twice weekly dosing (24 weeks post-baseline), the phenotype and function of the virus-specific effector CD8 T cells seen at week 12 was maintained in most patients regardless of randomization arm and despite the disappearance of HIV-1-specific CD4 T-cell responses. Conclusions Concomitant administration of rhGH at 4 mg/day with highly active ART appears to partially reverse some of the defects exerted on the immune system by HIV-1. This combination may represent a valuable immunotherapeutic intervention aiding in the treatment of chronic HIV-1 infection.
Collapse
Affiliation(s)
- Antonio Pires
- Department of Immunology, Imperial College, Chelsea & Westminster Hospital, London, UK
| | - Jeffrey Pido-Lopez
- Department of Immunology, Imperial College, Chelsea & Westminster Hospital, London, UK
| | - Graeme Moyle
- Department of HIV/GU Medicine, Imperial College, Chelsea & Westminster Hospital, London, UK
| | - Brian Gazzard
- Department of HIV/GU Medicine, Imperial College, Chelsea & Westminster Hospital, London, UK
| | - Frances Gotch
- Department of Immunology, Imperial College, Chelsea & Westminster Hospital, London, UK
| | - Nesrina Imami
- Department of Immunology, Imperial College, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
50
|
Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 2003; 74:736-49. [PMID: 12960235 DOI: 10.1189/jlb.0403180] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription is a crucial step for human immunodeficiency virus type 1 (HIV-1) expression in all infected host cells, from T lymphocytes, thymocytes, monocytes, macrophages, and dendritic cells in the immune system up to microglial cells in the central nervous system. To maximize its replication, HIV-1 adapts transcription of its integrated proviral genome by ideally exploiting the specific cellular environment and by forcing cellular stimulatory events and impairing transcriptional inhibition. Multiple cell type-specific interplays between cellular and viral factors perform the challenge for the virus to leave latency and actively replicate in a great diversity of cells, despite the variability of its long terminal repeat region in different HIV strains. Knowledge about the molecular mechanisms underlying transcriptional regulatory events helps in the search for therapeutic agents that target the step of transcription in anti-HIV strategies.
Collapse
Affiliation(s)
- Olivier Rohr
- Institut National de la Santé Recherche Médicale Unité, Strasbourg, France
| | | | | | | |
Collapse
|