1
|
Porat J, Flynn RA. Cell surface RNA biology: new roles for RNA binding proteins. Trends Biochem Sci 2025; 50:402-416. [PMID: 40157881 PMCID: PMC12048239 DOI: 10.1016/j.tibs.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Much of our understanding of RNA-protein interactions, and how these interactions shape gene expression and cell state, have come from studies looking at these interactions in vitro or inside the cell. However, recent data demonstrates the presence of extracellular and cell surface-associated RNA such as glycosylated RNA (glycoRNA), suggesting an entirely new environment and cellular topology in which to study RNA-RNA binding protein (RBP) interactions. Here, we explore emerging ideas regarding the landscape of cell surface RNA and RBPs. We also discuss open questions concerning the trafficking and anchoring of RBPs to the cell surface, whether cell surface RBPs (csRBPs) directly interact with cell surface RNA, and how changes in the presentation of csRBPs may drive autoimmune responses.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
3
|
Quan L, Dai J, Luo Y, Wang L, Liu Y, Meng J, Yang F, You X. The 100 top-cited studies in systemic lupus erythematosus: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2387461. [PMID: 39149877 PMCID: PMC11328883 DOI: 10.1080/21645515.2024.2387461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory tissue disease. In view of the explosive growth in research on SLE, bibliometrics was performed to evaluate the 100 top-cited papers in this realm. We performed the search with terms "systemic lupus erythematosus" the Web of Science Core Collection database on May 3, 2023. Relevant literatures were screened. Data were extracted and analyzed by SPSS. The citations of 100 top-cited SLE studies spanned from 472 to 13,557. Most studies (60 out of 100) were conducted in the United States. Total citation times were positively associated with ACY, which was negatively correlated with the length of time since publication. Approximately half of the studies focused on the underlying mechanisms of SLE. New biologic therapies garnered attention and development. Our findings provide valuable insights into the developments in crucial areas of SLE and shed contributions to future studies.
Collapse
Affiliation(s)
- Liuliu Quan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiawen Dai
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Luo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin Wang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yue Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaqi Meng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Fan Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Nuñez M, Carvajal P, Aguilera S, Barrera MJ, Matus S, Couto A, Landoni M, Boncompain G, González S, Molina C, Pino K, Indo S, Figueroa L, González MJ, Castro I. Giantin mediates Golgi localization of Gal3-O-sulfotransferases and affects salivary mucin sulfation in patients with Sjögren's disease. JCI Insight 2024; 9:e171585. [PMID: 39388276 PMCID: PMC11601944 DOI: 10.1172/jci.insight.171585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Sjögren's disease is a chronic autoimmune disease characterized by symptoms of oral and ocular dryness and extraglandular manifestations. Mouth dryness is not only due to reduced saliva volume, but also to alterations in the quality of salivary mucins in patients with Sjögren's disease. Mucins play a leading role in mucosa hydration and protection, where sulfated and sialylated oligosaccharides retain water molecules at the epithelial surface. The correct localization of glycosyltransferases and sulfotransferases within the Golgi apparatus determines adequate O-glycosylation and sulfation of mucins, which depends on specific golgins that tether enzyme-bearing vesicles. Here, we show that a golgin called Giantin was mislocalized in salivary glands from patients with Sjögren's disease and formed protein complexes with Gal3-O-sulfotransferases (Gal3STs), which changed their localization in Giantin-knockout and -knockdown cells. Our results suggest that Giantin could tether Gal3ST-bearing vesicles and that its altered localization could affect Gal3ST activity, explaining the decreased sulfation of MUC5B observed in salivary glands from patients with Sjögren's disease.
Collapse
Affiliation(s)
- Matilde Nuñez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Soledad Matus
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Alicia Couto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Malena Landoni
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Karina Pino
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastián Indo
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lourdes Figueroa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Klein B, Nguyen NTK, Moallemian R, Kahlenberg JM. Keratinocytes - Amplifiers of Immune Responses in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2024; 27:1. [PMID: 39570551 DOI: 10.1007/s11926-024-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW Epithelial cells have been acknowledged as important players in autoimmune diseases by directing and enhancing inflammatory responses. Here, we summarize recent publications that examine keratinocyte (KC) dysfunction and its contribution to cutaneous and systemic disease in systemic lupus erythematosus patients. RECENT FINDINGS Chronic upregulation of type I interferon (IFN) in KCs is a feature of both lesional and nonlesional lupus skin. This IFN rich environment modulates epidermal cell death responses and promotes inflammatory responses to UV light exposure. In addition, newer technologies such as single cell RNA-seq are informing our understanding of lupus-specific intercellular crosstalk and how this contributes to disease. Recent discoveries in KC dysfunction in lupus skin include aberrant IFN responses to environmental stress, enhanced cytokine and chemokine secretion and epigenetic changes leading to increased cell death. Further research will enable precision therapies for lupus treatment.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Nguyen Thi Kim Nguyen
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Rezvan Moallemian
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Dermatology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
6
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Graney PL, Li V, Lamberti MJ, Liberman M, Kim Y, Tavakol DN, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1123-1139. [PMID: 39195859 PMCID: PMC11399098 DOI: 10.1038/s44161-024-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms of myocardial injury in SLE remain poorly understood. In this study, we engineered human cardiac tissues and cultured them with IgG from patients with SLE, with and without myocardial involvement. IgG from patients with elevated myocardial inflammation exhibited increased binding to apoptotic cells within cardiac tissues subjected to stress, whereas IgG from patients with systolic dysfunction exhibited enhanced binding to the surface of live cardiomyocytes. Functional assays and RNA sequencing revealed that, in the absence of immune cells, IgG from patients with systolic dysfunction altered cellular composition, respiration and calcium handling. Phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. Coupling IgG profiling with cell surfaceome analysis identified four potential pathogenic autoantibodies that may directly affect the myocardium. Overall, these insights may improve patient risk stratification and inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Daniel N Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- College of Dental Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Pickering MC, Botto M. Canonical and noncanonical functions of complement in systemic lupus erythematosus. Eur J Immunol 2024; 54:e2350918. [PMID: 38629181 DOI: 10.1002/eji.202350918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/07/2024]
Abstract
For many years complement activation in systemic lupus erythematosus (SLE) was viewed as a major cause of tissue injury. However, human and murine studies showed that complement plays a protective as well as a proinflammatory role in tissue damage. A hierarchy is apparent with early classical pathway components, particularly C1q, exerting the greatest influence. Understanding the mechanisms underlying the protective function(s) of complement remains an important challenge for the future and has implications for the use of complement therapy in SLE. We review recent advances in the field and give a new perspective on the complement conundrum in SLE.
Collapse
Affiliation(s)
- Matthew C Pickering
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Marina Botto
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
8
|
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm (Lond) 2024; 21:20. [PMID: 38867277 PMCID: PMC11170788 DOI: 10.1186/s12950-024-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.
Collapse
Affiliation(s)
- Shima Famil Samavati
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh HoseinKhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Steven Levitte
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Laniak OT, Winans T, Patel A, Park J, Perl A. Redox Pathogenesis in Rheumatic Diseases. ACR Open Rheumatol 2024; 6:334-346. [PMID: 38664977 PMCID: PMC11168917 DOI: 10.1002/acr2.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 06/14/2024] Open
Abstract
Despite being some of the most anecdotally well-known roads to pathogenesis, the mechanisms governing autoimmune rheumatic diseases are not yet fully understood. The overactivation of the cellular immune system and the characteristic development of autoantibodies have been linked to oxidative stress. Typical clinical manifestations, such as joint swelling and deformities and inflammation of the skin and internal organs, have also been connected directly or indirectly to redox mechanisms. The differences in generation and restraint of oxidative stress provide compelling evidence for the broad variety in pathology among rheumatic diseases and explain some of the common triggers and discordant manifestations in these diseases. Growing evidence of redox mechanisms in pathogenesis has provided a broad array of new potential therapeutic targets. Here, we explore the mechanisms by which oxidative stress is generated, explore its roles in autoimmunity and end-organ damage, and discuss how individual rheumatic diseases exhibit unique features that offer targets for therapeutic interventions.
Collapse
Affiliation(s)
- Olivia T. Laniak
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Thomas Winans
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Akshay Patel
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Joy Park
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Andras Perl
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| |
Collapse
|
10
|
Montorsi L, Pitcher MJ, Zhao Y, Dionisi C, Demonti A, Tull TJ, Dhami P, Ellis RJ, Bishop C, Sanderson JD, Jain S, D'Cruz D, Gibbons DL, Winkler TH, Bemark M, Ciccarelli FD, Spencer J. Double-negative B cells and DNASE1L3 colocalise with microbiota in gut-associated lymphoid tissue. Nat Commun 2024; 15:4051. [PMID: 38744839 PMCID: PMC11094119 DOI: 10.1038/s41467-024-48267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.
Collapse
Affiliation(s)
- Lucia Montorsi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alicia Demonti
- School of Immunology and Microbial Sciences, King's College London, London, UK
- École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Thomas J Tull
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard J Ellis
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cynthia Bishop
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Sahil Jain
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David D'Cruz
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Deena L Gibbons
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
11
|
Suvandjieva V, Tsacheva I, Santos M, Kararigas G, Rashkov P. Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus. Bull Math Biol 2024; 86:66. [PMID: 38678489 PMCID: PMC11056343 DOI: 10.1007/s11538-024-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.
Collapse
Affiliation(s)
- Vladimira Suvandjieva
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria
| | - Ivanka Tsacheva
- Faculty of Biology, Sofia University "Sveti Kliment Ohridski", bul. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Marlene Santos
- LAQV/REQUIMTE, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland
| | - Peter Rashkov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria.
| |
Collapse
|
12
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
13
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Li V, Lamberti MJ, Graney PL, Liberman M, Kim Y, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583787. [PMID: 38559188 PMCID: PMC10979865 DOI: 10.1101/2024.03.07.583787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Kleer JS, Skattum L, Dubler D, Fischer I, Zgraggen A, Mundwiler E, Kim MJ, Trendelenburg M. Complement C1s deficiency in a male Caucasian patient with systemic lupus erythematosus: a case report. Front Immunol 2024; 14:1257525. [PMID: 38469558 PMCID: PMC10925646 DOI: 10.3389/fimmu.2023.1257525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 03/13/2024] Open
Abstract
Deficiencies of the early complement components of the classical pathway (CP) are well-documented in association with systemic lupus erythematosus (SLE) or SLE-like syndromes and severe pyogenic infections. Among these, complete C1s deficiency has been reported in nine cases so far. Here, we describe a 34-year-old male patient who presented with severe, recurrent infections since childhood, including meningitides with pneumococci and meningococci, erysipelas, subcutaneous abscess, and recurrent infections of the upper airways. The patient also exhibited adult-onset SLE, meeting 7/11 of the ACR criteria and 34 of the 2019 EULAR/ACR classification criteria, along with class IV-G (A) proliferative lupus nephritis (LN). A screening of the complement cascade showed immeasurably low CH50, while the alternative pathway (AP) function was normal. Subsequent determination of complement components revealed undetectable C1s with low levels of C1r and C1q, normal C3, and slightly elevated C4 and C2 concentrations. The patient had no anti-C1q antibodies. Renal biopsy showed class IV-G (A) LN with complement C1q positivity along the glomerular basement membranes (GBMs) and weak deposition of IgG, IgM, and complement C3 and C4 in the mesangium and GBM. In an ELISA-based functional assay determining C4d deposition, the patient's absent complement activity was fully restored by adding C1s. The genome of the patient was analyzed by whole genome sequencing showing two truncating variants in the C1S gene. One mutation was located at nucleotide 514 in exon 5, caused by a nucleotide substitution from G to T, resulting in a nonsense mutation from Gly172 (p.Gly172*). The other mutation was located at nucleotide 750 in exon 7, where C was replaced by a G, resulting in a nonsense mutation from Tyr250 (p.Tyr250*). Both mutations create a premature stop codon and have not previously been reported in the literature. These genetic findings, combined with the absence of C1s in the circulation, strongly suggest a compound heterozygote C1s deficiency in our patient, without additional defect within the complement cascade. As in a previous C1s deficiency case, the patient responded well to rituximab. The present case highlights unanswered questions regarding the CP's role in SLE etiopathogenesis.
Collapse
Affiliation(s)
- Jessica S. Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, and Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden
| | - Denise Dubler
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingeborg Fischer
- Division of Pathology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Armin Zgraggen
- Division of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Esther Mundwiler
- Division of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Min Jeong Kim
- Division of Nephrology , Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
15
|
Rackaityte E, Proekt I, Miller HS, Ramesh A, Brooks JF, Kung AF, Mandel-Brehm C, Yu D, Zamecnik CR, Bair R, Vazquez SE, Sunshine S, Abram CL, Lowell CA, Rizzuto G, Wilson MR, Zikherman J, Anderson MS, DeRisi JL. Validation of a murine proteome-wide phage display library for identification of autoantibody specificities. JCI Insight 2023; 8:e174976. [PMID: 37934865 PMCID: PMC10795829 DOI: 10.1172/jci.insight.174976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and μMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.
Collapse
Affiliation(s)
| | | | - Haleigh S. Miller
- Department of Biochemistry and Biophysics
- Biological and Medical Informatics Program
| | - Akshaya Ramesh
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Jeremy F. Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, and
| | - Andrew F. Kung
- Department of Biochemistry and Biophysics
- Biological and Medical Informatics Program
| | | | - David Yu
- Diabetes Center, School of Medicine
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Rebecca Bair
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics
- Diabetes Center, School of Medicine
| | | | - Clare L. Abram
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Gabrielle Rizzuto
- Human Oncology & Pathogenesis Program and Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, and
| | | | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
16
|
Lescoat A, Bellando-Randone S, Campochiaro C, Del Galdo F, Denton CP, Farrington S, Galetti I, Khanna D, Kuwana M, Truchetet ME, Allanore Y, Matucci-Cerinic M. Beyond very early systemic sclerosis: deciphering pre‑scleroderma and its trajectories to open new avenues for preventive medicine. THE LANCET. RHEUMATOLOGY 2023; 5:e683-e694. [PMID: 38251534 DOI: 10.1016/s2665-9913(23)00212-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 01/23/2024]
Abstract
The identification of individuals with systemic sclerosis in an oligosymptomatic phase preceding the very early manifestations of the disease represents a challenge in the search for a new window of opportunity in systemic sclerosis. This phase could be identified in a clinical scenario as the pre-scleroderma phase, in which the disease would still be far from systemic sclerosis-related fibrotic or irreversible manifestations in skin or organs. In this Personal View, we discuss parameters and candidate definitions for a conceptual framework of pre-scleroderma, from the identification of populations at risk to autoantibodies and their potential functional activities. We discuss how this new paradigm of pre-scleroderma could represent a game-changing approach in the management of systemic sclerosis, allowing the treatment of patients at high risk of organ involvement or skin fibrosis before such events occur.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, University of Rennes 1, Rennes, France; Institut de Recherche en Sante, Environnement, et Travail, CHU Rennes, University of Rennes, Inserm, EHESP, Rennes, France.
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Division of Rheumatology, AOUC, Florence, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy, and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Christopher P Denton
- Centre for Rheumatology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Sue Farrington
- Scleroderma & Raynaud Society UK, London, UK; Federation of European Scleroderma Associations, Copenhagen, Denmark; Federation of European Scleroderma Associations, Budapest, Hungary; Federation of European Scleroderma Associations, London, UK
| | - Ilaria Galetti
- Federation of European Scleroderma Associations, Brussels, Belgium
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Marie-Elise Truchetet
- Department of Rheumatology, UMR5164 ImmunoConcept, Bordeaux University, Bordeaux University Hospital, CNRS, Bordeaux, France
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Division of Rheumatology, AOUC, Florence, Italy; Unit of Immunology, Rheumatology, Allergy, and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Wu KL, Martinez-Paniagua M, Reichel K, Menon PS, Deo S, Roysam B, Varadarajan N. Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks. Bioinformatics 2023; 39:btad584. [PMID: 37773981 PMCID: PMC10563152 DOI: 10.1093/bioinformatics/btad584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
MOTIVATION Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell-cell interaction assays. Prior studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and late indication of apoptotic onset for human melanoma cells. Our motivation is to improve the detection of apoptosis by directly detecting apoptotic bodies in a label-free manner. RESULTS Our trained ResNet50 network identified nanowells containing apoptotic bodies with 92% accuracy and predicted the onset of apoptosis with an error of one frame (5 min/frame). Our apoptotic body segmentation yielded an IoU accuracy of 75%, allowing associative identification of apoptotic cells. Our method detected apoptosis events, 70% of which were not detected by Annexin-V staining. AVAILABILITY AND IMPLEMENTATION Open-source code and sample data provided at https://github.com/kwu14victor/ApoBDproject.
Collapse
Affiliation(s)
- Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Prashant S Menon
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Shravani Deo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
19
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
20
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
21
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
22
|
Zou X, Lei Q, Luo X, Yin J, Chen S, Hao C, Shiyu L, Ma D. Advances in biological functions and applications of apoptotic vesicles. Cell Commun Signal 2023; 21:260. [PMID: 37749626 PMCID: PMC10519056 DOI: 10.1186/s12964-023-01251-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Apoptotic vesicles are extracellular vesicles generated by apoptotic cells that were previously regarded as containing waste or harmful substances but are now thought to play an important role in signal transduction and homeostasis regulation. METHODS In the present review, we reviewed many articles published over the past decades on the subtypes and formation of apoptotic vesicles and the existing applications of these vesicles. RESULTS Apoptotic bodies were once regarded as vesicles released by apoptotic cells, however, apoptotic vesicles are now regarded to include apoptotic bodies, apoptotic microvesicles and apoptotic exosomes, which exhibit variation in terms of biogenesis, sizes and properties. Applications of apoptotic vesicles were first reported long ago, but such reports have been rarer than those of other extracellular vesicles. At present, apoptotic vesicles have been utilized mainly in four aspects, including in direct therapeutic applications, in their engineering as carriers, in their construction as vaccines and in their utilization in diagnosis. CONCLUSION Building on a deeper understanding of their composition and characteristics, some studies have utilized apoptotic vesicles to treat diseases in more novel ways. However, their limitations for clinical translation, such as heterogeneity, have also emerged. In general, apoptotic vesicles have great application potential, but there are still many barriers to overcome in their investigation. Video Abstract.
Collapse
Affiliation(s)
- Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Qian Lei
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Jingyao Yin
- Department of Stomatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Liu Shiyu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi Province, 710032, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province, 510280, China.
| |
Collapse
|
23
|
Crawford JD, Wang H, Trejo-Zambrano D, Cimbro R, Talbot CC, Thomas MA, Curran AM, Girgis AA, Schroeder JT, Fava A, Goldman DW, Petri M, Rosen A, Antiochos B, Darrah E. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 2023; 8:e169344. [PMID: 37733447 PMCID: PMC10634230 DOI: 10.1172/jci.insight.169344] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a dramatic sex bias, affecting 9 times more women than men. Activation of Toll-like receptor 7 (TLR7) by self-RNA is a central pathogenic process leading to aberrant production of type I interferon (IFN) in SLE, but the specific RNA molecules that serve as TLR7 ligands have not been defined. By leveraging gene expression data and the known sequence specificity of TLR7, we identified the female-specific X-inactive specific transcript (XIST) long noncoding RNA as a uniquely rich source of TLR7 ligands in SLE. XIST RNA stimulated IFN-α production by plasmacytoid DCs in a TLR7-dependent manner, and deletion of XIST diminished the ability of whole cellular RNA to activate TLR7. XIST levels were elevated in blood leukocytes from women with SLE compared with controls, correlated positively with disease activity and the IFN signature, and were enriched in extracellular vesicles released from dying cells in vitro. Importantly, XIST was not IFN inducible, suggesting that XIST is a driver, rather than a consequence, of IFN in SLE. Overall, our work elucidated a role for XIST RNA as a female sex-specific danger signal underlying the sex bias in SLE.
Collapse
Affiliation(s)
| | - Hong Wang
- Division of Rheumatology, Department of Medicine
| | | | | | - C. Conover Talbot
- The Single Cell and Transcriptomics Core, Institute for Basic Biomedical Sciences; and
| | | | | | | | - John T. Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Fava
- Division of Rheumatology, Department of Medicine
| | | | | | - Antony Rosen
- Division of Rheumatology, Department of Medicine
| | | | - Erika Darrah
- Division of Rheumatology, Department of Medicine
| |
Collapse
|
24
|
Yin J, Fu J, Shao Y, Xu J, Li H, Chen C, Zhao Y, Zheng Z, Yu C, Zheng L, Wang B. CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4 + T cells in Sjogren's syndrome. Clin Exp Med 2023; 23:1691-1711. [PMID: 36413274 DOI: 10.1007/s10238-022-00939-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022]
Abstract
CYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4+ T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4+ T cells in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry indicated an increase in levels of lanosterol in T cells treated with ketoconazole during activation. Ketoconazole-induced blockade of the cholesterol synthesis pathway also caused Sterol regulatory element binding protein 2 (SREBP2) activation in CD4+ T cells. Additionally, ketoconazole treatment elicited an integrated stress response in T cells that up-regulated activating transcription factor 4 (ATF4) and DNA-damage inducible transcript 3 (DDIT3/CHOP) at the translational level. Furthermore, treatment with ketoconazole significantly decreased the amount of CD4+ T cells infiltrating lesions in the submandibular glands of NOD/Ltj mice. In summary, our results suggest that CYP51 plays an essential role in the proliferation and survival of CD4+ T cells, which makes ketoconazole an inhibitor of CD4+ T cell proliferation and of the SS-like autoimmune response through regulating the biosynthesis of cholesterol and inducing the integrated stress response.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, 1258 Fuxin Zhong Road, Shanghai, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
25
|
Gorbacheva V, Fan R, Miyairi S, Fairchild RL, Baldwin WM, Valujskikh A. Autoantibodies against DNA topoisomerase I promote renal allograft rejection by increasing alloreactive T cell responses. Am J Transplant 2023; 23:1307-1318. [PMID: 37084848 PMCID: PMC10524310 DOI: 10.1016/j.ajt.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
Antibodies reactive to self-antigens are an important component of posttransplant immune responses. The generation requirements and functions of autoantibodies, as well as the mechanisms of their influence on alloimmune responses, still remain to be determined. Our study investigated the contribution of autoimmunity during rejection of renal allografts. We have previously characterized a mouse model in which the acute rejection of a life-supporting kidney allograft is mediated by antibodies. At rejection, recipient sera screening against >4000 potential autoantigens revealed DNA topoisomerase I peptide 205-219 (TI-I205-219) as the most prominent epitope. Subsequent analysis showed TI-I205-219-reactive autoantibodies are induced in nonsensitized recipients of major histocompatibility complex-mismatched kidney allografts in a T cell-dependent manner. Immunization with TI-I205-219 broke self-tolerance, elicited TI-I205-219 immunoglobin G autoantibodies, and resulted in acute rejection of allogeneic but not syngeneic renal transplants. The graft loss was associated with increased priming of donor-reactive T cells but not with donor-specific alloantibodies elevation. Similarly, passive transfer of anti-TI-I205-219 sera following transplantation increased donor-reactive T cell activation with minimal effects on donor-specific alloantibody levels. The results identify DNA topoisomerase I as a novel self-antigen in transplant settings and demonstrate that autoantibodies enhance activation of donor-reactive T cells following renal transplantation.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
27
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
28
|
Chen SY, Wang CT, Chen CY, Kuo PY, Wang CR, Shiau AL, Chang CH, Wu CL. Galectin-3 Mediates NETosis and Acts as an Autoantigen in Systemic Lupus Erythematosus-Associated Diffuse Alveolar Haemorrhage. Int J Mol Sci 2023; 24:ijms24119493. [PMID: 37298447 DOI: 10.3390/ijms24119493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with enhanced NETosis and impaired degradation of neutrophil extracellular traps (NETs). Galectin-3 is a β-galactoside binding protein and is associated with neutrophil functions as well as involved in mediating autoimmune disorders. In this study, we plan to examine the associations of galectin-3 with the pathogenesis of SLE and NETosis. Galectin-3 expression levels were determined in peripheral blood mononuclear cells (PBMCs) of SLE patients for the association with lupus nephritis (LN) or correlation of SLE disease activity index 2000 (SLEDAI-2K). NETosis was observed in human normal and SLE and murine galectin-3 knockout (Gal-3 KO) neutrophils. Gal-3 KO and wild-type (WT) mice induced by pristane were used to evaluate disease signs, including diffuse alveolar haemorrhage (DAH), LN, proteinuria, anti-ribonucleoprotein (RNP) antibody, citrullinated histone 3 (CitH3) levels, and NETosis. Galectin-3 levels are higher in PBMCs of SLE patients compared with normal donors and positively correlated with LN or SLEDAI-2K. Gal-3 KO mice have higher percent survival and lower DAH, LN proteinuria, and anti-RNP antibody levels than WT mice induced by pristane. NETosis and citH3 levels are reduced in Gal-3 KO neutrophils. Furthermore, galectin-3 resides in NETs while human neutrophils undergo NETosis. Galectin-3-associated immune complex deposition can be observed in NETs from spontaneously NETotic cells of SLE patients. In this study, we provide clinical relevance of galectin-3 to the lupus phenotypes and the underlying mechanisms of galectin-3-mediated NETosis for developing novel therapeutic strategies targeting galectin-3 for SLE.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin-Yu Kuo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chrong-Reen Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Zhongxiao Road 539, East District, Chiayi 60002, Taiwan
| | - Cheng-Hsi Chang
- Department of Cardiovascular Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Zhongxiao Road 539, East District, Chiayi 60002, Taiwan
| |
Collapse
|
29
|
Lee AYS, Lin MW. Serological intermolecular epitope spreading in a patient with primary Sjögren's syndrome. BMJ Case Rep 2023; 16:16/5/e254632. [PMID: 37130648 PMCID: PMC10163431 DOI: 10.1136/bcr-2023-254632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome (SS) is one of the prototypic systemic autoimmune diseases characterised by autoreactive T and B cells, sicca symptoms and various extraglandular manifestations. SS is characterised by autoantibodies (anti-Ro52/tripartite motif containing-21 [TRIM21], anti-Ro60 and anti-La) that are important diagnostic biomarkers. Patients have typically stable serostatus; that is, patients who are positive for one or more of these autoantibodies tend to remain thus and vice versa. We describe a rare instance where a woman in her 50s was diagnosed with primary SS and developed new autoantibodies subsequently through serological epitope spreading. She demonstrated primarily glandular features only and clinical stability despite serological evolution. In this case report, we discuss the significance of this molecular feature and the clinical implications for our understanding of autoimmunity.
Collapse
Affiliation(s)
- Adrian Y S Lee
- Centre for Immunology & Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Clinical Immunology & Allergy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ming Wei Lin
- Centre for Immunology & Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Clinical Immunology & Allergy, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
30
|
Abdelaziz TS, Rakha NK, Fayad T, Mahmoud GA, Fayed A, Hammad H. Seasonal variation of lupus nephritis in a cohort of Egyptian patients. Clin Rheumatol 2023; 42:1013-1018. [PMID: 36385599 PMCID: PMC10017577 DOI: 10.1007/s10067-022-06442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus is an autoimmune multisystem disease; renal affection is one of its most common manifestations. The effect of environmental factors on lupus nephritis flares is not fully understood. METHODS This is a retrospective study that included 200 patients with lupus nephritis flares. All patients had confirmed diagnosis of lupus nephritis on histopathological examination. Lupus nephritis flares were defined by either (1) nephritic flare: defined as increased proteinuria or serum creatinine concentration; abnormal urinary sediment or a reduction in creatinine clearance, or (2) proteinuria flare defined as persistent increase in proteinuria > 0.5-1.0 g/day after achieving complete remission; doubling to > 1 g/day after achieving partial remission. The time of renal flare (month of the year) was recorded to determine the effect of seasonal variation on lupus nephritis flares. RESULTS The median age for the patients was 33 years (IQR = 13); 92% of patients were females. The median duration of lupus was 7 years (IQR = 6). The median serum creatinine was 1.4 mg/dl, median serum urea level was 32, and median UPCR was 2.4 gm/dl. The highest incidence of flares occurred in June (14%) and July (12.5%) (p = 0.003). CONCLUSION Seasonal pattern of LN flare was observed in our study in Egyptian cohort of patients, with most flares observed during meteorological summertime. Larger studies are needed to confirm this seasonal pattern. Key Points • Flares of lupus nephritis are common in patients with systemic lupus erythromatosus. • A seasonal pattern of flares of lupus nephritis was observed in our study. This seasonal pattern has been observed by previous studies in variable ethnicities and variable climatic circumstances.
Collapse
Affiliation(s)
- Tarek Samy Abdelaziz
- Department of Renal Medicine, KasrAlainy University Hospitals-Cairo University, AlSaraystreet, El Manial, Cairo, Egypt.
| | - Nehal K Rakha
- Department of Renal Medicine, KasrAlainy University Hospitals-Cairo University, AlSaraystreet, El Manial, Cairo, Egypt
| | - Tarek Fayad
- Department of Renal Medicine, KasrAlainy University Hospitals-Cairo University, AlSaraystreet, El Manial, Cairo, Egypt
| | - Geilan A Mahmoud
- Department of Rheumatology, Cairo University Hospitals, Cairo, Egypt
| | - Ahmed Fayed
- Department of Renal Medicine, KasrAlainy University Hospitals-Cairo University, AlSaraystreet, El Manial, Cairo, Egypt
| | - Hany Hammad
- Department of Renal Medicine, KasrAlainy University Hospitals-Cairo University, AlSaraystreet, El Manial, Cairo, Egypt
| |
Collapse
|
31
|
Miyagawa F. Current Knowledge of the Molecular Pathogenesis of Cutaneous Lupus Erythematosus. J Clin Med 2023; 12:987. [PMID: 36769633 PMCID: PMC9918007 DOI: 10.3390/jcm12030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease, which can be limited to the skin or associated with systemic lupus erythematosus (SLE). Gene expression analysis has revealed that both the innate and adaptive immune pathways are activated in CLE. Ultraviolet (UV) light, the predominant environmental factor associated with CLE, induces apoptosis in keratinocytes, and the endogenous nucleic acids released from the apoptotic cells are recognized via pattern recognition receptors, including Toll-like receptors. This leads to the production of type I interferon, a major contributor to the pathogenesis of CLE, by plasmacytoid dendritic cells. UV irradiation can also induce the externalization of autoantigens, such as SS-A/Ro, exposing them to circulating autoantibodies. T-helper 1 cells have been reported to play important roles in the adaptive immune response to CLE. Other environmental factors associated with CLE include drugs and cigarette smoke. Genetic factors also confer a predisposition to the development of CLE, and many susceptibility genes have been identified. Monogenetic forms of CLE also exist. This article aims to review current knowledge about the pathogenesis of CLE. A better understanding of the environmental, genetic, and immunoregulatory factors that drive CLE may provide important insights for the treatment of CLE.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Department of Dermatology, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
32
|
Afrashteh Nour M, Ghorbaninezhad F, Asadzadeh Z, Baghbanzadeh A, Hassanian H, Leone P, Jafarlou M, Alizadeh N, Racanelli V, Baradaran B. The emerging role of noncoding RNAs in systemic lupus erythematosus: new insights into the master regulators of disease pathogenesis. Ther Adv Chronic Dis 2023; 14:20406223231153572. [PMID: 37035097 PMCID: PMC10074641 DOI: 10.1177/20406223231153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/11/2023] [Indexed: 04/11/2023] Open
Abstract
Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine,
Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Student Research Committee, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Interdisciplinary Medicine,
University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
33
|
Sachdeva R, Pal R. A pregnancy hormone-cell death link promotes enhanced lupus-specific immunological effects. Front Immunol 2022; 13:1051779. [PMID: 36505418 PMCID: PMC9730325 DOI: 10.3389/fimmu.2022.1051779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Women of reproductive age demonstrate an increased incidence of systemic lupus erythematosus, and reproductive hormones have been implicated in disease progression. Additionally, pregnancy can be associated with disease "flares", the reasons for which remain obscure. While apoptotic bodies are believed to provide an autoantigenic trigger in lupus, whether autoantigenic constituents vary with varying cellular insults, and whether such variations can be immunologically consequential in the context of pregnancy, remains unknown. As assessed by antigenicity and mass spectrometry, apoptotic bodies elicited by different drugs demonstrated the differential presence of lupus-associated autoantigens, and varied in the ability to elicit lupus-associated cytokines from lupus splenocytes and alter the phenotype of lupus B cells. Immunization of tamoxifen-induced apoptotic bodies in lupus-prone mice generated higher humoral autoreactive responses than did immunization with cisplatin-induced apoptotic bodies, and both apoptotic bodies were poorly immunogenic in healthy mice. Incubation of lupus splenocytes (but not healthy splenocytes) with the pregnancy hormone human chorionic gonadotropin (hCG) along with tamoxifen-induced apoptotic bodies (but not cisplatin-induced apoptotic bodies) induced increases in the secretion of lupus-associated cytokines and in the up-modulation of B cell phenotypic markers. In addition, levels of secreted autoantibodies (including of specificities linked to lupus pathogenesis) were enhanced. These events were associated with the heightened phosphorylation of several signaling intermediates. Observations suggest that hCG is a potential disease-promoting co-stimulant in a lupus-milieu; when combined with specific apoptotic bodies, it enhances the intensity of multiple lupus-associated events. These findings deepen mechanistic insight into the hormone's links with autoreactive responses in lupus-prone mice and humans.
Collapse
|
34
|
Antiochos B, Paz M, Li J, Goldman DW, Petri M, Darrah E, Cashman K, Sanz I, Burns KH, Ardeljan D, Andrade F, Rosen A. Autoantibodies targeting LINE-1-encoded ORF1p are associated with systemic lupus erythematosus diagnosis but not disease activity. Clin Exp Rheumatol 2022; 40:1636-1641. [PMID: 34665712 PMCID: PMC10424221 DOI: 10.55563/clinexprheumatol/bfz387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Long Interspersed Element 1 (LINE-1) is an endogenous retroelement that constitutes a significant portion of the human genome and has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). The LINE-1 RNA chaperone protein ORF1p was recently identified as an SLE autoantigen. Here we analyse ORF1p for qualities underlying SLE autoantigen status, compared anti-ORF1p antibodies to markers of SLE disease activity, and performed screening for antibodies against LINE-1 reverse transcriptase ORF2p. METHODS ORF1p was examined in epithelial cell lines treated with cytotoxic lymphocyte granules and UV irradiation. Anti-ORF1p and anti-ORF2p antibodies were assayed by ELISA and analysed in two SLE cohorts. RESULTS We found that ORF1p localises to cytoplasmic RNA-containing blebs in apoptotic cells, and is a substrate of the cytotoxic protease granzyme B (GrB). Anti-ORF1p antibodies were present in 4.2% of healthy controls, compared to 15.8% (p=0.0157) and 15.5% (p=0.036) of subjects in the two SLE cohorts. Anti-ORF1p antibodies were not associated with SLE disease activity nor peripheral blood markers of interferon (IFN) activation. Anti-ORF1p titres demonstrated stability over serial time points. Anti-ORF1p antibodies were not associated with anti-DNA, anti-RNP, or other SLE autoantibodies. There was no difference in anti-ORF2p ELISA results in controls versus SLE patients. CONCLUSIONS LINE-1 ORF1p is a component of apoptotic blebs and a substrate for GrB. Anti-ORF1p antibodies are enriched in SLE subjects but are not associated with dynamic markers of disease activity. These data support a potential role for LINE-1 dysregulation in SLE pathogenesis.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Merlin Paz
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Li
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel W Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Cashman
- Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MS, and Department of Haematologic Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Ardeljan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:939594. [PMID: 36091671 PMCID: PMC9452788 DOI: 10.3389/fmed.2022.939594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) represents a complex autoimmune disease with a broad phenotypic spectrum ranging from acute to chronic destructive cutaneous lesions. Patients with CLE exhibit high photosensitivity and ultraviolet (UV) irradiation can lead to systemic flares in systemic lupus erythematosus. However, the exact mechanisms how UV irradiation enhances cutaneous inflammation in lupus are not fully understood. Recently, new molecular mechanisms of UV-driven immune responses in CLE were identified, offering potential therapeutic approaches. Especially the induction of type I interferons, central cytokines in lupus pathogenesis which are released by various skin cells, have become the focus of current research. In this review, we describe current pathogenic concepts of photosensitivity in lupus erythematosus, including UV-driven activation of intracellular nucleic acid sensors, cellular cytokine production and immune cell activation. Furthermore, we discuss activated pathways contributing to enhanced apoptosis as well as intracellular translocation of autoantigens thereby promoting CLE upon UV light exposure.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology, and Allergology, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
36
|
Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 2022; 132:102871. [PMID: 35999111 DOI: 10.1016/j.jaut.2022.102871] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease that affects many organs, including the kidney. Lupus nephritis (LN) is a common manifestation characterized by heterogeneous clinical and histopathological findings, and often associates with poor prognosis. The diagnosis and treatment of LN is challenging, depending largely on renal biopsy, and there is no reliable non-invasive LN biomarker. Up to now, the complete remission rate of LN is only 20%∼30% after receiving six months of standard treatment, which is far from satisfactory. Moreover, adverse reactions to immunosuppressants, especially glucocorticoids, further compromise the prognosis of LN. Biological reagents targetting autoimmune responses and inflammatory pathways, bring hope to the treatment of intractable lupus. The European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) and KDIGO (Kidney Disease: Improving Global Outcomes) have been working on and launched the recommendations for the management of LN. In this review, we update our knowledge in the pathogenesis, diagnosis, and management of LN and prospect for the future potential targets in the management of LN.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
37
|
Quintero-González DC, Muñoz-Urbano M, Vásquez G. Mitochondria as a key player in systemic lupus erythematosus. Autoimmunity 2022; 55:497-505. [PMID: 35978536 DOI: 10.1080/08916934.2022.2112181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystemic autoimmune disease with a broad clinical spectrum. Loss of self-tolerance and chronic inflammation are critical markers of SLE pathogenesis. Although alterations in adaptive immunity are widely recognized, increasing reports indicate the role of mitochondrial dysfunction in activating pathogenic pathways involving the innate immune system. Among these, disarrangements in mitochondrial DNA copy number and heteroplasmy percentage are related to SLE activity. Furthermore, increased oxidative stress contributes to post-translational changes in different molecules (proteins, nucleic acids, and lipids), release of oxidized mitochondrial DNA through a pore of voltage-dependent anion channel oligomers, and spontaneous mitochondrial antiviral signaling protein oligomerization. Finally, a reduction in mitophagy, apoptosis induction, and NETosis has been reported in SLE. Most of these pathways lead to persistent and inappropriate exposure to oxidized mitochondrial DNA, which can stimulate plasmacytoid dendritic cells, enhance autoreactive lymphocyte activation, and release increased amounts of interferons through stimulation of toll-like receptors and cytosolic DNA sensors. Likewise, abnormal T-cell receptor activation, decreased regulatory T cells, enhanced Th17 phenotypes, and increased monocyte maturation to dendritic cells have also been observed in SLE. Targeting the players involved in mitochondrial damage can ultimately help.
Collapse
Affiliation(s)
| | - Marcela Muñoz-Urbano
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - G Vásquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética (GICIC), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
38
|
Uresti-Rivera EE, García-Hernández MH. AIM2-inflammasome role in systemic lupus erythematous and rheumatoid arthritis. Autoimmunity 2022; 55:443-454. [PMID: 35880661 DOI: 10.1080/08916934.2022.2103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inflammasome AIM2 regulates multiple aspects of innate immune functions and serves as a critical mediator of inflammatory responses. AIM2 inflammasome activation leads to the production of pro-inflammatory cytokines, IL-1β and IL-18 and participates triggering a pyroptosis response needed to counteract excessive cell proliferation. In addition, AIM2 expression and activation is wide regulated since alteration in its activity may derived in pathological consequences. Consequently, deregulated AIM2 activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of AIM2 inflammasome, as well as its contribution in rheumatoid arthritis and systemic lupus erythematous pathology. Finally, we highlight the participation of the AIM2-inflammasome at the level of joint in rheumatoid arthritis and at kidney in systemic lupus erythematous. The development of therapeutic strategies based on modulation of AIM2-inflammasome activity should have a tissue-specific focus.
Collapse
Affiliation(s)
- E E Uresti-Rivera
- Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosi, Mexico.,Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, UASLP, San Luis Potosí, Mexico
| | - M H García-Hernández
- Instituto Mexicano del Seguro Social, IMSS, Unidad de Investigación Biomédica, Delegación Zacatecas, Zacatecas, México
| |
Collapse
|
39
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
40
|
Qu Y, He Y, Meng B, Zhang X, Ding J, Kou X, Teng W, Shi S. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater 2022; 149:258-272. [PMID: 35830925 DOI: 10.1016/j.actbio.2022.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Billions of cells undergo apoptosis every day in the human body, resulting in the generation of a large number of apoptotic vesicles (apoVs) to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. In this study, we showed that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) produced larger numbers of apoVs than human umbilical cord mesenchymal stem cells (UMSCs) do when induced by staurosporine. In addition to expressing the general apoV markers cleaved caspase 3, Annexin V, calreticulin, ALIX, CD63 and TSG101, ESC-apoVs inherited pluripotent-specific molecules SOX2 from ESCs in a caspase 3-dependent manner. Moreover, ESC-apoVs could promote mouse skin wound healing via transferring SOX2 into skin MSCs via activating Hippo signaling pathway. Collectively, these findings reveal that apoVs are capable of inheriting pluripotent molecules from ESCs to energize adult stem cells, suggesting the potential to use PSC-apoVs for clinical applications. STATEMENT OF SIGNIFICANCE: Apoptotic vesicles (apoVs) are essential to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. This study showed that PSC-apoVs produced 100 times more apoVs than human umbilical cord mesenchymal stem cells (UMSCs). Despite expressing the general apoV makers, PSC-apoVs inherited pluripotent-specific molecule SOX2 from PSCs in a caspase 3-dependent manner. Moreover, PSC-apoVs promote mouse skin wound healing via transferring SOX2 into skin MSCs, thus activating Hippo signaling pathway. These findings reveal that apoVs are capable of inheriting pluripotent molecules from PSCs to energize adult stem cells, thus providing a cell-free strategy for clinical applications of PSCs.
Collapse
Affiliation(s)
- Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junjun Ding
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
41
|
Patrick DM, de la Visitación N, Krishnan J, Chen W, Ormseth MJ, Stein CM, Davies SS, Amarnath V, Crofford LJ, Williams JM, Zhao S, Smart CD, Dikalov S, Dikalova A, Xiao L, Van Beusecum JP, Ao M, Fogo AB, Kirabo A, Harrison DG. Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight 2022; 7:e136678. [PMID: 35608913 PMCID: PMC9310530 DOI: 10.1172/jci.insight.136678] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
We describe a mechanism responsible for systemic lupus erythematosus (SLE). In humans with SLE and in 2 SLE murine models, there was marked enrichment of isolevuglandin-adducted proteins (isoLG adducts) in monocytes and dendritic cells. We found that antibodies formed against isoLG adducts in both SLE-prone mice and humans with SLE. In addition, isoLG ligation of the transcription factor PU.1 at a critical DNA binding site markedly reduced transcription of all C1q subunits. Treatment of SLE-prone mice with the specific isoLG scavenger 2-hydroxybenzylamine (2-HOBA) ameliorated parameters of autoimmunity, including plasma cell expansion, circulating IgG levels, and anti-dsDNA antibody titers. 2-HOBA also lowered blood pressure, attenuated renal injury, and reduced inflammatory gene expression uniquely in C1q-expressing dendritic cells. Thus, isoLG adducts play an essential role in the genesis and maintenance of systemic autoimmunity and hypertension in SLE.
Collapse
Affiliation(s)
- David M. Patrick
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Division of Clinical Pharmacology and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Néstor de la Visitación
- Division of Clinical Pharmacology and
- Department of Pharmacology, University of Granada, Granada, Spain
| | | | - Wei Chen
- Division of Clinical Pharmacology and
| | - Michelle J. Ormseth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Rheumatology and Immunology, Department of Medicine, and
| | - C. Michael Stein
- Division of Clinical Pharmacology and
- Division of Rheumatology and Immunology, Department of Medicine, and
| | | | | | | | | | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles D. Smart
- Division of Clinical Pharmacology and
- Department of Molecular Physiology and Biophysics
| | | | | | | | - Justin P. Van Beusecum
- Ralph H. Johnson VA Medical Center and
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - David G. Harrison
- Division of Clinical Pharmacology and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Staudacher AH, Liapis V, Wittwer NL, Tieu W, Lam HC, Leusen J, Brown MP. Fc gamma receptor is not required for in vivo processing of radio- and drug-conjugates of the dead tumor cell-targeting monoclonal antibody, APOMAB®. Biomed Pharmacother 2022; 151:113090. [PMID: 35567988 DOI: 10.1016/j.biopha.2022.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
The Fc region of a monoclonal antibody (mAb) can play a crucial role in its biodistribution and therapeutic activity. The chimeric mAb, chDAB4 (APOMAB®), which binds to dead tumor cells after DNA-damaging anticancer treatment, has been studied pre-clinically in both diagnostic and therapeutic applications in cancer. Given that macrophages contribute to the tumor accumulation of chDAB4 and its potency as an antibody drug conjugate in vivo, we next wanted to determine whether the Fc region of the chDAB4 mAb also contributed. We found that, regardless of prior labeling with chDAB4, dead EL4 lymphoma or Lewis Lung (LL2) tumor cells were phagocytosed equally by wild-type or Fcγ knock-down macrophage cell lines. A similar result was seen with bone marrow-derived macrophages from wild-type, Fcγ knock-out (KO) and NOTAM mice that express Fcγ but lack immunoreceptor tyrosine-based activation motif (ITAM) signaling. Among EL4 tumor-bearing wild-type, Fcγ KO or NOTAM mice, no differences were observed in post-chemotherapy uptake of 89Zr-labeled chDAB4. Similarly, no differences were observed between LL2 tumor-bearing wild-type and Fcγ KO mice in post-chemotherapy uptake of 89Zr-chDAB4. Also, the post-chemotherapy activity of a chDAB4-antibody drug conjugate (ADC) directed against LL2 tumors did not differ among tumor-bearing wild-type, Fcγ KO and NOTAM mice, nor did the proportions and characteristics of the LL2 tumor immune cell infiltrates differ significantly among these mice. In conclusion, Fc-FcγR interactions are not essential for the diagnostic or therapeutic applications of chDAB4 conjugates because the tumor-associated macrophages, which engulf the chDAB4-labelled dead cells, respond to endogenous 'eat me' signals rather than depend on functional FcγR expression for phagocytosis.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - William Tieu
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia; Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Hiu Chun Lam
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Jeanette Leusen
- Immunotherapy Laboratory, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia; Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Choi MY, Costenbader KH. Understanding the Concept of Pre-Clinical Autoimmunity: Prediction and Prevention of Systemic Lupus Erythematosus: Identifying Risk Factors and Developing Strategies Against Disease Development. Front Immunol 2022; 13:890522. [PMID: 35720390 PMCID: PMC9203849 DOI: 10.3389/fimmu.2022.890522] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that preceding the diagnosis or classification of systemic lupus erythematosus (SLE), patients undergo a preclinical phase of disease where markers of inflammation and autoimmunity are already present. Not surprisingly then, even though SLE management has improved over the years, many patients will already have irreversible disease-related organ damage by time they have been diagnosed with SLE. By gaining a greater understanding of the pathogenesis of preclinical SLE, we can potentially identify patients earlier in the disease course who are at-risk of transitioning to full-blown SLE and implement preventative strategies. In this review, we discuss the current state of knowledge of SLE preclinical pathogenesis and propose a screening and preventative strategy that involves the use of promising biomarkers of early disease, modification of lifestyle and environmental risk factors, and initiation of preventative therapies, as examined in other autoimmune diseases such as rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- May Y. Choi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Karen H. Costenbader
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Scholz A, DeFalco J, Leung Y, Aydin IT, Czupalla CJ, Cao W, Santos D, Vad N, Lippow SM, Baia G, Harbell M, Sapugay J, Zhang D, Wu DC, Wechsler E, Ye AZ, Wu JW, Peng X, Vivian J, Kaplan H, Collins R, Nguyen N, Whidden M, Kim D, Millward C, Benjamin J, Greenberg NM, Serafini TA, Emerling DE, Steinman L, Robinson WH, Manning-Bog A. Mobilization of innate and adaptive antitumor immune responses by the RNP-targeting antibody ATRC-101. Proc Natl Acad Sci U S A 2022; 119:e2123483119. [PMID: 35507878 PMCID: PMC9171637 DOI: 10.1073/pnas.2123483119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy approaches focusing on T cells have provided breakthroughs in treating solid tumors. However, there remains an opportunity to drive anticancer immune responses via other cell types, particularly myeloid cells. ATRC-101 was identified via a target-agnostic process evaluating antibodies produced by the plasmablast population of B cells in a patient with non-small cell lung cancer experiencing an antitumor immune response during treatment with checkpoint inhibitor therapy. Here, we describe the target, antitumor activity in preclinical models, and data supporting a mechanism of action of ATRC-101. Immunohistochemistry studies demonstrated tumor-selective binding of ATRC-101 to multiple nonautologous tumor tissues. In biochemical analyses, ATRC-101 appears to target an extracellular, tumor-specific ribonucleoprotein (RNP) complex. In syngeneic murine models, ATRC-101 demonstrated robust antitumor activity and evidence of immune memory following rechallenge of cured mice with fresh tumor cells. ATRC-101 increased the relative abundance of conventional dendritic cell (cDC) type 1 cells in the blood within 24 h of dosing, increased CD8+ T cells and natural killer cells in blood and tumor over time, decreased cDC type 2 cells in the blood, and decreased monocytic myeloid-derived suppressor cells in the tumor. Cellular stress, including that induced by chemotherapy, increased the amount of ATRC-101 target in tumor cells, and ATRC-101 combined with doxorubicin enhanced efficacy compared with either agent alone. Taken together, these data demonstrate that ATRC-101 drives tumor destruction in preclinical models by targeting a tumor-specific RNP complex leading to activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Cao
- Atreca, Inc, San Carlos, CA 94070
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA 94305
| | - William H. Robinson
- Atreca, Inc, San Carlos, CA 94070
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305
| | | |
Collapse
|
45
|
Billmeier M, Green D, Hall AE, Turnbull C, Singh A, Xu P, Moxon S, Dalmay T. Mechanistic insights into non-coding Y RNA processing. RNA Biol 2022; 19:468-480. [PMID: 35354369 PMCID: PMC8973356 DOI: 10.1080/15476286.2022.2057725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Y RNAs (84–112 nt) are non-coding RNAs transcribed by RNA polymerase III and are characterized by a distinctive secondary structure. Human Y RNAs interact with the autoimmune proteins SSB and RO60 that together form a ribonucleoprotein (RNP) complex termed RoRNP and Y RNAs also perform regulatory roles in DNA and RNA replication and stability, which has major implications for diseases including cancer. During cellular stress and apoptosis, Y RNAs are cleaved into 3’ and 5’ end fragments termed Y RNA-derived small RNAs (ysRNAs). Although some ysRNA functions in stress, apoptosis and cancer have been reported, their fundamental biogenesis has not been described. Here we report that 3’ end RNY5 cleavage is structure dependent. In high throughput mutagenesis experiments, cleavage occurred between the 2nd and 3rd nt above a double stranded stem comprising high GC content. We demonstrate that an internal loop above stem S3 is critical for producing 3’ end ysRNAs (31 nt) with mutants resulting in longer or no ysRNAs. We show a UGGGU sequence motif at position 22 of RNY5 is critical for producing 5’ end ysRNAs (22–25 nt). We show that intact RO60 is critical for ysRNA biogenesis. We conclude that ribonuclease L (RNASEL) contributes to Y RNA cleavage in mouse embryonic fibroblasts but is not the only endoribonuclease important in human cells.
Collapse
Affiliation(s)
- Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adam E Hall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Horizon Discovery, Cambridge Research Park, Waterbeach, UK
| | - Carly Turnbull
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
46
|
Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, Fernandes RA, Gomez AM, Nadj GS, Bartley CM, Schubert RD, Hawes IA, Vazquez SE, Iyer M, Zuchero JB, Teegen B, Dunn JE, Lock CB, Kipp LB, Cotham VC, Ueberheide BM, Aftab BT, Anderson MS, DeRisi JL, Wilson MR, Bashford-Rogers RJ, Platten M, Garcia KC, Steinman L, Robinson WH. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022; 603:321-327. [PMID: 35073561 PMCID: PMC9382663 DOI: 10.1038/s41586-022-04432-7] [Citation(s) in RCA: 489] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.
Collapse
Affiliation(s)
- Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - R. Camille Brewer
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Jae-Seung Moon
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Daniel Fernandez
- Stanford ChEM-H Institute, Macromolecular Structure Knowledge Center, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Ricardo A. Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Alejandro M. Gomez
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Gabriel-Stefan Nadj
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, United States,Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - Bianca Teegen
- Institute of Experimental Immunology, Euroimmun AG, Seekamp 31, 23560 Lübeck, Germany
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Christopher B. Lock
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Victoria C. Cotham
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Beatrix M. Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Blake T. Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, 611 Gateway Blvd South San Francisco, CA 94080, United States
| | - Mark S. Anderson
- Department of Medicine, Diabetes Center, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, United States
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States,Chan Zuckerberg Biohub, University of California San Francisco, 499 Illinois Street, San Francisco, CA 94158, United States
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Rachael J.M. Bashford-Rogers
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, United Kingdom
| | - Michael Platten
- Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Corresponding Author: William H. Robinson, Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States,
| |
Collapse
|
47
|
Turnier JL, Kahlenberg JM. Using autoantibody signatures to define cancer risk in dermatomyositis. J Clin Invest 2022; 132:e156025. [PMID: 35040442 PMCID: PMC8759773 DOI: 10.1172/jci156025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dermatomyositis is an idiopathic inflammatory myopathy with a highly heterogeneous disease course. Although there is a known increase in cancer risk surrounding the time of dermatomyositis diagnosis, the mechanisms driving this increased risk are not well understood. Further, there are no current standardized cancer screening guidelines for dermatomyositis patients. In this issue of the JCI, Fiorentino, Mecoli, et al. discovered additional autoantibodies in patients with dermatomyositis and anti-TIF1-γ autoantibodies, a known risk factor for malignancy. They observed a decreased cancer risk with an increasing number of autoantibodies. Importantly, these findings indicate that more detailed autoantibody phenotyping at diagnosis might better predict cancer risk and also suggest that diversity and kinetics of the host immune response might influence cancer development.
Collapse
Affiliation(s)
| | - J. Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Deficiency of two-pore segment channel 2 contributes to systemic lupus erythematosus via regulation of apoptosis and cell cycle. Chin Med J (Engl) 2022; 135:447-455. [PMID: 35194006 PMCID: PMC8869567 DOI: 10.1097/cm9.0000000000001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
49
|
Reed JH. Transforming mutations in the development of pathogenic B cell clones and autoantibodies. Immunol Rev 2022; 307:101-115. [PMID: 35001403 DOI: 10.1111/imr.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.
Collapse
Affiliation(s)
- Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
50
|
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW, Killian M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev 2021; 21:103016. [PMID: 34915182 DOI: 10.1016/j.autrev.2021.103016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Systemic autoimmune and inflammatory diseases have a complex and only partially known pathophysiology with various abnormalities involving all the components of the immune system. Among these components, antibodies, and especially autoantibodies are key elements contributing to autoimmunity. The interaction of antibody fragment crystallisable (Fc) and several distinct receptors, namely Fc receptors (FcRs), have gained much attention during the recent years, with possible major therapeutic perspectives for the future. The aim of this review is to comprehensively describe the known roles for FcRs (activating and inhibitory FcγRs, neonatal FcR [FcRn], FcαRI, FcεRs, Ro52/tripartite motif containing 21 [Ro52/TRIM21], FcδR, and the novel Fc receptor-like [FcRL] family) in systemic autoimmune and inflammatory disorders, namely rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, Crohn's disease, ulcerative colitis, immunoglobulin (Ig) A vasculitis, Behçet's disease, Kawasaki disease, IgG4-related disease, immune thrombocytopenia, autoimmune hemolytic anemia, antiphospholipid syndrome and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Emilie Chalayer
- Department of Hematology and Cell Therapy, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France; INSERM U1059-Sainbiose, dysfonction vasculaire et hémostase, Université de Lyon, Saint-Etienne, France
| | - Baptiste Gramont
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Franck Zekre
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Lucile Grange
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Amy W Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France.
| |
Collapse
|