1
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
2
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
3
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
4
|
Xu M, Ito-Kureha T, Kang HS, Chernev A, Raj T, Hoefig KP, Hohn C, Giesert F, Wang Y, Pan W, Ziętara N, Straub T, Feederle R, Daniel C, Adler B, König J, Feske S, Tsokos GC, Wurst W, Urlaub H, Sattler M, Kisielow J, Wulczyn FG, Łyszkiewicz M, Heissmeyer V. The thymocyte-specific RNA-binding protein Arpp21 provides TCR repertoire diversity by binding to the 3'-UTR and promoting Rag1 mRNA expression. Nat Commun 2024; 15:2194. [PMID: 38467629 PMCID: PMC10928157 DOI: 10.1038/s41467-024-46371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca2+ signals. Downregulation requires Stim1/Stim2 and CaMK4 expression and involves Arpp21 protein phosphorylation, polyubiquitination and proteasomal degradation. Arpp21 directly binds RNA through its R3H domain, with a preference for uridine-rich motifs, promoting the expression of target mRNAs. Analysis of the Arpp21-bound transcriptome reveals strong interactions with the Rag1 3'-UTR. Arpp21-deficient thymocytes show reduced Rag1 expression, delayed TCR rearrangement and a less diverse TCR repertoire. This phenotype is recapitulated in Rag1 3'-UTR mutant mice harboring a deletion of the Arpp21 response region. These findings show how thymocyte-specific Arpp21 promotes Rag1 expression to enable TCR repertoire diversity until signals from the TCR terminate Arpp21 and Rag1 activities.
Collapse
Affiliation(s)
- Meng Xu
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Munich, Germany
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taku Ito-Kureha
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center (BNMRZ), Garching, Germany
| | - Aleksandar Chernev
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Kai P Hoefig
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Munich, Germany
| | - Christine Hohn
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yinhu Wang
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Natalia Ziętara
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tobias Straub
- Institute for Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Stefan Feske
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
- University Medical Center Göttingen, Department of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience and Bavarian NMR Center (BNMRZ), Garching, Germany
| | - Jan Kisielow
- Institute for Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
- Repertoire Immune Medicines (Switzerland) AG, Schlieren, Switzerland.
| | - F Gregory Wulczyn
- Institute for Integrative Neuroanatomie, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Marcin Łyszkiewicz
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Munich, Germany.
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Munich, Germany.
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
5
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Castiello MC, Di Verniere M, Draghici E, Fontana E, Penna S, Sereni L, Zecchillo A, Minuta D, Uva P, Zahn M, Gil-Farina I, Annoni A, Iaia S, Ott de Bruin LM, Notarangelo LD, Pike-Overzet K, Staal FJT, Villa A, Capo V. Partial correction of immunodeficiency by lentiviral vector gene therapy in mouse models carrying Rag1 hypomorphic mutations. Front Immunol 2023; 14:1268620. [PMID: 38022635 PMCID: PMC10679457 DOI: 10.3389/fimmu.2023.1268620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Sara Penna
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Denise Minuta
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Andrea Annoni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lisa M. Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
7
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
8
|
Heimli M, Tennebø Flåm S, Sagsveen Hjorthaug H, Bjørnstad PM, Chernigovskaya M, Le QK, Tekpli X, Greiff V, Lie BA. Human thymic putative CD8αα precursors exhibit a biased TCR repertoire in single cell AIRR-seq. Sci Rep 2023; 13:17714. [PMID: 37853083 PMCID: PMC10584817 DOI: 10.1038/s41598-023-44693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Quy Khang Le
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
9
|
David NA, Lee RD, LaRue RS, Joo S, Farrar MA. Nuclear corepressors NCOR1 and NCOR2 entrain thymocyte signaling, selection, and emigration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559810. [PMID: 37808728 PMCID: PMC10557688 DOI: 10.1101/2023.09.27.559810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
T cell development proceeds via discrete stages that require both gene induction and gene repression. Transcription factors direct gene repression by associating with corepressor complexes containing chromatin-remodeling enzymes; the corepressors NCOR1 and NCOR2 recruit histone deacetylases to these complexes to silence transcription of target genes. Earlier work identified the importance of NCOR1 in promoting the survival of positively-selected thymocytes. Here, we used flow cytometry and single-cell RNA sequencing to identify a broader role for NCOR1 and NCOR2 in regulating thymocyte development. Using Cd4-cre mice, we found that conditional deletion of NCOR2 had no effect on thymocyte development, whereas conditional deletion of NCOR1 had a modest effect. In contrast, Cd4-cre x Ncor1f/f x Ncor2f/f mice exhibited a significant block in thymocyte development at the DP to SP transition. Combined NCOR1/2 deletion resulted in increased signaling through the T cell receptor, ultimately resulting in elevated BIM expression and increased negative selection. The NF-κB, NUR77, and MAPK signaling pathways were also upregulated in the absence of NCOR1/2, contributing to altered CD4/CD8 lineage commitment, TCR rearrangement, and thymocyte emigration. Taken together, our data identify multiple critical roles for the combined action of NCOR1 and NCOR2 over the course of thymocyte development.
Collapse
Affiliation(s)
- Natalie A David
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Robin D Lee
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Rebecca S LaRue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Sookyong Joo
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
10
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
11
|
Sun S, Wijanarko K, Liani O, Strumila K, Ng ES, Elefanty AG, Stanley EG. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol Rev 2023; 315:154-170. [PMID: 36939073 PMCID: PMC10952469 DOI: 10.1111/imr.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kevin Wijanarko
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Oniko Liani
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kathleen Strumila
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elizabeth S. Ng
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andrew G. Elefanty
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Edouard G. Stanley
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
13
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
14
|
Duke-Cohan JS, Akitsu A, Mallis RJ, Messier CM, Lizotte PH, Aster JC, Hwang W, Lang MJ, Reinherz EL. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 2023; 613:565-574. [PMID: 36410718 PMCID: PMC9851994 DOI: 10.1038/s41586-022-05555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, is a critical early checkpoint in thymocyte development within the αβ T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αβ T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αβ T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting β chain repertoire broadening for subsequent αβ T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Cameron M Messier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Xiong R, Fu R, Wu Y, Wu X, Cao Y, Qu Z, Yang Y, Liu S, Huo G, Wang S, Huang W, Lyu J, Zhu X, Liang C, Peng Y, Wang Y, Fan C. Long-Term Infection and Pathogenesis in a Novel Mouse Model of Human Respiratory Syncytial Virus. Viruses 2022; 14:1740. [PMID: 36016362 PMCID: PMC9415064 DOI: 10.3390/v14081740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Intensive efforts have been made to develop models of hRSV infection or disease using various animals. However, the limitations such as semi-permissiveness and short duration of infection have impeded their applications in both the pathogenesis of hRSV and therapeutics development. Here, we present a mouse model based on a Rag2 gene knockout using CRISPR/Cas9 technology. Rag2-/- mice sustained high viral loads upon intranasal inoculation with hRSV. The average peak titer rapidly reached 1 × 109.8 copies/g and 1c106 TCID50 in nasal cavity, as well as 1 × 108 copies/g and 1 × 105 TCID50 in the lungs up to 5 weeks. Mild interstitial pneumonia, severe bronchopneumonia, elevated cytokines and NK cells were seen in Rag2-/- mice. A humanized monoclonal antibody showed strong antiviral activity in this animal model, implying that Rag2-/- mice that support long-term stable infection are a useful tool for studying the transmission and pathogenesis of human RSV, as well as evaluating therapeutics.
Collapse
Affiliation(s)
- Rui Xiong
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Fu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yong Wu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Xi Wu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yuan Cao
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Susu Liu
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Guitao Huo
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Sanlong Wang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong 226133, China
| | - Xiang Zhu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Chunnan Liang
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yihong Peng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Changfa Fan
- National Rodent Laboratory Animal Resources Center, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| |
Collapse
|
16
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
18
|
Yoshikawa G, Miyazaki K, Ogata H, Miyazaki M. The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System. Int J Mol Sci 2021; 22:ijms22115888. [PMID: 34072618 PMCID: PMC8199221 DOI: 10.3390/ijms22115888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity relies on the V(D)J DNA recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes, which enables the recognition of highly diverse antigens and the elicitation of antigen-specific immune responses. This process is mediated by recombination-activating gene (Rag) 1 and Rag2 (Rag1/2), whose expression is strictly controlled in a cell type-specific manner; the expression of Rag1/2 genes represents a hallmark of lymphoid lineage commitment. Although Rag genes are known to be evolutionally conserved among jawed vertebrates, how Rag genes are regulated by lineage-specific transcription factors (TFs) and how their regulatory system evolved among vertebrates have not been fully elucidated. Here, we reviewed the current body of knowledge concerning the cis-regulatory elements (CREs) of Rag genes and the evolution of the basic helix-loop-helix TF E protein regulating Rag gene CREs, as well as the evolution of the antagonist of this protein, the Id protein. This may help to understand how the adaptive immune system develops along with the evolution of responsible TFs and enhancers.
Collapse
Affiliation(s)
- Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (H.O.); (M.M.)
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
- Correspondence: (H.O.); (M.M.)
| |
Collapse
|
19
|
Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol 2021; 51:1028-1038. [PMID: 33682138 PMCID: PMC8325549 DOI: 10.1002/eji.202048880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
21
|
Miyazaki K, Miyazaki M. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of Rag Gene Expression. Front Immunol 2021; 12:659761. [PMID: 33796120 PMCID: PMC8007930 DOI: 10.3389/fimmu.2021.659761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medial Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
23
|
Liu S, Yuan S, Gao X, Tao X, Yu W, Li X, Chen S, Xu A. Functional regulation of an ancestral RAG transposon ProtoRAG by a trans-acting factor YY1 in lancelet. Nat Commun 2020; 11:4515. [PMID: 32908127 PMCID: PMC7481187 DOI: 10.1038/s41467-020-18261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
The discovery of ancestral RAG transposons in early deuterostomia reveals the origin of vertebrate V(D)J recombination. Here, we analyze the functional regulation of a RAG transposon, ProtoRAG, in lancelet. We find that a specific interaction between the cis-acting element within the TIR sequences of ProtoRAG and a trans-acting factor, lancelet YY1-like (bbYY1), is important for the transcriptional regulation of lancelet RAG-like genes (bbRAG1L and bbRAG2L). Mechanistically, bbYY1 suppresses the transposition of ProtoRAG; meanwhile, bbYY1 promotes host DNA rejoins (HDJ) and TIR-TIR joints (TTJ) after TIR-dependent excision by facilitating the binding of bbRAG1L/2 L to TIR-containing DNA, and by interacting with the bbRAG1L/2 L complex. Our data thus suggest that bbYY1 has dual functions in fine-tuning the activity of ProtoRAG and maintaining the genome stability of the host.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, People's Republic of China.
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xu Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Miyazaki K, Watanabe H, Yoshikawa G, Chen K, Hidaka R, Aitani Y, Osawa K, Takeda R, Ochi Y, Tani-Ichi S, Uehata T, Takeuchi O, Ikuta K, Ogawa S, Kondoh G, Lin YC, Ogata H, Miyazaki M. The transcription factor E2A activates multiple enhancers that drive Rag expression in developing T and B cells. Sci Immunol 2020; 5:5/51/eabb1455. [PMID: 32887843 DOI: 10.1126/sciimmunol.abb1455] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Abstract
Cell type-specific gene expression is driven by the interplay between lineage-specific transcription factors and cis-regulatory elements to which they bind. Adaptive immunity relies on RAG-mediated assembly of T cell receptor (TCR) and immunoglobulin (Ig) genes. Although Rag1 and Rag2 expression is largely restricted to adaptive lymphoid lineage cells, it remains unclear how Rag gene expression is regulated in a cell lineage-specific manner. Here, we identified three distinct cis-regulatory elements, a T cell lineage-specific enhancer (R-TEn) and the two B cell-specific elements, R1B and R2B By generating mice lacking either R-TEn or R1B and R2B, we demonstrate that these distinct sets of regulatory elements drive the expression of Rag genes in developing T and B cells. What these elements have in common is their ability to bind the transcription factor E2A. By generating a mouse strain that carries a mutation within the E2A binding site of R-TEn, we demonstrate that recruitment of E2A to this site is essential for orchestrating changes in chromatin conformation that drive expression of Rag genes in T cells. By mapping cis-regulatory elements and generating multiple mouse strains lacking distinct enhancer elements, we demonstrate expression of Rag genes in developing T and B cells to be driven by distinct sets of E2A-dependent cis-regulatory modules.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Genki Yoshikawa
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Kenian Chen
- Baylor Institute for Immunology Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuki Aitani
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai Osawa
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rie Takeda
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yin C Lin
- Baylor Institute for Immunology Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
25
|
Zhao Y, Liu P, Xin Z, Shi C, Bai Y, Sun X, Zhao Y, Wang X, Liu L, Zhao X, Chen Z, Zhang H. Biological Characteristics of Severe Combined Immunodeficient Mice Produced by CRISPR/Cas9-Mediated Rag2 and IL2rg Mutation. Front Genet 2019; 10:401. [PMID: 31134127 PMCID: PMC6524690 DOI: 10.3389/fgene.2019.00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 is a novel and convenient gene editing system that can be used to construct genetically modified animals. Recombination activating gene 2 (Rag2) is a core component that is involved in the initiation of V(D)J recombination during T- and B-cells maturation. Separately, the interleukin-2 receptor gamma chain gene (IL2rg) encoded the protein-regulated activity of natural killer (NK) cells and shared common receptors of some cytokines. Rag2 and IL2rg mutations cause immune system disorders associated with T-, B-, and NK cell function and some cytokine activities. In the present study, 2 single-guide RNAs (sgRNAs) targeted on Rag2 and IL2rg genes were microinjected into the zygotes of BALB/c mice with Cas9 messenger RNA (mRNA) to create Rag2/IL2rg-/- double knockout mice, and the biological characteristics of the mutated mice were subsequently analyzed. The results showed that CRISPR/Cas9-induced indel mutation displaced the frameshift of Rag2 and IL2rg genes, resulting in a decrease in the number of T-, B-, and NK cells and the destruction of immune-related tissues like the thymus and spleen. Mycobacterium tuberculosis 85B antigen could not induce cellular and humoral immune response in mice. However, this aberrant immune activity compromised the growth of several tumor heterogenous grafts in the mutated mice, including orthotopic and subcutaneous transplantation tumors. Thus, Rag2/IL2rg-/- knockout mice possessed features of severe combined immunodeficiency (SCID), which is an ideal model for human xenograft.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Peijuan Liu
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Zhiqian Xin
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Yinlan Bai
- Department of Microbiology, Air Force Medical University, Xi'an, China
| | - Xiuxuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Ya Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Xiaoya Wang
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Li Liu
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xuan Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Hai Zhang
- Laboratory Animal Center, Air Force Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| |
Collapse
|
26
|
Naik AK, Byrd AT, Lucander ACK, Krangel MS. Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4 +CD8 + thymocytes. J Exp Med 2018; 216:231-243. [PMID: 30545902 PMCID: PMC6314527 DOI: 10.1084/jem.20181402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 01/17/2023] Open
Abstract
Naik et al. show that GATA3, Runx1, and E2A are essential for hierarchical assembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Signal-dependent down-regulation of RAG expression is associated with hub disassembly and depends on Ikaros. Expression of Rag1 and Rag2 is tightly regulated in developing T cells to mediate TCR gene assembly. Here we have investigated the molecular mechanisms governing the assembly and disassembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Rag1 and Rag2 gene expression in CD4+CD8+ thymocytes depends on Rag1 and Rag2 promoter activation by a distant antisilencer element (ASE). We identify GATA3 and E2A as critical regulators of the ASE, and Runx1 and E2A as critical regulators of the Rag1 promoter. We reveal hierarchical assembly of a transcriptionally active chromatin hub containing the ASE and RAG promoters, with Rag2 recruitment and expression dependent on assembly of a functional ASE–Rag1 framework. Finally, we show that signal-dependent down-regulation of RAG gene expression in CD4+CD8+ thymocytes depends on Ikaros and occurs with disassembly of the RAG locus chromatin hub. Our results provide important new insights into the molecular mechanisms that orchestrate RAG gene expression in developing T cells.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Aaron T Byrd
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC
| |
Collapse
|
27
|
Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation. Immunity 2018; 48:1258-1270.e6. [PMID: 29884461 DOI: 10.1016/j.immuni.2018.04.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.
Collapse
Affiliation(s)
- Eric M Kernfeld
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kashfia Neherin
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Margaret E Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ping Xu
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
28
|
Modeling altered human T-cell development. Blood 2016; 128:743-5. [PMID: 27516425 DOI: 10.1182/blood-2016-06-723908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood 2016; 128:783-93. [PMID: 27301863 DOI: 10.1182/blood-2015-10-676304] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Primary immunodeficiency diseases comprise a group of heterogeneous genetic defects that affect immune system development and/or function. Here we use in vitro differentiation of human induced pluripotent stem cells (iPSCs) generated from patients with different recombination-activating gene 1 (RAG1) mutations to assess T-cell development and T-cell receptor (TCR) V(D)J recombination. RAG1-mutants from severe combined immunodeficient (SCID) patient cells showed a failure to sustain progression beyond the CD3(--)CD4(-)CD8(-)CD7(+)CD5(+)CD38(-)CD31(-/lo)CD45RA(+) stage of T-cell development to reach the CD3(-/+)CD4(+)CD8(+)CD7(+)CD5(+)CD38(+)CD31(+)CD45RA(-) stage. Despite residual mutant RAG1 recombination activity from an Omenn syndrome (OS) patient, similar impaired T-cell differentiation was observed, due to increased single-strand DNA breaks that likely occur due to heterodimers consisting of both an N-terminal truncated and a catalytically dead RAG1. Furthermore, deep-sequencing analysis of TCR-β (TRB) and TCR-α (TRA) rearrangements of CD3(-)CD4(+)CD8(-) immature single-positive and CD3(+)CD4(+)CD8(+) double-positive cells showed severe restriction of repertoire diversity with preferential usage of few Variable, Diversity, and Joining genes, and skewed length distribution of the TRB and TRA complementary determining region 3 sequences from SCID and OS iPSC-derived cells, whereas control iPSCs yielded T-cell progenitors with a broadly diversified repertoire. Finally, no TRA/δ excision circles (TRECs), a marker of TRA/δ locus rearrangements, were detected in SCID and OS-derived T-lineage cells, consistent with a pre-TCR block in T-cell development. This study compares human T-cell development of SCID vs OS patients, and elucidates important differences that help to explain the wide range of immunologic phenotypes that result from different mutations within the same gene of various patients.
Collapse
|
30
|
Scoville SD, Mundy-Bosse BL, Zhang MH, Chen L, Zhang X, Keller KA, Hughes T, Chen L, Cheng S, Bergin SM, Mao HC, McClory S, Yu J, Carson WE, Caligiuri MA, Freud AG. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets. Immunity 2016; 44:1140-50. [PMID: 27178467 DOI: 10.1016/j.immuni.2016.04.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/15/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.
Collapse
Affiliation(s)
- Steven D Scoville
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael H Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Li Chen
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Karen A Keller
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tiffany Hughes
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Luxi Chen
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Stephanie Cheng
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen M Bergin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hsiaoyin C Mao
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Susan McClory
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - William E Carson
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Caligiuri
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Majumder K, Bassing CH, Oltz EM. Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Adv Immunol 2015; 128:273-306. [PMID: 26477369 DOI: 10.1016/bs.ai.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptive immune system endows mammals with an ability to recognize nearly any foreign invader through antigen receptors that are expressed on the surface of all lymphocytes. This defense network is generated by V(D)J recombination, a set of sequentially controlled DNA cleavage and repair events that assemble antigen receptor genes from physically separated variable (V), joining (J), and sometimes diversity (D) gene segments. The recombination process itself must be stringently regulated to minimize oncogenic translocations involving chromosomes that harbor immunoglobulin and T cell receptor loci. Indeed, V(D)J recombination is controlled at several levels, including tissue-, developmental stage-, allele-, and gene segment-specificity. These levels of control are imposed by a collection of architectural and regulatory elements that are distributed throughout each antigen receptor locus. Together, the genetic elements regulate developmental changes in chromatin, transcription, and locus topology that promote or disfavor long-range recombination. This chapter focuses on the cross talk between these mechanisms at the T cell receptor beta (Tcrb) locus, and how they sculpt a diverse TCRβ repertoire while maintaining monospecificity of this antigen receptor on each mature T lymphocyte. We also discuss how insights obtained from studies of Tcrb are more generally relevant to our understanding of gene regulation strategies employed by mammals.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
32
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
33
|
Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens. PLoS One 2015; 10:e0133220. [PMID: 26186701 PMCID: PMC4506145 DOI: 10.1371/journal.pone.0133220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.
Collapse
|
34
|
Zepponi V, Michaels Lopez V, Martinez-Cingolani C, Boudil A, Pasqualetto V, Skhiri L, Gautreau L, Legrand A, Megret J, Zavala F, Ezine S. Lymphoid Gene Upregulation on Circulating Progenitors Participates in Their T-Lineage Commitment. THE JOURNAL OF IMMUNOLOGY 2015; 195:156-65. [PMID: 26026063 DOI: 10.4049/jimmunol.1403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Extrathymic T cell precursors can be detected in many tissues and represent an immediately competent population for rapid T cell reconstitution in the event of immunodeficiencies. Blood T cell progenitors have been detected, but their source in the bone marrow (BM) remains unclear. Prospective purification of BM-resident and circulating progenitors, together with RT-PCR single-cell analysis, was used to evaluate and compare multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). Molecular analysis of circulating progenitors in comparison with BM-resident progenitors revealed that CCR9(+) progenitors are more abundant in the blood than CCR7(+) progenitors. Second, although Flt3(-) CLPs are less common in the BM, they are abundant in the blood and have reduced Cd25(+)-expressing cells and downregulated c-Kit and IL-7Rα intensities. Third, in contrast, stage 3 MPP (MPP3) cells, the unique circulating MPP subset, have upregulated Il7r, Gata3, and Notch1 in comparison with BM-resident counterparts. Evaluation of the populations' respective abilities to generate splenic T cell precursors (Lin(-)Thy1.2(+)CD25(+)IL7Rα(+)) after grafting recipient nude mice revealed that MPP3 cells were the most effective subset (relative to CLPs). Although several lymphoid genes are expressed by MPP3 cells and Flt3(-) CLPs, the latter only give rise to B cells in the spleen, and Notch1 expression level is not modulated in the blood, as for MPP3 cells. We conclude that CLPs have reached the point where they cannot be a Notch1 target, a limiting condition on the path to T cell engagement.
Collapse
Affiliation(s)
- Vanessa Zepponi
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Victoria Michaels Lopez
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | | | - Amine Boudil
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Valérie Pasqualetto
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Lamia Skhiri
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Laetitia Gautreau
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Agnès Legrand
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Jerome Megret
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Flora Zavala
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| | - Sophie Ezine
- INSERM, Unité 1151, Université Paris Descartes, Unité Mixte de Recherche 8253, 75993 Paris Cedex 14, France
| |
Collapse
|
35
|
Yang H, Lee YM, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY. Expression of Perforin Gene for Early Development of Nephrons in Olive Flounder (Paralichthys olivaceus). Dev Reprod 2015; 17:321-7. [PMID: 25949147 PMCID: PMC4382958 DOI: 10.12717/dr.2013.17.4.321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022]
Abstract
The innate immune system is the only defense weapon that invertebrates have, and it is the fundamental defense mechanism for fish. The innate immune response is important in newly hatched flounders because it is closely involved in the initial feeding phase, which is why it is essential for survival during the juvenile period. The expression analysis of genes involved in the innate immune response in the olive flounder (Paralichthys olivaceus) in the days after hatching is incomplete. Therefore, we have begun to examine the expression patterns of genes specifically induced during the development of the innate immune system in newly hatched flounders. Microscopic observation showed that pronephron formation corresponded with the expression of perforin-encoding gene. These results suggest that perforin plays a vital role in the innate immunity of the kidney during developmental stages. Perforin expression was strong at the start of the development of the innate immune response, and continued throughout all the development stages. Our findings have important implications with respect to perforin’s biological role and the evolution of the first defense mechanisms in olive flounder. Further studies are required to elucidate the perforin-mediated innate immunity response and to decipher the functional role of perforin in developmental stages.
Collapse
Affiliation(s)
- Hyun Yang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
36
|
Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing. Mutat Res 2014; 761:34-48. [PMID: 24530429 DOI: 10.1016/j.mrfmmm.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/22/2023]
Abstract
Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is similar for both genes and consistent with results at the TCRβ locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (Pr nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.
Collapse
|
37
|
Liu T, Huo X, Liu G, Chopra AK. WITHDRAWN: The majority of T cells, including Treg cells, are developed from CD4 -CD8 -T progenitor cells without the involvement of the CD4 +CD8 + stage in the thymus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00003-7. [PMID: 23333732 DOI: 10.1016/j.dci.2012.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/05/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tie Liu
- The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Analytical Cytology Laboratory and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | | | | | | |
Collapse
|
38
|
Laszkiewicz A, Sniezewski L, Kasztura M, Bzdzion L, Cebrat M, Kisielow P. Bidirectional activity of the NWC promoter is responsible for RAG-2 transcription in non-lymphoid cells. PLoS One 2012; 7:e44807. [PMID: 22984564 PMCID: PMC3439442 DOI: 10.1371/journal.pone.0044807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
The recombination-activating genes (RAG-1 and RAG-2) encode a V(D)J recombinase responsible for rearrangements of antigen-receptor genes during T and B cell development, and RAG expression is known to correlate strictly with the process of rearrangement. In contrast to RAG-1, the expression of RAG-2 was not previously detected during any other stage of lymphopoiesis or in any other normal tissue. Here we report that the CpG island-associated promoter of the NWC gene (the third evolutionarily conserved gene in the RAG locus), which is located in the second intron of RAG-2, has bidirectional activity and is responsible for the detectable transcription of RAG-2 in some non-lymphoid tissues. We also identify evolutionarily conserved promoter fragments responsible for this bidirectional activity, and show that it is activated by transcription factor ZFP143. The possible implications of our findings are briefly discussed.
Collapse
Affiliation(s)
- Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Monika Kasztura
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lukasz Bzdzion
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- * E-mail:
| | - Pawel Kisielow
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
39
|
Efficient generation, purification, and expansion of CD34(+) hematopoietic progenitor cells from nonhuman primate-induced pluripotent stem cells. Blood 2012; 120:e35-44. [PMID: 22898598 DOI: 10.1182/blood-2012-05-433797] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment, risk of neoplastic formation, and therapeutic benefit in an autologous setting, testing iPSC therapeutics in an appropriate model, such as the pigtail macaque (Macaca nemestrina; Mn), is crucial. Here, we developed a chemically defined, scalable, and reproducible specification protocol with bone morphogenetic protein 4, prostaglandin-E2 (PGE2), and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs. Sequential coculture with bone morphogenetic protein 4, PGE2, and SR1 led to robust Mn iPSC hematopoietic progenitor cell formation. The combination of PGE2 and SR1 increased CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cell yield by 6-fold. CD34(+)CD38(-)Thy1(+)CD45RA(-)CD49f(+) cells isolated on the basis of CD34 expression and cultured in SR1 expanded 3-fold and maintained this long-term repopulating HSC phenotype. Purified CD34(high) cells exhibited 4-fold greater hematopoietic colony-forming potential compared with unsorted hematopoietic progenitors and had bilineage differentiation potential. On the basis of these studies, we calculated the cell yields that must be achieved at each stage to meet a threshold CD34(+) cell dose that is required for engraftment in the pigtail macaque. Our protocol will support scale-up and testing of iPSC-derived CD34(high) cell therapies in a clinically relevant nonhuman primate model.
Collapse
|
40
|
Zhang XL, Lu YS, Jian JC, Wu ZH. Cloning and expression analysis of recombination activating genes (RAG1/2) in red snapper (Lutjanus sanguineus). FISH & SHELLFISH IMMUNOLOGY 2012; 32:534-543. [PMID: 22266137 DOI: 10.1016/j.fsi.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Recombination activating genes (RAG1 and RAG2), involved in the V(D)J recombination of immunoglobulin and T-cell receptor genes play a crucial role in the adaptive immune response in vertebrates. The expression of these genes was required for the proper development and maturity of lymphocytes so that they can be used as useful markers to evaluate the development of lymphoid organ. In this paper, the cDNA of RAG1 and RAG2 in red snapper, Lutjanus sanguineus were cloned by homological cloning and rapid amplification of cDNA ends (RACE) methods. Results showed the full length of RAG1 cDNA was 3944 bp, containing a 5' untranslated region (UTR) of 200 bp, a 3'-UTR of 561 bp and an open reading frame of 3183 bp encoding 1060 amino acids. Three important structural motifs, a RING/U-box domain, a RING/FYVE/PHD-type domain and a RAG Nonamer-binding domain were detected in the deduced amino acid sequence of RAG1 by InterProScan analysis. The full length of RAG2 cDNA was 2200 bp, consisting of a 141 bp 5'-UTR, a 457 bp 3'-UTR and an open reading frame of 1602 bp encoding 533 amino acids. Two important structural motifs, a Galactose oxidase/kelch, beta-propeller domain and a kelch-type beta-propeller domain were detected in the deduced amino acid sequence of RAG2 by InterProScan analysis. BLAST analysis revealed that the RAG1 and RAG2 in red snapper shared a high homology with other known RAG1 and RAG2 genes, while the greatest degree of identity was observed with Hippoglossus hippoglossus RAG1 at 82% and Takifugu rubripes RAG2 at 87%, respectively. The differential expressions of RAG1 and RAG2 in various tissues of red snapper were analyzed by fluorescent quantitative real-time PCR. The overall expression pattern of the two genes was quite similar. In healthy red snappers, the RAGs transcripts were mainly detected in thymus, following head kidney, spleen, intestine, liver and brain. After vaccinated with inactivated Vibrio alginolyticus 48 h later, the RAGs mRNA expression was significantly up-regulated in all studied tissues of red snapper. A clear time-dependent expression pattern of RAG1 and RAG2 after immunization and the expression reached the highest level at 48 h in thymus, 60 h in head kidney and spleen, respectively. These findings indicated that RAG1 and RAG2 could play an important role in the immune response to bacteria in red snapper.
Collapse
Affiliation(s)
- X L Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China
| | | | | | | |
Collapse
|
41
|
Abstract
The differentiation of natural killer (NK) cells and a subpopulation of NK cells which requires an intact thymus, that is, thymic NK cells, is poorly understood. Previous in vitro studies indicate that double negative (CD4⁻CD8⁻, DN) thymocytes can develop into cells with NK cell markers, but these cells have not been well characterized. Herein, we generated and characterized NK cells differentiating from thymic DN precursors. Sorted DN1 (CD44⁺CD25⁻) CD122⁻NK1.1⁻ thymocytes from Rag1(⁻/⁻) mice were adoptively transferred into Rag1(⁻/⁻)Ly5.1 congenic mice. After intrathymic injection, donor-derived cells phenotypically resembling thymic NK cells were found. To further study their differentiation, we seeded sorted DN1 CD122⁻)NK1.1⁻ thymocytes on irradiated OP9 bone marrow stromal cells with IL-15, IL-7, Flt3L, and stem cell factor. NK1.1⁺ cells emerged after 7 days. In vitro differentiated NK cells acquired markers associated with immature bone marrow-derived NK cells, but also expressed CD127, which is typically found on thymic NK cells. Furthermore, we found that in vitro cells generated from thymic precursors secreted cytokines when stimulated and degranulated on target exposure. Together, these data indicate that functional thymic NK cells can develop from a DN1 progenitor cell population.
Collapse
|
42
|
Hathcock KS, Farrington L, Ivanova I, Livak F, Selimyan R, Sen R, Williams J, Tai X, Hodes RJ. The requirement for pre-TCR during thymic differentiation enforces a developmental pause that is essential for V-DJβ rearrangement. PLoS One 2011; 6:e20639. [PMID: 21673984 PMCID: PMC3108609 DOI: 10.1371/journal.pone.0020639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/06/2011] [Indexed: 01/26/2023] Open
Abstract
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.
Collapse
MESH Headings
- Animals
- B7-2 Antigen/genetics
- B7-2 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Histones/chemistry
- Histones/metabolism
- Lysine
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Methylation
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Karen S Hathcock
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Orlando L, Accomasso L, Circosta P, Turinetto V, Lantelme E, Porcedda P, Minieri V, Pautasso M, Willemsen RA, Cignetti A, Giachino C. TCR transfer induces TCR-mediated tonic inhibition of RAG genes in human T cells. Mol Immunol 2011; 48:1369-76. [PMID: 21481940 DOI: 10.1016/j.molimm.2011.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
Induction of the TCR signaling pathway terminates the expression of RAG genes, and a link between this pathway and their transcriptional control is evident from the recent demonstration of their re-expression if the TCR is subsequently lost or down-regulated. Since unstimulated T cells display a steady-state level of "tonic" TCR signaling, i.e. in the absence of any antigenic stimulus, it was uncertain whether this control was exerted through ligand-dependent or ligand-independent TCR signaling. Here we demonstrate for the first time that exogenous TCR α and β chains transferred into the human immature RAG(+) T cell line Sup-T1 by lentiviral transduction inhibit RAG expression through tonic signaling, and that this inhibition could itself be reverted by pharmacological tonic pathway inhibitors. We also suggest that mature T cells already expressing an endogenous TCR on their surface maintain some levels of plasticity at the RAG locus when their basal TCR signaling is interfered with. Lastly, we show that the TCR constructs employed in TCR gene therapy do not possess the same basal signaling transduction capability, a feature that may have therapeutic implications.
Collapse
Affiliation(s)
- Luca Orlando
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Natural killer (NK) cells are generated in the bone marrow (BM) from lymphoid progenitors. Although several different maturation states of committed NK cells have been described, the initial stages of NK-cell differentiation from the common lymphoid progenitor are not well understood. Here we describe the identification of the earliest committed NK-cell precursors in the BM. These precursors, termed pre-pro NK cells, lack the expression of most canonical NK cell-specific surface markers but express the transcription factor inhibitor of DNA binding 2 and high levels of the IL-7 receptor. In vitro differentiation studies demonstrate that pre-pro NK cells are committed to NK-cell lineage and appear to be upstream of the previously identified NK-cell progenitor population.
Collapse
|
45
|
Narayan K, Kang J. Disorderly conduct in gammadelta versus alphabeta T cell lineage commitment. Semin Immunol 2010; 22:222-7. [PMID: 20451409 DOI: 10.1016/j.smim.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/05/2010] [Indexed: 12/22/2022]
Abstract
The mechanism of T cell precursor commitment to the gammadelta or alphabeta T cell lineage remains unclear. While TCR signal strength has emerged as a key factor in lineage commitment based on TCR transgenic models, the entire TCR repertoire may not possess the same discriminatory power. A counterbalance to the TCR as the lineage determinant is the pre-existing heterogeneity in gene expression among precursors, which suggests that single precursors are unlikely to respond homogeneously to a given instructive signal.
Collapse
Affiliation(s)
- Kavitha Narayan
- Department of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, S3-137, Worcester, MA 01655, USA
| | | |
Collapse
|
46
|
Abstract
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
47
|
Fiorini E, Merck E, Wilson A, Ferrero I, Jiang W, Koch U, Auderset F, Laurenti E, Tacchini-Cottier F, Pierres M, Radtke F, Luther SA, MacDonald HR. Dynamic Regulation of Notch 1 and Notch 2 Surface Expression during T Cell Development and Activation Revealed by Novel Monoclonal Antibodies. THE JOURNAL OF IMMUNOLOGY 2009; 183:7212-22. [DOI: 10.4049/jimmunol.0902432] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
del Blanco B, Roberts JL, Zamarreño N, Balmelle-Devaux N, Hernández-Munain C. Flexible Stereospecific Interactions and Composition within Nucleoprotein Complexes Assembled on the TCRα Gene Enhancer. THE JOURNAL OF IMMUNOLOGY 2009; 183:1871-83. [DOI: 10.4049/jimmunol.0803351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr Opin Immunol 2009; 21:173-8. [PMID: 19359154 DOI: 10.1016/j.coi.2009.03.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
Recombination activating genes (RAG)1 and RAG2 are expressed in developing B and T lymphocytes and are required for the rearrangement of antigen receptor genes. In turn, RAG expression is regulated by the products of these assembled immunoglobulin (Ig) and T cell receptor (TCR) genes. Upon successful assembly of Ig genes, the antigen receptor is expressed on the immature B cell surface and tested for autoreactivity leading to either maintenance or inactivation of RAG expression. Successful assembly of TCR genes is followed by surface TCR expression and testing for its ability to interact with self-MHC, which if appropriate leads to the inactivation of RAG expression. Recent studies in B and T lymphocytes demonstrate that the reduction in RAG expression at the immature B and double-positive (DP) T cell stages is mediated through tonic (foreign antigen independent) receptor signaling. In B cells, tonic signaling activates PI(3)K and Akt kinases, which phosphorylate and lead to the cytoplasmic sequestration of FoxO proteins, the key transcriptional activators of RAG expression. In T cells, tonic signaling activates Abl and Erk kinases, leading to the transcriptional inactivation of RAGs.
Collapse
|
50
|
Taghon T, Rothenberg EV. Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Semin Immunopathol 2008; 30:383-98. [PMID: 18925397 DOI: 10.1007/s00281-008-0134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/30/2008] [Indexed: 12/22/2022]
Abstract
Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the alphabeta versus gammadelta T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the alphabeta and gammadelta developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.
Collapse
Affiliation(s)
- Tom Taghon
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University Hospital, Ghent University, De Pintelaan 185, 4 Blok A, 9000, Ghent, Belgium.
| | | |
Collapse
|