1
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Xia M, Vago F, Han L, Huang P, Nguyen L, Boons GJ, Klassen JS, Jiang W, Tan M. The αTSR Domain of Plasmodium Circumsporozoite Protein Bound Heparan Sulfates and Elicited High Titers of Sporozoite Binding Antibody After Displayed by Nanoparticles. Int J Nanomedicine 2023; 18:3087-3107. [PMID: 37312932 PMCID: PMC10259582 DOI: 10.2147/ijn.s406314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Malaria is a devastating infectious illness caused by protozoan Plasmodium parasites. The circumsporozoite protein (CSP) on Plasmodium sporozoites binds heparan sulfate proteoglycan (HSPG) receptors for liver invasion, a critical step for prophylactic and therapeutic interventions. Methods In this study, we characterized the αTSR domain that covers region III and the thrombospondin type-I repeat (TSR) of the CSP using various biochemical, glycobiological, bioengineering, and immunological approaches. Results We found for the first time that the αTSR bound heparan sulfate (HS) glycans through support by a fused protein, indicating that the αTSR is a key functional domain and thus a vaccine target. When the αTSR was fused to the S domain of norovirus VP1, the fusion protein self-assembled into uniform S60-αTSR nanoparticles. Three-dimensional structure reconstruction revealed that each nanoparticle consists of an S60 nanoparticle core and 60 surface displayed αTSR antigens. The nanoparticle displayed αTSRs retained the binding function to HS glycans, indicating that they maintained authentic conformations. Both tagged and tag-free S60-αTSR nanoparticles were produced via the Escherichia coli system at high yield by scalable approaches. They are highly immunogenic in mice, eliciting high titers of αTSR-specific antibody that bound specifically to the CSPs of Plasmodium falciparum sporozoites at high titer. Discussion and Conclusion Our data demonstrated that the αTSR is an important functional domain of the CSP. The S60-αTSR nanoparticle displaying multiple αTSR antigens is a promising vaccine candidate potentially against attachment and infection of Plasmodium parasites.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Frank Vago
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, Snounou G, Mueller I. Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures. PLoS Negl Trop Dis 2022; 16:e0010633. [PMID: 35926062 PMCID: PMC9380936 DOI: 10.1371/journal.pntd.0010633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. Methodology/Principal findings In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito’s salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. Conclusions/Significance In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas. Plasmodium vivax is the second most common cause of malaria worldwide. It is particularly challenging for malaria elimination as it forms both active blood-stage infections, as well as asymptomatic liver-stage infections that can persist for extended periods of time. The activation of persister forms in the liver (hypnozoites) are responsible for relapsing infections occurring weeks or months following primary infection via a mosquito bite. How P. vivax persists in the liver remains a major gap in understanding of this organism. It has been hypothesized that there is pre-programming of the infectious sporozoite while it is in the salivary-glands that determines if the cell’s fate once in the liver is to progress towards immediate liver stage development or persist for long-periods as a hypnozoite. The aim of this study was to see if such differences were distinguishable at the transcript level in salivary-gland sporozoites. While we found significant variation amongst sporozoites, we did not find clear evidence that they are transcriptionally pre-programmed as has been suggested. Nevertheless, we highlight several intriguing patterns that appear to be P. vivax specific relative to non-relapsing species that cause malaria prompting further investigation.
Collapse
Affiliation(s)
- Anthony A. Ruberto
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Caitlin Bourke
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Aaron Jex
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Georges Snounou
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Ivo Mueller
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
4
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
Affiliation(s)
- Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Randall S. MacGill
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wayne Volkmuth
- Atreca Inc., South San Francisco, California, United States of America
| | - Emily Locke
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Jason A. Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel Emerling
- Atreca Inc., South San Francisco, California, United States of America
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Abstract
The adhesion of malaria infected red blood cells (iRBCs) to host endothelial receptors in the microvasculature, or cytoadhesion, is associated with severe disease pathology such as multiple organ failure and cerebral malaria. Malaria iRBCs have been shown to bind to several receptors, of which intercellular adhesion molecule 1 (ICAM-1) upregulation in brain microvasculature is the only one correlated to cerebral malaria. We utilize a biophysical approach to study the interactions between iRBCs and ICAM-1. At the single molecule level, force spectroscopy experiments reveal that ICAM-1 forms catch bond interactions with Plasmodium falciparum parasite iRBCs. Flow experiments are subsequently conducted to understand multiple bond behavior. Using a robust model that smoothly transitions between our single and multiple bond results, we conclusively demonstrate that the catch bond behavior persists even under flow conditions. The parameters extracted from these experimental results revealed that the rate of association of iRBC-ICAM-1 bonds are ten times lower than iRBC-CD36 (cluster of differentiation 36), a receptor that shows no upregulation in the brains of cerebral malaria patients. Yet, the dissociation rates are nearly the same for both iRBC-receptor interactions. Thus, our results suggest that ICAM-1 may not be the sole mediator responsible for cytoadhesion in the brain.
Collapse
|
6
|
Zhao J, Bhanot P, Hu J, Wang Q. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes. PLoS One 2016; 11:e0161607. [PMID: 27560376 PMCID: PMC4999272 DOI: 10.1371/journal.pone.0161607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022] Open
Abstract
Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP.
Collapse
Affiliation(s)
- Jinghua Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin, 300071, China
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, United States of America
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin, 300071, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin, 300070, China
- * E-mail:
| |
Collapse
|
7
|
Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl Trop Dis 2014; 8:e2796. [PMID: 24743266 PMCID: PMC3990511 DOI: 10.1371/journal.pntd.0002796] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/05/2014] [Indexed: 02/04/2023] Open
|
8
|
Antigenicity and immunogenicity of a novel Plasmodium vivax circumsporozoite derived synthetic vaccine construct. Vaccine 2014; 32:3179-86. [PMID: 24731811 DOI: 10.1016/j.vaccine.2014.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND The circumsporozoite (CS) protein is a major malaria sporozoite surface antigen currently being considered as vaccine candidate. Plasmodium vivax CS (PvCS) protein comprises a dimorphic central repeat fragment flanked by conserved regions that contain functional domains involved in parasite invasion of host cells. The protein amino (N-terminal) flank has a cleavage region (region I), essential for proteolytic processing prior to parasite invasion of liver cells. METHODS We have developed a 131-mer long synthetic polypeptide (LSP) named PvNR1R2 that includes the N-terminal flank and the two natural repeat variant regions known as VK210 and VK247. We studied the natural immune response to this region in human sera from different malaria-endemic areas and its immunogenicity in mice. RESULTS PvNR1R2 was more frequently recognized by sera from Papua New Guinea (PNG) (83%) than by samples from Colombia (24%) when tested by ELISA. The polypeptide formulated in Montanide ISA51 adjuvant elicited strong antibody responses in both C3H and CB6F1 mice strains. Antibodies from immunized mice as well as affinity-purified human IgG reacted with native protein by IFA test. Moreover, mouse immune sera induced strong (90%) in vitro inhibition of sporozoite invasion (ISI) of hepatoma cell lines. CONCLUSIONS These results encourage further studies in non-human primates to confirm the elicitation of sporozoite invasion blocking antibodies, to assess cell mediated immune responses and the protective efficacy of this polypeptide.
Collapse
|
9
|
Ouédraogo A, Tiono AB, Kargougou D, Yaro JB, Ouédraogo E, Kaboré Y, Kangoye D, Bougouma EC, Gansane A, Henri N, Diarra A, Sanon S, Soulama I, Konate AT, Watson NL, Brown V, Hendriks J, Pau MG, Versteege I, Wiesken E, Sadoff J, Nebie I, Sirima SB. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age. PLoS One 2013; 8:e78679. [PMID: 24244339 PMCID: PMC3823848 DOI: 10.1371/journal.pone.0078679] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS) surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. Methods A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso). Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84) of 109, 1010, 5X1010, 1011 vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination). Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. Results Of the forty-eight subjects enrolled, forty-four (91.7%) received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1%) subjects. Severe (grade 3) laboratory abnormalities occurred in five (10.4%) subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. Conclusion Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part of heterologous prime-boost vaccination strategies. Trial Registration ClinicalTrials.gov NCT01018459 http://clinicaltrials.gov/ct2/show/NCT01018459
Collapse
Affiliation(s)
- Alphonse Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred B. Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean Baptiste Yaro
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Esperance Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssouf Kaboré
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David Kangoye
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C. Bougouma
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Adama Gansane
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Henri
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Souleymane Sanon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amadou T. Konate
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nora L. Watson
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Valerie Brown
- The EMMES Corporation, Rockville, Maryland, United States of America
| | | | | | | | | | | | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe d’action et de Recherche en Santé, Ouagadougou, Burkina Faso
- * E-mail:
| |
Collapse
|
10
|
Abstract
Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms.
Collapse
|
11
|
Aragam NR, Thayer KM, Nge N, Hoffman I, Martinson F, Kamwendo D, Lin FC, Sutherland C, Bailey JA, Juliano JJ. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions. PLoS One 2013; 8:e62427. [PMID: 23667476 PMCID: PMC3646838 DOI: 10.1371/journal.pone.0062427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 12/20/2022] Open
Abstract
Circumsporozoite protein (CS) is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates) and Malawi (235 isolates), we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.
Collapse
Affiliation(s)
- Nagesh R. Aragam
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Thayer
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
| | - Nabi Nge
- Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Irving Hoffman
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | | | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Colin Sutherland
- Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jeffrey A. Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
- Division of Transfusion Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Jonathan J. Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Doud MB, Koksal AC, Mi LZ, Song G, Lu C, Springer TA. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci U S A 2012; 109:7817-22. [PMID: 22547819 PMCID: PMC3356675 DOI: 10.1073/pnas.1205737109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an "αTSR" domain. The αTSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but αTSR does not. Interestingly, polymorphic T-cell epitopes map to specialized αTSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.
Collapse
Affiliation(s)
- Michael B. Doud
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Adem C. Koksal
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Li-Zhi Mi
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gaojie Song
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Chafen Lu
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Timothy A. Springer
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Analysis of the conformation and function of the Plasmodium falciparum merozoite proteins MTRAP and PTRAMP. EUKARYOTIC CELL 2012; 11:615-25. [PMID: 22467743 DOI: 10.1128/ec.00039-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombospondin repeat (TSR)-like domains are structures involved with cell adhesion. Plasmodium falciparum proteins containing TSR domains play crucial roles in parasite development. In particular, the preerythrocytic P. falciparum circumsporozoite protein is involved in hepatocyte invasion. The importance of these domains in two other malaria proteins, the merozoite-specific thrombospondin-related anonymous protein (MTRAP) and the thrombospondin-related apical membrane protein (PTRAMP), were assessed using near-full-length recombinant proteins composed of the extracellular domains produced in Escherichia coli. MTRAP is thought to be released from invasive organelles identified as micronemes during merozoite invasion to mediate motility and host cell invasion through an interaction with aldolase, an actin binding protein involved in the moving junction. PTRAMP function remains unknown. In this study, the conformation of recombinant MTRAP (rMTRAP) appeared to be a highly extended protein (2 nm by 33 nm, width by length, respectively), whereas rPTRAMP had a less extended structure. Using an erythrocyte binding assay, rMTRAP but not rPTRAMP bound human erythrocytes; rMTRAP binding was mediated through the TSR domain. MTRAP- and in general PTRAMP-specific antibodies failed to inhibit P. falciparum development in vitro. Altogether, MTRAP is a highly extended bifunctional protein that binds to an erythrocyte receptor and the merozoite motor.
Collapse
|
16
|
Chenet SM, Tapia LL, Escalante AA, Durand S, Lucas C, Bacon DJ. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malar J 2012; 11:68. [PMID: 22417572 PMCID: PMC3330009 DOI: 10.1186/1475-2875-11-68] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/14/2012] [Indexed: 11/10/2022] Open
Abstract
Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP), Duffy-binding protein (DBP), Merozoite surface protein-1 (MSP-1), Apical membrane antigen-1 (AMA-1) and Thrombospondin related anonymous protein (TRAP). Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.
Collapse
Affiliation(s)
- Stella M Chenet
- Parasitology Program, Naval Medical Research Unit No, 6, Lima, Peru
| | | | | | | | | | | |
Collapse
|
17
|
Aldrich C, Magini A, Emiliani C, Dottorini T, Bistoni F, Crisanti A, Spaccapelo R. Roles of the amino terminal region and repeat region of the Plasmodium berghei circumsporozoite protein in parasite infectivity. PLoS One 2012; 7:e32524. [PMID: 22393411 PMCID: PMC3290588 DOI: 10.1371/journal.pone.0032524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/29/2012] [Indexed: 11/25/2022] Open
Abstract
The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced with the avian Plasmodium gallinaceum CS (PgCS) sequence, develop normally in the A. stephensi mosquito midgut but the sporozoites are not infectious. We therefore generated P. berghei transgenic parasites carrying the PgCS gene, in which the repeat region was replaced with the homologous region of P. berghei CS (PbCS). A further line, in which both the N-terminal region and repeat region were replaced with the homologous regions of PbCS, was also generated. Introduction of the PbCS repeat region alone, into the PgCS gene, did not rescue sporozoite species-specific infectivity. However, the introduction of both the PbCS repeat region and the N-terminal region into the PgCS gene completely rescued infectivity, in both the mosquito vector and the mammalian host. Immunofluorescence experiments and western blot analysis revealed correct localization and proteolytic processing of CSP in the chimeric parasites. The results demonstrate, in vivo, that the repeat region of P. berghei CSP, alone, is unable to mediate sporozoite infectivity in either the mosquito or the mammalian host, but suggest an important role for the N-terminal region in sporozoite host cell invasion.
Collapse
Affiliation(s)
- Cassandra Aldrich
- Department of Experimental Medicine, University of Perugia, Perugia Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Keble College, University of Oxford, Oxford, United Kingdom
| | - Alessandro Magini
- Department of Experimental Medicine, University of Perugia, Perugia Italy
| | - Carla Emiliani
- Department of Experimental Medicine, University of Perugia, Perugia Italy
| | - Tania Dottorini
- Department of Experimental Medicine, University of Perugia, Perugia Italy
| | - Francesco Bistoni
- Department of Experimental Medicine, University of Perugia, Perugia Italy
| | - Andrea Crisanti
- Department of Experimental Medicine, University of Perugia, Perugia Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, Perugia Italy
| |
Collapse
|
18
|
Ramakrishnan C, Dessens JT, Armson R, Pinto SB, Talman AM, Blagborough AM, Sinden RE. Vital functions of the malarial ookinete protein, CTRP, reside in the A domains. Int J Parasitol 2011; 41:1029-39. [PMID: 21729699 DOI: 10.1016/j.ijpara.2011.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
The transformation of malaria ookinetes into oocysts occurs in the mosquito midgut and is a major bottleneck for parasite transmission. The secreted ookinete surface protein, circumsporozoite- and thrombospondin-related adhesive protein (TRAP)-related protein (CTRP), is essential for this transition and hence constitutes a potential target for malaria transmission blockade. CTRP is a modular multidomain protein containing six tandem von Willebrand factor A-like (A) domains and seven tandem thrombospondin type I repeat-like (TS) domains. Here we present, to our knowledge, the first structure-function analysis of CTRP using genetically modified Plasmodium berghei parasites expressing mutant versions of the ctrp gene. Our data show that the A domains of CTRP are critical for ookinete gliding motility and oocyst formation whilst, unexpectedly, its TS domains are fully redundant. These results may have important implications for the design of CTRP-based transmission blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW72AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Malaria is a vector-borne infectious disease caused by unicellular parasites of the genus Plasmodium. These obligate intracellular parasites have the unique capacity to infect and replicate within erythrocytes, which are terminally differentiated host cells that lack antigen presentation pathways. Prior to the cyclic erythrocytic infections that cause the characteristic clinical symptoms of malaria, the parasite undergoes an essential and clinically silent expansion phase in the liver. By infecting privileged host cells, employing programs of complex life stage conversions and expressing varying immunodominant antigens, Plasmodium parasites have evolved mechanisms to downmodulate protective immune responses against ongoing and even future infections. Consequently, anti-malaria immunity develops only gradually over many years of repeated and multiple infections in endemic areas. The identification of immune correlates of protection among the abundant non-protective host responses remains a research priority. Understanding the molecular and immunological mechanisms of the crosstalk between the parasite and the host is a prerequisite for the rational discovery and development of a safe, affordable, and protective anti-malaria vaccine.
Collapse
Affiliation(s)
- Julius Clemence Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | |
Collapse
|
20
|
Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, Corradin G, Persson C, Tewari R, Sinnis P. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med 2011; 208:341-56. [PMID: 21262960 PMCID: PMC3039851 DOI: 10.1084/jem.20101488] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/22/2010] [Indexed: 11/21/2022] Open
Abstract
Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.
Collapse
Affiliation(s)
- Alida Coppi
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | - Ramya Natarajan
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | - Gabriele Pradel
- Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | - Brandy L. Bennett
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| | | | - Mario A. Roggero
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Cathrine Persson
- Department of Molecular Biology, Umea University, SE-901 87 Umea, Sweden
| | - Rita Tewari
- Center for Genetics and Genomics, School of Biology, The University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010
| |
Collapse
|
21
|
Crompton PD, Pierce SK, Miller LH. Advances and challenges in malaria vaccine development. J Clin Invest 2010; 120:4168-78. [PMID: 21123952 DOI: 10.1172/jci44423] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.
Collapse
Affiliation(s)
- Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | | | | |
Collapse
|
22
|
Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 2010; 40:1229-35. [PMID: 20621627 PMCID: PMC2916662 DOI: 10.1016/j.ijpara.2010.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | - Florian Kohlhepp
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | - Christiane Hammerschmidt
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | - Kristin Michel
- Kansas State University, Division of Biology, Manhattan, KS, USA
| |
Collapse
|
23
|
Bhat AA, Seth RK, Kumar S, Ali R, Mohan T, Biswas S, Rao DN. Induction of cell-mediated immune responses to peptide antigens of P. vivax in microparticles using intranasal immunization. Immunol Invest 2010; 39:483-99. [PMID: 20450288 DOI: 10.3109/08820131003674826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cells play a critical role in resistance to malaria, not only because they function as helper cells for an antibody response, but also because they serve as effector cells. Such cellular immunity is directly implicated in protection from sporozoites as well as from blood stage parasites. The aim of this study was to induce cell mediated immune responses to peptide antigens of Plasmodium vivax co-encapsulated with CpG oligodeoxynucleotide (ODN) in microparticles. In the present study, we have investigated the immunomodulatory effects of two CpG adjuvants, CpG 1826 and CpG 2006 to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein, merozoite surface protein-1, apical membrane antigen-1 and gametocyte surface antigen (Pvs24) in microparticle delivery. The T-cell proliferation response study of the cells collected from spleen, lamina propria and peyer's patches showed significantly high (p<0.001) stimulation index when primed with peptide antigens in microparticles co-encapsulating CpG ODN adjuvant as compared to peptide alone primed mice. The cytokine measurement profile of IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-10 in culture supernatants of cells primed with peptide antigens in microparticles co-encapsulating CpG ODN showed higher levels of IFN- gamma followed by TNF-alpha and IL-2, with relatively low levels of IL-4 and IL-10.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Yao H, Veine DM, Fay KS, Staszewski ED, Zeng ZZ, Livant DL. The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res Treat 2010; 125:363-75. [DOI: 10.1007/s10549-010-0826-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
25
|
Yao H, Veine DM, Zeng ZZ, Fay KS, Staszewski ED, Livant DL. Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis 2010; 27:173-84. [PMID: 20339907 PMCID: PMC3053599 DOI: 10.1007/s10585-010-9316-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Activated alpha5beta1 integrin occurs specifically on tumor cells and on endothelial cells of tumor-associated vasculature, and plays a key role in invasion and metastasis. The PHSCN peptide (Ac-PHSCN-NH(2)) preferentially binds activated alpha5beta1, to block invasion in vitro, and inhibit growth, metastasis and tumor recurrence in preclinical models of prostate cancer. In Phase I clinical trial, systemic Ac-PHSCN-NH(2) monotherapy was well tolerated, and metastatic disease progression was prevented for 4-14 months in one-third of treated patients. We have developed a significantly more potent derivative, the PHSCN-polylysine dendrimer (Ac-PHSCNGGK-MAP). Using in vitro invasion assays with naturally serum-free basement membranes, we observed that the PHSCN dendrimer was 130- to 1900-fold more potent than the PHSCN peptide at blocking alpha5beta1-mediated invasion by DU 145 and PC-3 human prostate cancer cells, whether invasion was induced by serum, or by the Ac-PHSRN-NH(2) peptide, under serum-free conditions. The PHSCN dendrimer was also approximately 800 times more effective than PHSCN peptide at preventing DU 145 and PC-3 extravasation in the lungs of athymic mice. Chou-Talalay analysis suggested that inhibition of both invasion in vitro and extravasation in vivo by the PHSCN dendrimer are highly synergistic. We found that many extravasated DU 145 and PC-3 cells go onto develop into metastatic colonies, and that a single pretreatment with the PHSCN dendrimer was 100-fold more affective than the PHSCN peptide at reducing lung colony formation. Since many patients newly diagnosed with prostate cancer already have locally advanced or metastatic disease, the availability of a well-tolerated, nontoxic systemic therapy, like the PHSCN dendrimer, which prevents metastatic progression by inhibiting invasion, could be very beneficial.
Collapse
Affiliation(s)
- Hongren Yao
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, Ann Arbor, MI 48109-5637, USA
| | | | | | | | | | | |
Collapse
|
26
|
Acquired immune response to defined Plasmodium vivax antigens in individuals residing in northern India. Microbes Infect 2009; 12:199-206. [PMID: 20034587 DOI: 10.1016/j.micinf.2009.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/09/2009] [Accepted: 12/10/2009] [Indexed: 11/20/2022]
Abstract
In this investigation, we evaluated the naturally acquired immune response to Plasmodium vivax stage-specific antigens in individuals of different age groups belonging to malaria endemic areas of northern India. Four synthetic peptides containing both B- and T-cell epitopes from P. vivax circumsporozoite protein, merozoite surface protein-1, apical membrane antigen-1 and gametocyte surface antigen-1 were used to determine both humoral and cellular immune responses. Immunity, in terms of antibody response and T-cell proliferation against these stage-specific peptides, has been observed in the study subjects. The results demonstrated age-dependent antibody response in this population. Forty two patients were diagnosed with P. vivax. There was a significant association (P=0.013) between number of antibody responders and recognition of stage-specific epitopes by antibodies. The antibody response to B-epitopes of P. vivax CSP, MSP1, AMA1 and GAM1 was associated with age; adults responded more frequently to these antigens than did younger children. In this population, 66% (201/304) cases showed seropositivity to all peptides and 13% (41/304) showed negative response. Peripheral blood mononuclear cells of more than 75% of individuals proliferated in response to stimulation by all four epitopes. In conclusion, the results demonstrated immunogenicity of the epitopes to P. vivax in population of this endemic zone.
Collapse
|
27
|
Takala SL, Plowe CV. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol 2009; 31:560-73. [PMID: 19691559 PMCID: PMC2730200 DOI: 10.1111/j.1365-3024.2009.01138.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of effective malaria vaccines may be hindered by extensive genetic diversity in the surface proteins being employed as vaccine antigens. Understanding of the extent and dynamics of genetic diversity in vaccine antigens is needed to guide rational vaccine design and to interpret the results of vaccine efficacy trials conducted in malaria endemic areas. Molecular epidemiological, population genetic, and structural approaches are being employed to try to identify immunologically relevant polymorphism in vaccine antigens. The results of these studies will inform choices of which alleles to include in multivalent or chimeric vaccines; however, additional molecular and immuno-epidemiological studies in a variety of geographic locations will be necessary for these approaches to succeed. Alternative means of overcoming antigenic diversity are also being explored, including boosting responses to critical conserved regions of current vaccine antigens, identifying new, more conserved and less immunodominant antigens, and developing whole-organism vaccines. Continued creative application and integration of tools from multiple disciplines, including epidemiology, immunology, molecular biology, and evolutionary genetics and genomics, will likely be required to develop broadly protective vaccines against Plasmodium and other antigenically complex pathogens.
Collapse
Affiliation(s)
- S L Takala
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
28
|
Combe A, Giovannini D, Carvalho TG, Spath S, Boisson B, Loussert C, Thiberge S, Lacroix C, Gueirard P, Ménard R. Clonal Conditional Mutagenesis in Malaria Parasites. Cell Host Microbe 2009; 5:386-96. [DOI: 10.1016/j.chom.2009.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/20/2009] [Accepted: 03/27/2009] [Indexed: 11/26/2022]
|
29
|
Abstract
Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and pre-erythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
30
|
Frevert U, Usynin I, Baer K, Klotz C. Plasmodium sporozoite passage across the sinusoidal cell layer. Subcell Biochem 2008; 47:182-97. [PMID: 18512352 DOI: 10.1007/978-0-387-78267-6_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malaria sporozoites must cross at least two cell barriers to reach their initial site of replication in the mammalian host. After transmission into the skin by an infected mosquito, they migrate towards small dermal capillaries, traverse the vascular endothelial layer, and rapidly home to the liver. To infect hepatocytes, the parasites must cross the sinusoidal cell layer, composed of specialized highly fenestrated sinusoidal endothelia and Kupffer cells, the resident macrophages of the liver (Fig. 1). The exact route Plasmodium sporozoites take to hepatocytes has been subject of controversial discussions for many years. Recent cell biological, microscopic, and genetic approaches have considerably enhanced our understanding of the initial events leading to the establishment of a malaria infection in the liver.
Collapse
Affiliation(s)
- Ute Frevert
- NYU School of Medicine, Department of Medical Parasitology, 341 E. 25 Street, New York, New York 10010, USA.
| | | | | | | |
Collapse
|
31
|
Bermúdez A, Vanegas M, Patarroyo ME. Structural and immunological analysis of circumsporozoite protein peptides: A further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. Vaccine 2008; 26:6908-18. [DOI: 10.1016/j.vaccine.2008.09.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
32
|
Stevenson M, Ramos-Perez V, Singh S, Soliman M, Preece JA, Briggs SS, Read ML, Seymour LW. Delivery of siRNA mediated by histidine-containing reducible polycations. J Control Release 2008; 130:46-56. [PMID: 18571758 DOI: 10.1016/j.jconrel.2008.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/06/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
Histidine containing reducible polycations based on CH(6)K(3)H(6)C monomers (His6 RPCs), are highly effective DNA transfection agents combining pH buffering endosomal escape mechanisms with rapid unpackaging following reduction in the cytoplasm. We examined their ability to mediate siRNA uptake into cells focusing on hepatocyte delivery. Co-delivery of EGFP siRNA with pEGFP plasmid DNA reduced reporter gene expression by 85%. However while DNA transfection efficiency increased with polymer size, with 162 k His6 RPCs proving the most effective, delivery of siRNA alone to EGFP stably expressing cells was only possible using 36-80 k polymers. Analysis of particle sizes showed that 80 k polymers formed more compact siRNA complexes than 162 k polymers. The reducible nature of the polymer was necessary for siRNA activity, since siRNA combined with non-reducible polylysine showed little activity. Incorporation of a targeting peptide from the Plasmodium falciparum circumsporozoite (CS) protein onto His6 RPCs, significantly improved transfection of plasmid DNA and siRNA activity in hepatocytes, but not in most non-liver cells tested. siRNA targeted to the hepatitis B virus surface antigen delivered by CS-His6 RPC, mediated falls in both mRNA and protein expression, suggesting that this delivery system could be developed for potential therapies for viral hepatitis.
Collapse
Affiliation(s)
- Mark Stevenson
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Frevert U, Späth GF, Yee H. Exoerythrocytic development of Plasmodium gallinaceum in the White Leghorn chicken. Int J Parasitol 2008; 38:655-72. [PMID: 18005972 PMCID: PMC2430052 DOI: 10.1016/j.ijpara.2007.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/22/2007] [Accepted: 09/27/2007] [Indexed: 01/22/2023]
Abstract
Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitaemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria.
Collapse
Affiliation(s)
- Ute Frevert
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010, USA.
| | | | | |
Collapse
|
34
|
Akhouri RR, Sharma A, Malhotra P, Sharma A. Role of Plasmodium falciparum thrombospondin-related anonymous protein in host-cell interactions. Malar J 2008; 7:63. [PMID: 18426606 PMCID: PMC2373790 DOI: 10.1186/1475-2875-7-63] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/22/2008] [Indexed: 11/21/2022] Open
Abstract
Background Thrombospondin-related anonymous protein (TRAP) is essential for sporozoite motility and for liver cell invasion. TRAP is a type 1 membrane protein that possesses multiple adhesive domains in its extracellular region. Methods Plasmodium falciparum TRAP (PfTRAP) and its subdomains were expressed in a mammalian expression system, and eleven different mutants generated to study interaction of PfTRAP with liver cells. Binding studies between HepG2 cell extracts and PfTRAP were performed using co-immunoprecipitation protocols. Results Five different amino acid residues of PfTRAP that are involved in liver cell binding have been identified. These PfTRAP mutants bound to heparin like the wild type PfTRAP thereby suggesting a non-heparin mediated binding of PfTRAP to liver cells. Three Src family proteins -Lyn, Lck and CrkL which interact with PfTRAP are also identified. Liver cell extracts and immunoprecipitated Src family kinases phosphorylated PfTRAP at multiple sites. An analysis of multiple TRAP sequences revealed Src homology 3 domain (SH3) binding motifs. Conclusion Binding of PfTRAP to SH3-domain containing proteins like Src-family kinases and their ability to phosphorylate PfTRAP suggests a novel role for PfTRAP in cell signaling during sporozoite invasion and homing inside the liver cells. These data shed new light on TRAP-liver cell interactions.
Collapse
Affiliation(s)
- Reetesh Raj Akhouri
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | | | | | |
Collapse
|
35
|
Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prévost MC, Ishino T, Yuda M, Ménard R. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 2008; 3:88-96. [PMID: 18312843 DOI: 10.1016/j.chom.2007.12.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/18/2007] [Accepted: 12/26/2007] [Indexed: 11/15/2022]
Abstract
The malaria sporozoite, the parasite stage transmitted by the mosquito, is delivered into the dermis and differentiates in the liver. Motile sporozoites can invade host cells by disrupting their plasma membrane and migrating through them (termed cell traversal), or by forming a parasite-cell junction and settling inside an intracellular vacuole (termed cell infection). Traversal of liver cells, observed for sporozoites in vivo, is thought to activate the sporozoite for infection of a final hepatocyte. Here, using Plasmodium berghei, we show that cell traversal is important in the host dermis for preventing sporozoite destruction by phagocytes and arrest by nonphagocytic cells. We also show that cell infection is a pathway that is masked, rather than activated, by cell traversal. We propose that the cell traversal activity of the sporozoite must be turned on for progression to the liver parenchyma, where it must be switched off for infection of a final hepatocyte.
Collapse
Affiliation(s)
- Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, Billker O, Sinnis P. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2007; 2:316-27. [PMID: 18005753 PMCID: PMC2117360 DOI: 10.1016/j.chom.2007.10.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/23/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
Abstract
Malaria infection is initiated when Anopheles mosquitoes inject Plasmodium sporozoites into the skin. Sporozoites subsequently reach the liver, invading and developing within hepatocytes. Sporozoites contact and traverse many cell types as they migrate from skin to liver; however, the mechanism by which they switch from a migratory mode to an invasive mode is unclear. Here, we show that sporozoites of the rodent malaria parasite Plasmodium berghei use the sulfation level of host heparan sulfate proteoglycans (HSPGs) to navigate within the mammalian host. Sporozoites migrate through cells expressing low-sulfated HSPGs, such as those in skin and endothelium, while highly sulfated HSPGs of hepatocytes activate sporozoites for invasion. A calcium-dependent protein kinase is critical for the switch to an invasive phenotype, a process accompanied by proteolytic cleavage of the sporozoite's major surface protein. These findings explain how sporozoites retain their infectivity for an organ that is far from their site of entry.
Collapse
Affiliation(s)
- Alida Coppi
- Department of Medical Parasitology, 341 East 25 Street, New York University School of Medicine, New York, NY 10010
| | - Rita Tewari
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joseph R. Bishop
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Brandy L. Bennett
- Department of Medical Parasitology, 341 East 25 Street, New York University School of Medicine, New York, NY 10010
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Oliver Billker
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Photini Sinnis
- Department of Medical Parasitology, 341 East 25 Street, New York University School of Medicine, New York, NY 10010
| |
Collapse
|
37
|
Sinnis P, Coppi A. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 2007; 56:171-8. [PMID: 17513164 PMCID: PMC1995443 DOI: 10.1016/j.parint.2007.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/17/2007] [Indexed: 11/21/2022]
Abstract
The Plasmodium sporozoite, the infectious stage of the malaria parasite, makes a remarkable journey in its mammalian host. Here we review our current knowledge of the molecular and cellular basis of this journey, which begins in the skin and ends in the hepatocyte.
Collapse
Affiliation(s)
- Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, United States.
| | | |
Collapse
|
38
|
Chinchilla M, Pasetti MF, Medina-Moreno S, Wang JY, Gomez-Duarte OG, Stout R, Levine MM, Galen JE. Enhanced immunity to Plasmodium falciparum circumsporozoite protein (PfCSP) by using Salmonella enterica serovar Typhi expressing PfCSP and a PfCSP-encoding DNA vaccine in a heterologous prime-boost strategy. Infect Immun 2007; 75:3769-79. [PMID: 17502396 PMCID: PMC1951980 DOI: 10.1128/iai.00356-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Salmonella enterica serovar Typhi strains that express and export a truncated version of Plasmodium falciparum circumsporozoite surface protein (tCSP) fused to Salmonella serovar Typhi cytolysin A (ClyA) were constructed as a first step in the development of a preerythrocytic malaria vaccine. Synthetic codon-optimized genes (t-csp1 and t-csp2), containing immunodominant B- and T-cell epitopes present in native P. falciparum circumsporozoite surface protein (PfCSP), were fused in frame to the carboxyl terminus of the ClyA gene (clyA::t-csp) in genetically stabilized expression plasmids. Expression and export of ClyA-tCSP1 and ClyA-tCSP2 by Salmonella serovar Typhi vaccine strain CVD 908-htrA were demonstrated by immunoblotting of whole-cell lysates and culture supernatants. The immunogenicity of these constructs was evaluated using a "heterologous prime-boost" approach consisting of mucosal priming with Salmonella serovar Typhi expressing ClyA-tCSP1 and ClyA-tCSP2, followed by parenteral boosting with PfCSP DNA vaccines pVR2510 and pVR2571. Mice primed intranasally on days 0 and 28 with CVD 908-htrA(pSEC10tcsp2) and boosted intradermally on day 56 with PfCSP DNA vaccine pVR2571 induced high titers of serum NANP immunoglobulin G (IgG) (predominantly IgG2a); no serological responses to DNA vaccination were observed in the absence of Salmonella serovar Typhi-PfCSP priming. Mice primed with Salmonella serovar Typhi expressing tCSP2 and boosted with PfCSP DNA also developed high frequencies of gamma interferon-secreting cells, which surpassed those produced by PfCSP DNA in the absence of priming. A prime-boost regimen consisting of mucosal delivery of PfCSP exported from a Salmonella-based live-vector vaccine followed by a parenteral PfCSP DNA boosting is a promising strategy for the development of a live-vector-based malaria vaccine.
Collapse
Affiliation(s)
- Magaly Chinchilla
- Center for Vaccine Development, University of Maryland, 685 W. Baltimore Street, HSF I, Room 480, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kumar KA, Sano GI, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F, Nussenzweig V. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 2006; 444:937-40. [PMID: 17151604 DOI: 10.1038/nature05361] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/20/2006] [Indexed: 11/09/2022]
Abstract
Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they develop into the exo-erythrocytic forms (EEFs). Immunization with irradiated sporozoites (IrSp) leads to robust protection against malaria infection in rodents, monkeys and humans by eliciting antibodies to circumsporozoite protein (CS) that inhibit sporozoite infectivity, and T cells that destroy the EEFs. To study the role of non-CS antigens in protection, we produced CS transgenic mice that were tolerant to CS T-cell epitopes. Here we show that in the absence of T-cell-dependent immune responses to CS, protection induced by immunization with two doses of IrSp was greatly reduced. Thus, although hundreds of other Plasmodium genes are expressed in sporozoites and EEFs, CS is a dominant protective antigen. Nevertheless, sterile immunity could be obtained by immunization of CS transgenics with three doses of IrSp.
Collapse
Affiliation(s)
- Kota Arun Kumar
- Michael Heidelberger Division of Immunology, Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 2006; 19:686-707. [PMID: 17041140 PMCID: PMC1592691 DOI: 10.1128/cmr.00063-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum sporozoite infects different types of cells in a mosquito's salivary glands and human epithelial and Kuppfer cells and hepatocytes. These become differentiated later on, transforming themselves into the invasive red blood cell form, the merozoite. The ability of sporozoites to interact with different types of cells requires a wide variety of mechanisms allowing them to survive in both hosts: mobility, receptor-ligand interactions with different cellular receptors, and transformation and development into other invasive parasite forms, which are vitally important for parasite survival. Sporozoite complexity is reflected in the large quantity of proteins that can be expressed. Some of them have been extensively studied, such as CSP, TRAP, STARP, LSA-1, LSA-3, SALSA, SPECT1, SPECT2, MAEBL, and SPATR, due to their importance in infection and their potential use as vaccines. Our work has been focused on the search for the molecular mechanisms of parasite-host cellular receptor-ligand interactions by identifying amino acid sequences and the critical binding residues from these proteins relevant to parasite invasion. Once such sequences have been identified, it will be possible to modify them to induce a strong immune response against P. falciparum in the experimental Aotus monkey model. This all leads towards developing multistage, multicomponent, subunit-based vaccines that will be effective in eradicating or controlling malaria caused by P. falciparum.
Collapse
Affiliation(s)
- Javier E Garcia
- Fundacion Instituto de Immunología de Colombia, Carrera 50 #26-00, Bogotá, Colombia
| | | | | |
Collapse
|
41
|
Prudêncio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol 2006; 4:849-56. [PMID: 17041632 DOI: 10.1038/nrmicro1529] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plasmodium sporozoites are deposited in the skin of their vertebrate hosts through the bite of an infected female Anopheles mosquito. Most of these parasites find a blood vessel and travel in the peripheral blood circulation until they reach the liver sinusoids. Once there, the sporozoites cross the sinusoidal wall and migrate through several hepatocytes before they infect a final hepatocyte, with the formation of a parasitophorous vacuole, in which the intrahepatic form of the parasite grows and multiplies. During this period, each sporozoite generates thousands of merozoites. As the development of Plasmodium sporozoites inside hepatocytes is an obligatory step before the onset of disease, understanding the parasite's requirements during this period is crucial for the development of any form of early intervention. This Review summarizes our current knowledge on this stage of the Plasmodium life cycle.
Collapse
Affiliation(s)
- Miguel Prudêncio
- Instituto de Medicina Molecular, Unidade de Malária, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
42
|
Tossavainen H, Pihlajamaa T, Huttunen TK, Raulo E, Rauvala H, Permi P, Kilpeläinen I. The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Protein Sci 2006; 15:1760-8. [PMID: 16815922 PMCID: PMC2242559 DOI: 10.1110/ps.052068506] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thrombospondin-related anonymous protein, TRAP, has a critical role in the hepatocyte invasion step of Plasmodium sporozoites, the transmissible form of the parasite causing malaria. The extracellular domains of this sporozoite surface protein interact with hepatocyte surface receptors whereas its intracellular domain acts as a link to the sporozoite actomyosin motor system. Liver heparan sulfate proteoglycans have been identified as potential ligands for TRAP. Proteoglycan binding has been associated with the A- and TSR domains of TRAP. We present the solution NMR structure of the TSR domain of TRAP and a chemical shift mapping study of its heparin binding epitope. The domain has an elongated structure stabilized by an array of tryptophan and arginine residues as well as disulfide bonds. The fold is very similar to those of thrombospondin type-1 (TSP-1) and F-spondin TSRs. The heparin binding site of TRAP-TSR is located in the N-terminal half of the structure, the layered side chains forming an integral part of the site. The smallest heparin fragment capable of binding to TRAP-TSR is a tetrasaccharide.
Collapse
Affiliation(s)
- Helena Tossavainen
- Program in Structural Biology and Biophysics, NMR Laboratory, Institute of Biotechnology, Neuroscience Center, Department of Chemistry, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Parra-López C, Calvo-Calle JM, Cameron TO, Vargas LE, Salazar LM, Patarroyo ME, Nardin E, Stern LJ. Major histocompatibility complex and T cell interactions of a universal T cell epitope from Plasmodium falciparum circumsporozoite protein. J Biol Chem 2006; 281:14907-17. [PMID: 16565072 DOI: 10.1074/jbc.m511571200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 20-residue sequence from the C-terminal region of the circumsporozoite protein of the malaria parasite Plasmodium falciparum is considered a universal helper T cell epitope because it is immunogenic in individuals of many major histocompatibility complex (MHC) haplotypes. Subunit vaccines containing T* and the major B cell epitope of the circumsporozoite protein induce high antibody titers to the malaria parasite and significant T cell responses in humans. In this study we have evaluated the specificity of the T* sequence with regard to its binding to the human class II MHC protein DR4 (HLA-DRB1*0401), its interactions with antigen receptors on T cells, and the effect of natural variants of this sequence on its immunogenicity. Computational approaches identified multiple potential DR4-binding epitopes within T*, and experimental binding studies confirmed the following two tight binding epitopes: one located toward the N terminus (the T*-1 epitope) and one at the C terminus (the T*-5 epitope). Immunization of a human DR4 volunteer with a peptide-based vaccine containing the T* sequence elicited CD4+ T cells that recognize each of these epitopes. Here we present an analysis of the immunodominant N-terminal epitope T*-1. T*-1 residues important for interaction with DR4 and with antigen receptors on T*-specific T cells were mapped. MHC tetramers carrying DR4/T*-1 MHC-peptide complexes stained and efficiently stimulated these cells in vitro. T*-1 overlaps a region of the protein that has been described as highly polymorphic; however, the particular T*-1 residues required for anchoring to DR4 were highly conserved in Plasmodium sequences described to date.
Collapse
Affiliation(s)
- Carlos Parra-López
- Fundación Instituto de Inmunología de Colombia, Grupo Funcional Inmunología, Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tewari R, Rathore D, Crisanti A. Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein. Cell Microbiol 2006; 7:699-707. [PMID: 15839899 DOI: 10.1111/j.1462-5822.2005.00503.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.
Collapse
Affiliation(s)
- Rita Tewari
- Department of Biological Sciences, SAF Building, Imperial College, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
45
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Jethwaney D, Lepore T, Hassan S, Mello K, Rangarajan R, Jahnen-Dechent W, Wirth D, Sultan AA. Fetuin-A, a hepatocyte-specific protein that binds Plasmodium berghei thrombospondin-related adhesive protein: a potential role in infectivity. Infect Immun 2005; 73:5883-91. [PMID: 16113307 PMCID: PMC1231124 DOI: 10.1128/iai.73.9.5883-5891.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Malaria infection is initiated when the insect vector injects Plasmodium sporozoites into a susceptible vertebrate host. Sporozoites rapidly leave the circulatory system to invade hepatocytes, where further development generates the parasite form that invades and multiplies within erythrocytes. Previous experiments have shown that the thrombospondin-related adhesive protein (TRAP) plays an important role in sporozoite infectivity for hepatocytes. TRAP, a typical type-1 transmembrane protein, has a long extracellular region, which contains two adhesive domains, an A-domain and a thrombospondin repeat. We have generated recombinant proteins of the TRAP adhesive domains. These TRAP fragments show direct interaction with hepatocytes and inhibit sporozoite invasion in vitro. When the recombinant TRAP A-domain was used for immunoprecipitation against hepatocyte membrane fractions, it bound to alpha2-Heremans-Schmid glycoprotein/fetuin-A, a hepatocyte-specific protein associated with the extracellular matrix. When the soluble sporozoite protein fraction was immunoprecipitated on a fetuin-A-adsorbed protein A column, TRAP bound this ligand. Importantly, anti-fetuin-A antibodies inhibited invasion of hepatocytes by sporozoites. Further, onset of malaria infection was delayed in fetuin-A-deficient mice compared to that in wild-type C57BL/6 mice when they were challenged with Plasmodium berghei sporozoites. These data demonstrate that the extracellular region of TRAP interacts with fetuin-A on hepatocyte membranes and that this interaction enhances the parasite's ability to invade hepatocytes.
Collapse
Affiliation(s)
- Deepa Jethwaney
- Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115-6018, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Q, Fujioka H, Nussenzweig V. Exit of Plasmodium sporozoites from oocysts is an active process that involves the circumsporozoite protein. PLoS Pathog 2005; 1:e9. [PMID: 16201021 PMCID: PMC1238744 DOI: 10.1371/journal.ppat.0010009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022] Open
Abstract
Plasmodium sporozoites develop within oocysts residing in the mosquito midgut. Mature sporozoites exit the oocysts, enter the hemolymph, and invade the salivary glands. The circumsporozoite (CS) protein is the major surface protein of salivary gland and oocyst sporozoites. It is also found on the oocyst plasma membrane and on the inner surface of the oocyst capsule. CS protein contains a conserved motif of positively charged amino acids: region II-plus, which has been implicated in the initial stages of sporozoite invasion of hepatocytes. We investigated the function of region II-plus by generating mutant parasites in which the region had been substituted with alanines. Mutant parasites produced normal numbers of sporozoites in the oocysts, but the sporozoites were unable to exit the oocysts. In in vitro as well, there was a profound delay, upon trypsin treatment, in the release of mutant sporozoites from oocysts. We conclude that the exit of sporozoites from oocysts is an active process that involves the region II-plus of CS protein. In addition, the mutant sporozoites were not infective to young rats. These findings provide a new target for developing reagents that interfere with the transmission of malaria. Malaria affects hundreds of millions of people, and kills at least 1 million children per year. The infective stages of the malaria parasites, named “sporozoites,” are found in the salivary gland of Anopheles mosquitoes, and are injected along with the saliva during blood feeding. From the skin, sporozoites enter the blood circulation and invade liver cells where the parasites multiply. When they exit the liver, these parasites infect blood cells and can cause severe symptoms. If ingested by mosquitoes, the blood-stage parasites continue their lifecycle in the insect stomach. Thousands of sporozoites are formed within a cyst-like structure (oocyst). The sporozoites come out of the oocyst and infect the salivary gland, where they remain until injected back into humans. Malaria parasites are increasingly resistant to drugs, mosquitoes are difficult to eliminate, and effective vaccines are not yet available. New tools to combat malaria are urgently needed. One exciting approach, although the application is in the distant future, is to release in endemic areas genetically modified mosquitoes that are resistant to parasite growth. This paper provides a new target for generating these “transmission-block” mosquitoes and shows that the exit of sporozoites from the oocysts is an active process that requires the enzymatic digestion of components of the oocyst wall. If these enzymes are inhibited in transgenic mosquitoes, sporozoites will never reach the salivary gland.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathology, Michael Heidelberger Division, New York University School of Medicine, New York, New York, United States of America.
| | | | | |
Collapse
|
48
|
Frevert U, Engelmann S, Zougbédé S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol 2005; 3:e192. [PMID: 15901208 PMCID: PMC1135295 DOI: 10.1371/journal.pbio.0030192] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 03/30/2005] [Indexed: 01/08/2023] Open
Abstract
Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.
Collapse
Affiliation(s)
- Ute Frevert
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- B K Sim
- EntreMed Inc., Rockville, MD 20850, USA
| |
Collapse
|
50
|
Abstract
Malaria infection is initiated when Plasmodium sporozoites are injected into a host during the bite of an infected mosquito. In the mammal, the sporozoite must rapidly reach an intravacuolar niche within a hepatocyte, where it will generate the parasite stage that invades red blood cells and causes the symptoms of the disease. Herein, we describe our understanding of the way in which sporozoites travel from the site of the mosquito bite to the liver, arrest in the liver, cross the sinusoidal barrier and eventually gain access to hepatocytes. We also highlight some of the recent advances in our understanding of these processes at the molecular level.
Collapse
Affiliation(s)
- Patricia Baldacci
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | | |
Collapse
|