1
|
Blumenthal A, Domínguez Cadena LC. No added sugar: CCDC134 stabilizes ER chaperone Gp96 for TLR biogenesis. J Exp Med 2025; 222:e20242285. [PMID: 39907723 PMCID: PMC11797005 DOI: 10.1084/jem.20242285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Bernaleau et al. (https://doi.org/10.1084/jem.20240825) show that CCDC134 located in the ER is required for TLR biogenesis by controlling the N-glycosylation, folding, and stabilization of the ER chaperone Gp96.
Collapse
Affiliation(s)
- Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
2
|
Nold-Petry CA, Nold MF, Levy O, Kliger Y, Oren A, Borukhov I, Becker C, Wirtz S, Sandhu MK, Neurath M, Dinarello CA. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation. Front Immunol 2017; 8:1531. [PMID: 29312281 PMCID: PMC5732239 DOI: 10.3389/fimmu.2017.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023] Open
Abstract
Background The expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation. Methods We employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid). We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture. Results In the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF) by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40%) and gp96-II peptide (35%). Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%), lipopolysaccharide-induced TNF (48%), IL-6 (81%) and in Staphylococcus epidermidis-induced TNF (67%) and IL-6 (81%), as well as IL-12/IL-18-induced IFNγ (75%). gp96-II peptide reduced IL–1β, IL-6, TNF and GM-CSF in human peripheral blood mononuclear cells to a similar degree without affecting cell viability, whereas RANTES, IL-25 and MIF were twofold to threefold increased. Conclusion gp96-II peptide protects against murine intestinal inflammation by regulating inflammation in vivo and in vitro, pointing to its promise as a novel treatment for inflammatory bowel disease.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | - Christoph Becker
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manjeet K Sandhu
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Markus Neurath
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
3
|
Park CJ, Seo YS. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2015; 31:323-33. [PMID: 26676169 PMCID: PMC4677741 DOI: 10.5423/ppj.rw.08.2015.0150] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| |
Collapse
|
4
|
Binder RJ. Functions of heat shock proteins in pathways of the innate and adaptive immune system. THE JOURNAL OF IMMUNOLOGY 2015; 193:5765-71. [PMID: 25480955 DOI: 10.4049/jimmunol.1401417] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than 50 years, heat shock proteins (HSPs) have been studied for their role in protecting cells from elevated temperature and other forms of stress. More recently, several roles have been ascribed to HSPs in the immune system. These include intracellular roles in Ag presentation and expression of innate receptors, as well as extracellular roles in tumor immunosurveillance and autoimmunity. Exogenously administered HSPs can elicit a variety of immune responses that have been used in immunotherapy of cancer, infectious diseases, and autoimmune disease.
Collapse
Affiliation(s)
- Robert Julian Binder
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Huang QQ, Birkett R, Koessler RE, Cuda CM, Haines GK, Jin JP, Perlman H, Pope RM. Fas signaling in macrophages promotes chronicity in K/BxN serum-induced arthritis. Arthritis Rheumatol 2014; 66:68-77. [PMID: 24431281 DOI: 10.1002/art.38198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/10/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A nonapoptotic role of Fas signaling has been implicated in the regulation of inflammation and innate immunity. This study was undertaken to elucidate the contribution of Fas signaling in macrophages to the development of arthritis. METHODS K/BxN serum-transfer arthritis was induced in a mouse line in which Fas was conditionally deleted in the myeloid lineage (Cre(LysM) Fas(flox/flox) mice). The arthritis was assessed clinically and histologically. Expression of interleukin-1β (IL-1β), CXCL5, IL-10, IL-6, and gp96 was determined by enzyme-linked immunosorbent assay. Bone marrow-derived macrophages were activated with IL-1β and gp96. Cell phenotype and apoptosis were analyzed by flow cytometry. RESULTS Arthritis onset in Cre(LysM) Fas(flox/flox) mice was comparable with that observed in control mice; however, resolution was accelerated during the chronic phase. The attenuated arthritis was associated with reduced articular expression of the endogenous Toll-like receptor 2 (TLR-2) ligand gp96 and the neutrophil chemotactic chemokine CXCL5, and enhanced expression of IL-10. Activation with IL-1β or gp96 induced increased IL-10 expression in Fas-deficient murine macrophages compared with control macrophages. IL-10 suppressed IL-6 and CXCL5 expression induced by IL-1β plus gp96. IL-1β-mediated activation of ERK, which regulates IL-10 expression, was increased in Fas-deficient mouse macrophages. CONCLUSION Taken together, our findings indicate that impaired Fas signaling results in enhanced expression of antiinflammatory IL-10 and reduced expression of gp96, and these effects are associated with accelerated resolution of inflammation during the chronic phase of arthritis. These observations suggest that strategies to reduce endogenous TLR ligands and increase IL-10 may be beneficial in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mitsunaga K, Kikuchi J, Wada T, Furukawa Y. Latexin regulates the abundance of multiple cellular proteins in hematopoietic stem cells. J Cell Physiol 2012; 227:1138-47. [PMID: 21567403 DOI: 10.1002/jcp.22834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Latexin is the only known carboxypeptidase A inhibitor in mammals and shares structural similarity with cystatin C, suggesting that latexin regulates the abundance of as yet unidentified target proteins. A forward genetic approach revealed that latexin is involved in homeostasis of hematopoietic stem cells (HSCs) in mice; however, little is known about the mechanisms by which latexin negatively affects the numbers of HSCs. In this study, we found that latexin is preferentially expressed in hematopoietic stem/progenitor cells, and is co-localized with the molecules responsible for the interaction of HSCs with a bone marrow niche, such as N-cadherin, Tie2, and Roundabout 4. Latexin-knockout young female mice showed an increase in the numbers of KSL (c-Kit(+)/Sca-1(+)/linegae marker-negative) cells, which may be attributable to enhanced self-renewal because latexin-deficient KSL cells formed more colonies than their wild-type counterparts in methylcellulose culture. Proteomic analysis of Sca-1(+) bone marrow cells demonstrated that latexin ablation reduced the abundance of multiple cellular proteins, including N-cadherin, Tie2, and Roundabout 4. Finally, we found that latexin expression was lost or greatly reduced in approximately 50% of human leukemia/lymphoma cell lines. These results imply that latexin inhibits the self-renewal of HSCs by facilitating the lodgment of HSCs within a bone marrow niche to maintain HSC homeostasis.
Collapse
Affiliation(s)
- Kanae Mitsunaga
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | |
Collapse
|
7
|
Rolhion N, Barnich N, Bringer MA, Glasser AL, Ranc J, Hébuterne X, Hofman P, Darfeuille-Michaud A. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 2010; 59:1355-62. [PMID: 20587550 PMCID: PMC2976078 DOI: 10.1136/gut.2010.207456] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) ileal lesions are colonised by pathogenic adherent-invasive Escherichia coli (AIEC) producing outer membrane vesicles (OMVs) that contribute to the bacterial invasion process. In addition, increased expression of endoplasmic reticulum (ER)-localised stress response proteins, due to ER stress, is observed in patients with CD. The expression of the ER-localised stress response protein Gp96 in patients with CD and its biological role with regards to the ability of AIEC to invade intestinal epithelial cells were analysed. METHODS AND RESULTS Immunohistochemistry on tissue arrays showed that, together with CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6) or the ER stress protein Grp78, Gp96 is also strongly expressed at the apical plasma membrane of the ileal epithelial cells of 50% of patients with CD. Invasion experiments in the presence of antibodies raised against Gp96, or after transfection of Intestine-407 cells with gp96 small interfering RNA (siRNA), indicated that Gp96 is essential to promote AIEC LF82 invasion, allowing, via the recognition of the outer membrane protein OmpA, OMVs to fuse with intestinal epithelial cells. CONCLUSIONS Gp96 is overexpressed on the apical surface of ileal epithelial cells in patients with CD and acts as a host cell receptor for OMVs, promoting AIEC invasion. From the results shown here, it is speculated that AIEC could take advantage of the abnormal expression of Gp96 in patients with CD to invade the ileal mucosa.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Anne-Lise Glasser
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Julien Ranc
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Xavier Hébuterne
- INSERM ERI-21/EA 4319, Laboratoire de Pathologie Clinique et Expérimentale et CRB INSERM, Hôpital Pasteur, et Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France
| | - Paul Hofman
- INSERM ERI-21/EA 4319, Laboratoire de Pathologie Clinique et Expérimentale et CRB INSERM, Hôpital Pasteur, et Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France
| | | |
Collapse
|
8
|
Mohana Subramanian B, Senthuran S, Dhinakar Raj G, Tirumurugaan KG, Thiagarajan D. Difference in the level of interferon gamma mRNA transcripts on stimulation of cattle and buffalo mononuclear cells with foot and mouth disease virus-antigen: a possible role of sequence variation in promoter region. Res Vet Sci 2010; 90:55-8. [PMID: 20541234 DOI: 10.1016/j.rvsc.2010.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/11/2010] [Indexed: 11/27/2022]
Abstract
In an attempt to resolve the claim that buffaloes differ from cattle in disease progression, this study was undertaken to compare the mitogen (conA) or antigen (foot and mouth disease virus) induced expression levels of interferon gamma (IFN-γ mRNA in peripheral blood mononuclear cells (PBMCs) by real-time quantitative PCR. In general, the levels of IFN-γ mRNA were lower in buffaloes than in crossbred cattle. Significantly higher levels of IFN-γ mRNA were also observed in crossbred cattle when induced with FMD virus (1 μg). Analysis of the partial promoter sequences of the IFN-γ gene from the respective species revealed a conserved 4 base (GTCT) deletion in all the buffalo promoter sequences. In-silico analysis indicated the binding of glucocorticoid receptor (GR) and erythroid nuclear factor (NF-E) to this region in cattle. GR has been shown to be a transcription factor by itself and also regulates other major transcription factors like NF-κB and AP-1. The differential expression levels of IFN-γ mRNA between these species could be due to this deletion in the promoter region of buffalo. Further studies involving mobility shift and promoter assays would throw more light on the differential expression levels.
Collapse
Affiliation(s)
- B Mohana Subramanian
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India
| | | | | | | | | |
Collapse
|
9
|
Huang QQ, Sobkoviak R, Jockheck-Clark A, Shi B, Mandelin AM, Tak PP, Haines GK, Nicchitta CV, Pope RM. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4965-73. [PMID: 19342676 PMCID: PMC2814438 DOI: 10.4049/jimmunol.0801563] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are important mediators of chronic inflammation and are prominent in the synovial lining and sublining of patients with rheumatoid arthritis (RA). Recently, we demonstrated increased TLR2 and TLR4 expression and increased response to microbial TLR2 and TLR4 ligands in macrophages from the joints of RA. The current study characterized the expression of the 96-kDa heat shock glycoprotein (gp96) in the joints of RA and its role as an endogenous TLR ligand to promote innate immunity in RA. gp96 was increased in RA compared with osteoarthritis and arthritis-free control synovial tissues. The expression of gp96 strongly correlated with inflammation and synovial lining thickness. gp96 was increased in synovial fluid from the joints of RA compared with disease controls. Recombinant gp96 was a potent activator of macrophages and the activation was mediated primarily through TLR2 signaling. The cellular response to gp96 was significantly stronger with RA synovial macrophages compared with peripheral blood monocytes from RA or healthy controls. The transcription of TLR2, TNF-alpha, and IL-8, but not TLR4, was significantly induced by gp96, and the induction was significantly greater in purified RA synovial macrophages. The expression of TLR2, but not TLR4, on synovial fluid macrophages strongly correlated with the level of gp96 in the synovial fluid. The present study documents the potential role of gp96 as an endogenous TLR2 ligand in RA and provides insight into the mechanism by which gp96 promotes the chronic inflammation of RA, identifying gp96 as a potential new therapeutic target.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | - Rudina Sobkoviak
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | | | - Bo Shi
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | - Arthur M. Mandelin
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | - Paul Peter Tak
- Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Richard M. Pope
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| |
Collapse
|
10
|
Motta A, Schmitz C, Rodrigues L, Ribeiro F, Teixeira C, Detanico T, Bonan C, Zwickey H, Bonorino C. Mycobacterium tuberculosis heat-shock protein 70 impairs maturation of dendritic cells from bone marrow precursors, induces interleukin-10 production and inhibits T-cell proliferation in vitro. Immunology 2007; 121:462-72. [PMID: 17346283 PMCID: PMC2265970 DOI: 10.1111/j.1365-2567.2007.02564.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In different inflammatory disease models, heat-shock proteins (hsp) and hsp-derived peptides have been demonstrated to possess anti-inflammatory properties. While some studies have shown that hsp can directly interact with antigen-presenting cells, others report that bacterial hsp can induce specific T cells with regulatory phenotypes. Effective characterization of the immunomodulatory effects of hsp 70, however, has historically been confounded by lipopolysaccharide (LPS) contamination. In this study, we compared the effects of LPS-free Mycobacterial tuberculosis hsp 70 (TBhsp70) and its possible contaminants on dendritic cells (DC). We demonstrate herein that LPS-free TBhsp70 inhibits murine DC maturation in vitro, while LPS-contaminated TBhsp70 induces DC maturation. Mock recombinant preparations have no effect. In contrast to LPS, TBhsp70 does not induce tumour necrosis factor-alpha production by DC, but interleukin-10. In vivo, only LPS-contaminated TBhsp70 induces up-regulation of CD86 in splenic mature DC. Finally, TBhsp70 inhibited phytohaemagglutinin-induced T-cell proliferation. Our results support the hypothesis that TBhsp70 does not have inflammatory potential, but rather has immunosuppressive properties.
Collapse
Affiliation(s)
- Adriana Motta
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu B, Yang Y, Dai J, Medzhitov R, Freudenberg MA, Zhang PL, Li Z. TLR4 up-regulation at protein or gene level is pathogenic for lupus-like autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2007; 177:6880-8. [PMID: 17082602 DOI: 10.4049/jimmunol.177.10.6880] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TLR4 is the receptor for the Gram-negative bacterial cell wall component LPS. TLR4 signaling is controlled by both positive and negative regulators to balance optimal immune response and potential sepsis. Unchecked TLR4 activation might result in autoimmune diseases, a hypothesis that has not been formally resolved. In this study, we found that TLR4 signaling to LPS can be positively enforced by expressing gp96 on cell surfaces through the chaperone function of, but not the direct signaling by, gp96; TLR4 as well as the commensal flora are essential for the production of anti-dsDNA Ab and the immune complex-mediated glomerulonephritis in transgenic mice that express surface gp96. Moreover, a similar constellation of autoimmunity was evident in mice that encode multiple copies of tlr4 gene. Our study has revealed that increased TLR4 signaling alone without exogenous insult can break immunological tolerance. It provides a strong experimental evidence for TLR4 dysregulation as an etiology of lupus-like renal disease.
Collapse
Affiliation(s)
- Bei Liu
- Department of immunology, Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Gullo CA, Teoh G. Heat shock proteins: to present or not, that is the question. Immunol Lett 2004; 94:1-10. [PMID: 15234529 DOI: 10.1016/j.imlet.2004.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 03/31/2004] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
The contribution of major histocompatibility complex (MHC) I and II to the adaptive immune response has been well documented. In 1996, Peter Doherty and Rolf Zinkernagel were awarded the Nobel Prize, for their fundamental observations concerning the genetic elements involved in specific antigen (Ag) recognition. These elements encode molecules that present self and non-self peptide fragments to both CD4+ and CD8+ cytolytic T lymphocytes (CTL). The recognition by Srivastava and coworkers that heat shock proteins (HSPs) might also present Ag in chemically induced sarcomas brought about many new questions concerning the central dogma of Ag processing and presentation. HSPs, in particular glucose-regulated peptide 94 (GRP94), HSP70 and to a lesser extent HSP90, bind peptides that are immunogenic in vitro and in vivo. There is mounting evidence that these HSP-peptide complexes provide alternative Ag-specific recognition in many systems. Whether a separate genetic program evolved in addition to MHC that increases the antigenic repertoire of the cell or if this newly observed function of HSP is predominantly a laboratory-based phenomena and/or a normal chaperone function of this family of proteins remains to be answered. Nevertheless, there are clinical therapeutic strategies that involve HSP-derived peptides isolated from various tumors that look extremely promising.
Collapse
Affiliation(s)
- Charles A Gullo
- The Multiple Myeloma Research Laboratory, Singapore Health Services (SingHealth), 7 Hospital Drive, Block A #02-05, Singapore 169611, Singapore.
| | | |
Collapse
|
13
|
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2003; 75:163-89. [PMID: 14525967 DOI: 10.1189/jlb.0603252] [Citation(s) in RCA: 3009] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
14
|
Abstract
Heat shock proteins (hsps) are among the most abundant intracellular proteins. Their synthesis is rapidly up-regulated by various 'stressors' including temperature, glucose deprivation, infection and cancer. Certain hsps are able to: (i). associate and chaperone a large variety of cellular peptides; (ii). be efficiently internalized by antigen presenting cells (APC) through receptor-mediated endocytosis; (iii). channel antigenic peptides they chaperone in the APC's MHC class I presentation pathway; (iv). and stimulate inflammatory cytokines, chemokines and co-stimulatory molecules through the NFkappab signaling pathway. Extracellular release of hsps upon necrotic cell death and their modulated access at the surface of some cells, can be considered as a putative 'danger' signal. Based on the ancient origins and structural conservation of hsps, it has been proposed that, the role of hsps in immunity emerged early in evolution and to be widespread in extant organisms. Data from studies with the frog Xenopus support this proposition.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672 601, Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
15
|
Chen YG, Ashok BT, Liu X, Garikapaty VPS, Mittelman A, Tiwari RK. Induction of heat shock protein gp96 by immune cytokines. Cell Stress Chaperones 2003; 8:242-8. [PMID: 14984057 PMCID: PMC514877 DOI: 10.1379/1466-1268(2003)008<0242:iohspg>2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokines play a major role in regulating both humoral and cell-mediated immune responses. Recent advances in our understanding of cell-mediated immune responses have focused on the antigen presentation machinery and the proteins in the endoplasmic reticulum (ER). These proteins help the formation and stabilization of the major histocompatibility complex (MHC)-peptide interaction. A 96-kDa, ER-resident glycoprotein (gp96) is being evaluated as a therapeutic agent in cancer because of its ability to associate with a vast number of cellular peptides irrespective of size or sequence. Because the antigen presentation complex is assembled in the ER and a number of ER-resident proteins are modulated by cytokines, it is important to examine the regulation of gp96 in response to immune cytokines interferon gamma (IFN-gamma), and interleukin 2 (IL-2). Defects in signaling pathway in either of the cytokines can result in suboptimal immune response. We examined the effect of the cytokines IFN-gamma and IL-2 on the induction of gp96 in different cancer cell lines and examined the induction of DNA-binding proteins that recognize gamma interferon-activating sequence (GAS), present in the promoter region of gp96. The induction of GAS binding protein correlated with the induction of STAT 1 protein, a transcriptional regulator and mediator of IFN-gamma-mediated gene expression. The use of cytokines in inducing gp96 levels may have significance in maintaining high levels of gp96 for a sustained immune response.
Collapse
Affiliation(s)
- Y G Chen
- Department of Microbiology and Immunology and Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Heat-shock proteins (HSPs) are the most abundant and ubiquitous soluble intracellular proteins. In single-cell organisms, invertebrates and vertebrates, they perform a multitude of housekeeping functions that are essential for cellular survival. In higher vertebrates, their ability to interact with a wide range of proteins and peptides--a property that is shared by major histocompatibility complex molecules--has made the HSPs uniquely suited to an important role in organismal survival by their participation in innate and adaptive immune responses. The immunological properties of HSPs enable them to be used in new immunotherapies of cancers and infections.
Collapse
Affiliation(s)
- Pramod Srivastava
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1601, USA.
| |
Collapse
|
17
|
Fromm SV, Duady-Ben Yaakov S, Schechter C, Ehrlich R. Assembly and cell surface expression of TAP-independent, chloroquine-sensitive and interferon-gamma-inducible class I MHC complexes in transformed fibroblast cell lines are regulated by tapasin. Cell Immunol 2002; 215:207-18. [PMID: 12202157 DOI: 10.1016/s0008-8749(02)00015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antigen processing and presentation by class I MHC molecules generally require assembly with peptide epitopes generated by the proteasome and transported into the ER by the transporters associated with antigen presentation (TAP). Recently, TAP-independent pathways supporting class I MHC-mediated presentation of exogenous antigens, as well as of endogenously synthesized viral antigens, were described. We now characterize a TAP-independent pathway that is operative in both TAP1- and TAP2-deficient Adenovirus (Ad)-transformed fibroblast cell lines. To the best of our knowledge, this is the first time that the existence of such a pathway has been described in non-infected cells that do not belong to the hematopoietic lineage. We show that this pathway is proteasome-independent and chloroquine-sensitive. Cell surface expression of these TAP-independent class I complexes is modulated by tapasin levels and is enhanced by IFN-gamma. The data imply that IFN-gamma increases the relative level of TAP-independent high affinity class I complexes that exit the ER on their way to the cell surface and to vacuolar compartments where peptide cleavage/exchange might take place before recycling to the cell surface. Since both TAP and tapasin expression are altered in numerous tumors and in virus-infected cells, TAP-independent class I complexes may be a valuable target source for immune responses.
Collapse
Affiliation(s)
- Sharon Vigodman Fromm
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
18
|
Robert J, Ménoret A, Srivastava PK, Cohen N. Immunological properties of heat shock proteins are phylogenetically conserved. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:237-49. [PMID: 11418990 DOI: 10.1007/978-1-4615-1291-2_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Robert
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
19
|
Fourie AM, Peterson PA, Yang Y. Characterization and regulation of the major histocompatibility complex-encoded proteins Hsp70-Hom and Hsp70-1/2. Cell Stress Chaperones 2001; 6:282-95. [PMID: 11599570 PMCID: PMC434410 DOI: 10.1379/1466-1268(2001)006<0282:carotm>2.0.co;2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.
Collapse
Affiliation(s)
- A M Fourie
- R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
20
|
Tanaka K, Kondoh N, Shuda M, Matsubara O, Imazeki N, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Yamamoto N, Yamamoto M. Enhanced expression of mRNAs of antisecretory factor-1, gp96, DAD1 and CDC34 in human hepatocellular carcinomas. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1536:1-12. [PMID: 11335099 DOI: 10.1016/s0925-4439(01)00026-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To identify differentially expressed genes in hepatocarcinogenesis, we performed differential display analysis using surgically resected hepatocellular carcinoma (HCC) and adjacent non-tumorous liver tissues. We identified four cDNA fragments upregulated in HCC samples, encoding antisecretory factor-1 (AF), gp96, DAD1 and CDC34. Northern blot analysis demonstrated that these mRNAs were expressed preferentially in HCCs compared with adjacent non-tumorous liver tissues or normal liver tissues from non-HCC patients. The expression of these mRNAs was increased along with the histological grading of HCC tissues. These mRNA levels were also high in three human HCC cell lines (HuH-7, HepG2 and HLF), irrespective of the growth state. We also demonstrate that sodium butyrate, an inducer of differentiation, downregulated the expression of AF and gp96 mRNAs, supporting in part our pathological observation. Immunohistochemical analysis revealed that gp96 and CDC34 proteins were preferentially accumulated in cytoplasm and nuclei of HCC cells, respectively. Overexpression of these genes could be an important manifestation of HCC phenotypes and should provide clues to understand the molecular basis of hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- K Tanaka
- Department of Microbiology and Molecular Virology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Preparations of stress protein gp96 from tumor cells are active as tumor vaccines by eliciting immune responses against mixtures of individual tumor peptide antigens which are complexed to gp96. Due to the individual antigenicity of tumors, a vaccine consisting of tumor-derived gp96 has to be prepared individually for each patient from autologous tumor tissue. So far, gp96 expression by human tumors has not been analyzed. Here, we report stable and mostly homogenous expression of gp96 by colorectal cancer, which was enhanced compared to surrounding tumor stroma in 70% to 80% of colorectal cancer specimens. Fewer non-metastatic than metastatic primary cancer specimens showed enhanced gp96 expression. Glucose deprivation increased gp96 protein and RNA expression in the human colon cancer cell line HT-29 in accordance with the role of gp96 as a glucose-regulated stress protein. Additionally, TNF-alpha, interferons and other cytokines induced an increase of gp96 RNA expression in HT-29 cells, suggesting that gp96 expression by colorectal cancer cells can be influenced by different methods of immunomodulation. The stable and homogenous expression of gp96 in 19 primary and metastatic colorectal cancer specimens and the up-regulation of gp96 in colon cancer cells by glucose deprivation point to an essential role of this stress protein in colorectal cancer, presumably by protecting against hostile conditions of the tumor micro-environment like glucose deprivation. In view of these results, loss of gp96 expression by colorectal cancer cells as an immune escape mechanism is unlikely.
Collapse
Affiliation(s)
- M Heike
- I. Medizinische Klinik und Poliklinik, Johannes Gutenberg-Universität Mainz, Germany.
| | | | | | | |
Collapse
|
22
|
Robert J, Ménoret A, Cohen N. Cell Surface Expression of the Endoplasmic Reticular Heat Shock Protein gp96 Is Phylogenetically Conserved. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In mammals, the heat shock protein gp96 complexed to antigenic peptides elicits T cell adaptive immunity. By itself, however, gp96 can evoke responses that are characteristic of innate immunity. Interestingly, this protein, which resides in the endoplasmic reticulum, is expressed on the surface of certain mouse tumor cells. Given that heat shock proteins are highly conserved, we investigated whether the cell surface expression of gp96 is also evolutionarily conserved. Our data reveal that gp96, most likely containing the endoplasmic reticulum retention motif (KDEL), is expressed on the surface of three different Xenopus lymphoid tumor cell lines, each derived from a different spontaneously arising thymic tumor. Levels of expression differ among the tumor lines tested, with more immunogenic tumors expressing greater amounts of surface gp96. Moreover, a high level of gp96 surface expression is detectable on a subset of Xenopus normal nontransformed splenic lymphocytes (mainly surface IgM+ B cells) but not on other normal cells, including macrophages and nucleated erythrocytes. Surface expression of a gp96 protein homologue occurs also on some, but not all, T and B cell clones derived from peripheral blood cells of the channel catfish, as well as on lymphocyte-like cells, but not on erythrocytes from the hagfish, a primitive agnathan vertebrate lacking markers of an adaptive immune system. gp96 is actively directed to and retained on the plasma membrane of Xenopus lymphocytes and tumor cells and hagfish lymphocyte-like cells by a process that requires vesicular transport. This selective surface expression of gp96 on some immune cells from different vertebrate classes is consistent with an ancestral immunological role of gp96 as danger-signaling molecule.
Collapse
Affiliation(s)
- Jacques Robert
- *University of Rochester Medical Center, Rochester, NY 14642; and
| | - Antoine Ménoret
- †Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Nicholas Cohen
- *University of Rochester Medical Center, Rochester, NY 14642; and
| |
Collapse
|
23
|
Sastry S, Linderoth N. Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94). J Biol Chem 1999; 274:12023-35. [PMID: 10207025 DOI: 10.1074/jbc.274.17.12023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Complexes of gp96/GRP94 and peptides have been shown to elicit immunogenicity. We used fluorescence to understand peptide association with gp96. A pyrene-peptide conjugate was complexed with gp96 under a variety of conditions. At room temperature in low salt (20 mM NaCl), the peptide binds gp96 with a strong affinity (approximately 100-150 nM) and forms pyrene excimers, suggesting that the peptides were assembled as dimers. In high salt (2.2 M NaCl), although peptide binding was stronger (Ka approximately 55 nM) than in low salt, pyrene excimers were absent, implying that peptides were farther apart in the complex. Heat shock-activated peptide binding exhibited characteristics of both low salt and high salt modes of binding. Anisotropy and average lifetime of the bound pyrene suggested that peptides were probably located in a solvent-accessible hydrophobic binding pocket in low salt, whereas in high salt, the peptide may be buried in a less hydrophobic (more hydrophilic) environment. These results suggested that peptide-gp96 complexes were assembled in several different ways, depending on the assembly conditions. Resonance energy transfer between the intrinsic tryptophan(s) in gp96 and pyrene suggested that one or more tryptophan residues were within the critical Forster distance of 27-30 A from the pyrene in the bound peptide. It is proposed that peptides are assembled within higher order gp96 complexes (dimers, etc.) in a hydrophobic pocket and that there may be a conformational change in gp96 leading to an open configuration for peptide loading.
Collapse
Affiliation(s)
- S Sastry
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
24
|
Lewis M, Amento EP, Unemori EN. Transcriptional inhibition of stromelysin by interferon-gamma in normal human fibroblasts is mediated by the AP-1 domain. J Cell Biochem 1999; 72:373-86. [PMID: 10022519 DOI: 10.1002/(sici)1097-4644(19990301)72:3<373::aid-jcb7>3.0.co;2-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of the major matrix-degrading metalloproteinase, stromelysin (SL), is modulated by a variety of cytokines and growth factors. Interferon-gamma (IFN-gamma) is a potent modulator of SL expression, either inhibiting or activating expression in a cell-specific manner. We have investigated the mechanisms involved in the regulation of SL gene expression in cultured human fibroblasts by IFN-gamma. Reverse transcription-polymerase chain reaction (RT-PCR) assays confirmed the previously reported profound inhibitory response of SL mRNA expression to IFN-gamma [Amaldi et al., 1989]. For evaluation in transient gene expression assays, 1.2-kilobase (kb) pairs (-1214 to +14 relative to the transcription start site), and shorter, deletion mutant fragments of the SL promoter were cloned into appropriate chloramphenicol acetyltransferase transferase (CAT) expression vectors. The SL promoter along this region contains an active polyomavirus enhancer A-binding protein-3 (PEA-3) site at -216 and an activator protein-1 (AP-1) site at -70. Treatment of transfected neonatal foreskin fibroblasts with 300-500 U/ml IFN-gamma resulted in down-regulation of both basal and IL-1beta-induced CAT gene expression. IFN-gamma also decreased CAT expression when placed under the control of a synthetic multimeric AP-1 site construct. Gel-shift assay data indicate a decrease in specific binding to AP-1 oligonucleotide of nuclear extract from IFN-gamma and PMA/IFN-gamma-treated cells. The suppression of SL expression by IFN-gamma, in human fibroblasts therefore is mediated through the AP-1 element.
Collapse
Affiliation(s)
- M Lewis
- Connetics Corporation, Palo Alto, California 94303, USA.
| | | | | |
Collapse
|
25
|
Duquesnoy RJ, Liu K, Fu XF, Murase N, Ye Q, Demetris AJ. Evidence for heat shock protein immunity in a rat cardiac allograft model of chronic rejection. Transplantation 1999; 67:156-64. [PMID: 9921813 DOI: 10.1097/00007890-199901150-00026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The stress response to injury concept has been proposed as a mechanism of chronic rejection. This hypothesis has been tested with a rat cardiac allograft model in recipients pretreated with donor bone marrow (BM) cells. Chronic rejection is manifested in this BM group by obliterative arteriopathy and the epicardium and endocardium contains lymphocytic infiltrates resembling Quilty lesions. Pretreatment with a liver allograft (the orthotopic liver transplant [OLTx] group) is associated with an absence of chronic rejection in the transplanted heart. METHODS AND RESULTS . Stress responses in the allograft were assessed by determining heat shock protein (hsp) expression by immunohistology of graft tissues and immunoblot analysis of stromal tissue lysates with monoclonal antibodies (mAb) to mammalian hsp60, the inducible hsp72, the constitutively expressed hsc73, and the grp78 C-terminal sequence KSEKDEL (grp78seq). Immunostaining showed clusters of grp78seq-positive cells in the inflammatory infiltrates of obliterated blood vessels and Quilty lesions in the BM group of cardiac allografts. Such grp78seq-positive cells were not seen in the OLTx group of heart allografts nor in syngrafts. Neither group showed significantly different graft myocyte staining of grp78 or hsp72, whereas hsp60 and hsc73 showed higher expression in the BM group and, to a lesser extent, the OLTx group. The increased expression of hsc73 was seen especially in the obliterated arteries and in myocytes nearby cellular infiltrates. Immunoblot analysis of graft stromal tissue lysates showed additional bands with mAb to hsp60 and hsc73 for the OLTx and especially the BM group. No significant bands were seen for hsp72 and grp78. Lymphocytes isolated from chronically rejecting allografts reacted with irradiated autologous spleen cells in the presence of mycobacterial hsp65 and interleukin-2. Culturing of graft-infiltrating cells with mycobacterial hsp71 and interleukin-2 yielded lymphocyte clones without alloreactivity, but with strong proliferative responsiveness to self-antigen-presenting cells and, only in the presence of mycobacterial hsp71 or murine grp78. This T-cell reactivity seemed to require intact hsp molecules because treatment of hsp71 with proteolytic enzymes, polymyxin, or ATP abrogated this induction of the stimulatory effect of self-antigen-presenting cells. These T cells are similar to the hsp-dependent, autoreactive lymphocytes cloned from acutely rejecting rat allografts. CONCLUSIONS These findings support the concept that the pathogenesis of chronic rejection involves a stress response and the participation of graft-infiltrating autoreactive T cells that operate under hsp-dependent mechanisms.
Collapse
Affiliation(s)
- R J Duquesnoy
- Division of Transplant Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pennsylvania 15261, USA. duquesny+@pitt.edu
| | | | | | | | | | | |
Collapse
|
26
|
Damiani G, Capelli E, Comincini S, Mori E, Panelli S, Cuccia M. Identification of mRNAs differentially expressed in lymphocytes following interleukin-2 activation. Exp Cell Res 1998; 245:27-33. [PMID: 9828098 DOI: 10.1006/excr.1998.4230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated genes involved in the interleukin-2 activation of cultured lymphocytes using a differential display reverse transcription PCR technique. Three cDNA fragments corresponding to mRNAs differentially amplified in the activated lymphocytes were sequenced and identified. These fragments were identical to the 3' region of the mRNAs encoding for the tumor rejection antigen TRA 1 that is the human homologue of the murine heat shock protein gp96, the DAP12 protein that possesses an immunoreceptor tyrosine-based activation motif, and the human motor protein p87/89 expressed in the heart. These proteins are involved, respectively, in cellular communication, in signal transduction, and in cellular movements. Our findings suggest that the activation of cellular immune response by interleukin-2 is a process analogous to other known phenomena of activation of catabolic reactions of energy transduction for activities which allow adaptation of cells to stress conditions.
Collapse
Affiliation(s)
- G Damiani
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, 27100, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 755] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
28
|
Molecular Chaperone GRP94 Binds to the Fanconi Anemia Group C Protein and Regulates Its Intracellular Expression. Blood 1998. [DOI: 10.1182/blood.v91.11.4379] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe FAC protein encoded by the gene defective in Fanconi anemia (FA) complementation group C binds to at least three ubiquitous cytoplasmic proteins in vitro. We used here the complete coding sequence ofFAC in a yeast two-hybrid screen to identify interacting proteins. The molecular chaperone GRP94 was isolated twice from a B-lymphocyte cDNA library. Binding was confirmed by coimmunoprecipitation of FAC and GRP94 from cytosolic, but not nuclear, lysates of transfected COS-1 cells, as well as from mouse liver cytoplasmic extracts. Deletion mutants of FAC showed that residues 103-308 were required for interaction with GRP94, and a natural splicing mutation within the IVS-4 of FAC that removes residues 111-148 failed to bind GRP94. Ribozyme-mediated inactivation of GRP94 in the rat NRK cell line led to significantly reduced levels of immunoreactive FAC and concomitant hypersensitivity to mitomycin C, similar to the cellular phenotype of FA. Our results demonstrate that GRP94 interacts with FAC both in vitro and in vivo and regulates its intracellular level in a cell culture model. In addition, the pathogenicity of the IVS-4 splicing mutation in the FAC gene may be mediated in part by its inability to bind to GRP94.
Collapse
|
29
|
Abstract
The FAC protein encoded by the gene defective in Fanconi anemia (FA) complementation group C binds to at least three ubiquitous cytoplasmic proteins in vitro. We used here the complete coding sequence ofFAC in a yeast two-hybrid screen to identify interacting proteins. The molecular chaperone GRP94 was isolated twice from a B-lymphocyte cDNA library. Binding was confirmed by coimmunoprecipitation of FAC and GRP94 from cytosolic, but not nuclear, lysates of transfected COS-1 cells, as well as from mouse liver cytoplasmic extracts. Deletion mutants of FAC showed that residues 103-308 were required for interaction with GRP94, and a natural splicing mutation within the IVS-4 of FAC that removes residues 111-148 failed to bind GRP94. Ribozyme-mediated inactivation of GRP94 in the rat NRK cell line led to significantly reduced levels of immunoreactive FAC and concomitant hypersensitivity to mitomycin C, similar to the cellular phenotype of FA. Our results demonstrate that GRP94 interacts with FAC both in vitro and in vivo and regulates its intracellular level in a cell culture model. In addition, the pathogenicity of the IVS-4 splicing mutation in the FAC gene may be mediated in part by its inability to bind to GRP94.
Collapse
|
30
|
Fourie AM, Yang Y. Molecular requirements for assembly and intracellular transport of class I major histocompatibility complex molecules. Curr Top Microbiol Immunol 1998; 232:49-74. [PMID: 9557393 DOI: 10.1007/978-3-642-72045-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A M Fourie
- R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
31
|
Santin, Hermonat, Ravaggi, Chiriva-Internati, Pecorelli, Parham. Effects of retinoic acid combined with interferon-gamma on the expression of a tumor rejection antigen (heat shock protein gp96) in human cervical cancer. Int J Gynecol Cancer 1998. [DOI: 10.1046/j.1525-1438.1998.09807.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997; 186:1315-22. [PMID: 9334371 PMCID: PMC2199095 DOI: 10.1084/jem.186.8.1315] [Citation(s) in RCA: 407] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein (HSP) preparations derived from cancer cells and virus-infected cells have been shown previously to elicit cancer-specific or virus-specific immunity. The immunogenicity of HSP preparations has been attributed to peptides associated with the HSPs. The studies reported here demonstrate that immunogenic HSP-peptide complexes can also be reconstituted in vitro. The studies show that (a) complexes of hsp70 or gp96 HSP molecules with a variety of synthetic peptides can be generated in vitro; (b) the binding of HSPs with peptides is specific in that a number of other proteins tested do not bind synthetic peptides under the conditions in which gp96 molecules do; (c) HSP-peptide complexes reconstituted in vitro are immunologically active, as tested by their ability to elicit antitumor immunity and specific CD8+ cytolytic T lymphocyte response; and (d) synthetic peptides reconstituted in vitro with gp96 are capable of being taken up and re-presented by macrophage in the same manner as gp96- peptides complexes generated in vivo. These observations demonstrate that HSPs are CD8+ T cell response-eliciting adjuvants.
Collapse
Affiliation(s)
- N E Blachere
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lammert E, Stevanović S, Brunner J, Rammensee HG, Schild H. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum. Eur J Immunol 1997; 27:1685-90. [PMID: 9247578 DOI: 10.1002/eji.1830270714] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptides derived from cytosolic protein degradation are translocated into the lumen of the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). In the ER, class I molecules bind the peptides fitting to their respective motifs and present them on the cell surface to CD8+ T lymphocytes. However, most TAP-translocated peptides are not expected to bind to the class I molecules present in a particular cell. Recently, we have demonstrated that TAP-translocated peptides containing a photoreactive phenylalanine analogue can be cross-linked to two luminal ER-resident proteins: with low efficiency to the stress protein gp96 and with high efficiency to a 60-kDa protein (Lammert, E. et al., Eur. J. Immunol. 1997. 27: 923). Both proteins have also been labeled specifically by TAP-translocated peptides conjugated to a different photoreactive group (Marusina, K. et al., Biochemistry 1997. 36: 856). Here, we show that the 60-kDa peptide-binding protein is identical to the multifunctional protein disulfide isomerase (PDI). Since PDI is the only luminal ER-resident protein that is labeled by the photoreactive peptides with high efficiency, it might represent the dominant acceptor for TAP-translocated peptides.
Collapse
Affiliation(s)
- E Lammert
- Department of Immunology, Institute for Cell Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.
Collapse
Affiliation(s)
- U Boehm
- Institute for Genetics, University of Cologne, Köln, Germany.
| | | | | | | |
Collapse
|
35
|
Tissot C, Rebouissou C, Klein B, Mechti N. Both human alpha/beta and gamma interferons upregulate the expression of CD48 cell surface molecules. J Interferon Cytokine Res 1997; 17:17-26. [PMID: 9041467 DOI: 10.1089/jir.1997.17.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have established a cDNA library from interferon (IFN)-treated human lymphoblastoid Daudi cells and made use of differential screening to search for yet unidentified IFN-regulated genes. In the course of these studies, we have isolated a human cDNA coding for the glycosyl-phosphatidylinositol-linked (GPI) membrane glycoprotein CD48 (TCT-1, Blast-1). Various studies demonstrated that the murine CD48 is the predominant counterreceptor for the mouse CD2 and is involved in the regulation of T cell activation. Since the murine CD48 is functionally homologous to the human CD2 ligand LFA-3 (CD48), the function of the human CD48 remains unknown. In this report, we show that both Hu-IFN-alpha/beta and Hu-IFN-gamma increase the level of CD48 mRNA and upregulate the expression of CD48 proteins at the surface of various cultured human cell lines. However, the IFN have no effect on the expression of LFA-3. In addition, we show that IFN increase CD48 expression on peripheral blood mononuclear CD3+, CD14+, and CD19+ subpopulations. These data suggest that in addition to modulation of the conventional MHC class I and class II-restricted interactions, the IFN might promote MHC-unrestricted interactions of target cells with the immune cells by inducing the expression of the cell surface CD48 molecule.
Collapse
Affiliation(s)
- C Tissot
- Institute de Genetique Moleculaire de Montpellier-UMR 9942, France
| | | | | | | |
Collapse
|
36
|
Zemmour J. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in C1R. TISSUE ANTIGENS 1996; 48:651-61. [PMID: 9008307 DOI: 10.1111/j.1399-0039.1996.tb02688.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HLA-C antigens are expressed to the cell surface at roughly 10% the level of HLA-B or -A, and their serological definition remains persistently difficult. To characterize the factors limiting surface expression, the processes of assembly and intracellular transport of HLA-Cw4 molecules were investigated in the C1R cell line. When appropriate peptides were added to cultured cells or in cell lysates significant amounts of conformed HLA-C molecules that associate with beta 2-microglobulin (beta 2 m) are detected, but are indeed not sufficient to restore expression to the level observed for HLA-A or -B molecules. Furthermore, a precursor/product relationship exists between the free class I heavy chain and the mature conformation of HLA-Cw4 molecules. Thus, HLA-C assembly promotes the conversion of HC-10-reactive molecules (weakly-beta 2m-associated non-ligand associated free HC form) into the beta 2m-associated class I molecules recognized by W6/32. To further investigate the factors that regulate cell surface expression, intracellular transport of HLA-Cw4 was studied in pulse chase analysis. In contrast to some HLA-A and B, maturation of HLA-Cw4 heavy chains and their export to the medial and trans-Golgi compartments are quite inefficient. After 4 h of chase period, roughly half of the pulse-labeled HLA-Cw4 molecules have transited to the medial-Golgi and acquired complex oligosaccharides characteristic of mature form. In addition, treatment with gamma-interferon does not appear to improve maturation of HLA-Cw4 heavy chains, suggesting that increased supply of peptides does not influence intracellular transport. Moreover, only a small fraction in the pool of HLA-Cw4 molecules was subsequently transported through the trans-Golgi network, as indicated by their acquisition of sialic acids. Taken together these studies show that HLA-Cw4 molecules are inefficiently transported through the Golgi apparatus and presumably retained in the endoplasmic reticulum or cis-Golgi compartment.
Collapse
Affiliation(s)
- J Zemmour
- Institut Cochin de Génétique Moléculaire, INSERM U 445, Hôpital Cochin, Paris, France
| |
Collapse
|
37
|
Shen T, Anderson SL, Rubin BY. Use of alternative polyadenylation sites in the synthesis of mRNAs encoding the interferon-induced tryptophanyl tRNA synthetase. Gene 1996; 179:225-9. [PMID: 8972904 DOI: 10.1016/s0378-1119(96)00361-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interferon-mediated induction of the gene encoding the human tryptophanyl tRNA synthetase (WRS) results in the production of two mRNA species differing in size by approximately 800 base pairs (bp). Two distinctly sized cDNAs differing by approximately 800 bp were isolated from a cDNA library generated from mRNA prepared from IFN-gamma-treated cells. Northern blot analysis using cDNA probes recognizing different regions of the WRS mRNA reveals distinctly sized mRNAs differing in the length of their 3' untranslated regions. Differential display analysis using oligo dT primers demonstrates that the different sized WRS mRNAs result from alternative polyadenylation of this transcript.
Collapse
Affiliation(s)
- T Shen
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | |
Collapse
|
38
|
Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Masur SK, Srivastava PK. Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 1996; 69:340-9. [PMID: 8797880 DOI: 10.1002/(sici)1097-0215(19960822)69:4<340::aid-ijc18>3.0.co;2-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heat shock protein (HSP) gp96/grp94 contains a signal peptide at the amino terminus and a -KDEL sequence at the carboxy terminus and is a major component of the lumen of the mammalian endoplasmic reticulum (ER). We show, by a number of immunolocalization methods using light and electron microscopy, that a significant proportion of intact gp96 molecules is also expressed on the cell surface. Surface gp96 molecules truly represent surface expression and do not result from adventitious deposition of gp96 released by dead cells on to the live cells in culture. Cell surface expression of gp96 is enhanced by heat shock and exposure to reducing agents. Gp96 molecules are not released from plasma membranes by repeated salt washes, and gp96 is not an integral membrane protein. Our observations suggest that gp96 and perhaps other HSPs are anchored to the cell surface as part of larger molecular complexes, which also transport them to the cell surface.
Collapse
Affiliation(s)
- A Altmeyer
- Department of Cell Biology and Anatomy, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Duquesnoy RJ, Liu K, Moliterno RA, Attfield D. Do heat shock proteins play a role in transplant immunity? Transplant Rev (Orlando) 1996. [DOI: 10.1016/s0955-470x(96)80026-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Lammert E, Arnold D, Rammensee HG, Schild H. Expression levels of stress protein gp96 are not limiting for major histocompatibility complex class I-restricted antigen presentation. Eur J Immunol 1996; 26:875-9. [PMID: 8625982 DOI: 10.1002/eji.1830260423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Immunization of mice with gp96 induces CTL with specificity for proteins that are expressed in the cells from which gp96 was isolated (Arnold et al., J. Exp. Med. 1995. 182: 885, Udono et al., Proc. Natl. Acad. Sci. USA 1994. 91: 3077). Recently, it has been shown that gp96 from cells transfected with vesicular stomatitis virus (VSV) nucleocapsid protein as well as gp96 loaded in vitro with peptides containing an epitope of this protein are taken up by phagocytic cells which obtain thereby the capacity for stimulating VSV-specific cytotoxic T lymphocytes (Suto and Srivastava, Science 1995. 269: 1585). The immunization experiments together with the peptide transfer from gp96/peptide complexes to major histocompatibility complex (MHC) class I molecules of phagocytic cells are consistent with the hypothesis that the endoplasmic reticulum-resident protein gp96 plays a crucial role in the antigen presentation of a cell (Srivastava et al., Immunogenetics 1994. 29: 93). To examine the involvement of gp96 in class I-restricted antigen presentation, we reduced gp96 RNA and protein levels by transfecting P13.1 cells with a vector containing part of gp96 cDNA in antisense orientation to the promotor. We found that antisense clones expressing strongly reduced levels of gp96 mRNA and gp96 protein show normal levels of MHC class I molecules on the cell surface and are recognized by T cells to the same extent as wild-type cells. Thus, our results show that normal levels of gp96 expression in a cell are not limiting for class I-restricted antigen presentation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/physiology
- Chaperonins/biosynthesis
- Chaperonins/genetics
- Chaperonins/physiology
- DNA, Antisense/genetics
- DNA, Complementary/genetics
- Gene Expression Regulation, Neoplastic
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Histocompatibility Antigens Class I/immunology
- Mast-Cell Sarcoma/pathology
- Mice
- Mice, Inbred BALB C
- Models, Immunological
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- E Lammert
- Department of Tumorvirus Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
Biosynthesis of the immunoglobulin (Ig) receptor components and their assembly were examined in cell lines representative of early stages in human B lineage development. In pro-B cells, the nascent surrogate light chain proteins form a complex that transiently associates in the endoplasmic reticulum with a spectrum of unidentified proteins (40, 60, and 98 kD) and Bip, a heat shock protein family member. Lacking companion heavy chains, the surrogate light chains in pro-B cells do not associate with either the Ig(alpha) or Ig(beta) signal transduction units, undergo rapid degradation, and fail to reach the pro-B cell surface. In pre-B cells, by contrast, a significant portion of the surrogate light chain proteins associate with mu heavy chains, Ig(alpha), and Ig(beta) to form a stable receptor complex with a relatively long half-life. Early in this assembly process, Bip/GRP78, calnexin, GRP94, and a protein of approximately 17 kD differentially bind to the nascent mu heavy chains. The 17-kD intermediate is gradually replaced by the surrogate light chain protein complex, and the Ig(alpha) and Ig(beta) chains bind progressively to the mu heavy chains during the complex and relatively inefficient process of pre-B receptor assembly. The results suggest that, in humans, heavy chain association is essential for surrogate light chain survival and transport to the cell surface as an integral receptor component.
Collapse
Affiliation(s)
- K Lassoued
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
42
|
Rotem-Yehudar R, Groettrup M, Soza A, Kloetzel PM, Ehrlich R. LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. J Exp Med 1996; 183:499-514. [PMID: 8627162 PMCID: PMC2192445 DOI: 10.1084/jem.183.2.499] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the in vivo oncogenicity of this virus. In primary embryonal fibroblasts (H-2b) that express transgenic swine class I antigen (PD1), Ad12-mediated transformation results in inhibition in transport of newly synthesized class I molecules, as well as significant reduction in transporter associated with antigen presentation (TAP) gene expression. In this report we show that reexpression of TAP molecules either by stable transfection of mouse TAP genes or by infection with recombinant vaccinia viruses expressing human TAP genes, only partially reconstitutes the expression and transport of the class I molecules. Further analysis of Ad12-transformed cells revealed that the expression of both LMP2 and LMP7, but not of other proteasome complex components, was downregulated, resulting in altered proteolytic activities of the 20S proteasomes. Reconstitution of both TAP and LMP expression resulted in complete restoration of PD1 cell surface expression and enhanced expression of the endogenous H-2D(b) molecules encoded by recombinant vaccinia viruses, in reconstituted Ad12-transformed cells, efficient transport of H-2 class I molecules could only be achieved by treatment of the cells with gamma-interferon. These data suggest that an additional factor(s) that is interferon-regulated plays a role in the biosynthetic pathway of the class I complex, and that its function is deficient in this cell system. Thus, Ad12 viral transformation appears to suppress the expression of multiple genes that are important for antigen processing and presentation, which allows such transformed cells to escape immune surveillance. This coordinate downregulation of immune response genes must likely occur through their use of common regulatory elements.
Collapse
Affiliation(s)
- R Rotem-Yehudar
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
43
|
Abstract
The relationship between viruses and the cellular stress response is a multifaceted and complex phenomenon which depends on the structural and genetic characteristics of the virus, on the type of infection, as well as on the environmental conditions. It is now well documented that infection of mammalian cells by several types of RNA and DNA viruses often results in alterations of the cellular stress response. Interactions between stress proteins and viral components have been described in a large variety of experimental models at different stages of the viral life cycle, depending on the type of virus and host cell. The presence of heat shock proteins in intact virions has also been described. On the other hand, induction of HSP expression by hyperthermia or other agents results in alterations of the virus replication cycle during acute or persistent infections of mammalian cells, and a possible role of heat shock proteins in the beneficial effect of fever and local hyperthermia during acute infection has been hypothesized. This chapter describes the different aspects of the interaction between viruses and the stress response, and discusses the possible role of stress proteins in the control of virus replication and morphogenesis.
Collapse
Affiliation(s)
- M G Santoro
- Institute of Experimental Medicine, CNR, Rome, Italy
| |
Collapse
|
44
|
Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 1995; 182:885-9. [PMID: 7650492 PMCID: PMC2192175 DOI: 10.1084/jem.182.3.885] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vaccination of mice with heat shock proteins isolated from tumor cells induces immunity to subsequent challenge with those tumor cells the heat shock protein was isolated from but not with other tumor cells (Udono, H., and P.K. Srivastava. 1994. J. Immunol. 152:5398-5403). The specificity of this immune response is caused by tumor-derived peptides bound to the heat shock proteins (Udono., H., and P.K. Srivastava. 1993. J. Exp. Med. 178:1391-1396). Our experiments show that a single immunization with the heat shock protein gp96 isolated from beta-galactosidase (beta-gal) expressing P815 cells (of DBA/2 origin) induces cytotoxic T lymphocytes (CTLs) specific for beta-gal, in addition to minor H antigens expressed by these cells. CTLs can be induced in mice that are major histocompatibility complex (MHC) identical to the gp96 donor cells (H-2d) as well as in mice with a different MHC (H-2b). Thus gp96 is able to induce "cross priming" (Matzinger, P., and M.J. Bevan. 1977. Cell. Immunol. 33:92-100), indicating that gp96-associated peptides are not limited to the MHC class I ligands of the gp96 donor cell. Our data confirm the notion that samples of all cellular antigens presentable by MHC class I molecules are represented by peptides associated with gp96 molecules of that cell, even if the fitting MHC molecule is not expressed. In addition, we extend previous reports on the in vivo immunogenicity of peptides associated gp96 molecules to two new groups of antigens, minor H antigens, and proteins expressed in the cytosol.
Collapse
Affiliation(s)
- D Arnold
- Department of Tumorvirus-Immunology, German Cancer Research Center, Heidelberg
| | | | | | | |
Collapse
|
45
|
Qian J, Moliterno R, Donovan-Peluso MA, Liu K, Suzow J, Valdivia L, Pan F, Duquesnoy RJ. Expression of stress proteins and lymphocyte reactivity in heterotopic cardiac allografts undergoing cellular rejection. Transpl Immunol 1995; 3:114-23. [PMID: 7582902 DOI: 10.1016/0966-3274(95)80038-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This report addresses the concept that, during rejection, the allograft undergoes a stress response which leads to an increased expression of stress proteins, also called heat shock proteins (hsp), and the recruitment and activation of hsp-reactive lymphocytes. Recent studies in our laboratory have provided evidence that hsp-reactive T-cells are present in cardiac allografts undergoing rejection. In this study, an MHC incompatible heterotopic heart allograft model (ACI into LEW) was chosen to analyse the kinetics of hsp expression during the development of rejection. Allografts and syngrafts (LEW into LEW) were harvested every day during the first 5 days post-transplant. Immunoblot analysis of proteins extracted from graft stromal tissues was done with murine monoclonal antibodies (mAb) against various mammalian hsp. Proliferation studies were done to determine hsp reactivity of graft-infiltrating lymphocytes on different days post-transplant. Three types of stressful stimuli appeared to increase hsp expression in the allograft. The first was a physiological stress secondary to the trauma of the transplant procedure and ischaemia/reperfusion injury and this would occur in allogeneic and syngeneic grafts. During the first day after transplantation, both types of grafts showed higher expression of hsp72 and grp78 and to a lesser extent, hsp60 and grp75. On the second and third day, the expression of grp78 and grp96 was higher in allografts than in syngrafts and this may reflect an immunologically mediated stress response in the allograft when infiltrating hsp-reactive lymphocytes became first detectable in the allograft. The third type of stress appeared related to the inflammatory process associated with rejection. On the fourth and fifth day post-transplant, the allografts showed strong expression of at least five proteins of lower molecular mass reacting with hsp-specific mAbs; namely, approximately 40 kDa (detected by anti-hsp60), approximately 30 kDa (by anti-hsp72), approximately 45 kDa and approximately 32 kDa (by anti-hsp72 + hsc73), and approximately 50 kDa (by anti-grp78). At that time, the allograft began to show progressive inflammatory changes and tissue damage. The appearance of lower molecular mass hsp-crossreactive proteins might reflect a degradation of hsps which had increased expression earlier during the post-transplant period. This process may generate large quantities of hsp-derived peptides which may be presented by MHC molecules to graft-infiltrating T-cells. Another interpretation of the strong expression of lower molecular bands in later allografts is that they represent other stress proteins that crossreact with antibodies against hsp60 and hsp70 family members.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Qian
- Division of Transplant Pathology, University of Pittsburgh Medical Center, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|