1
|
Wang B, Yao W, Zhang L, Jiang L, Pan J, Chai W, Huang Z, Zuo S, Li Z, Wei Y, Zhang W. Moniezia benedeni infection promoting ICOS + T cell proliferation in sheep (Ovis aries) small intestine. BMC Vet Res 2025; 21:315. [PMID: 40316996 PMCID: PMC12048972 DOI: 10.1186/s12917-025-04761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Cellular immunity mechanisms play a crucial role in regulating anti-parasite immunity. ICOS is one of the core factors of multitype T cell subsets involved in the regulation of immune homeostasis. The aim of this experiment was to investigate the distribution patterns of ICOS+ T cells in the small intestine of sheep and determine the impact of Moniezia benedeni (M. benedeni) infection on these cells. METHODS In this study, a sheep pET-28a-ICOS recombinant plasmid was constructed, and the recombinant protein was obtained through induced expression in BL21 (DE3) cells. Furthermore, a rabbit polyclonal antibody against sheep ICOS was produced. The expression of ICOS in the sheep small intestine was analyzed using immunofluorescence and ELISA, comparing the results before and after M. benedeni infection. RESULTS The findings revealed that the purified recombinant ICOS protein had the anticipated size (14.2 kDa). The rabbit anti-sheep ICOS polyclonal antibody showed good specificity and a titer of 1:128,000. ELISA results indicated a significant increase in ICOS expression in all segments of the small intestine after M. benedeni infection (P < 0.05). The ileum exhibited the most substantial increase in expression (P < 0.001), followed by the jejunum (P < 0.05) and duodenum (P < 0.05). Immunofluorescence analysis demonstrated that ICOS+ T cells are diffusely distributed in the intestinal epithelium and around the intestinal glands in the lamina propria of the duodenum, jejunum, and ileum of sheep. Moreover, after being infected with M. benedeni, the number of ICOS+ T cells in all intestinal segments significantly increases (P < 0.05), with the most significant increase in the intestinal epithelium of the duodenum. CONCLUSIONS These findings suggest that M. benedeni infection in sheep can stimulate the proliferation of ICOS+ T cells in the small intestine. This lays the foundation for future research on the role of ICOS+ T cells in regulating cellular immunity against parasitic infections in different segments of the small intestine.
Collapse
Affiliation(s)
- Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - LiLan Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidong Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sihan Zuo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenpeng Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
3
|
Nejabat S, Khomartash MS, Mohammadimehr M, Adloo Z, Zanchi FB, Ghorbani M, Nezafat N. Immunoinformatics approach: Developing a multi-epitope vaccine with novel carriers targeting monkeypox virus. FASEB J 2024; 38:e70257. [PMID: 39679938 DOI: 10.1096/fj.202400757rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Since May 2022, the global spread of monkeypox virus (MPXV) has presented a significant threat to public health. Despite this, there are limited preventive measures available. In this study, different computational tools were employed to design a multi-epitope vaccine targeting MPXV. Three key MPXV proteins, M1R, B6R, and F3L, were chosen for epitope selection, guided by bioinformatic analyses to identify immunodominant epitopes for T- and B-cell activation. To enhance immune stimulation and facilitate targeted delivery of the vaccine to specific cells, the selected epitopes were linked to novel carriers, including the extracellular domain of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a 12-mer Clec9a binding peptide (CBP-12), and a Toll-like receptor 2 (TLR2) peptide ligand. The designed vaccine construct exhibited strong antigenicity along with nonallergenic and nontoxic properties, with favorable physicochemical characteristics. The validated vaccine's tertiary structure underwent evaluation for interactions with CD80/86, Clec9a, and TLR2 through molecular docking and molecular dynamics simulation. The results ensured the vaccine's stability and high affinity for the aforementioned receptors. In silico immune simulations studies revealed robust innate and adaptive immune responses, including enhanced mucosal immunity essential for protection against MPXV. Ultimately, the DNA sequence of the vaccine construct was synthesized and successfully cloned into the pET-22b(+) vector. Our study, through integration of computational predictions, suggests the proposed vaccine's potential efficacy in safeguarding against MPXV; however, further in vitro and in vivo validations are imperative to assess real-world effectiveness and safety.
Collapse
Affiliation(s)
- Sajjad Nejabat
- Science and Technology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Adloo
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal (LABIOQUIM), Fundação Oswaldo Cruz Rondônia, Porto Velho, Brazil
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Quiniou SMA, Clark T, Bengtén E, Rast JP, Ohta Y, Flajnik M, Boudinot P. Extraordinary diversity of the CD28/CTLA4 family across jawed vertebrates. Front Immunol 2024; 15:1501934. [PMID: 39606244 PMCID: PMC11599192 DOI: 10.3389/fimmu.2024.1501934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Members of the CD28 family are critical for the control of immune cell activation. While CD28 and CTLA4 were previously identified in teleost fish, most members of the CD28 family have been described only in tetrapods. Using a comparative genomics approach, we found (co)orthologs of all members of the CD28 family both in Chondrichthyes and basal Osteichthyes groups, but not in Agnathans. Four additional members of the family were identified, which were present in both Chondrichthyes and Osteichthyes, some even in the tetrapod lineage but all of them absent in human. Herein, we extend the composition of the jawed vertebrate CD28 family to nine members: CD28, CTLA4, ICOS, CD28H, CD28HL1, CD28HL2, CD28HL3, CD28X and PD-1. Each of these genes had a single extracellular IgSF V domain, and conserved motifs in the V and the cytoplasmic domain. While a genomic cluster of three consecutive genes like CD28/CTLA4/ICOS was conserved across jawed vertebrates except in teleosts, the other members of the CD28 family were located on multiple chromosomes. Our findings show that these co-stimulatory/co-inhibitory receptors likely arose in early jawed vertebrates, and diversified when the Ig/TCR/MHC-based adaptive immunity emerged, heralding the advent of complex regulatory networks controlling lymphocyte activation.
Collapse
Affiliation(s)
| | - Thomas Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan P. Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy−en−Josas, France
| |
Collapse
|
5
|
He Y, Zhu Y, Yin Z, Shi J, Shang K, Tian T, Shi H, Ding J, Zhang F. Design a novel of Brucellosis preventive vaccine based on IgV_CTLA-4 and multiple epitopes via immunoinformatics approach. Microb Pathog 2024; 195:106909. [PMID: 39218373 DOI: 10.1016/j.micpath.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained. In order to keep the correct protein folding, the multiple epitopes was constructed by connecting epitopes through linkers. In view of the significant connection between human leukocyte antigen CTLA-4 and B7 molecules found on antigen presenting cells (APCs), a new vaccine (V_C4MEV) for preventing brucellosis was created by combining CTLA-4 immunoglobulin variable region (IgV_CTLA-4) with MEV protein. Immunoinformatics analysis showed that V_C4MEV has a good secondary and tertiary structure. Additionally, molecular docking and molecular dynamics simulation (MD) revealed a robust binding affinity between IgV_ CTLA-4 and the B7 molecule. Notably, the vaccine V_C4MEV was demonstrated favorable immunogenicity and antigenicity in both in vitro and in vivo experiments. V_C4MEV had the potential to activate defensive cells and immune responses, offering a hopeful approach for developing vaccines against Brucella in the upcoming years.
Collapse
Affiliation(s)
- Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - YueJie Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huidong Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
6
|
Quiniou SMA, Bengtén E, Boudinot P. Costimulatory receptors in the channel catfish: CD28 family members and their ligands. Immunogenetics 2024; 76:51-67. [PMID: 38197898 DOI: 10.1007/s00251-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 39216, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 39216, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
7
|
Li X, Li J, Zheng Y, Lee SJ, Zhou J, Giobbie-Hurder A, Butterfield LH, Dranoff G, Hodi FS. Granulocyte-Macrophage Colony-Stimulating Factor Influence on Soluble and Membrane-Bound ICOS in Combination with Immune Checkpoint Blockade. Cancer Immunol Res 2023; 11:1100-1113. [PMID: 37262321 PMCID: PMC10398357 DOI: 10.1158/2326-6066.cir-22-0702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
With the successful development of immune checkpoint blockade, there remains the continued need to improve efficacy and decrease toxicities. The addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) to ipilimumab has previously demonstrated both an improvement in efficacy and decrease in the incidence of high-grade adverse events. ICOS+CD4+ or ICOS+CD8+ peripheral blood T cells are significantly greater in the patients treated with ipilimumab plus GM-CSF than in the patients treated with ipilimumab alone. To better understand the effects of GM-CSF on inducible T-cell costimulator (ICOS) and clinical outcomes, the relative roles of identified soluble ICOS and membrane-bound ICOS were evaluated. The ICOS splice variant was secreted and found to have immunologic suppressive effects. Changes in soluble ICOS splice variant levels in treated patients correlated with clinical outcomes. GM-CSF enhanced membrane-bound ICOS in an IL12-dependent manner but did not increase soluble ICOS levels. Whereas soluble ICOS plays a role in immune suppression, GM-CSF efficacy involves increasing membrane-bound ICOS and induction of dendritic cell development. Thus, soluble ICOS splice variants may be used as a biomarker for GM-CSF and immune checkpoint blockade-based therapies.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Melanoma Division, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Melanoma Division, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yue Zheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sandra J. Lee
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Melanoma Division, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Melanoma Division, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy and University of California San Francisco, San Francisco, California
| | - Glenn Dranoff
- Immuno-Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Melanoma Division, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
8
|
Maselli FM, Giuliani F, Laface C, Perrone M, Melaccio A, De Santis P, Santoro AN, Guarini C, Iaia ML, Fedele P. Immunotherapy in Prostate Cancer: State of Art and New Therapeutic Perspectives. Curr Oncol 2023; 30:5769-5794. [PMID: 37366915 DOI: 10.3390/curroncol30060432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer (PC) is the most common type of tumor in men. In the early stage of the disease, it is sensitive to androgen deprivation therapy. In patients with metastatic castration-sensitive prostate cancer (mHSPC), chemotherapy and second-generation androgen receptor therapy have led to increased survival. However, despite advances in the management of mHSPC, castration resistance is unavoidable and many patients develop metastatic castration-resistant disease (mCRPC). In the past few decades, immunotherapy has dramatically changed the oncology landscape and has increased the survival rate of many types of cancer. However, immunotherapy in prostate cancer has not yet given the revolutionary results it has in other types of tumors. Research into new treatments is very important for patients with mCRPC because of its poor prognosis. In this review, we focus on the reasons for the apparent intrinsic resistance of prostate cancer to immunotherapy, the possibilities for overcoming this resistance, and the clinical evidence and new therapeutic perspectives regarding immunotherapy in prostate cancer with a look toward the future.
Collapse
Affiliation(s)
| | | | - Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Assunta Melaccio
- Medical Oncology, San Paolo Hospital, ASL Bari, 70123 Bari, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
9
|
Wen YC, Tram VTN, Chen WH, Li CH, Yeh HL, Thuy Dung PV, Jiang KC, Li HR, Huang J, Hsiao M, Chen WY, Liu YN. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2023; 14:304. [PMID: 37142586 PMCID: PMC10160040 DOI: 10.1038/s41419-023-05836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Van Thi Ngoc Tram
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
11
|
Hajihassan Z, Afsharian NP, Ansari-Pour N. In silico engineering a CD80 variant with increased affinity to CTLA-4 and decreased affinity to CD28 for optimized cancer immunotherapy. J Immunol Methods 2023; 513:113425. [PMID: 36638881 DOI: 10.1016/j.jim.2023.113425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/20/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
CD80 or cluster of differentiation 80, also known as B7-1, is a member of the immunoglobulin super family, which binds to CTLA-4 and CD28 T cell receptors and induces inhibitory and inductive signals respectively. Although CTLA-4 and CD28 receptors belong to the same protein family, slight differences in their structures leads to CD80 having a higher binding affinity to CTLA-4 (-14.55 kcal/mol) compared with CD28(-12.51 kcal/mol). In this study, we constructed a variant of CD80 protein with increased binding affinity to CTLA-4 and decreased binding affinity to CD28. This variant has no signaling capability, and can act as a cap for these receptors to protect them from natural CD80 proteins existing in the body. The first step was the evolutionary and alanine scanning analysis of CD80 protein to determine conserved regions in this protein. Next, complex alanine scanning technique was employed to determine CD80 protein hotspots in CD80-CTLA-4 and CD80-CD28 protein complexes. This information was fed into a computational model developed in R for in silico mutagenesis and CD80 variant library construction. The 3D structures of variants were modeled using the Swiss model webserver. After modeling the 3D structures, HADDOCK server was employed to build all protein-protein complexes, which contain CTLA-4-CD80 variant complexes, Wild type CD80-CD28 complexes and CD28-CD80 variant complexes. Protein-protein binding free energy was determined using FoldX and the variant number 316 with mutations at 29, 31, 33 positions showed increased binding affinity to CTLA-4 (-21.43 kcal/mol) and decreased binding affinity to CD28 (- 9.54 kcal/mol). Finally, molecular dynamics (MD) simulations confirmed the stability of variant 316. In conclusion, we designed a new CD80 protein variant with potential immunotherapeutic applications.
Collapse
Affiliation(s)
- Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Nessa Pesaran Afsharian
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Naser Ansari-Pour
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
13
|
Xia T, Wang N, Tang Y, Gao Y, Gao C, Hao J, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Wang L, Li Y. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol 2022; 13:926279. [PMID: 36159835 PMCID: PMC9499840 DOI: 10.3389/fimmu.2022.926279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|
14
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
15
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
16
|
Maurer MF, Lewis KE, Kuijper JL, Ardourel D, Gudgeon CJ, Chandrasekaran S, Mudri SL, Kleist KN, Navas C, Wolfson MF, Rixon MW, Swanson R, Dillon SR, Levin SD, Kimbung YR, Akutsu M, Logan DT, Walse B, Swiderek KM, Peng SL. The engineered CD80 variant fusion therapeutic davoceticept combines checkpoint antagonism with conditional CD28 costimulation for anti-tumor immunity. Nat Commun 2022; 13:1790. [PMID: 35379805 PMCID: PMC8980021 DOI: 10.1038/s41467-022-29286-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractDespite the recent clinical success of T cell checkpoint inhibition targeting the CTLA-4 and PD-1 pathways, many patients either fail to achieve objective responses or they develop resistance to therapy. In some cases, poor responses to checkpoint blockade have been linked to suboptimal CD28 costimulation and the inability to generate and maintain a productive adaptive anti-tumor immune response. To address this, here we utilize directed evolution to engineer a CD80 IgV domain with increased PD-L1 affinity and fuse this to an immunoglobulin Fc domain, creating a therapeutic (ALPN-202, davoceticept) capable of providing CD28 costimulation in a PD-L1-dependent fashion while also antagonizing PD-1 - PD-L1 and CTLA-4–CD80/CD86 interactions. We demonstrate that by combining CD28 costimulation and dual checkpoint inhibition, ALPN-202 enhances T cell activation and anti-tumor efficacy in cell-based assays and mouse tumor models more potently than checkpoint blockade alone and thus has the potential to generate potent, clinically meaningful anti-tumor immunity in humans.
Collapse
|
17
|
Ru Z, Yu M, Zhu Y, Chen Z, Zhang F, Zhang Z, Ding J. Immmunoinformatics-based design of a multi-epitope vaccine with CTLA-4 extracellular domain to combat Helicobacter pylori. FASEB J 2022; 36:e22252. [PMID: 35294065 DOI: 10.1096/fj.202101538rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
In view of the high infection rate of Helicobacter pylori, a safe and effective vaccine is urgently needed. Recent trends in vaccine design have shifted toward safe and specific epitope-based vaccines. In this study, by using different immunoinformatics approaches, a total of eight linear B cell epitopes, four HTL and three CTL epitopes of FlaA and UreB proteins of H. pylori G27 strain were screened out, we also predicted the conformational epitopes of the two proteins. Then, the dominant epitopes were sequentially linked by appropriate linkers, and the cytotoxic T lymphocyte-associated antigen 4 extracellular domain was attached to the N-terminal of the epitope sequence. Meanwhile, molecular docking, molecular dynamics simulations and principal component analysis were performed to show that the multi-epitope vaccine structure had strong interactions with B7 (B7-1, B7-2) and Toll-like receptors (TLR-2, -4). Eventually, the effectiveness of the vaccine was validated using in silico cloning. These analyses suggested that the designed vaccine could target antigen-presenting cells and had high potency against H. pylori, which could provide a reference for the future development of efficient H. pylori vaccines.
Collapse
Affiliation(s)
- Zhenyu Ru
- Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Center of Reproductive Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
18
|
Goenka R, Xu Z, Samayoa J, Banach D, Beam C, Bose S, Dooner G, Forsyth CM, Lu X, Medina L, Sadhukhan R, Sielaff B, Sousa S, Tao Q, Touw D, Wu F, Kingsbury GA, Akamatsu Y. CTLA4-Ig-Based Bifunctional Costimulation Inhibitor Blocks CD28 and ICOS Signaling to Prevent T Cell Priming and Effector Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:1102-1113. [PMID: 33495237 DOI: 10.4049/jimmunol.2001100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
CTLA4-Ig/abatacept dampens activation of naive T cells by blocking costimulation via CD28. It is an approved drug for rheumatoid arthritis but failed to deliver efficacy in a number of other autoimmune diseases. One explanation is that activated T cells rely less on CD28 signaling and use alternate coreceptors for effector function. ICOS is critical for activation of T-dependent humoral immune responses, which drives pathophysiology of IgG-mediated autoimmune diseases. In this study, we asked whether CD28 and ICOS play nonredundant roles for maintenance of T-dependent responses in mouse models. Using a hapten-protein immunization model, we show that during an ongoing germinal center response, combination treatment with CTLA4-Ig and ICOS ligand (ICOSL) blocking Ab completely dissolves ongoing germinal center responses, whereas single agents show only partial activity. Next, we took two approaches to engineer a therapeutic molecule that blocks both pathways. First, we engineered CTLA4-Ig to enhance binding to ICOSL while retaining affinity to CD80/CD86. Using a library approach, binding affinity of CTLA4-Ig to human ICOSL was increased significantly from undetectable to 15-42 nM; however, the affinity was still insufficient to completely block binding of ICOSL to ICOS. Second, we designed a bispecific costimulation inhibitor with high-affinity CTLA4 extracellular domains fused to anti-ICOSL Ab termed bifunctional costimulation inhibitor. With this bispecific approach, we achieved complete inhibition of CD80 and CD86 binding to CD28 as well as ICOS binding to ICOSL. Such bispecific molecules may provide greater therapeutic benefit in IgG-mediated inflammatory diseases compared with CTLA4-Ig alone.
Collapse
Affiliation(s)
| | - Zhenghai Xu
- AbbVie Redwood City, Redwood City, CA 94306; and
| | | | | | | | - Sahana Bose
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | | - Xiaoqing Lu
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | | | | | | | | | - Qingfeng Tao
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | - Debra Touw
- AbbVie Bioresearch Center, Worcester, MA 01605
| | - Fei Wu
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | |
Collapse
|
19
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
21
|
Peptide Blocking CTLA-4 and B7-1 Interaction. Molecules 2021; 26:molecules26020253. [PMID: 33419027 PMCID: PMC7825301 DOI: 10.3390/molecules26020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Discovery of the B7 family immune checkpoints such as CTLA-4 (CD152), PD-1 (CD279), as well as their ligands B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), and B7-DC (PD-L2, CD273), has opened new possibilities for cancer immunotherapy using monoclonal antibodies (mAb). The blockade of inhibitory receptors (CTLA-4 and PD-1) with specific mAb results in the activation of cancer patients' T lymphocytes and tumor rejection. However, the use of mAb in clinics has several limitations including side effects and cost of treatment. The development of new low-molecular compounds that block immune checkpoints' functional activity can help to overcome some of these limitations. In this paper, we describe a synthetic peptide (p344) containing 14 amino acids that specifically interact with CTLA-4 protein. A 3D computer model suggests that this peptide binds to the 99MYPPPY104 loop of CTLA-4 protein and potentially blocks the contact of CTLA-4 receptor with B7-1 ligand. Experimental data confirm the peptide-specific interaction with CTLA-4 and its ability to partially block CTLA-4/B7-1 binding. The identified synthetic peptide can be used for the development of novel immune checkpoint inhibitors that can block CTLA-4 functional activity for cancer immunotherapy.
Collapse
|
22
|
Mathur R, Sharma L, Dhabhai B, Menon AM, Sharma A, Sharma NK, Dakal TC. Predicting the functional consequences of genetic variants in co-stimulatory ligand B7-1 using in-silico approaches. Hum Immunol 2020; 82:103-120. [PMID: 33358455 DOI: 10.1016/j.humimm.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.
Collapse
Affiliation(s)
- Riya Mathur
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Loveena Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Athira M Menon
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Amit Sharma
- Department of Integrated Oncology, University Hospital Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Raj., India
| | - Tikam Chand Dakal
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
23
|
Ghannam K, Martinez Gamboa L, Kedor C, Spengler L, Kuckelkorn U, Häupl T, Burmester G, Feist E. Response to abatacept is associated with the inhibition of proteasome β1i expression in T cells of patients with rheumatoid arthritis. RMD Open 2020; 6:rmdopen-2020-001248. [PMID: 32998980 PMCID: PMC7547540 DOI: 10.1136/rmdopen-2020-001248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Abatacept is a biological disease-modifying antirheumatic drug (DMARD) used for the treatment of rheumatoid arthritis (RA) and modulates the costimulatory signal by cluster of differentiation (CD)28:CD80/CD86 interaction required for T cell activation. Since CD28-mediated signalling regulates many T cell functions including cytokine production of, for example, interferons (IFNs), it is of interest to clarify, whether response to abatacept has an effect on the IFN inducible immunoproteasome, as a central regulator of the immune response. Methods Effects of abatacept on the proteasome were investigated in 39 patients with RA over a period of 24 weeks. Using real-time PCR, transcript levels of constitutive and corresponding immunoproteasome catalytic subunits were investigated at baseline (T0), week 16 (T16) and week 24 (T24) in sorted blood cells. Proteasomal activity and induction of apoptosis after proteasome inhibition were also evaluated. Results Abatacept achieved remission or low disease activity in 55% of patients at T16 and in 70% of patients at T24. By two-way analysis of variance (ANOVA), a significant reduction of proteasome immunosubunit β1i was shown only in CD4+ and CD8+ T cells of sustained responders at both T16 and T24. One-way ANOVA analysis for each response group confirmed the results and showed a significant reduction at T24 in CD4+ and CD8+ T cells of the same group. Abatacept did not influence chymotrypsin-like activity of proteasome and had no effect on induction of apoptosis under exposure to a proteasome inhibitor in vitro. Conclusion The reduction of proteasome immunosubunit β1i in T cells of patients with RA with sustained response to abatacept suggests association of the immunoproteasome of T cells with RA disease activity.
Collapse
Affiliation(s)
- Khetam Ghannam
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lorena Martinez Gamboa
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Claudia Kedor
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lydia Spengler
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Ulrike Kuckelkorn
- Institute of Biochemistry, Charite University Hospital Berlin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Eugen Feist
- Helios Fachklinik Vogelsang-Gommern GmbH, Vogelsang-Gommern, Germany.,Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| |
Collapse
|
24
|
Lownik JC, Conrad DH, Martin RK. T cell receptor signaling defines the fate and pathway of ICOS internalization. Biochem Biophys Rep 2020; 24:100803. [PMID: 32984557 PMCID: PMC7494666 DOI: 10.1016/j.bbrep.2020.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 10/29/2022] Open
Abstract
The role of the inducible costimulatory of T cells (ICOS) has been shown to be important for many different T cell outcomes and is indispensable for follicular helper T cell (TFH) responses. Since its discovery, there have been several studies on the regulation of ICOS at a transcriptional level. However, the post-translational regulation of ICOS has not been well characterized. Here, we demonstrate that ICOS is internalized following ligation. We show that costimulation with CD3 results in differential internalization and fate than stimulation of ICOS alone. Additionally, we show that ICOS internalization is PI3K and clathrin mediated. The studies presented here not only increase the mechanistic understanding of ICOS post-translational regulation but also give insight into the potential mechanisms by which T cells expressing high affinity receptors may be preferentially chosen to become TFH cells with increased ICOS levels.
Collapse
Affiliation(s)
- Joseph C Lownik
- Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
25
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Yap JY, Gloss B, Batten M, Hsu P, Berglund L, Cai F, Dai P, Parker A, Qiu M, Miley W, Roshan R, Marshall V, Whitby D, Wegman E, Garsia R, Wu KHC, Kirk E, Polizzotto M, Deenick EK, Tangye SG, Ma CS, Circa, Phan TG. Everolimus-Induced Remission of Classic Kaposi's Sarcoma Secondary to Cryptic Splicing Mediated CTLA4 Haploinsufficiency. J Clin Immunol 2020; 40:774-779. [PMID: 32562209 PMCID: PMC8996434 DOI: 10.1007/s10875-020-00804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Yan Yap
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Brian Gloss
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Marcel Batten
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Peter Hsu
- The Children's Hospital at Westmead, Sydney, Australia
| | | | | | - Pei Dai
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- Westmead Hospital, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Andrew Parker
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, Australia
| | - Min Qiu
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, Australia
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Eric Wegman
- Sydney Clinic for Gastrointestinal Diseases, Sydney, Australia
| | | | - Kathy H C Wu
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Clinical Genetics Unit, St Vincent's Hospital, Sydney, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, Australia
| | | | - Mark Polizzotto
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- The Kinghorn Cancer Centre, Sydney, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Circa
- Clinical Immunogenomics Research Consortium Australia, Sydney, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Podlesnykh SV, Lampatov VV, Khlebnikov AI, Chapoval AI. [Molecular docking study and experimental evaluation of potential CTLA-4 binding peptides]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:156-161. [PMID: 32420897 DOI: 10.18097/pbmc20206602156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current advances in research of immune checkpoints CTLA-4, PD-1, PD-L1, opened new possibilities for effective cancer immunotherapy using monoclonal antibodies. However, antibodies have a number of limitations for clinical use, which provides a basis for the search for low molecular weight compounds capable of regulating (blocking) molecules that inhibit the immune response. This paper presents the results of molecular docking and evaluation of synthetic peptide interaction with a CTLA-4 molecule. Using mathematical modeling, it was shown that peptides interacted with the 99MYPPPY104 loop of the CTLA-4 protein and could potentially block the interaction of the CTLA-4 receptor with its natural ligand B7-1. The specificity of the interaction between the identified peptide and recombinant chimeric CTLA-4 protein was evaluated. The detected synthetic peptide can be used for the development of immunomodulatory drugs for therapy of cancer or autoimmune diseases.
Collapse
Affiliation(s)
- S V Podlesnykh
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, Russia
| | - V V Lampatov
- Research institute of Biological Medicine, Altai State University, Barnaul, Russia
| | - A I Khlebnikov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - A I Chapoval
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, Russia; Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, USA
| |
Collapse
|
28
|
Levin SD, Evans LS, Bort S, Rickel E, Lewis KE, Wu RP, Hoover J, MacNeil S, La D, Wolfson MF, Rixon MW, Dillon SR, Kornacker MG, Swanson R, Peng SL. Novel Immunomodulatory Proteins Generated via Directed Evolution of Variant IgSF Domains. Front Immunol 2020; 10:3086. [PMID: 32038630 PMCID: PMC6985287 DOI: 10.3389/fimmu.2019.03086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Abstract
Immunoglobulin superfamily member (IgSF) proteins play a significant role in regulating immune responses with surface expression on all immune cell subsets, making the IgSF an attractive family of proteins for therapeutic targeting in human diseases. We have developed a directed evolution platform capable of engineering IgSF domains to increase affinities for cognate ligands and/or introduce binding to non-cognate ligands. Using this scientific platform, ICOSL domains have been derived with enhanced binding to ICOS and with additional high-affinity binding to the non-cognate receptor, CD28. Fc-fusion proteins containing these engineered ICOSL domains significantly attenuate T cell activation in vitro and in vivo and can inhibit development of inflammatory diseases in mouse models. We also present evidence that engineered ICOSL domains can be formatted to selectively provide costimulatory signals to augment T cell responses. Our scientific platform thus provides a system for developing therapeutic protein candidates with selective biological impact for treatments of a wide array of human disorders including cancer and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Susan Bort
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | - Erika Rickel
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | | | - Rebecca P Wu
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | - Joseph Hoover
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | - Sean MacNeil
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | - David La
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | | | - Mark W Rixon
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | | | | | - Ryan Swanson
- Alpine Immune Sciences Inc., Seattle, WA, United States
| | | |
Collapse
|
29
|
Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20:e3. [PMID: 32158591 PMCID: PMC7049585 DOI: 10.4110/in.2020.20.e3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
30
|
Abstract
The role of inflammation in cardiovascular disease (CVD) is now widely accepted. Immune cells, including T cells, are influenced by inflammatory signals and contribute to the onset and progression of CVD. T cell activation is modulated by T cell co-stimulation and co-inhibition pathways. Immune checkpoint inhibitors (ICIs) targeting T cell inhibition pathways have revolutionized cancer treatment and improved survival in patients with cancer. However, ICIs might induce cardiovascular toxicity via T cell re-invigoration. With the rising use of ICIs for cancer treatment, a timely overview of the role of T cell co-stimulation and inhibition molecules in CVD is desirable. In this Review, the importance of these molecules in the pathogenesis of CVD is highlighted in preclinical studies on models of CVD such as vein graft disease, myocarditis, graft arterial disease, post-ischaemic neovascularization and atherosclerosis. This Review also discusses the therapeutic potential of targeting T cell co-stimulation and inhibition pathways to treat CVD, as well as the possible cardiovascular benefits and adverse events after treatment. Finally, the Review emphasizes that patients with cancer who are treated with ICIs should be monitored for CVD given the reported association between the use of ICIs and the risk of cardiovascular toxicity.
Collapse
|
31
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
32
|
Zhao Y, Lee CK, Lin CH, Gassen RB, Xu X, Huang Z, Xiao C, Bonorino C, Lu LF, Bui JD, Hui E. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity 2019; 51:1059-1073.e9. [PMID: 31757674 PMCID: PMC6935268 DOI: 10.1016/j.immuni.2019.11.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Combined immunotherapy targeting the immune checkpoint receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1), or CTLA-4 and the PD-1 ligand (PD-L1) exhibits superior anti-tumor responses compared with single-agent therapy. Here, we examined the molecular basis for this synergy. Using reconstitution assays with fluorescence readouts, we found that PD-L1 and the CTLA-4 ligand CD80 heterodimerize in cis but not trans. Quantitative biochemistry and cell biology assays revealed that PD-L1:CD80 cis-heterodimerization inhibited both PD-L1:PD-1 and CD80:CTLA-4 interactions through distinct mechanisms but preserved the ability of CD80 to activate the T cell co-stimulatory receptor CD28. Furthermore, PD-L1 expression on antigen-presenting cells (APCs) prevented CTLA-4-mediated trans-endocytosis of CD80. Atezolizumab (anti-PD-L1), but not anti-PD-1, reduced cell surface expression of CD80 on APCs, and this effect was negated by co-blockade of CTLA-4 with ipilimumab (anti-CTLA-4). Thus, PD-L1 exerts an immunostimulatory effect by repressing the CTLA-4 axis; this has implications to the synergy of anti-PD-L1 and anti-CTLA-4 combination therapy.
Collapse
Affiliation(s)
- Yunlong Zhao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Calvin K Lee
- Department of Pathology, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chia-Hao Lin
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Rodrigo B Gassen
- Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Xiaozheng Xu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cristina Bonorino
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Departamento de Ciências Básicas da Saúde Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Li-Fan Lu
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack D Bui
- Department of Pathology, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093, USA
| | - Enfu Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Yeung MY, Grimmig T, Sayegh MH. Costimulation Blockade in Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:267-312. [PMID: 31758538 DOI: 10.1007/978-981-32-9717-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).
Collapse
Affiliation(s)
- Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Tanja Grimmig
- Department of Surgery, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Mohamed H Sayegh
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
34
|
Xia S, Chen Q, Niu B. CD28: A New Drug Target for Immune Disease. Curr Drug Targets 2019; 21:589-598. [PMID: 31729942 DOI: 10.2174/1389450120666191114102830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND CD28, a cell surface glycoprotein receptor, predominantly expressed on activated T cells, belongs to the Ig superfamily and provides a critical co-stimulatory signal. CTLA-4 has sequence homology to CD28, and is expressed on T cells after activation. It provides an inhibition signal coordinated with CD28 to regulate T cell activation. Both of them regulate T cell proliferation and differentiation and play an important role in the immune response pathway in vivo. OBJECTIVE We studied the special role of different structural sites of CD28 in producing costimulatory signals. METHODS We reviewed the relevant literature, mainly regarding the structure of CD28 to clarify its biological function, and its role in the immune response. RESULTS In recent years, increasingly attention has been paid to CD28, which is considered as a key therapeutic target for many modern diseases, especially some immune diseases. CONCLUSION In this paper, we mainly introduce the structure of CD28 and its related biological functions, as well as the application of costimulatory pathways targeting CD28 in disease treatment.
Collapse
Affiliation(s)
- Sijing Xia
- College of Life Science, Shanghai University, Shanghai, China
| | - Qin Chen
- College of Life Science, Shanghai University, Shanghai, China
| | - Bing Niu
- College of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
35
|
Schroder PM, Fitch ZW, Schmitz R, Choi AY, Kwun J, Knechtle SJ. The past, present, and future of costimulation blockade in organ transplantation. Curr Opin Organ Transplant 2019; 24:391-401. [PMID: 31157670 PMCID: PMC7088447 DOI: 10.1097/mot.0000000000000656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Manipulating costimulatory signals has been shown to alter T cell responses and prolong graft survival in solid organ transplantation. Our understanding of and ability to target various costimulation pathways continues to evolve. RECENT FINDINGS Since the approval of belatacept in kidney transplantation, many additional biologics have been developed targeting clinically relevant costimulation signaling axes including CD40-CD40L, inducible costimulator-inducible costimulator ligand (ICOS-ICOSL), and OX40-OX40L. Currently, the effects of costimulation blockade on posttransplant humoral responses, tolerance induction, and xenotransplantation are under active investigation. Here, we will discuss these pathways as well as preclinical and clinical outcomes of biologics targeting these pathways in organ transplantation. SUMMARY Targeting costimultion is a promising approach for not only controlling T cell but also B cell responses. Consequently, costimulation blockade shows considerable potential for improving outcomes in antibody-mediated rejection and xenotransplantation.
Collapse
Affiliation(s)
- Paul M. Schroder
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W. Fitch
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Y. Choi
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
36
|
Siggs OM, Russell A, Singh-Grewal D, Wong M, Chan P, Craig ME, O'Loughlin T, Stormon M, Goodnow CC. Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Front Immunol 2019; 10:1544. [PMID: 31396201 PMCID: PMC6664875 DOI: 10.3389/fimmu.2019.01544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
One of the primary targets of immune checkpoint inhibition is the negative immune regulatory molecule CTLA-4. Immune-related adverse events are commonly observed following CTLA-4 inhibition in melanoma treatment, and a spectrum of these conditions are also observed in individuals with germline haploinsufficiency of CTLA4. Here we describe a heterozygous de novo missense variant of CTLA4 in a young girl with childhood-onset autoimmune hepatitis and polyarthritis, the latter responding to treatment with CTLA-4-Ig fusion protein. This variant lay within the highly conserved MYPPPY motif of CTLA-4: a critical structural determinant of ligand binding, which is also bound by the anti-CTLA-4 monoclonal antibody ipilimumab. Within the spectrum of CTLA4 variants reported, missense variants in the MYPPPY motif were overrepresented when compared to variants within a control population, highlighting the physiological importance of this motif in both the genetic and pharmacological regulation of autoimmunity and anti-tumor immunity.
Collapse
Affiliation(s)
- Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Davinder Singh-Grewal
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Pearl Chan
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Maria E Craig
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Ted O'Loughlin
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Stormon
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Siggs OM, Russell A, Singh-Grewal D, Wong M, Chan P, Craig ME, O'Loughlin T, Stormon M, Goodnow CC. Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Front Immunol 2019. [PMID: 31396201 DOI: 10.3389/fimmu.2019.01544/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
One of the primary targets of immune checkpoint inhibition is the negative immune regulatory molecule CTLA-4. Immune-related adverse events are commonly observed following CTLA-4 inhibition in melanoma treatment, and a spectrum of these conditions are also observed in individuals with germline haploinsufficiency of CTLA4. Here we describe a heterozygous de novo missense variant of CTLA4 in a young girl with childhood-onset autoimmune hepatitis and polyarthritis, the latter responding to treatment with CTLA-4-Ig fusion protein. This variant lay within the highly conserved MYPPPY motif of CTLA-4: a critical structural determinant of ligand binding, which is also bound by the anti-CTLA-4 monoclonal antibody ipilimumab. Within the spectrum of CTLA4 variants reported, missense variants in the MYPPPY motif were overrepresented when compared to variants within a control population, highlighting the physiological importance of this motif in both the genetic and pharmacological regulation of autoimmunity and anti-tumor immunity.
Collapse
Affiliation(s)
- Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Davinder Singh-Grewal
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Pearl Chan
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Maria E Craig
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Ted O'Loughlin
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Stormon
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Bowlus CL, Yang GX, Liu CH, Johnson CR, Dhaliwal SS, Frank D, Levy C, Peters MG, Vierling JM, Gershwin ME. Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature. J Autoimmun 2019; 101:26-34. [DOI: 10.1016/j.jaut.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
|
39
|
Construction of small molecular CTLA4 analogs with CD80-binding affinity. Biochem Biophys Res Commun 2019; 513:694-700. [PMID: 30987824 DOI: 10.1016/j.bbrc.2019.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
A variety of CTLA4-Fc fusion proteins and anti-CTLA4 monoclonal antibody have been approved. Given the shortcomings of macromolecular antibodies, recombinant proteins derived from the tenth unit of human type III fibronectin (FN3) termed monobody were studied as CTLA4 analogs in this study. A peptide EL161 derived from CD80-binding domain (MYPPPY motifs) in the complementarity determining region (CDR) 3 of CTLA4 was found to inhibit the interaction of CTLA4 with CD80 significantly. Afterward, the peptide EL16 as well as the CDR1 of CTLA4 which is also critical for its binding to CD80 were grafted onto FN3 and obtained a novel CD80 binding monobody protein CFN13.2 CFN13 showed 80% binding affinity compared to CTLA4. In addition, to increase the half-life, CFN13 was fused to human IgG1 Fc to generate CFN13-Fc fusion protein. As expected, CFN13-Fc bound to CD80 in a dosage-dependent manner as CFN13 did, and displayed 41.0% and 31.4% inhibition on the interaction of CTLA4-Fc with CD80 at 200 μg/ml and 100 μg/ml respectively. Moreover, peptide EL16 could inhibit CFN13-Fc binding to CD80 significantly, with the inhibition ratio of 64.3% and 52.8% at 100 and 50 μg/ml respectively, indicating that the peptide EL16 and CFN13-Fc shared the similar binding sites with CD80 and the CDR3 motif of CTLA4 contributed more than CDR1 in binding to CD80. In summary, our study provides insights into small molecular analogs of CTLA4.
Collapse
|
40
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
41
|
Ensor CR, Goehring KC, Iasella CJ, Moore CA, Lendermon EA, McDyer JF, Morrell MR, Sciortino CM, Venkataramanan R, Wiland AM. Belatacept for maintenance immunosuppression in cardiothoracic transplantation: The potential frontier. Clin Transplant 2018; 32:e13363. [PMID: 30058177 DOI: 10.1111/ctr.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 01/18/2023]
Abstract
Current immunosuppressive regimens with calcineurin inhibitors have improved the management of patients after transplantation. However, their adverse effects are linked to increased morbidity and limit the long-term survival of heart and lung transplant recipients. Belatacept, a costimulation inhibitor interfering with the interaction between CD28 on T cells and the B7 ligands on antigen presenting cells, has shown success and is currently approved for use in renal transplant recipients. Furthermore, it lacks many of the cardiovascular, metabolic, neurologic, and renal adverse of effects of calcineurin inhibitors that have the largest impact on long-term survival in cardiothoracic transplant. Additionally, it requires no therapeutic drug monitoring and is only administered once a month. Limitations to belatacept use have been observed that must be considered when comparing immunosuppression options. Despite this, maintenance immunosuppression with belatacept has the potential to improve outcomes in cardiothoracic transplant recipients, as it has with kidney transplant recipients. However, no large clinical trials investigating belatacept for maintenance immunosuppression in heart and lung transplant recipients exist. There is a large need for focused research of belatacept in cardiothoracic transplantation. Belatacept is a viable treatment option for maintenance immunosuppression, and it is reasonable to pursue more evidence in cardiothoracic transplant recipients.
Collapse
Affiliation(s)
- Christopher R Ensor
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Cody A Moore
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Elizabeth A Lendermon
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Morrell
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher M Sciortino
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Anne M Wiland
- Norvartis Pharmaceuticals Corporation, Baltimore, Maryland
| |
Collapse
|
42
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Yang Q, Cao W, Wang Z, Zhang B, Liu J. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins. Cancer Lett 2018; 431:73-84. [PMID: 29800685 DOI: 10.1016/j.canlet.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; School of Medical Laboratory, Shao Yang University, Hunan Province, 422000, China
| | - Wenjie Cao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
44
|
Sic H, Speletas M, Cornacchione V, Seidl M, Beibel M, Linghu B, Yang F, Sevdali E, Germenis AE, Oakeley EJ, Vangrevelinghe E, Sailer AW, Traggiai E, Gram H, Eibel H. An Activating Janus Kinase-3 Mutation Is Associated with Cytotoxic T Lymphocyte Antigen-4-Dependent Immune Dysregulation Syndrome. Front Immunol 2017; 8:1824. [PMID: 29375547 PMCID: PMC5770691 DOI: 10.3389/fimmu.2017.01824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Heterozygous mutations in the cytotoxic T lymphocyte antigen-4 (CTLA-4) are associated with lymphadenopathy, autoimmunity, immune dysregulation, and hypogammaglobulinemia in about 70% of the carriers. So far, the incomplete penetrance of CTLA-4 haploinsufficiency has been attributed to unknown genetic modifiers, epigenetic changes, or environmental effects. We sought to identify potential genetic modifiers in a family with differential clinical penetrance of CTLA-4 haploinsufficiency. Here, we report on a rare heterozygous gain-of-function mutation in Janus kinase-3 (JAK3) (p.R840C), which is associated with the clinical manifestation of CTLA-4 haploinsufficiency in a patient carrying a novel loss-of-function mutation in CTLA-4 (p.Y139C). While the asymptomatic parents carry either the CTLA-4 mutation or the JAK3 variant, their son has inherited both heterozygous mutations and suffers from hypogammaglobulinemia combined with autoimmunity and lymphoid hyperplasia. Although the patient's lymph node and spleen contained many hyperplastic germinal centers with follicular helper T (TFH) cells and immunoglobulin (Ig) G-positive B cells, plasma cell, and memory B cell development was impaired. CXCR5+PD-1+TIGIT+ TFH cells contributed to a large part of circulating T cells, but they produced only very low amounts of interleukin (IL)-4, IL-10, and IL-21 required for the development of memory B cells and plasma cells. We, therefore, suggest that the combination of the loss-of-function mutation in CTLA-4 with the gain-of-function mutation in JAK3 directs the differentiation of CD4 T cells into dysfunctional TFH cells supporting the development of lymphadenopathy, hypogammaglobulinemia, and immunodeficiency. Thus, the combination of rare genetic heterozygous variants that remain clinically unnoticed individually may lead to T cell hyperactivity, impaired memory B cell, and plasma cell development resulting finally in combined immunodeficiency.
Collapse
Affiliation(s)
- Heiko Sic
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Matthaios Speletas
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | - Maximillian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Beibel
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Bolan Linghu
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Fan Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Eirini Sevdali
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Anastasios E Germenis
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | | | | | - Hermann Gram
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Huang X, Yan Y, Wang S, Wang Q, Shi J, Shao Z, Dai J. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia. Curr Drug Targets 2017; 18:315-331. [PMID: 25981611 DOI: 10.2174/1389450116666150518095346] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body's own immune system to fight leukemic cells.
Collapse
Affiliation(s)
| | | | | | - Ivana Gojo
- Cancer Research Building I, Room 346, 1650 Orleans Street, Baltimore, MD 21287, United States
| |
Collapse
|
47
|
Adams AB, Ford ML, Larsen CP. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2045-50. [PMID: 27591335 DOI: 10.4049/jimmunol.1601135] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4.
Collapse
Affiliation(s)
- Andrew B Adams
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Christian P Larsen
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
48
|
Curran EK, Godfrey J, Kline J. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Trends Immunol 2017; 38:513-525. [PMID: 28511816 DOI: 10.1016/j.it.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
The mechanisms through which immune responses are generated against solid cancers are well characterized and knowledge of the immune evasion pathways exploited by these malignancies has grown considerably. However, for hematological cancers, which develop and disseminate quite differently than solid tumors, the pathways that regulate immune activation or tolerance are less clear. Growing evidence suggests that, while numerous immune escape pathways are shared between hematological and solid malignancies, several unique pathways are exploited by leukemia and lymphoma. Below we discuss immune evasion mechanisms in leukemia and lymphoma, highlighting key differences from solid tumors. A more complete characterization of the mechanisms of immune tolerance in hematological malignancies is critical to inform the development of future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Emily K Curran
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - James Godfrey
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
49
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Furuki K, Toyo’oka T, Ban K. Highly sensitive glycosylamine labelling of O-glycans using non-reductive β-elimination. Anal Bioanal Chem 2017; 409:2269-2283. [DOI: 10.1007/s00216-016-0171-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 12/01/2022]
|