1
|
Park JH, Lee SW, Choi D, Lee C, Sung YC. Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies. Immune Netw 2024; 24:e9. [PMID: 38455462 PMCID: PMC10917577 DOI: 10.4110/in.2024.24.e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Donghoon Choi
- Research Institute of NeoImmune Tech., Co, Ltd., Bio Open Innovation Center, Pohang 37666, Korea
| | - Changhyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
2
|
Campian JL, Ghosh S, Kapoor V, Yan R, Thotala S, Jash A, Hu T, Mahadevan A, Rifai K, Page L, Lee BH, Ferrando-Martinez S, Wolfarth AA, Yang SH, Hallahan D, Chheda MG, Thotala D. Long-acting recombinant human interleukin-7, NT-I7, increases cytotoxic CD8 + T cells and enhances survival in mouse glioma models. Clin Cancer Res 2022; 28:1229-1239. [PMID: 35031547 DOI: 10.1158/1078-0432.ccr-21-0947] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/27/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with glioblastoma (GBM) are treated with radiation therapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL-7 that expands CD4 and CD8 T cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus; and hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. RESULTS GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Treg cells in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSION In orthotopic glioma-bearing mice, NT-I7 mitigates radiation-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).
Collapse
Affiliation(s)
| | - Subhajit Ghosh
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | - Vaishali Kapoor
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | - Ran Yan
- Washington University in St. Louis
| | | | | | - Tong Hu
- Medicine, Washington University in St. Louis
| | - Anita Mahadevan
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | - Kasem Rifai
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | - Logan Page
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | - Byung Ha Lee
- Translational Research Division, NeoImmuneTech, Inc
| | | | | | | | - Dennis Hallahan
- Radiation Oncology, Washington University in St. Louis School of Medicine
| | | | - Dinesh Thotala
- Radiation Oncology, Washington University in St. Louis School of Medicine
| |
Collapse
|
3
|
Kim S, Kim YM, Kim H, Kang YW, Park S, Yang SI, Choi D, Sung YC, Lee SW. Fc-fused IL-7 mobilizes long-term HSCs in a pro-B cell-dependent manner and synergizes with G-CSF and AMD3100. Leukemia 2021; 35:3030-3034. [PMID: 34007048 PMCID: PMC8478653 DOI: 10.1038/s41375-021-01274-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sora Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Young-Min Kim
- grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyekang Kim
- grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeon-Woo Kang
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Subin Park
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang-In Yang
- grid.488254.7Genexine, Inc., Seongnam-si, Gyeonggi-do Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmunetech, Co., ltd. Bio Open Innovation Center, Pohang, Republic of Korea
| | - Young Chul Sung
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.488254.7Genexine, Inc., Seongnam-si, Gyeonggi-do Republic of Korea
| | - Seung-Woo Lee
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
4
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2020; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for hematological malignancies and some nonhematologic diseases. Hematopoietic stem and progenitor cells (HSPCs) collected from peripheral blood after mobilization are the primary source to provide HSC transplantation. In most of the cases, mobilization by the cytokine granulocyte colony-stimulating factor with chemotherapy, and in some settings, with the CXC chemokine receptor type 4 antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells (HPCs). However, adequate mobilization is not always successful in a significant portion of donors. Research is going on to find new agents or strategies to increase HSC mobilization. Here, we briefly review the history of HSC transplantation, current mobilization regimens, some of the novel agents that are under investigation for clinical practice, and our recent findings from animal studies regarding Notch and ligand interaction as potential targets for HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center,
PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| |
Collapse
|
5
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
6
|
Abstract
Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.
Collapse
Affiliation(s)
- Alicia L. Hawthorne
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| | - Phillip G. Popovich
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| |
Collapse
|
7
|
Sportès C, Gress RE, Mackall CL. Perspective on potential clinical applications of recombinant human interleukin-7. Ann N Y Acad Sci 2010; 1182:28-38. [PMID: 20074272 DOI: 10.1111/j.1749-6632.2009.05075.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-7 has critical and nonredundant roles in T cell development, hematopoiesis, and postdevelopmental immune functions as a prototypic homeostatic cytokine. Based on a large body of preclinical evidence, it may have multiple therapeutic applications in immunodeficiency states, either physiologic (immuno-senescence), pathologic (HIV) or iatrogenic (postchemotherapy and posthematopoietic stem cell transplant) and may have roles in immune reconstitution or enhancement of immunotherapy. Early clinical development trials in humans show that, within a short time, rhIL-7 administration results in a marked preferential expansion of both naive and memory CD4 and CD8 T cell pools with a tendency toward enhanced CD8 expansion. As a result, lymphopenic or normal older hosts develop an expanded circulating T cell pool with a profile that resembles that seen earlier in life with increased T cell repertoire diversity. These results, along with a favorable toxicity profile, open a wide perspective of potential future clinical applications.
Collapse
Affiliation(s)
- Claude Sportès
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland 20892-1104, USA
| | | | | |
Collapse
|
8
|
Horwitz ME. Sources of human and murine hematopoietic stem cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 22:22A.2.1-22A.2.6. [PMID: 18432991 DOI: 10.1002/0471142735.im22a02s79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes various sites from which human and murine hematopoietic stem cells (HSC) can be collected, including bone marrow, peripheral blood, and, in the case of human HSC, umbilical cord blood. Guidelines related to each of the cell harvesting procedures are described, and a discussion of the expected populations of cells harvested from these various sites is included. Cell products can be composed of a combination of true HSC, lineage-committed hematopoietic progenitor cells, and terminally differentiated fully mature cells. While use of steady-state peripheral blood as a source of HSC is the most convenient approach, yields of these cells are very low. However, mobilization methods that stimulate movement of stem cells out of the bone marrow into peripheral blood significantly increase HSC yields. Use of G-CSF has been accepted as the standard method for stem cell mobilization. The unit describes a variety of investigational cytokines and chemokines that have been shown to mobilize human stem including interleukin 3, 11, and 8, flt-3 ligand, and stem cell factor.
Collapse
|
9
|
Aiello FB, Keller JR, Klarmann KD, Dranoff G, Mazzucchelli R, Durum SK. IL-7 induces myelopoiesis and erythropoiesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:1553-63. [PMID: 17237404 DOI: 10.4049/jimmunol.178.3.1553] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 administration to mice was previously reported to increase the mobilization of progenitor cells from marrow to peripheral sites. We now report that IL-7 increases the number of mature myeloid and monocytic cells in spleen and peripheral blood. This effect required T cells, and we show that IL-7 treatment in vivo induced GM-CSF and IL-3 production by T cells with memory phenotype. However, additional myelopoietic cytokines were shown to be involved because mice deficient in both GM-CSF and IL-3 also responded to IL-7 with increased myelopoiesis. Candidate cytokines included IFN-gamma and Flt3 ligand, which were also produced in response to IL-7. Because IFN-gamma-deficient mice also increased myelopoiesis, it was suggested that IL-7 induced production of redundant myelopoietic cytokines. In support of this hypothesis, we found that the supernatant from IL-7-treated, purified T cells contained myelopoietic activity that required a combination of Abs against GM-CSF, IL-3, and anti-Flt3 ligand to achieve maximum neutralization. IL-7 administration increased the number of splenic erythroid cells in either normal, Rag1 or GM-CSF-IL-3-deficient mice, suggesting that IL-7 might directly act on erythroid progenitors. In support of this theory, we detected a percentage of TER-119(+) erythroid cells that expressed the IL-7Ralpha-chain and common gamma-chain. Bone marrow cells expressing IL-7R and B220 generated erythroid colonies in vitro in response to IL-7, erythropoietin, and stem cell factor. This study demonstrates that IL-7 can promote nonlymphoid hemopoiesis and production of cytokines active in the host defense system in vivo, supporting its possible clinical utility.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
10
|
Barata JT, Silva A, Abecasis M, Carlesso N, Cumano A, Cardoso AA. Molecular and functional evidence for activity of murine IL-7 on human lymphocytes. Exp Hematol 2006; 34:1133-42. [PMID: 16939806 DOI: 10.1016/j.exphem.2006.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Although interleukin-7 (IL-7) is essential for human and murine lymphopoiesis and homeostasis, clear disparities between these species regarding the role of IL-7 during B-cell development suggest that other, subtler differences may exist. One basic unsolved issue of IL-7 biology concerns cross-species activity, because in contrast to the human ortholog, the ability of murine (m)IL-7 to stimulate human cells remains unresolved. Establishing whether two-way cross-species reactivity occurs is fundamental for evaluating the role of IL-7 in chimeric human-mouse models, which are the most versatile tools for studying human lymphoid development and disease in vivo. Here, we show that mIL-7 triggers the same signaling pathways as human (h)IL-7 in human T cells, promoting similar changes in viability, proliferation, size, and immunophenotype, even at low concentrations. This ability is not confined to T cells, because mIL-7 mediates cell growth and protects human B-cell precursors from dexamethasone-induced apoptosis. Importantly, endogenous mIL-7 produced in the mouse thymic microenvironment stimulates human T cells, because their expansion in chimeric fetal thymic organ cultures is inhibited by a mIL-7-specific neutralizing antibody. Our results demonstrate that mIL-7 affects human lymphocytes and indicate that mouse models of human lymphoid development and disease must integrate the biological effects of endogenous IL-7 on human cells.
Collapse
Affiliation(s)
- Joao T Barata
- Institute of Molecular Medicine, Faculty of Medicine of Lisbon University, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
11
|
Mohammad MK, Morran M, Slotterbeck B, Leaman DW, Sun Y, Grafenstein HV, Hong SC, McInerney MF. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol 2006; 18:1101-13. [PMID: 16728431 DOI: 10.1093/intimm/dxl045] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression, responsiveness and regulation of mouse Toll-like receptors (TLRs) in bone marrow-derived macrophages (BM-Ø) were investigated prior to and following the development of diabetes. Expression of TLR3 and TLR5 was significantly higher in newly diabetic non-obese diabetic (NOD) mice when compared with pre-diabetic and control strains of mice. The TLR3 ligand poly(I)poly(C) triggered up-regulation of its own receptor in NOR and pre-diabetic NOD, but TLR3 was already highly expressed in diabetic NOD mice. Expression levels of TLR3 correlated with poly(I)poly(C)-triggered IFN activity. LPS triggered down-regulation of TLR4 in pre-diabetic NOD, NOR and BALB/c, while levels of TLR4 remained consistently elevated in type 1 diabetic NOD and type 2 diabetic NZL mice. Dysregulation of TLR4 expression in the diabetic state correlated with increased nuclear factor kappa B (NF-kappaB) activation in response to the TLR4 ligand LPS and higher expression of IL-12p40, tumor necrosis factor alpha (TNFalpha), IL-6 and inducible nitric oxide synthase but lowered expression of IL-10. Exposure of bone marrow precursor cells from NOD mice to a hyperglycemic environment during differentiation into macrophages resulted in elevated levels of TLR2 and TLR4 and the cytokine TNFalpha. The results indicate that macrophage precursors are influenced by systemic changes in diabetes favoring altered TLR expression and sensitivity that may influence susceptibility to macrophage-mediated diabetes complications and explain inappropriate responses to infection in diabetes.
Collapse
Affiliation(s)
- Mohammad K Mohammad
- Department of Medicinal and Biological Chemistry, College of Pharmacy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606-3390, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Robinson SN, Seina SM, Gohr JC, Sharp JG. Hematopoietic Progenitor Cell Mobilization by Granulocyte Colony-Stimulating Factor and Erythropoietin in the Absence of Matrix Metalloproteinase-9. Stem Cells Dev 2005; 14:317-28. [PMID: 15969627 DOI: 10.1089/scd.2005.14.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of mobilized hematopoietic progenitor cells (HPC) has largely replaced the use of bone marrow HPC for autologous and allogeneic transplantation; however, the mechanisms of HPC mobilization remain unclear. A better understanding of these mechanisms, may allow the development of improved (potentially more rapid and/or higher yield) HPC mobilization strategies, especially for patients who mobilize poorly using current mobilization protocols. Clinically, granulocyte colony-stimulating factor (G-CSF) is widely used to induce HPC mobilization, and evidence suggests that metalloproteinase enzymes released by activated granulocytes play an important role in the G-CSF-induced HPC mobilization. These enzymes may act to disrupt putative cell-cell and/or cell-extracellular matrix interactions within the hematopoietic microenvironment thereby releasing HPC into the blood. Matrix metalloproteinase-9 (MMP-9) appears to be important for G-CSF-induced mobilization. Using an MMP-9 knock-out (KO) mouse model, we investigated the role of MMP-9 in G-CSF and erythropoietin (EPO)-based HPC mobilization at clinically relevant cytokine doses. There were few hematologic or hematopoietic differences between the wild-type and MMP-9KO mice during steady-state hematopoiesis. When treated subcutaneously with EPO (500 U/kg per day) and G-CSF (15 microg/kg per day) for 5 days and assayed on day 6, similarly increased extramedullary hematopoiesis and numbers of HPC in the spleen and blood were observed for both the wild-type and MMP-9KO mice. These data demonstrate that MMP-9 is not required for EPO + G-CSF mobilization and that alternative mobilization mechanisms must be active at clinically relevant cytokine concentrations.
Collapse
Affiliation(s)
- S N Robinson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-6395, USA.
| | | | | | | |
Collapse
|
13
|
Auletta JJ, Lazarus HM. Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant 2005; 35:835-57. [PMID: 15778723 DOI: 10.1038/sj.bmt.1704966] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the definitive cure for many malignant and nonmalignant diseases. However, delays in immune reconstitution (IR) following HSCT significantly limit the success of transplantation and increase the risk for infection and disease relapse in the transplant recipient. Therefore, ways to measure and to manipulate immune recovery following HSCT are emerging and their success depends directly upon an enhanced understanding for the underlying mechanisms responsible for reconstituted immunity and hematopoiesis. Recent discoveries in the activation, function, and regulation of dendritic cell (DC), natural killer (NK) cell, and T-lymphocyte subtypes have been critical in developing immunotherapies used to prevent graft-versus-host disease and to enhance graft-versus-leukemia. For example, regulatory T cells that induce tolerance and NK receptor-tumor ligand disparities that result in tumor lysis are being used to minimize GVHD and tumor burden, respectively. Furthermore, expansion and modulation of immune effector cells are being used to augment hematopoietic and immune recovery and to decrease transplant-related toxicity in the transplant recipient. Specifically, DC expansion and incorporation into antitumor and anti-microbial vaccines is fast approaching application into clinical trials. This paper will review our current understanding for IR following HSCT and the novel ways in which to restore immune function and decrease transplant-related toxicity in the transplant recipient.
Collapse
Affiliation(s)
- J J Auletta
- Comprehensive Cancer Center, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, OH, USA.
| | | |
Collapse
|
14
|
Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Najera R, Frank I, Kulkosky J, Pomerantz RJ, Nunnari G. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005; 115:128-37. [PMID: 15630452 PMCID: PMC539197 DOI: 10.1172/jci22574] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/26/2004] [Indexed: 12/11/2022] Open
Abstract
The persistence of HIV-1 in virally suppressed infected individuals on highly active antiretroviral therapy (HAART) remains a major therapeutic problem. The use of cytokines has been envisioned as an additional therapeutic strategy to stimulate latent proviruses in these individuals. Immune activation therapy using IL-2 has shown some promise. In the present study, we found that IL-7 was significantly more effective at enhancing HIV-1 proviral reactivation than either IL-2 alone or IL-2 combined with phytohemagglutinin (PHA) in CD8-depleted PBMCs. IL-7 also showed a positive trend for inducing proviral reactivation from resting CD4(+) T lymphocytes from HIV-1-infected patients on suppressive HAART. Moreover, the phylogenetic analyses of viral envelope gp120 genes from induced viruses indicated that distinct proviral quasispecies had been activated by IL-7, as compared with those activated by the PHA/IL-2 treatment. These studies thus demonstrate that different activators of proviral latency may perturb and potentially deplete only selected, specific portions of the proviral archive in virally suppressed individuals. The known immunomodulatory effects of IL-7 could be combined with its ability to stimulate HIV-1 replication from resting CD4(+) T lymphocytes, in addition to other moieties, to potentially deplete HIV-1 reservoirs and lead to the rational design of immune-antiretroviral approaches.
Collapse
Affiliation(s)
- Feng-Xiang Wang
- Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Najera R, Frank I, Kulkosky J, Pomerantz RJ, Nunnari G. IL-7 is a potent and proviral strain–specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005. [DOI: 10.1172/jci200522574] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Chu YW, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, Lucas PJ, Gress RE. Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 2004; 104:1110-9. [PMID: 15130942 DOI: 10.1182/blood-2003-10-3635] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractInterleukin 7 (IL-7) is critical in maintaining thymic-dependent and thymic-independent pathways of T-cell homeostasis. T-cell receptor (TCR) rearrangement excision circles (TRECs) have been used as markers for recent thymic emigrants (RTEs) in assessing human thymic function. To study the thymic and peripheral effects of IL-7 on RTEs, we measured TREC content and peripheral naive T-cell subsets and turnover in IL-7-treated mice. Short-term administration of IL-7 into thymus-intact mice resulted in increased total TREC numbers, consistent with RTE accumulation. Decreases in TREC frequency were attributable to dilution secondary to increased cell turnover. Significantly, IL-7 administration into thymectomized mice resulted in patterns of decreased TREC frequency and increased total TREC number similar to those in IL-7-treated thymus-intact mice. Distinct patterns of naive cell and RTE distribution among peripheral immune organs and altered expression of CD11a were observed following IL-7 treatment in thymus-intact and thymectomized mice. These results demonstrate (1) that total TREC number and not TREC frequency accurately reflects quantitative changes in RTEs; (2) that short-term IL-7 administration results in preferential accumulations of RTEs among peripheral immune organs, accounting for the increase in TRECs in the total peripheral lymphoid pool; and (3) no evidence for regulation of thymic function by short-term IL-7 administration. (Blood. 2004;104:1110-1119)
Collapse
Affiliation(s)
- Yu-Waye Chu
- Experimental Immunology Branch, Center for Cancer Research, NIH, Bldg 10, Rm 4B14, 10 Center Dr, Bethesda, MD 20892-1360, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems.
Collapse
|
18
|
Pelus LM, Horowitz D, Cooper SC, King AG. Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 2003; 43:257-75. [PMID: 12270782 DOI: 10.1016/s1040-8428(01)00202-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chemokines induce rapid hematopoietic stem and progenitor cell mobilization and synergize with hematopoietic cytokines in mobilizing stem and progenitor cells. These proteins alone and in combination offer new paradigms for autologous and allogeneic peripheral blood stem cell transplantation (PBSCT). The mechanisms responsible for hematopoietic stem cell (HSC) mobilization either with growth factors or chemokines are largely unknown, but a better understanding of these mechanisms will permit the development of novel, more rapid and efficacious regimens. Studies presented herein indicate that the CXCR2 chemokine receptor that interacts with selective chemokine ligands, particularly GRObeta/CXCL2 and GRObeta-T, may be the dominant receptor mediating hematopoietic cell mobilization, and that polymorphonuclear neutrophils may be the primary CXCR2 expressing target cell for stem and progenitor cell mobilization.
Collapse
Affiliation(s)
- Louis M Pelus
- Department of Microbiology and Immunology and the Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
19
|
Coleman CN, Blakely WF, Fike JR, MacVittie TJ, Metting NF, Mitchell JB, Moulder JE, Preston RJ, Seed TM, Stone HB, Tofilon PJ, Wong RSL. Molecular and cellular biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17-18, 2001. Radiat Res 2003; 159:812-34. [PMID: 12751965 DOI: 10.1667/rr3021] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to doses of radiation of 1-10 Gy, defined in this workshop as moderate-dose radiation, may occur during the course of radiation therapy or as the result of radiation accidents or nuclear/radiological terrorism alone or in conjunction with bioterrorism. The resulting radiation injuries would be due to a series of molecular, cellular, tissue and whole-animal processes. To address the status of research on these issues, a broad-based workshop was convened. The specific recommendations were: (1) RESEARCH: Identify the key molecular, cellular and tissue pathways that lead from the initial molecular lesions to immediate and delayed injury. The latter is a chronic progressive process for which postexposure treatment may be possible. (2) Technology: Develop high-throughput technology for studying gene, protein and other biochemical expression after radiation exposure, and cytogenetic markers of radiation exposure employing rapid and accurate techniques for analyzing multiple samples. (3) Treatment strategies: Identify additional biological targets and develop effective treatments for radiation injury. (4) Ensuring sufficient expertise: Recruit and train investigators from such fields as radiation biology, cancer biology, molecular biology, cellular biology and wound healing, and encourage collaboration on interdisciplinary research on the mechanisms and treatment of radiation injury. Communicate knowledge of the effects of radiation exposure to the general public and to investigators, policy makers and agencies involved in response to nuclear accidents/events and protection/treatment of the general public.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Sciences Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Terry J Fry
- Immunology Section, Pediatric Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1928, USA.
| | | |
Collapse
|
21
|
King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ, Pelus LM. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001; 97:1534-42. [PMID: 11238087 DOI: 10.1182/blood.v97.6.1534] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SB-251353 is an N-terminal truncated form of the human CXC chemokine GRObeta. Recombinant SB-251353 was profiled in murine and rhesus monkey peripheral blood stem cell mobilization and transplantation models. SB-251353 rapidly and transiently mobilized hematopoietic stem cells and neutrophils into the peripheral blood after a single subcutaneous injection. Transplantation of equivalent numbers of hematopoietic stem cells mobilized by SB-251353 into lethally irradiated mice resulted in faster neutrophil and platelet recovery than stem cells mobilized by granulocyte colony-stimulating factor (G-CSF). A single injection of SB-251353 in combination with 4 days of G-CSF administration resulted in augmented stem and progenitor cell mobilization 5-fold greater than G-CSF alone. Augmented stem cell mobilization could also be demonstrated in mice when a single injection of SB-251353 was administered with only one-day treatment with G-CSF. In addition, SB-251353, when used as a single agent or in combination with G-CSF, mobilized long-term repopulating stem cells capable of hematopoietic reconstitution of lethally irradiated mice. In rhesus monkeys, a single injection of SB-251353 induced rapid increases in peripheral blood hematopoietic progenitor cells at a 50-fold lower dose than in mice, which indicates a shift in potency. These studies provide evidence that the use of SB-251353 alone or in combination with G-CSF mobilizes hematopoietic stem cells with long-term repopulating ability. In addition, this treatment may (1) reduce the number of apheresis sessions and/or amount of G-CSF required to collect adequate numbers of hematopoietic stem cells for successful peripheral blood cell transplantation and (2) improve hematopoietic recovery after transplantation.
Collapse
Affiliation(s)
- A G King
- Department of Molecular Virology and Host Defense, SmithKline Beecham Pharmaceuticals, Collegeville, PA 19426-0989, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Napolitano LA, Grant RM, Deeks SG, Schmidt D, De Rosa SC, Herzenberg LA, Herndier BG, Andersson J, McCune JM. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med 2001; 7:73-9. [PMID: 11135619 DOI: 10.1038/83381] [Citation(s) in RCA: 418] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We hypothesized that HIV-1-mediated T-cell loss might induce the production of factors that are capable of stimulating lymphocyte development and expansion. Here we perform cross-sectional (n = 168) and longitudinal (n = 11) analyses showing that increased circulating levels of interleukin (IL)-7 are strongly associated with CD4+ T lymphopenia in HIV-1 disease. Using immunohistochemistry with quantitative image analysis, we demonstrate that IL-7 is produced by dendritic-like cells within peripheral lymphoid tissues and that IL-7 production by these cells is greatly increased in lymphocyte-depleted tissues. We propose that IL-7 production increases as part of a homeostatic response to T-cell depletion.
Collapse
Affiliation(s)
- L A Napolitano
- Gladstone Institute of Virology and Immunology, San Francisco General Hospital, and Department of Medicine, University of California at San Francisco, San Francisco, California 94110-9100, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mertsching E, Meyer V, Linares J, Lombard-Platet S, Ceredig R. Interleukin-7, a non-redundant potent cytokine whose over-expression massively perturbs B-lymphopoiesis. Int Rev Immunol 1998; 16:285-308. [PMID: 9505192 DOI: 10.3109/08830189809042998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-7, originally described as a factor controlling the survival of B-cell progenitors, has been shown by gene knock-out technology to be a non-redundant cytokine. Of all single cytokine knock-out mice, those in which the IL-7 gene has been ablated show a profound defect in lymphocyte development. Likewise, mice in which signals emanating from the corresponding receptor, whether it be by ablation of the unique alpha or common gamma chain of the receptor, or by interference with downstream signalling elements generated by this receptor complex, also show profound defects in lymphocyte differentiation. Transgenic mice over-expressing the IL-7 gene also show profound changes in lymphocyte development which, in some instances can result in the development of lymphoid tumours. Here, we review some of these aspects of IL-7 biology with particular reference to an IL-7 over-expressing transgenic mouse line in which the IL-7 transgene is controlled by the mouse MHC class II promoter.
Collapse
Affiliation(s)
- E Mertsching
- U184 INSERM, LGME du CNRS, Faculte de Medecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Candéias S, Muegge K, Durum SK. IL-7 receptor and VDJ recombination: trophic versus mechanistic actions. Immunity 1997; 6:501-8. [PMID: 9175828 DOI: 10.1016/s1074-7613(00)80338-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S Candéias
- SAIC, Frederick Cancer Research and Development Center, National Cancer Institute, Maryland 21702, USA
| | | | | |
Collapse
|
25
|
Abstract
Developments in the characterization of growth factors and the recognition of their potential for clinical use has advanced through a number of stages. The development of clonogenic haemopoietic colony assays in the 1960s led to the discovery of colony-stimulating activity in the conditioned medium produced by certain cell lines. This activity was then purified and the colony-stimulating factors were identified. With rapid progress in molecular biology techniques in the 1980s, many further growth factors were cloned and produced on an industrial scale. Although erythropoietin, interferons, G-CSF, GM-CSF and IL-2 were all introduced into clinical practice as single agents, cytokines have more recently been investigated for use either in combination, or sequentially. Clinical trials are currently in progress to examine the optimum combinations and timing of administration. Current clinical applications include optimization of methods for mobilization of peripheral blood progenitor cells and amelioration of cytopenias following chemotherapy and bone-marrow transplantation. In the future, cytokines will be employed to expand stem and progenitor cells ex vivo, to improve gene transduction strategies, possibly to protect the gastrointestinal epithelium and as immunomodulators, both in vivo and in vitro. This review will focus on recently characterized growth factors including c-kit ligand/stem cell factor, flt3 ligand, c-mpl ligand/thrombopoietin and interleukins-11, 4, 7, 10, 12 and 13.
Collapse
Affiliation(s)
- T L Holyoake
- Department of Haematology Glasgow Royal Infirmary, UK
| |
Collapse
|