1
|
Kawakita T, Sekiya T, Kameda Y, Nomura N, Ohno M, Handabile C, Yamaya A, Fukuhara H, Anraku Y, Kita S, Toba S, Tsukamoto H, Sawa T, Oshiumi H, Itoh Y, Maenaka K, Sato A, Sawa H, Suzuki Y, Brown LE, Jackson DC, Kida H, Matsumoto M, Seya T, Shingai M. ARNAX is an ideal adjuvant for COVID-19 vaccines to enhance antigen-specific CD4 + and CD8 + T-cell responses and neutralizing antibody induction. J Virol 2025; 99:e0229024. [PMID: 40231823 PMCID: PMC12090777 DOI: 10.1128/jvi.02290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/02/2025] [Indexed: 04/16/2025] Open
Abstract
ARNAX is a synthetic nucleotide-based Toll-like receptor 3 (TLR3) ligand that specifically stimulates the TLR3/TIR domain-containing adaptor molecule 1 (TICAM-1) pathway without activating inflammatory responses. ARNAX activates cellular immunity via cross-presentation; hence, its practical application has been demonstrated in cancer immunotherapy. Given the importance of cellular immunity in virus infections, ARNAX is expected to be a more effective vaccine adjuvant for virus infections than alum, an adjuvant approved for human use that mainly enhances humoral immunity. In the present study, the trimeric recombinant spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was prepared as a vaccine antigen and formulated with ARNAX. When T-cell and neutralizing antibody responses were evaluated in immunized mice, antigen formulated with ARNAX generated significantly larger numbers of antigenspecific CD4+ and CD8+ T cells, as well as higher titers of neutralizing antibodies, compared to antigen alone or antigen formulated with alum. In experiments where immunized mice were challenged with a SARS-CoV-2 mouse-adapted virus derived from the ancestral strain, immunization with antigen formulated with ARNAX reduced virus titers in the lungs at 3 days post-infection to a much greater extent than did immunization with either antigen alone or that formulated with alum. These results show that ARNAX potently enhances the levels of both cellular and humoral immunity above those seen with alum, providing significantly greater viral clearing responses. Thus, ARNAX may act as a useful adjuvant for prophylactic vaccines, particularly for viral infectious diseases. IMPORTANCE Cellular immunity is a critical immunological defense system against virus infections. However, aluminum salts, the most widely used adjuvant for vaccines for human use, do not promote strong cellular immunity. To prepare for the next pandemic of viral origin, the development of Th1-type adjuvants with low adverse reactions that induce cellular immunity is necessary. ARNAX is a TLR3 agonist consisting of DNA-RNA hybrid nucleic acid, which is expected to be an adjuvant that induces cellular immunity. The present study using a coronavirus disease 2019 mouse model demonstrated that ARNAX potently induces cellular immunity in addition to humoral immunity with minimal induction of inflammatory cytokines. Therefore, ARNAX has the potential to be used as a potent and welltolerated adjuvant for vaccines against pandemic viruses emerging in the future.
Collapse
Affiliation(s)
- Tomomi Kawakita
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yayoi Kameda
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Chimuka Handabile
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akari Yamaya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
| | - Hideo Fukuhara
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shinsuke Toba
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Katsumi Maenaka
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Shingai
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Lee JJ, Yang L, Kotzin JJ, Ahimovic D, Bale MJ, Nigrovic PA, Josefowicz SZ, Mathis D, Benoist C. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J Exp Med 2025; 222:e20241207. [PMID: 39873673 PMCID: PMC11865922 DOI: 10.1084/jem.20241207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
Collapse
Affiliation(s)
- Juliana J. Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jonathan J. Kotzin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dughan Ahimovic
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J. Bale
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Z. Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
4
|
Barrett KT, Roy A, Ebdalla A, Pittman QJ, Wilson RJA, Scantlebury MH. The Impact of Inflammation on Thermal Hyperpnea: Relevance for Heat Stress and Febrile Seizures. Am J Respir Cell Mol Biol 2024; 71:195-206. [PMID: 38597725 PMCID: PMC11299082 DOI: 10.1165/rcmb.2023-0451oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Extreme heat caused by climate change is increasing the transmission of infectious diseases, resulting in a sharp rise in heat-related illness and mortality. Understanding the mechanistic link between heat, inflammation, and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis, is crucial in febrile seizures and convulsions induced by heat stress in humans. Here, we address what causes thermal hyperpnea in neonates and how it is affected by inflammation. Transient receptor potential cation channel subfamily V member 1 (TRPV1), a heat-activated channel, is sensitized by inflammation and modulates breathing and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures, we treated neonatal rats with bacterial LPS, and breathing, arterial pH, in vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. LPS-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). LPS exposure also elevated vagal spiking and intracellular calcium concentrations in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the LPS-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons.
Collapse
Affiliation(s)
- Karlene T. Barrett
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Pediatrics
| | - Arijit Roy
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Aya Ebdalla
- Alberta Children’s Hospital Research Institute
| | - Quentin J. Pittman
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Richard J. A. Wilson
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Morris H. Scantlebury
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Pediatrics
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Cabanzo-Olarte LC, Cardoso Bícego K, Navas Iannini CA. Behavioral responses during sickness in amphibians and reptiles: Concepts, experimental design, and implications for field studies. J Therm Biol 2024; 123:103889. [PMID: 38897001 DOI: 10.1016/j.jtherbio.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.
Collapse
Affiliation(s)
- Laura Camila Cabanzo-Olarte
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Arturo Navas Iannini
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Moretti EH, Lino CA, Steiner AA. INTERPLAY BETWEEN BRAIN OXYGENATION AND THE DEVELOPMENT OF HYPOTHERMIA IN ENDOTOXIC SHOCK. Shock 2024; 61:861-868. [PMID: 38662598 DOI: 10.1097/shk.0000000000002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT There is evidence to suggest that the hypothermia observed in the most severe cases of systemic inflammation or sepsis is a regulated response with potential adaptive value, but the mechanisms involved are poorly understood. Here, we investigated the interplay between brain oxygenation (assessed by tissue P o2 ) and the development of hypothermia in unanesthetized rats challenged with a hypotension-inducing dose of bacterial LPS (1 mg/kg i.v.). At an ambient temperature of 22°C, oxygen consumption (V̇O 2 ) began to fall only a few minutes after the LPS injection, and this suppression in metabolic rate preceded the decrease in core temperature. No reduction in brain P o2 was observed prior to the development of the hypometabolic, hypothermic response, ruling out the possibility that brain hypoxia served as a trigger for hypothermia in this model. Brain P o2 was even increased. Such an improvement in brain oxygenation could reflect either an increased O 2 delivery or a decreased O 2 consumption. The former explanation seems unlikely because blood flow (cardiac output) was being progressively decreased during the recording period. On the other hand, the decrease in V̇O 2 usually preceded the rise in P o2 , and an inverse correlation between V̇O 2 and brain P o2 was consistently observed. These findings do not support the existence of a closed-loop feedback relationship between brain oxygenation and hypothermia in systemic inflammation. The data are consistent with a feedforward mechanism in which hypothermia is triggered (possibly by cryogenic inflammatory mediators) in anticipation of changes in brain oxygenation to prevent the development of tissue hypoxia.
Collapse
Affiliation(s)
- Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | |
Collapse
|
7
|
Mezuki S, Matsuo R, Irie F, Shono Y, Kuwashiro T, Sugimori H, Wakisaka Y, Ago T, Kamouchi M, Kitazono T, on behalf of the Fukuoka Stroke Registry Investigators. Body temperature in the acute phase and clinical outcomes after acute ischemic stroke. PLoS One 2024; 19:e0296639. [PMID: 38206979 PMCID: PMC10783745 DOI: 10.1371/journal.pone.0296639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND This study aimed to examine whether post-stroke early body temperature is associated with neurological damage in the acute phase and functional outcomes at three months. METHODS We included 7,177 patients with acute ischemic stroke within 24 h of onset. Axillary temperature was measured daily in the morning for seven days. Mean body temperature was grouped into five quintiles (Q1: 35.1‒36.5°C, Q2: 36.5‒36.7°C, Q3: 36.7‒36.8°C, Q4: 36.8‒37.1°C, and Q5: 37.1‒39.1°C). Clinical outcomes included neurological improvement during hospitalization and poor functional outcome (modified Rankin scale score, 3-6) at three months. A logistic regression analysis was performed to evaluate the association between body temperature and clinical outcomes. RESULTS The patient's mean (SD) age was 70.6 (12.3) years, and 35.7% of patients were women. Mean body temperature was significantly associated with less neurological improvement from Q2 (odds ratios [95% confidence interval], 0.77 [0.65-0.99] vs. Q1) to Q5 (0.33 [0.28-0.40], P for trend <0.001) even after adjusting for potential confounders, including baseline neurological severity, C-reactive protein levels, and post-stroke acute infections. The multivariable-adjusted risk of poor functional outcome linearly increased from Q2 (1.36 [1.03-1.79]) to Q5 (6.44 [5.19-8.96], P for trend <0.001). These associations were maintained even in the analyses excluding patients with acute infectious diseases. Multivariable-adjusted risk of poor functional outcome was higher in patients with early body temperature elevation on days 1-3 and with longer duration with body temperature >37.0°C. CONCLUSIONS Post-stroke early high body temperature is independently associated with unfavorable outcomes following acute ischemic stroke.
Collapse
Affiliation(s)
- Satomi Mezuki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Ryu Matsuo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumi Irie
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Shono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Takahiro Kuwashiro
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cerebrovascular Medicine and Neurology, Kyushu Medical Center, Fukuoka, Japan
| | - Hiroshi Sugimori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cerebrovascular Medicine and Neurology, Kyushu Medical Center, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Study, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
8
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Otani K, Yoshiga M, Hirano M, Matsushita T, Noda K, Kurosaka D. Olfactory Bulbs in Arthritis Model Mouse Persistently Express Interleukin-6 before the Onset of Arthritis: Relationship to Food Intake. Neuroimmunomodulation 2023; 30:277-290. [PMID: 37769638 PMCID: PMC10627494 DOI: 10.1159/000534249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) can be comorbid with psychiatric symptoms. Brain abnormalities in RA patients and in arthritis models have been reported. However, it remains unclear when these abnormalities occur and where they are distributed. In this study, we analyzed spatiotemporal changes in gene expression in the brains of mice with collagen-induced arthritis (CIA). METHODS Mice were divided into three groups: (i) CIA (all mice developed arthritis on day 35): complete Freund's adjuvant (CFA) and type II collagen at initial immunization, and incomplete Freund's adjuvant (IFA) and type II collagen at booster immunization; (ii) C(+/-) (50% mice developed arthritis on day 35): only IFA at booster immunization; and (iii) C(-/-) (no arthritis): only CFA at initial immunization and only IFA at booster immunization. Whole brains were collected at ten stages of arthritis and divided into six sections. Real-time polymerase chain reaction was performed using RNA extracted from the brain, and the expression of proinflammatory cytokines and glial markers was semi-quantified. Arthritis score, body weight, and food and water intakes were recorded and analyzed for correlations with brain gene expression. We also investigated the effect of interleukin-6 (IL-6) injection in the olfactory bulbs (OBs) on the food intake. RESULTS After booster immunization, a transient increase in Integrin subunit α-M and IL-1β was observed in multiple areas in CIA. IL-6 is persistently expressed in the OB before the onset of arthritis, which is correlated with body weight loss and decreased food intake. This change in the OB was observed in the C(+/-) but not in the C(-/-) groups. In the C(+/-) group, non-arthritic mice showed the same changes in the OB as the arthritic mice. This elevation in IL-6 levels persisted throughout the chronic phase until day 84. In addition, IL-6 injection into the OB reduced food intake. CONCLUSION Persistent elevation of IL-6 in the OB from the early stage of arthritis may be an important finding that might explain the neuropsychiatric pathophysiology of RA, including appetite loss, which is present in the early stages of the disease and manifests as a variety of symptoms over time.
Collapse
Affiliation(s)
- Kazuhiro Otani
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Yoshiga
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Hirano
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Matsushita
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Noda
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Passaglia P, Silva HB, de Jesus AA, Filho MAM, Trajano IP, Batalhão ME, Navegantes LCC, Branco LGS, Cárnio EC. Angiotensin-(1-7) improves tail skin heat loss and increases the survival of rats with polymicrobial sepsis. Peptides 2023; 167:171042. [PMID: 37315714 DOI: 10.1016/j.peptides.2023.171042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Sepsis is a serious syndrome, characterized by the excessive release of inflammatory mediators and thermoregulatory changes, being fever the most common sign. However, despite the importance of Angiotensin (Ang)-(1-7) in controlling the inflammation, the role of the peptide in the febrile response and mortality in animals submitted to experimental model of sepsis is still not clear. In this way, we evaluate the effect of continuous infusion of Ang-(1-7) in inflammatory response, thermoregulation and in mortality of Wistar male rats submitted to colonic ligation puncture (CLP). Before CLP surgery, the infusion pumps (Ang-(1-7), 1.5mg/mL or saline) were inserted into the abdominal cavity and maintained for 24hours. CLP rats showed a febrile response starting from 3h after and persisted until the 24th hour of experiment. Continuous treatment with Ang-(1-7) attenuated the febrile response and reestablished the euthermia 11h after CLP, until the end of experiment, which coincided with an increased heat loss index (HLI). This effect was associated with a decrease in production of pro-inflammatory mediators in liver, white adipose tissue (WAT) and hypothalamus. Moreover, an increase in norepinephrine (NE) content in interscapular brown adipose tissue (iBAT) was observed in CLP animals, which was attenuated with treatment with Ang-(1-7), and decreased mortality in CLP animals treated with Ang-(1-7). Taken together, the present study demonstrates that continuous infusion treatment with Ang-(1-7) can promote a global anti-inflammatory effect, reestablishing the tail skin heat loss as a key thermo-effector function, resulting in an increased survival of animals submitted to experimental sepsis.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Alves de Jesus
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco Antonio Marangão Filho
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isis Paiva Trajano
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Eduardo Batalhão
- Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Luiz Guilherme Siqueira Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil; Department of General Nursing, School of Nursing of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Ohno M, Sagata M, Sekiya T, Nomura N, Shingai M, Endo M, Kimachi K, Suzuki S, Thanh Nguyen C, Nakayama M, Ishigaki H, Ogasawara K, Itoh Y, Kino Y, Kida H. Assessing the pyrogenicity of whole influenza virus particle vaccine in cynomolgus macaques. Vaccine 2023; 41:787-794. [PMID: 36526501 DOI: 10.1016/j.vaccine.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Among inactivated influenza vaccines, the whole virus particle vaccine (WPV) elicits superior priming responses to split virus vaccine (SV) in efficiently inducing humoral and cellular immunity. However, there is concern for undesired adverse events such as fever for WPV due to its potent immunogenicity. Therefore, this study investigated the febrile response induced by subcutaneous injection with quadrivalent inactivated influenza vaccines of good manufacturing grade for pharmaceutical or investigational products in cynomolgus macaques. Body temperature was increased by 1 °C-2 °C for 6-12 h after WPV administration at the first vaccination but not at the second shot, whereas SV did not affect body temperature at both points. Given the potent priming ability of WPV, WPV-induced fever may be attributed to immune responses that uniquely occur during priming. Since WPV-induced fever was blunted by pretreatment with indomethacin (a cyclooxygenase inhibitor), the febrile response by WPV is considered to depend on the increase in prostaglandins synthesized by cyclooxygenase. In addition, WPV, but not SV, induced the elevation of type I interferons and monocyte chemotactic protein 1 in the plasma; these factors may be responsible for pyrogenicity caused by WPV, as they can increase prostaglandins in the brain. Notably, sufficient antibody responses were acquired by half the amount of WPV without causing fever, suggesting that excessive immune responses to trigger the febrile response is not required for acquired immunity induction. Thus, we propose that WPV with a reduced antigen dose should be evaluated for potential clinical usage, especially in naïve populations.
Collapse
Affiliation(s)
- Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | | | | | - Saori Suzuki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Cong Thanh Nguyen
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Kazumasa Ogasawara
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Ruiz-Rodríguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Ferrer R. Blood purification in sepsis and COVID-19: what´s new in cytokine and endotoxin hemoadsorption. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2022. [PMCID: PMC8978509 DOI: 10.1186/s44158-022-00043-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sepsis and COVID-19 are two clinical conditions that can lead to a dysregulated inflammatory state causing multiorgan dysfunction, hypercytokinemia, and a high risk of death. Specific subgroups of critically ill patients with particular characteristics could benefit from rescue treatment with hemoadsorption. There is a lack of adequately designed randomized controlled trials evaluating the potential benefits of cytokine or endotoxin hemoadsorption. Critically ill COVID-19 patients with severe acute respiratory failure poorly responsive to conventional treatment could be candidates to receive cytokine hemoadsorption in the presence of high levels of interleukin 6. This treatment can also be suitable for patients with refractory septic shock and hypercytokinemia. In the context of high endotoxin activity, hemoadsorption with polymyxin B could improve clinical parameters and the prognosis of patients with refractory septic shock. Predictive enrichment, using biomarkers or other individual features, identifies potential responders to cytokine, endotoxin, or sequential hemoadsorption. Besides, recognizing the particular subsets of patients likely to respond to one or both types of hemoadsorption will aid the design of future studies that accurately validate the effectiveness of these therapies.
Collapse
|
13
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
14
|
Rahman N, Begum S, Khan A, Afridi SG, Khayam Sahibzada MU, Atwah B, Alhindi Z, Khan H. An insight in Salmonella typhi associated autoimmunity candidates' prediction by molecular mimicry. Comput Biol Med 2022; 148:105865. [PMID: 35843194 DOI: 10.1016/j.compbiomed.2022.105865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases develop when the immune system targets healthy cells and tissues of an individual. In developing countries, S. typhi (a gram-negative pathogenic bacteria) remains a major public health issue. This study aimed to employ bioinformatics analyses to determine the 3D structural-based molecular mimicry and sequence of S. typhi and human host proteins. In addition, to classify possible antigenic microbial peptides homologous to human peptides and comprehend the molecular basis of S. typhi-related autoimmune disorders. Protein sequences were obtained from the NCBI database, and redundancy was removed using the CD-HIT tool. The BLASTp comparative sequence analysis was followed for molecular mimicry identification of human and S. typhi protein sequences. The PathDIP database was utilized to simulate essential physical relationships between proteins and curated pathways for metabolic processes. Subsequently, the IEDB database was used to find cross-reactive MHC class-II binding epitopes that could trigger an autoimmune reaction. SPARKS-X computational biology resource was also used to determine the structural homology between human and S. typhi peptides. The BLASTp study showed that S. typhi and the human host have several proteins holding considerable sequence similarities based on a set threshold of e ≤ 10-6 and bit score ≥100. The PathDIP putatively identified that these proteins enriched in a total of 68 metabolic pathways by a significant P-value (P < 0.005). The PSORTb analysis predicted that 26 out of these proteins are cytosolic, 1 predicted to be periplasmic protein, and 1 predicted to be localized in the cytoplasmic membrane. IEDB data analysis predicted many S.typhi and human homologs epitopes as a good binder of human HLA, i.e. DRB1*01:01, DPA1*03:01/DPB1*04:02, and DQA1*01:02/DQB1*06:02 with IC50 < 50 nM. Finally, the docking data demonstrated that homolog lead epitopes promisingly interact with HLA and immune TLR4 receptors by exhibiting the best docking scores and molecular interactions. The analyses ultimately identified several potential candidate proteins and peptides that could cause S.typhi infection-mediated autoimmune diseases in humans.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sara Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | | | - Banan Atwah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zain Alhindi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Wang X, Yu C, Liu X, Yang J, Feng Y, Wu Y, Xu Y, Zhu Y, Li W. Fenofibrate Ameliorated Systemic and Retinal Inflammation and Modulated Gut Microbiota in High-Fat Diet-Induced Mice. Front Cell Infect Microbiol 2022; 12:839592. [PMID: 35719341 PMCID: PMC9201033 DOI: 10.3389/fcimb.2022.839592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Fenofibrate, as a lipid-lowering drug, has been reported to have a protective effect on the retina independent with plasma lipid levels. This study aimed to investigate that the ameliorative effects of fenofibrate on systemic and retinal inflammation, as well as gut microbiota dysbiosis in high-fat diet (HFD)-induced mice. C57BL/6J mice were randomly allocated into four groups: standard diet (SD) group; HFD group; SD plus fenofibrate (SD_ Fe) group; HFD plus fenofibrate (HFD_ Fe) group. After successfully establishing models (5 months), indicators associated with lipid, gut barrier, inflammation and gut microbiota were investigated. Our results showed that supplementing the HFD with fenofibrate decreased body weight gain, alleviated dyslipidemia and reversed the downregulation of short-chain fatty acid (SCFAs) in serum, retina and feces. Fenofibrate ameliorated intestinal barrier function damage in HFD-induced mice. Fenofibrate coadministration inhibited the levels of inflammatory factor and lipopolysaccharide (LPS) in the serum and attenuated inflammatory response in the retina of HFD-induced mice. Systemic LPS was positively correlated with a series of inflammatory factors in serum and retina, respectively. Fenofibrate supplementation down-regulated the abundances of LPS-associated bacteria in HFD mice, including Firmicutes and Proteobacteria at the phylum level, Desulfovibrionaceae at the family level, as well as unclassified_ Desulfovibrionaceae, Acetatifactor, Flavonifractor, Oscillibacter and Anaerotruncus at the genus level. However, fenofibrate treatment up-regulated the abundances of SCFA-associated bacteria in HFD mice, including Bacteroidetes at the phylum level, Porphyromonadaceae at the family level, as well as unclassified_Porphyromonadaceae, Barnesiella, Alloprevotella and Bifidobacterium at the genus level. In conclusion, our results confirmed fenofibrate could attenuate HFD-induced systemic and retinal inflammation, accompanying with restoration of intestinal barrier damage and modulation of gut microbiota/metabolites. This work provided an explanation for the ameliorative effects of fenofibrate on HFD-induced systemic and retinal inflammation might be partially related with the modulation of gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Aier School of Ophthalmology, Central South University, Changsha, China
- University of Science and Technology of China, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, China
| | - Chaofeng Yu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Xiaomei Liu
- University of Science and Technology of China, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yali Xu
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yihua Zhu
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Wensheng Li, ; Yihua Zhu,
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
- *Correspondence: Wensheng Li, ; Yihua Zhu,
| |
Collapse
|
16
|
Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Pérez-Carrasco M, Palmada C, Ribas V, Martínez-Gallo M, Hernández-González M, Gonzalez-Lopez JJ, Larrosa N, Ferrer R. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J Crit Care Med 2022; 11:1-21. [PMID: 35433311 PMCID: PMC8788206 DOI: 10.5492/wjccm.v11.i1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As it is associated with an increased risk of death, patients with this condition are candidates for receipt of a very well-structured and protocolized treatment. All patients should receive the fundamental pillars of sepsis management, which are infection control, initial resuscitation, and multiorgan support. However, specific subgroups of patients may benefit from a personalized approach with interventions targeted towards specific pathophysiological mechanisms. Herein, we will review the framework for identifying subpopulations of patients with sepsis, septic shock, and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches are still in the early stages of research, while others are already in routine use in clinical practice, but together will help in the effective generation and safe implementation of precision medicine in sepsis.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Erika P Plata-Menchaca
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Intensive Care, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Adolfo Ruiz-Sanmartin
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Vicent Ribas
- Data Analytics in Medicine, Digital Health Unit, Eurecat, Centre Tecnològic de Catalunya, Barcelona 08005, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manuel Hernández-González
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Juan J Gonzalez-Lopez
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
17
|
Shiraki C, Horikawa R, Oe Y, Fujimoto M, Okamoto K, Kurganov E, Miyata S. Role of TRPM8 in switching between fever and hypothermia in adult mice during endotoxin-induced inflammation. Brain Behav Immun Health 2021; 16:100291. [PMID: 34589786 PMCID: PMC8474285 DOI: 10.1016/j.bbih.2021.100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control. The peripheral administration of low-dose lipopolysaccharide (LPS) at 50 μg/kg generated fever in wild-type (WT) mice, whereas it caused hypothermia in TRPM8 knockout (KO) animals. LPS-induced sickness responses such as decrease in body weight, and food and water intake were not different between WT and TRPM8 KO mice. TRPM8 KO mice exhibited more severe hypothermia and lower locomotor activity following the peripheral administration of high-dose LPS at 5 mg/kg compared with WT ones. An intracerebroventricular (i.c.v.) injection of either LPS at 3.6 μg/kg or interleukin-1β at 400 ng/kg elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals. The peripheral administration of zymosan at 3 mg/kg also induced hypothermia in contrast to fever in WT mice. An i.c.v. injection of prostaglandin E2 at 16 or 160 nmol/kg induced normal fever in both WT and TRPM8 KO mice. Infrared thermography showed significant decline of the interscapular skin temperature that estimates temperature of the brown adipose tissue, regardless of no alteration of its temperature in WT animals. Fos immunohistochemistry showed stronger Fos activation of hypothalamic thermoregulation-associated nuclei in TRPM8 KO mice compared with WT animals following the peripheral administration of low-dose LPS. Therefore, the present study indicates that TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.
Collapse
Affiliation(s)
- Chinatsu Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ririka Horikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuzuki Oe
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Momoka Fujimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
18
|
Abstract
Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism's ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.
Collapse
|
19
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
20
|
Kuo SW, Su WL, Chou TC. Baicalin improves the survival in endotoxic mice and inhibits the inflammatory responses in LPS-treated RAW 264.7 macrophages. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220967767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Sepsis is a severe disease with a high morbidity and mortality. Baicalin, an active compound of Chinese medicine, Scutellaria baicalensis Georgi (Huang Qui), exhibits several beneficial effects. In this study, we examined whether administration of baicalin increases the survival in mice with endotoxemia and investigated its anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: The production of NOx, PGE2, and pro-inflammatory cytokines, the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the nuclear translocation of NF-κB in LPS-stimulated macrophages or endotoxic mice were determined. The model of severe endotoxic mice was established by injection of LPS (60 mg/kg, i.p.). Results: Baicalin significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in LPS-stimulated macrophages. Baicalin treatment also markedly suppressed LPS-induced iNOS and COX-2 expression at the transcriptional and translational levels, and the nuclear translocation of NF-κB in macrophages. Similarly, the serum concentrations of NOx, PGE2, and pro-inflammatory cytokines, and the lung myeloperoxidase activity were greatly reduced in baicalin-treated endotoxic mice. Notably, after LPS injection, the 3-day survival rate of mice treated with pre- or post-administration of baicalin (50 mg/kg, i.p.) remarkably increased to 100% and 90%, respectively compared with LPS-injected alone mice with a survival rate of 0%. Conclusion: Baicalin has a potent anti-inflammatory activity in LPS-stimulated macrophages and endotoxic mice. Moreover, treatment with baicalin dramatically increased the survival in the severe septic mice, suggesting that baicalin may be a potential agent for sepsis therapy.
Collapse
Affiliation(s)
- Shi-Wen Kuo
- Department of Endocrinology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
- School of Medicine, Tzu Chi University, Hualien
- National Defense Medical Center, Taipei
| | - Tz-Chong Chou
- China Medical University Hospital, China Medical University, Taichung
- Department of Pharmacology, National Defense Medical Center, Taipei
- Cathay Medical Research Institute, Cathay General Hospital, New Taipei City
| |
Collapse
|
21
|
Li W, Luo S, Wan C. Characterization of fever and sickness behavior regulated by cytokines during infection. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In response to invasion of pathogens, hosts present fever and a series of behavioural changes including reduced grooming, reduction of foraging, decreased locomotion, withdrawing from social activities and reproductive process, which are collectively termed sickness behaviour. Fever as well as sickness behaviour are adaptive and benefit the host to reduce pathology caused by infections and opportunity costs for time away from foraging, reproduction and predator avoidance. Antipathogenic fever and sickness behaviour are mediated proximately by cytokines including pro- and anti-inflammatory cytokines. Pro-inflammation cytokines trigger these sickness responses, while anti-inflammatory cytokines constrain these responses and prevent damage to host from exaggerated responses. The present study reviews the characterization of fever and sickness behaviour regulated by cytokines during infection.
Collapse
Affiliation(s)
- Weiran Li
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Shuanghong Luo
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Chaomin Wan
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| |
Collapse
|
22
|
Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci U S A 2020; 117:22357-22366. [PMID: 32839313 DOI: 10.1073/pnas.1922683117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fever is a conserved and prominent response to infection. Yet, the issue of how CD4 T cell responses are modulated if they occur at fever temperatures remains poorly addressed. We have examined the priming of naive CD4 T cells in vitro at fever temperatures, and we report notable fever-mediated modulation of their cytokine commitment. When naive CD4 T cells were primed by plate-bound anti-CD3 and anti-CD28 monoclonal antibodies at moderate fever temperature (39 °C), they enhanced commitment to IL4/5/13 (Th2) and away from IFNg (Th1). This was accompanied by up-regulation of the Th2-relevant transcription factor GATA3 and reduction in the Th1-relevant transcription factor Tbet. Fever sensing by CD4 T cells involved transient receptor potential vanilloid cation channels (TRPVs) since TRPV1/TRPV4 antagonism blocked the febrile Th2 switch, while TRPV1 agonists mediated a Th2 switch at 37 °C. The febrile Th2 switch was IL4 independent, but a γ-secretase inhibitor abrogated it, and it was not found in Notch1-null CD4 T cells, identifying the Notch pathway as a major mediator. However, when naive CD4 T cells were primed via antigen and dendritic cells (DCs) at fever temperatures, the Th2 switch was abrogated via increased production of IL12 from DCs at fever temperatures. Thus, immune cells directly sense fever temperatures with likely complex physiological consequences.
Collapse
|
23
|
Li J, Piskol R, Ybarra R, Chen YJJ, Li J, Slaga D, Hristopoulos M, Clark R, Modrusan Z, Totpal K, Junttila MR, Junttila TT. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med 2020; 11:11/508/eaax8861. [PMID: 31484792 DOI: 10.1126/scitranslmed.aax8861] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
T cell-retargeting therapies have transformed the therapeutic landscape of oncology. Regardless of the modality, T cell activating therapies are commonly accompanied by systemic cytokine release, which can progress to deadly cytokine release syndrome (CRS). Because of incomplete mechanistic understanding of the relationship between T cell activation and systemic cytokine release, optimal toxicity management that retains full therapeutic potential remains unclear. Here, we report the cell type-specific cellular mechanisms that link CD3 bispecific antibody-mediated killing to toxic cytokine release. The immunologic cascade is initiated by T cell triggering, whereas monocytes and macrophages are the primary source of systemic toxic cytokine release. We demonstrate that T cell-generated tumor necrosis factor-α (TNF-α) is the primary mechanism mediating monocyte activation and systemic cytokine release after CD3 bispecific treatment. Prevention of TNF-α release is sufficient to impair systemic release of monocyte cytokines without affecting antitumor efficacy. Systemic cytokine release is only observed upon initial exposure to CD3 bispecific antibody not subsequent doses, indicating a biological distinction between doses. Despite impaired cytokine release after second exposure, T cell cytotoxicity remained unaffected, demonstrating that cytolytic activity of T cells can be achieved in the absence of cytokine release. The mechanistic uncoupling of toxic cytokines and T cell cytolytic activity in the context of CD3 bispecifics provides a biological rationale to clinically explore preventative treatment approaches to mitigate toxicity.
Collapse
Affiliation(s)
- Ji Li
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ryan Ybarra
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jason Li
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dionysos Slaga
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Robyn Clark
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Klara Totpal
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
24
|
Qi R, Li X, Zhang X, Huang Y, Fei Q, Han Y, Cai R, Gao Y, Qi Y. Ethanol extract of Elephantopus scaber Linn. Attenuates inflammatory response via the inhibition of NF-κB signaling by dampening p65-DNA binding activity in lipopolysaccharide-activated macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112499. [PMID: 31877363 DOI: 10.1016/j.jep.2019.112499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Elephantopus scaber Linn. (E.scaber) is a widely-used traditional herb whose use has been documented for various inflammatory diseases such as fever, sore throat, dysentery, carbuncle and so on. However, the effect and mechanism of E.scaber in LPS-activated macrophages remain unclear. AIM This study aims to investigate the anti-inflammatory mechanism of the ethanol extract of E.scaber (ESE) in lipopolysaccharide (LPS)-induced inflammatory models. MATERIALS AND METHODS Griess reagent was used to determine NO production, and the levels of TNF-α, IL-6, MCP-1 and IL-1β were determined by ELISA kits. The molecular mechanism research was performed by RT-PCR, Western blot, and electrophoretic mobility shift assay (EMSA). LPS-induced endotoxemia mouse model was used for evaluating the in vivo anti-inflammatory action of ESE. RESULTS ESE suppressed LPS-induced iNOS, TNF-α, IL-6, MCP-1 and IL-1β transcription as well as supernatant NO, TNF-α, IL-6, MCP-1 and IL-1β production in macrophages. Although ESE inhibited NF-κB activation, it did not affect the IκBα phosphorylation and degradation and the NF-κB p65 nuclear translocation. The result of EMSA revealed that ESE inhibited the NF-κB p65-DNA binding activity. Additionally, ESE also decreased the proinflammatory cytokines in serum and peritoneal lavage fluid of LPS-induced endotoxemic mice. CONCLUSION ESE has a potently anti-inflammatory effect through inhibiting the NF-κB p65-DNA binding activity in LPS-activated macrophages.
Collapse
Affiliation(s)
- Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yunfeng Huang
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, Guangxi, China.
| | - Qiaoling Fei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
25
|
Neurons and astrocytes of the chicken hypothalamus directly respond to lipopolysaccharide and chicken interleukin-6. J Comp Physiol B 2020; 190:75-85. [PMID: 31960172 DOI: 10.1007/s00360-019-01249-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/22/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023]
Abstract
In 4-5-month-old chicken, intravenous injections of bacterial lipopolysaccharide (LPS) induced a dose-dependent fever response and a pronounced increase of circulating interleukin-6 (IL-6). To assess a possible role for IL-6 in the brain of birds, a hypothalamic neuro-glial primary culture from 1-day-old chicken was established. Each well of cultured hypothalamic cells contained some 615 neurons, 1350 astrocytes, and 580 microglial cells on average. Incubation of chicken hypothalamic primary cultures with 10 or 100 µg/ml LPS induced a dose-dependent release of bioactive IL-6 into the supernatant. Populations of hypothalamic neurons (4%) and astrocytes (12%) directly responded to superfusion with buffer containing 10 µg/ml LPS with a transient increase of intracellular calcium, a sign of direct cellular activation. Stimulation of hypothalamic cultures with buffer containing 50 ng/ml chicken IL-6 induced calcium signaling in 11% of neurons and 22% of astrocytes investigated. These results demonstrate that IL-6 is produced in the periphery and in the hypothalamus in response to LPS in chicken. The observed cellular responses of hypothalamic cells to chicken IL-6 indicate that this cytokine may readily be involved in the manifestation of fever in the avian hypothalamus.
Collapse
|
26
|
Arce DY, Bellavia A, Cantonwine DE, Napoli OJ, Meeker JD, James-Todd T, McElrath TF, Tsen LC. Average and time-specific maternal prenatal inflammatory biomarkers and the risk of labor epidural associated fever. PLoS One 2019; 14:e0222958. [PMID: 31689293 PMCID: PMC6830771 DOI: 10.1371/journal.pone.0222958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/10/2019] [Indexed: 02/03/2023] Open
Abstract
Background The use of labor epidural analgesia has been associated with intrapartum fever, known as labor epidural associated fever (LEAF). LEAF is most commonly non-infectious in origin and associated with elevated inflammatory cytokines. Methods The LIFECODES pregnancy cohort was designed to prospectively collect data to evaluate the association of maternal inflammatory biomarkers with preterm birth in women who delivered between 2007 and 2008 at Brigham and Women’s Hospital. Our secondary analysis of the data from the cohort identified 182 women for whom inflammatory biomarkers (i.e. interleukin-10, interleukin-1β, interleukin-6, tumor necrosis factor-α and C-reactive protein) collected longitudinally over four prenatal visits was available. Maternal temperature and other clinical variables were abstracted from medical records. The primary outcome, the presence of LEAF, was defined as oral temperature ≥ 38°C (≥100.4°F) after epidural analgesia initiation. Multivariable logistic regression estimated the association between inflammatory biomarker concentrations and the odds of developing an intrapartum fever after adjusting for a number of potential confounders. Results Women who developed LEAF were more likely to have a longer duration of epidural analgesia, whereas women who did not develop LEAF were more likely to have induced labor and positive or unknown Group B Streptococcus colonization status. However, no differences were seen by nulliparity, mode of delivery, white blood cell count at admission, baseline temperature, length of rupture of membranes and number of cervical exams performed during labor. Unadjusted and multivariable logistic regression models did not provide evidence for or exclude an association between individual maternal inflammatory biomarkers and the odds of developing LEAF, regardless of visit time-period. Conclusion The predictive value of maternal inflammatory biomarkers measured during early- and mid-pregnancy for the risk of developing LEAF cannot be excluded.
Collapse
Affiliation(s)
- Dominique Y. Arce
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Obstetric Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David E. Cantonwine
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia J. Napoli
- Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, United States of America
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Thomas F. McElrath
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lawrence C. Tsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Obstetric Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Roberts AJ, Khom S, Bajo M, Vlkolinsky R, Polis I, Cates-Gatto C, Roberto M, Gruol DL. Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal. Brain Behav Immun 2019; 82:188-202. [PMID: 31437534 PMCID: PMC6800653 DOI: 10.1016/j.bbi.2019.08.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.
Collapse
Affiliation(s)
- Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Sophia Khom
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Michal Bajo
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Roman Vlkolinsky
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Ilham Polis
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Marisa Roberto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A,Corresponding Author: Dr. Donna L. Gruol, Neuroscience Department, SP30-1522, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Phone: (858) 784-7060, Fax: (858) 784-7393,
| |
Collapse
|
28
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Muneoka S, Murayama S, Nakano Y, Miyata S. TLR4 in circumventricular neural stem cells is a negative regulator for thermogenic pathways in the mouse brain. J Neuroimmunol 2019; 331:58-73. [DOI: 10.1016/j.jneuroim.2018.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
|
30
|
Wang R, Yang Y, Xiao M, Guo B, Liu W, Wang H. Neonatal Inhibition of Connexin 36 Ameliorates Fetal Brain Injury Induced by Maternal Noninfectious Fever in Mice. Dev Neurosci 2019; 41:94-101. [PMID: 31112950 DOI: 10.1159/000499735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/19/2019] [Indexed: 11/19/2022] Open
Abstract
Prenatal fever could result in brain function impairments in the offspring. The present study investigated the effect of interleukin-6 (IL-6)-induced maternal fever on the offspring and the involvement of connexin 36 in this process. Pregnant C57BL/6J mice were injected with IL-6 on gestational day 15. The levels of iNOS and COX-2 were measured as an index of neuroinflammation in the brain of newborn pups. Offspring were treated with the connexin 36 (Cx36) inhibitor mefloquine at postnatal day (P)1-P3 or at P40-P42. Rotarod, grip traction, and foot fault tests were carried out to evaluate the motor behavior of adult offspring. Injection of IL-6 led to an elevation of the core temperature in the pregnant dams. Offspring of these dams showed significantly increased COX-2 and iNOS mRNA expression and protein levels in the whole-brain samples and significantly increased Cx36 in the cerebellum. Moreover, offspring of these dams showed motor deficits at an adult age. Neonatal administration of the Cx36 inhibitor mefloquine could prevent these motor deficits. Maternal fever during pregnancy induced by IL-6 injection could lead to neuroinflammation and motor deficits in the offspring. Neonatal inhibition of Cx36 could ameliorate the motor deficits in the offspring, indicating an involvement of Cx36 in the IL-6-induced maternal fever.
Collapse
Affiliation(s)
- Ruifen Wang
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China,
| | - Yueqing Yang
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Min Xiao
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Binfang Guo
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Weili Liu
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Haiyan Wang
- Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| |
Collapse
|
31
|
Sekiya T, Mifsud EJ, Ohno M, Nomura N, Sasada M, Fujikura D, Daito T, Shingai M, Ohara Y, Nishimura T, Endo M, Mitsumata R, Ikeda T, Hatanaka H, Kitayama H, Motokawa K, Sobue T, Suzuki S, Itoh Y, Brown LE, Ogasawara K, Kino Y, Kida H. Inactivated whole virus particle vaccine with potent immunogenicity and limited IL-6 induction is ideal for influenza. Vaccine 2019; 37:2158-2166. [PMID: 30857932 DOI: 10.1016/j.vaccine.2019.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 02/01/2023]
Abstract
In contrast to current ether- or detergent-disrupted "split" vaccines (SVs) for influenza, inactivated whole influenza virus particle vaccines (WPVs) retain the original virus structure and components and as such may confer similar immunity to natural infection. In a collaboration between academia and industry, the potential of WPV as a new seasonal influenza vaccine was investigated. Each of the four seasonal influenza vaccine manufacturers in Japan prepared WPVs and SVs from the same batches of purified influenza virus. Both mice and monkeys vaccinated with the WPVs exhibited superior immune responses to those vaccinated with the corresponding SVs. Vaccination with A/California/07/2009 (H1N1) WPV enabled mice to survive a lethal challenge dose of homologous virus whereas those vaccinated with SV succumbed to infection within 6 days. Furthermore, mice vaccinated with WPV induced substantial numbers of multifunctional CD8+ T cells, important for control of antigenically drifted influenza virus strains. In addition, cytokines and chemokines were detected at early time points in the sera of mice vaccinated with WPV but not in those animals vaccinated with SV. These results indicate that WPVs induce enhanced innate and adaptive immune responses compared to equivalent doses of SVs. Notably, WPV at one fifth of the dose of SV was able to induce potent immunity with limited production of IL-6, one of the pyrogenic cytokines. We thus propose that WPVs with balanced immunogenicity and safety may set a new global standard for seasonal influenza vaccines.
Collapse
Affiliation(s)
- Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Edin J Mifsud
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mayumi Sasada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Daisuke Fujikura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuji Daito
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Tomio Ikeda
- R&D Center, Denka Seiken Co., Ltd., Niigata, Japan
| | - Hironori Hatanaka
- The Research Foundation for Microbial Diseases of Osaka University, Kannonji, Kagawa, Japan
| | - Hiroki Kitayama
- The Research Foundation for Microbial Diseases of Osaka University, Kannonji, Kagawa, Japan
| | - Kenji Motokawa
- Manufacturing Department III, Kitasato Daiichi Sankyo Vaccine Co. Ltd., Saitama, Japan
| | - Tomoyoshi Sobue
- CMC Research Laboratories, Kitasato Daiichi Sankyo Vaccine Co. Ltd., Saitama, Japan
| | - Saori Suzuki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Lorena E Brown
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
32
|
Santos JC, Bever SR, Pereira-da-Silva G, Pyter LM. Tumor resection ameliorates tumor-induced suppression of neuroinflammatory and behavioral responses to an immune challenge in a cancer survivor model. Sci Rep 2019; 9:752. [PMID: 30679700 PMCID: PMC6345941 DOI: 10.1038/s41598-018-37334-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer survivors display altered inflammatory responses to immune challenges relative to cancer-naive controls likely due to previous cancer treatments, stress associated with cancer, and/or tumor physiology. Proper inflammatory responses are necessary for adaptive sickness behaviors (e.g., fatigue, anorexia, and fever) and neuroinflammatory pathways are also implicated in mental health disturbances (e.g., cognitive impairment, depression) suffered by cancer patients and survivors. Rodent cancer models indicate that tumors are sufficient to exacerbate neuroinflammatory responses after an immune challenge, however primary tumors are not usually present in cancer survivors, and the behavioral consequences of these brain changes remain understudied. Therefore, we tested the extent to which mammary tumor resection attenuates tumor-induced neuroinflammation and sickness behavior following an immune challenge (i.p. lipopolysaccharide [LPS] injection) in mice. Tnf-α, Il-1β, and Il-6 mRNA decreased in multiple brain regions of LPS-treated tumor-bearing mice relative to LPS-treated controls; tumor resection attenuated these effects in some cases (but not Tnf-α). Tumors also attenuated sickness behaviors (hypothermia and lethargy) compared to LPS-treated controls. Tumor resection reversed these behavioral consequences, although basal body temperature remained elevated, comparable to tumor-bearing mice. Thus, tumors significantly modulate neuroinflammatory pathways with functional consequences and tumor resection mitigates most, but not all, of these changes.
Collapse
Affiliation(s)
- Jessica C Santos
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA.,Postgraduate Program in Basic and Applied Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Savannah R Bever
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Gabriela Pereira-da-Silva
- Postgraduate Program in Basic and Applied Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Maternal-Infant Nursing and Public Health, Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA. .,Department of Neuroscience, Ohio State University, Columbus, OH, USA. .,Arthur G. James Comprehensive Cancer Center and Solove Research institute, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Zhang Z, La Placa D, Nguyen T, Kujawski M, Le K, Li L, Shively JE. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol 2019; 20:7. [PMID: 30674283 PMCID: PMC6345024 DOI: 10.1186/s12865-019-0287-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic inflammation and the fever response to pathogens are coordinately regulated by IL-6 and IL-1β. We previously showed that CEACAM1 regulates the LPS driven expression of IL-1β in murine neutrophils through its ITIM receptor. Results We now show that the prompt secretion of IL-6 in response to LPS is regulated by CEACAM1 expression on bone marrow monocytes. Ceacam1−/− mice over-produce IL-6 in response to an i.p. LPS challenge, resulting in prolonged surface temperature depression and overt diarrhea compared to their wild type counterparts. Intraperitoneal injection of a 64Cu-labeled LPS, PET imaging agent shows confined localization to the peritoneal cavity, and fluorescent labeled LPS is taken up by myeloid splenocytes and muscle endothelial cells. While bone marrow monocytes and their progenitors (CD11b+Ly6G−) express IL-6 in the early response (< 2 h) to LPS in vitro, these cells are not detected in the bone marrow after in vivo LPS treatment perhaps due to their rapid and complete mobilization to the periphery. Notably, tissue macrophages are not involved in the early IL-6 response to LPS. In contrast to human monocytes, TLR4 is not expressed on murine bone marrow monocytes. Instead, the alternative LPS receptor RP105 is expressed and recruits MD1, CD14, Src, VAV1 and β-actin in response to LPS. CEACAM1 negatively regulates RP105 signaling in monocytes by recruitment of SHP-1, resulting in the sequestration of pVAV1 and β-actin from RP105. Conclusion This novel pathway and regulation of IL-6 signaling by CEACAM1 defines a novel role for monocytes in the fever response of mice to LPS. Electronic supplementary material The online version of this article (10.1186/s12865-019-0287-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Keith Le
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| |
Collapse
|
34
|
Cheng L, Chen Z, Wang L, Lan Y, Zheng L, Wu F. Propofol partially attenuates complete freund's adjuvant‐induced neuroinflammation through inhibition of the ERK1/2/NF‐κB pathway. J Cell Biochem 2018; 120:9400-9408. [PMID: 30536812 DOI: 10.1002/jcb.28215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lijian Cheng
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Zhenhong Chen
- Department of Oncology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Lihua Wang
- Department of Vascular Surgery Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Yunping Lan
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Lihua Zheng
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Fangpu Wu
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| |
Collapse
|
35
|
Cavaillon JM. Historical links between toxinology and immunology. Pathog Dis 2018; 76:4923027. [PMID: 29718183 DOI: 10.1093/femspd/fty019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/01/2018] [Indexed: 01/28/2023] Open
Abstract
Research on bacterial toxins is closely linked to the birth of immunology. Our understanding of the interaction of bacterial protein toxins with immune cells has helped to decipher immunopathology, develop preventive and curative treatments for infections, and propose anti-cancer immunotherapies. The link started when Behring and Kitasato demonstrated that serotherapy was effective against 'the strangling angel', namely diphtheria, and its dreadful toxin discovered by Roux and Yersin. The antitoxin treatment helped to save thousands of children. Glenny demonstrated the efficacy of the secondary immune response compared to the primary one. Ramon described anatoxins that allowed the elaboration of effective vaccines and discovered the use of adjuvant to boost the antibody response. Similar approaches were later made for the tetanus toxin. Studying antitoxin antibodies Ehrlich demonstrated, for the first time, the transfer of immunity from mother to newborns. In 1989 Marrack and Kappler coined the concept of 'superantigens' to characterize protein toxins that induce T-lymphocyte proliferation, and cytokine release by both T-lymphocytes and antigen presenting cells. More recently, immunotoxins have been designed to kill cancer cells targeted by either specific antibodies or cytokines. Finally, the action of IgE antibodies against toxins may explain their persistence through evolution despite their side effect in allergy.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines and Inflammation, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
36
|
Baumann R, Brand P, Chaker A, Markert A, Rack I, Davatgarbenam S, Joraslafsky S, Gerhards B, Kraus T, Gube M. Human nasal mucosal C-reactive protein responses after inhalation of ultrafine welding fume particles: positive correlation to systemic C-reactive protein responses. Nanotoxicology 2018; 12:1130-1147. [DOI: 10.1080/17435390.2018.1498930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- R. Baumann
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - P. Brand
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - A. Chaker
- Department of Otorhinolaryngology and Center of Allergy and Environment (ZAUM), Technical University Munich, Munich, Germany
| | - A. Markert
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - I. Rack
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Davatgarbenam
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Joraslafsky
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - B. Gerhards
- Welding and Joining Institute (ISF), Aachen University of Technology, Aachen, Germany
| | - T. Kraus
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - M. Gube
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
- Health Office of the City and Area of Aachen, Aachen, Germany
| |
Collapse
|
37
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
38
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018; 149:45-53. [PMID: 29056305 DOI: 10.1016/j.toxicon.2017.10.016] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Endotoxins and exotoxins are among the most potent bacterial inducers of cytokines. During infectious processes, the production of inflammatory cytokines including tumor necrosis factor (TNF), interleukin-1β (IL-1β), gamma interferon (IFNγ) and chemokines orchestrates the anti-infectious innate immune response. However, an overzealous production, leading up to a cytokine storm, can be deleterious and contributes to mortality consecutive to sepsis or toxic shock syndrome. Endotoxins of Gram-negative bacteria (lipopolysaccharide, LPS) are particularly inflammatory because they generate auto-amplificatory loops after activation of monocytes/macrophages. LPS and numerous pore-forming exotoxins also activate the inflammasome, the molecular platform that allows the release of mature IL-1β and IL-18. Among exotoxins, some behave as superantigens, and as such activate the release of cytokines by T-lymphocytes. In most cases, pre-exposure to exotoxins enhances the cytokine production induced by LPS and its lethality, whereas pre-exposure to endotoxin usually results in tolerance. In this review we recall the various steps, which, from the very early discovery of pyrogenicity induced by bacterial products, ended to the discovery of the endogenous pyrogen. Furthermore, we compare the specific characteristics of endotoxins and exotoxins in their capacity to induce inflammatory cytokines.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 Rue Dr. Roux, 75015, Paris, France.
| |
Collapse
|
40
|
He Q, Gao H, Xu LM, Lu Y, Wang C, Rui J, Fan H, Wang XY, Wang JZ. Analysis of IL-6 and IL-1β release in cryopreserved pooled human whole blood stimulated with endotoxin. Innate Immun 2018; 24:316-322. [PMID: 29793382 PMCID: PMC6830915 DOI: 10.1177/1753425918777596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To overcome the lack of availability of fresh human whole blood for pyrogen
detection, we explored the feasibility of utilizing cryopreserved pooled human
blood to detect the responses of the pro-inflammatory cytokines IL-6 and IL-1β
to LPS. Whole blood was obtained from five donors and incubated with LPS. The
quantities of pro-inflammatory cytokines were measured using ELISA, and the
results were compared among the samples. After the blood was cryopreserved with
Dimethyl sulfoxide (DMSO) (10% v/v) and stored for 4 mo at –196℃, the detection
limits of the IL-6/IL-1β responses to LPS were 0.2/0.4 endotoxin units (EU)/ml,
respectively, and IL-6/IL-1β release increased in response to LPS in a
dose-dependent manner. When these experiments were performed in three separate
laboratories, the within-laboratory reproducibility of the IL-6/IL-1β responses
was 100%/86.7%, 93.3%/100%, and 86.7%/80%, and the inter-laboratory
reproducibility was 92.9%/85.7%, 64.3%/63.6%, and 57.1%/66.7%, respectively. The
sensitivity (the probability of correctly classifying positive samples) and
specificity (the probability of correctly classifying negative samples) of the
IL-6/IL-1β tests were 81.7%/82.5% and 100%/100%, respectively. The results of
this study suggest that cryopreserved pooled blood is a convenient and viable
alternative for evaluating in vitro pyrogenicity. Additionally,
maintaining cryopreserved pooled blood promotes safety for the user because it
is released only after pretesting for infection parameters and has lower
variation than fresh donations from a variety of donors.
Collapse
Affiliation(s)
- Qing He
- 1 National Institutes for Food and Drug Control, Beijing, China
| | - Hua Gao
- 1 National Institutes for Food and Drug Control, Beijing, China
| | - Li-Ming Xu
- 1 National Institutes for Food and Drug Control, Beijing, China
| | - Yan Lu
- 1 National Institutes for Food and Drug Control, Beijing, China
| | - Chong Wang
- 2 Tianjin Institute for Drug Control, China
| | - Jing Rui
- 2 Tianjin Institute for Drug Control, China
| | - Hua Fan
- 3 Liaoning Institute for Drug Control, China
| | | | - Jun-Zhi Wang
- 1 National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
41
|
Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide. J Immunol Res 2018; 2018:1838921. [PMID: 29854828 PMCID: PMC5964493 DOI: 10.1155/2018/1838921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/03/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.
Collapse
|
42
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
43
|
Circulating and broncho-alveolar interleukin-6 in relation to body temperature in an experimental model of bovine Chlamydia psittaci infection. PLoS One 2017; 12:e0189321. [PMID: 29281663 PMCID: PMC5744922 DOI: 10.1371/journal.pone.0189321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
In rodent models of experimentally induced fever, the important role of interleukin-6 (IL-6) as a circulating endogenous pyrogen is well established. Studies employing larger animal species and real infections are scarce. Therefore, we assessed bioactive IL-6 in peripheral blood and in broncho-alveolar lavage fluid (BALF) of calves after intra-bronchial inoculation with vital Chlamydia psittaci (Cp), with inactivated Cp, or with BGM cells. Only calves inoculated with vital Cp developed fever (peak at 2-3 days after challenge) and significantly increased IL-6 activity. Controls inoculated with either inactivated Cp or BGM cells also expressed increased bioactive IL-6, but no fever developed. Activity of IL-6 in BALF was significantly higher compared to blood serum. This experimental model of Cp infection revealed no apparent relation between IL-6 in blood and body temperature, but did reveal a relation between IL-6 and other markers of inflammation in BALF. We conclude that a local inflammatory response in the lungs of infected calves caused fever, which developed by mechanisms including other mediators besides IL-6.
Collapse
|
44
|
Matsuwaki T, Shionoya K, Ihnatko R, Eskilsson A, Kakuta S, Dufour S, Schwaninger M, Waisman A, Müller W, Pinteaux E, Engblom D, Blomqvist A. Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses. Brain Behav Immun 2017; 66:165-176. [PMID: 28655587 DOI: 10.1016/j.bbi.2017.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor.
Collapse
Affiliation(s)
- Takashi Matsuwaki
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Robert Ihnatko
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Anna Eskilsson
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
45
|
The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol 2017; 13:399-409. [DOI: 10.1038/nrrheum.2017.83] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Elevated Glucose and Interleukin-1 β Differentially Affect Retinal Microglial Cell Proliferation. Mediators Inflamm 2017; 2017:4316316. [PMID: 28588350 PMCID: PMC5447273 DOI: 10.1155/2017/4316316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy is considered a neurovascular disorder, hyperglycemia being considered the main risk factor for this pathology. Diabetic retinopathy also presents features of a low-grade chronic inflammatory disease, including increased levels of cytokines in the retina, such as interleukin-1 beta (IL-1β). However, how high glucose and IL-1β affect the different retinal cell types remains to be clarified. In retinal neural cell cultures, we found that IL-1β and IL-1RI are present in microglia, macroglia, and neurons. Exposure of retinal neural cell cultures to high glucose upregulated both mRNA and protein levels of IL-1β. High glucose decreased microglial and macroglial cell proliferation, whereas IL-1β increased their proliferation. Interestingly, under high glucose condition, although the number of microglial cells decreased, they showed a less ramified morphology, suggesting a more activated state, as supported by the upregulation of the levels of ED-1, a marker of microglia activation. In conclusion, IL-1β might play a key role in diabetic retinopathy, affecting microglial and macroglial cells and ultimately contributing to neural changes observed in diabetic patients. Particularly, since IL-1β has an important role in retinal microglia activation and proliferation under diabetes, limiting IL-1β-triggered inflammatory processes may provide a new therapeutic strategy to prevent the progression of diabetic retinopathy.
Collapse
|
47
|
Nogueira JE, Soriano RN, Fernandez RAR, Francescato HDC, Saia RS, Coimbra TM, Antunes-Rodrigues J, Branco LGS. Effect of Physical Exercise on the Febrigenic Signaling is Modulated by Preoptic Hydrogen Sulfide Production. PLoS One 2017; 12:e0170468. [PMID: 28118407 PMCID: PMC5261610 DOI: 10.1371/journal.pone.0170468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that the neuromodulator hydrogen sulfide (H2S) in the preoptic area (POA) of the hypothalamus modulates the febrigenic signaling differently in sedentary and trained rats. Besides H2S production rate and protein expressions of H2S-related synthases cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MPST) and cystathionine γ-lyase (CSE) in the POA, we also measured deep body temperature (Tb), circulating plasma levels of cytokines and corticosterone in an animal model of systemic inflammation. Rats run on a treadmill before receiving an intraperitoneal injection of lipopolysaccharide (LPS, 100 μg/kg) or saline. The magnitude of changes of Tb during the LPS-induced fever was found to be similar between sedentary and trained rats. In sedentary rats, H2S production was not affected by LPS. Conversely, in trained rats LPS caused a sharp increase in H2S production rate that was accompanied by an increased CBS expression profile, whereas 3-MPST and CSE expressions were kept relatively constant. Sedentary rats showed a significant LPS-induced release of cytokines (IL-1β, IL-6, and TNF-α) which was virtually abolished in the trained animals. Correlation between POA H2S and IL-6 as well as TNF-α was observed. Corticosterone levels were augmented after LPS injection in both groups. We found correlations between H2S and corticosterone, and corticosterone and IL-1β. These data are consistent with the notion that the responses to systemic inflammation are tightly regulated through adjustments in POA H2S production which may play an anti-inflammatory role downmodulating plasma cytokines levels and upregulating corticosterone release.
Collapse
Affiliation(s)
- Jonatas E. Nogueira
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato N. Soriano
- Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Rodrigo A. R. Fernandez
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D. C. Francescato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael S. Saia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Terezila M. Coimbra
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G. S. Branco
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Morphology, Physiology, and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
48
|
Rakus K, Ronsmans M, Vanderplasschen A. Behavioral fever in ectothermic vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:84-91. [PMID: 27381718 DOI: 10.1016/j.dci.2016.06.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Maygane Ronsmans
- Immunology-Vaccinology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
49
|
Turrin NP, Rivest S. Unraveling the Molecular Details Involved in the Intimate Link between the Immune and Neuroendocrine Systems. Exp Biol Med (Maywood) 2016; 229:996-1006. [PMID: 15522835 DOI: 10.1177/153537020422901003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During systemic infections, the immune system can signal the brain and act on different neuronal circuits via soluble molecules, such as proinflammatory cytokines, that act on the cells forming the blood-brain barrier and the circumventricular organs. These activated cells release prostaglandin of the E2 type (PGE2), which is the endogenous ligand that triggers the pathways involved in the control of autonomic functions necessary to restore homeostasis and provide inhibitory feedback to innate immunity. Among these neurophysiological functions, activation of the circuits that control the plasma release of glucocorticoids is probably the most critical to the survival of the host in the presence of pathogens. This review revisits this issue and describes in depth the molecular details (including the emerging role of Toll-like receptors during inflammation) underlying the influence of circulating inflammatory molecules on the cerebral tissue, focusing on their contribution in the synthesis and action PGE2 in the brain. We also provide an innovative view supporting the concept of “fast and delayed response” involving the same ligands but different groups of cells, signal transduction pathways, and target genes.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec G1V 4G2, Canada
| | | |
Collapse
|
50
|
Dinarello CA. Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100040301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the `endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-α (TNF-α), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-α, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE 2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during infection.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado, USA,
| |
Collapse
|