1
|
Lu J, Xue X, Wang H, Hao Y, Yang Q. Notch1 activation and inhibition in T cell acute lymphoblastic leukemia subtypes. Exp Hematol 2025:104771. [PMID: 40348327 DOI: 10.1016/j.exphem.2025.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy caused by the accumulation of genomic lesions that affect the development of T cells. Notch1 signaling controls the expression of numerous T-lineage genes, thus playing essential parts in T cell differentiation. T-ALL can be classified into two subtypes according to the immunophenotypic and genetic makeup: early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and non-ETP ALL. The relationship between constitutive activation of Notch1 signaling and non-ETP ALL has been thoroughly studied, while how Notch1 signaling influences ETP ALL still remains unclear. Targeting Notch1 signaling is a promising treatment in T-ALL, and γ-secretase inhibitors (GSIs), which prevents Notch1 signaling from being activated, shows a degree of antineoplastic activity in previous clinical development. But these agents just have satisfactory effects in non-ETP ALL, further study should be carried out to investigate fitting targeting drugs.
Collapse
Affiliation(s)
- Jiawen Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- National Experimental Teaching Demonstration Center for Life Science and Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Translational Medicine Research Center, Medical Innovation Research Division and the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Hao
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Chaudhary SG, Ballachanda DN, Trichka J, Wisniewski J, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by enabling BRD4-p300-dependent transcription. Nat Commun 2025; 16:4133. [PMID: 40319015 PMCID: PMC12049546 DOI: 10.1038/s41467-025-59504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Addiction to oncogene-rewired transcriptional networks is a therapeutic vulnerability in cancer cells, underscoring a need to better understand mechanisms that relay oncogene signals to the transcriptional machinery. Here, using human and mouse T cell acute lymphoblastic leukemia (T-ALL) models, we identify an essential requirement for the endosomal sorting complex required for transport protein CHMP5 in T-ALL epigenetic and transcriptional programming. CHMP5 is highly expressed in T-ALL cells where it mediates recruitment of the coactivator BRD4 and the histone acetyl transferase p300 to enhancers and super-enhancers that enable transcription of T-ALL genes. Consequently, CHMP5 depletion causes severe downregulation of critical T-ALL genes, mitigates chemoresistance and impairs T-ALL initiation by oncogenic NOTCH1 in vivo. Altogether, our findings uncover a non-oncogene dependency on CHMP5 that enables T-ALL initiation and maintenance.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Sneha Ghosh Chaudhary
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Devaiah N Ballachanda
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Lin CC, Hsu CL, Yao CY, Wang YH, Yuan CT, Kuo YY, Lee JY, Shih PT, Kao CJ, Chuang PH, Hsu YC, Hou HA, Chou WC, Tien HF. HOPX as a tumour-suppressive protein in T-cell acute lymphoblastic leukaemia. Br J Haematol 2025; 206:505-516. [PMID: 39737712 DOI: 10.1111/bjh.19965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
The homeodomain protein homeobox (HOPX), a multifaceted regulator of cellular functions and developmental processes, is predominantly expressed in stem cells across diverse tissues; it has also emerged as a tumour suppressor in various solid cancers. However, its role in haematological malignancies still remains undefined. This study aimed to elucidate its significance in T-cell acute lymphoblastic leukaemia (T-ALL). We firstly uncovered a novel link between reduced HOPX expression, its promoter hypermethylation and increased tumour burden in patients with T-ALL, suggesting its tumour-suppressive role. Next, we induced T-ALL by transducing intracellular NOTCH1 (ICN1) into mice with either conditional knock-in at the Rosa26 locus or knockout of Hopx. We found that T-ALL development was markedly accelerated and impeded in backgrounds with low and high Hopx expression respectively. Further analysis revealed Hopx's roles in modulating the Wnt-β-catenin pathway, a pivotal regulator of the downstream Myc signalling involved in T-ALL transformation and progression.
Collapse
Affiliation(s)
- Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Wang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jhih-Yi Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Tsen Shih
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yueh-Chwen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
| |
Collapse
|
4
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Verma A, Aylward B, Ma F, Sherman CA, Chopp L, Shinton S, Roy R, Fahl S, Contreras A, Koenitzer B, Awasthi P, Mazan-Mamczarz K, De S, Ollikainen N, Qiu X, Bosselut R, Sen R, Wiest DL, Sen JM. TCF1 dosage determines cell fate during T cell development. SCIENCE ADVANCES 2024; 10:eado5982. [PMID: 39602533 PMCID: PMC11601199 DOI: 10.1126/sciadv.ado5982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Loss-of-function studies have shown that transcription factor T cell factor-1 (TCF1), encoded by the Tcf7 gene, is essential for T cell development in the thymus. We discovered that the Tcf7 expression level is regulated by E box DNA binding proteins, independent of Notch, and regulates αβ and γδ T cell development. Systematic interrogation of the five E protein binding elements (EPE1-5) in the Tcf7 enhancer region showed lineage-specific utilization. Specifically, loss-of-function analysis revealed that only EPE3 plays a critical role in supporting αβ T cell development, while EPE1, 3, and 5 regulate the γδ T cell maturation and functional cell fate decision. The importance of EPE3 in supporting both lineages may stem from its unique capacity to interact with the Tcf7 transcriptional start site. Together, these studies demonstrate that the precise dosage of TCF1 expression mediated by distinct EPEs generates a balanced output of T cells from the thymus.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Bridget Aylward
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fei Ma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Cheryl A. Sherman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Shawn Fahl
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alejandra Contreras
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Byron Koenitzer
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Parirokh Awasthi
- Mouse Modeling & Cryopreservation (MMC), The NCI Mouse Repository, Laboratory Animal Sciences Program, National Cancer Institute, Frederick, MD, USA
| | | | - Supriyo De
- Laboratory of Genetics & Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Noah Ollikainen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David L. Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jyoti Misra Sen
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Sergio I, Varricchio C, Squillante F, Cantale Aeo NM, Campese AF, Felli MP. Notch Inhibitors and BH3 Mimetics in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:12839. [PMID: 39684550 DOI: 10.3390/ijms252312839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with poor response to conventional therapy, derived from hematopoietic progenitors committed to T-cell lineage. Relapsed/Refractory patients account for nearly 20% of childhood and 45% of adult cases. Aberrant Notch signaling plays a critical role in T-ALL pathogenesis and therapy resistance. Notch inhibition is a promising therapeutic target for personalized medicine, and a variety of strategies to prevent Notch activation, including γ-secretase (GS) inhibitors (GSIs) and antibodies neutralizing Notch receptors or ligands, have been developed. Disruption of apoptosis is pivotal in cancer development and progression. Different reports evidenced the interplay between Notch and the anti-apoptotic Bcl-2 family proteins in T-ALL. Although based on early research data, this review discusses recent advances in directly targeting Notch receptors and the use of validated BH3 mimetics for the treatment of T-ALL and their combined action in light of current evidence of their use.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Squillante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
7
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
8
|
Jeha S. Relapsed/Refractory T- Acute Lymphoblastic Leukemia - Current Options and Future Directions. Indian J Pediatr 2024; 91:168-175. [PMID: 37642889 DOI: 10.1007/s12098-023-04745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. The T-cell subtype (T-ALL) accounts for 10-15% of pediatric ALL cases and has been historically associated with outcomes inferior to those of B-cell ALL (B-ALL). The prognosis of T-ALL has significantly improved with contemporary intensive pediatric regimens. However, most children with relapsed T-ALL have dismal outcomes and fewer therapeutic salvage options than those available for B-ALL. After demonstrating efficacy in relapsed T-ALL, nelarabine is being increasingly incorporated into frontline T-ALL regimens. The development of genomic sequencing has led to the identification of new T-ALL subgroups and potential targeted therapeutic approaches which could improve patients' outcomes and reduce the toxicity associated with current therapy. Immunotherapy and cellular therapy regimens are also under early investigation in T-cell malignancies. This review outlines the clinical and biological characteristics of T-ALL and provides an overview of novel treatment options for refractory and relapsed T-ALL.
Collapse
Affiliation(s)
- Sima Jeha
- Departments of Global Pediatric Medicine and Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA.
| |
Collapse
|
9
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Devaiah BN, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by controlling BRD4-p300-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577409. [PMID: 38352301 PMCID: PMC10862731 DOI: 10.1101/2024.01.29.577409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Oncogene activity rewires cellular transcription, creating new transcription networks to which cancer cells become addicted, by mechanisms that are still poorly understood. Using human and mouse models of T cell acute lymphoblastic leukemia (T-ALL), we identify an essential nuclear role for CHMP5, a cytoplasmic endosomal sorting complex required for transport (ESCRT) protein, in establishing and maintaining the T-ALL transcriptional program. Nuclear CHMP5 promoted the T-ALL gene program by augmenting recruitment of the co-activator BRD4 by the histone acetyl transferase p300 selectively at enhancers and super-enhancers, an interaction that potentiated H3K27 acetylation at these regulatory enhancers. Consequently, loss of CHMP5 diminished BRD4 occupancy at enhancers and super-enhancers and impaired RNA polymerase II pause release, which resulted in downregulation of key T-ALL genes, notably MYC. Reinforcing its importance in T-ALL pathogenesis, CHMP5 deficiency mitigated chemoresistance in human T-ALL cells and abrogated T-ALL induction by oncogenic NOTCH1 in vivo. Thus, the ESCRT protein CHMP5 is an essential positive regulator of the transcriptional machinery promoting T-ALL disease.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
- These authors contributed equally
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Ballachanda N. Devaiah
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Lead contact
| |
Collapse
|
10
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
11
|
Campagnari A, Belver L. NOTCH1-Induced T-Cell Acute Lymphoblastic Leukemia In Vivo Models. Methods Mol Biol 2024; 2773:9-24. [PMID: 38236532 DOI: 10.1007/978-1-0716-3714-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is primarily a NOTCH1-driven disease, which represents approximately 15% of pediatric and 25% of adult newly diagnosed ALL cases. Gain-of-function NOTCH1 mutations are highly prevalent in T-ALL contributing to almost 60% of the cases. The protocol presented here describes a method for in vivo T-ALL transformation driven by the retroviral transduction of hematopoietic progenitors with oncogenic mutant forms NOTCH1 and subsequent transplant into recipient mice. This T-ALL transformation model allows the interaction between the leukemia cells and the bone marrow microenvironment, better recapitulating the physiological conditions that promote the development of the human disease, providing a versatile tool for both experimental therapeutics and functional genetics studies on T-ALL.
Collapse
Affiliation(s)
- Anna Campagnari
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Catalan Institute of Oncology (ICO) - Immuno Procure, Barcelona, Catalonia, Spain
| | - Laura Belver
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Catalonia, Spain.
- Catalan Institute of Oncology (ICO) - Immuno Procure, Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
13
|
Issa N, Bjeije H, Wilson ER, Krishnan A, Dunuwille WMB, Parsons TM, Zhang CR, Han W, Young AL, Ren Z, Ge K, Wang ES, Weng AP, Cashen A, Spencer DH, Challen GA. KDM6B protects T-ALL cells from NOTCH1-induced oncogenic stress. Leukemia 2023; 37:728-740. [PMID: 36797416 PMCID: PMC10081958 DOI: 10.1038/s41375-023-01853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors. While activating NOTCH1 mutations are the dominant genetic drivers of T-ALL, epigenetic dysfunction plays a central role in the pathology of T-ALL and can provide alternative mechanisms to oncogenesis in lieu of or in combination with genetic mutations. The histone demethylase enzyme KDM6A (UTX) is also recurrently mutated in T-ALL patients and functions as a tumor suppressor. However, its gene paralog, KDM6B (JMJD3), is never mutated and can be significantly overexpressed, suggesting it may be necessary for sustaining the disease. Here, we used mouse and human T-ALL models to show that KDM6B is required for T-ALL development and maintenance. Using NOTCH1 gain-of-function retroviral models, mouse cells genetically deficient for Kdm6b were unable to propagate T-ALL. Inactivating KDM6B in human T-ALL patient cells by CRISPR/Cas9 showed KDM6B-targeted cells were significantly outcompeted over time. The dependence of T-ALL cells on KDM6B was proportional to the oncogenic strength of NOTCH1 mutation, with KDM6B required to prevent stress-induced apoptosis from strong NOTCH1 signaling. These studies identify a crucial role for KDM6B in sustaining NOTCH1-driven T-ALL and implicate KDM6B as a novel therapeutic target in these patients.
Collapse
Affiliation(s)
- Nancy Issa
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hassan Bjeije
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elisabeth R Wilson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aishwarya Krishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wangisa M B Dunuwille
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Parsons
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine R Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wentao Han
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Young
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhizhong Ren
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Amanda Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Panelli P, De Santis E, Colucci M, Tamiro F, Sansico F, Miroballo M, Murgo E, Padovano C, Gusscott S, Ciavarella M, Chavez EA, Bianchi F, Rossi G, Carella AM, Steidl C, Weng AP, Giambra V. Noncanonical β-catenin interactions promote leukemia-initiating activity in early T-cell acute lymphoblastic leukemia. Blood 2023; 141:1597-1609. [PMID: 36315912 PMCID: PMC10651788 DOI: 10.1182/blood.2022017079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). β-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of β-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of β-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of β-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of β-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for β-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.
Collapse
Affiliation(s)
- Patrizio Panelli
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mattia Colucci
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mattia Miroballo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuele Murgo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Costanzo Padovano
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sam Gusscott
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Michele Ciavarella
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Fabrizio Bianchi
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovanni Rossi
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo M. Carella
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
15
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
16
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
17
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
18
|
Xu X, Zhang W, Xuan L, Yu Y, Zheng W, Tao F, Nemechek J, He C, Ma W, Han X, Xie S, Zhao M, Wang J, Qu Y, Liu Q, Perry JM, Jiang L, Zhao M. PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia. Nat Cell Biol 2023; 25:170-182. [PMID: 36624186 DOI: 10.1038/s41556-022-01050-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023]
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.
Collapse
Affiliation(s)
- Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenwen Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wen Zheng
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Tao
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Ma
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Wang
- Department of Pediatric Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Qu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John M Perry
- Children's Mercy Kansas City, Kansas City, MO, USA.,University of Kansas Medical Center, Kansas City, KS, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
20
|
Hergott CB, Kim AS. Molecular Diagnostic Testing for Hematopoietic Neoplasms: Linking Pathogenic Drivers to Personalized Diagnosis. Clin Lab Med 2022; 42:325-347. [PMID: 36150815 DOI: 10.1016/j.cll.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular diagnostics inhabit an increasingly central role in characterizing hematopoietic malignancies. This brief review summarizes the genomic targets important for many major categories of hematopoietic neoplasia by focusing on disease pathogenesis. In myeloid disease, recurrent mutations in key functional classes drive clonal hematopoiesis, on which additional variants can specify clinical presentation and accelerate progression. Lymphoblastic leukemias are frequently initiated by oncogenic fusions that block lymphoid maturation while, in concert with additional mutations, driving proliferation. The links between genetic aberrations and lymphoma patient outcomes have been clarified substantially through the clustering of genomic profiles. Finally, the addition of next-generation sequencing strategies to cytogenetics is refining risk stratification for plasma cell myeloma. In all categories, molecular diagnostics shed light on the unique mechanistic underpinnings of each individual malignancy, thereby empowering more rational, personalized care for these patients.
Collapse
Affiliation(s)
- Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Grazioli P, Orlando A, Giordano N, Noce C, Peruzzi G, Abdollahzadeh B, Screpanti I, Campese AF. Notch-Signaling Deregulation Induces Myeloid-Derived Suppressor Cells in T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:809261. [PMID: 35444651 PMCID: PMC9013886 DOI: 10.3389/fimmu.2022.809261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
Notch receptors deeply influence T-cell development and differentiation, and their dysregulation represents a frequent causative event in "T-cell acute lymphoblastic leukemia" (T-ALL). "Myeloid-derived suppressor cells" (MDSCs) inhibit host immune responses in the tumor environment, favoring cancer progression, as reported in solid and hematologic tumors, with the notable exception of T-ALL. Here, we prove that Notch-signaling deregulation in immature T cells promotes CD11b+Gr-1+ MDSCs in the Notch3-transgenic murine model of T-ALL. Indeed, aberrant T cells from these mice can induce MDSCs in vitro, as well as in immunodeficient hosts. Conversely, anti-Gr1-mediated depletion of MDSCs in T-ALL-bearing mice reduces proliferation and expansion of malignant T cells. Interestingly, the coculture with Notch-dependent T-ALL cell lines, sustains the induction of human CD14+HLA-DRlow/neg MDSCs from healthy-donor PBMCs that are impaired upon exposure to gamma-secretase inhibitors. Notch-independent T-ALL cells do not induce MDSCs, suggesting that Notch-signaling activation is crucial for this process. Finally, in both murine and human models, IL-6 mediates MDSC induction, which is significantly reversed by treatment with neutralizing antibodies. Overall, our results unveil a novel role of Notch-deregulated T cells in modifying the T-ALL environment and represent a strong premise for the clinical assessment of MDSCs in T-ALL patients.
Collapse
Affiliation(s)
- Paola Grazioli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudia Noce
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | | | | |
Collapse
|
22
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
23
|
Liu C, Chen Q, Shang Y, Chen L, Myers J, Awadallah A, Sun J, Yu S, Umphred-Wilson K, Che D, Dou Y, Li L, Wearsch P, Ramírez-Bergeron D, Beck R, Xin W, Jin G, Adoro S, Zhou L. Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics 2022; 12:2894-2907. [PMID: 35401837 PMCID: PMC8965499 DOI: 10.7150/thno.67710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum unfolded protein response (UPR) is a conserved adaptive signaling in ER homeostasis and has emerged as critical in highly proliferating cells and potential treatment target for acute T-cell lymphoblastic leukemia (T-ALL). Methods: in this study, we assessed the transcriptomic and phenotypic alterations in UPR response of the bone marrow endothelial cells (ECs) in mice engrafted with T-ALL and in bone marrow specimens from patients who have T-ALL. We used PERK inhibitor and generated endothelial specific PERK knockout mice to study the impact of PERK on leukemia progression and hematopoiesis. We performed chromatin immunoprecipitation (ChIP) to study the mechanistic regulation of JAG1 by ATF4. We characterized small extracellular vesicles (SEV) from leukemia-developing mice and studied the effect of SEVs on EC function. Results: we found that T-ALL development induced a robust activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dominant UPR in the bone marrow endothelial vascular niche. The activation of PERK-eIF2a-ATF4 axis remodels the vascular niche, upregulates angiogenic factors including VEGFα and ATF4-regulated JAG1, and suppresses the expression of SCF and CXCL12, which are important to HSC maintenance and regeneration. Further, targeting endothelial PERK significantly improved T-ALL outcome. EC-specific deletion of PERK abolished the aberrant JAG1 up-regulation, improved HSC maintenance, promoted leukemia apoptosis, and improved overall survival. Finally, we showed that small extracellular vesicles are critical mediators of endothelial PERK-eIF2a-ATF4 activation and JAG1 up-regulation in leukemia. Corroborating animal model studies, activation of PERK-ATF4-JAG1 is prominent in human T-ALL bone marrow and T-ALL xenografts. Conclusion: our studies thus revealed for the first time that the leukemia-initiated PERK-ATF4-JAG1 axis plays a critical role in the remodeling of the bone marrow vascular niche and that targeting vascular niche UPR is a potential therapeutic opportunity in T-ALL.
Collapse
Affiliation(s)
- Cui Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qiuyun Chen
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yinghui Shang
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lechuang Chen
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amad Awadallah
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jinger Sun
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Danian Che
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yingtong Dou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luoyi Li
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pamela Wearsch
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Rose Beck
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stanley Adoro
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Meng J, Jiang YZ, Zhao S, Tao Y, Zhang T, Wang X, Zhang Y, Sun K, Yuan M, Chen J, Wei Y, Lan X, Chen M, David CJ, Chang Z, Guo X, Pan D, Chen M, Shao ZM, Kang Y, Zheng H. Tumor-derived Jagged1 promotes cancer progression through immune evasion. Cell Rep 2022; 38:110492. [PMID: 35263601 DOI: 10.1016/j.celrep.2022.110492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuxiang Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Keyong Sun
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jin Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mo Chen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Charles J David
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Deng Pan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544, USA.
| | - Hanqiu Zheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Li C, You X, Xu X, Wu B, Liu Y, Tong T, Chen J, Li Y, Dai C, Ye Z, Tian X, Wei Y, Hao Z, Jiang L, Wu J, Zhao M. A Metabolic Reprogramming Amino Acid Polymer as an Immunosurveillance Activator and Leukemia Targeting Drug Carrier for T-Cell Acute Lymphoblastic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104134. [PMID: 35080145 PMCID: PMC8948613 DOI: 10.1002/advs.202104134] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Indexed: 05/10/2023]
Abstract
Compromised immunosurveillance leads to chemotherapy resistance and disease relapse of hematological malignancies. Amino acid metabolism regulates immune responses and cancer; however, a druggable amino acid metabolite to enhance antitumor immunosurveillance and improve leukemia targeting-therapy efficacy remains unexplored. Here, an L-phenylalanine polymer, Metabolic Reprogramming Immunosurveillance Activation Nanomedicine (MRIAN), is invented to effectively target bone marrow (BM) and activate the immune surveillance in T-cell acute lymphoblastic leukemia (T-ALL) by inhibiting myeloid-derived suppressor cells (MDSCs) in T-ALL murine model. Stable-isotope tracer and in vivo drug distribution experiments show that T-ALL cells and MDSCs have enhanced cellular uptake of L-phenylalanine and MRIANs than normal hematopoietic cells and progenitors. Therefore, MRIAN assembled Doxorubicin (MRIAN-Dox) specifically targets T-ALL cells and MDSCs but spare normal hematopoietic cells and hematopoietic stem and progenitor cells with enhanced leukemic elimination efficiency. Consequently, MRIAN-Dox has reduced cardiotoxicity and myeloablation side effects in treating T-ALL mice. Mechanistically, MRIAN degrades into L-phenylalanine, which inhibits PKM2 activity and reduces ROS levels in MDSCs to disturb their immunosuppressive function and increase their differentiation toward normal myeloid cells. Overall, a novel amino acid metabolite nanomedicine is invented to treat T-ALL through the combination of leukemic cell targeting and immunosurveillance stimulation.
Collapse
Affiliation(s)
- Changzheng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xinru You
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Xi Xu
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghuo Wu
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuye Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tong Tong
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yishan Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chunlei Dai
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zhitao Ye
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaobin Tian
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yan Wei
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zechen Hao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
26
|
Alderuccio JP, Lossos IS. NOTCH signaling in the pathogenesis of splenic marginal zone lymphoma-opportunities for therapy. Leuk Lymphoma 2021; 63:279-290. [PMID: 34586000 DOI: 10.1080/10428194.2021.1984452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
NOTCH signaling is a highly conserved pathway mediated by four receptors (NOTCH 1-4) playing critical functions in proliferation, differentiation, and cell death. Under physiologic circumstances, NOTCH2 is a key regulator in marginal zone differentiation and development. Over the last decade, growing data demonstrated frequent NOTCH2 mutations in splenic marginal zone lymphoma (SMZL) underscoring its critical role in the pathogenesis of this disease. Moreover, NOTCH2 specificity across studies supports the rationale to assess its value as a diagnosis biomarker in a disease without pathognomonic features. These data make NOTCH signaling an appealing target for drug discovery in SMZL; however, prior efforts attempting to manipulate this pathway failed to demonstrate meaningful clinical benefit, or their safety profile prevented further development. In this review, we discuss the current knowledge of NOTCH implications in the pathogenesis and as a potential druggable target in SMZL.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
28
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
29
|
Dong Y, Guo H, Wang D, Tu R, Qing G, Liu H. Genome-Wide Analysis Identifies Rag1 and Rag2 as Novel Notch1 Transcriptional Targets in Thymocytes. Front Cell Dev Biol 2021; 9:703338. [PMID: 34322489 PMCID: PMC8311795 DOI: 10.3389/fcell.2021.703338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Recombination activating genes 1 (Rag1) and Rag2 are expressed in immature lymphocytes and essential for generating the vast repertoire of antigen receptors. Yet, the mechanisms governing the transcription of Rag1 and Rag2 remain to be fully determined, particularly in thymocytes. Combining cDNA microarray and ChIP-seq analysis, we identify Rag1 and Rag2 as novel Notch1 transcriptional targets in acute T-cell lymphoblastic leukemia (T-ALL) cells. We further demonstrate that Notch1 transcriptional complexes directly bind the Rag1 and Rag2 locus in not only T-ALL but also primary double negative (DN) T-cell progenitors. Specifically, dimeric Notch1 transcriptional complexes activate Rag1 and Rag2 through a novel cis-element bearing a sequence-paired site (SPS). In T-ALL and DN cells, dimerization-defective Notch1 causes compromised Rag1 and Rag2 expression; conversely, dimerization-competent Notch1 achieves optimal upregulation of both. Collectively, these results reveal Notch1 dimerization-mediated transcription as one of the mechanisms for activating Rag1 and Rag2 expression in both primary and transformed thymocytes. Our data suggest a new role of Notch1 dimerization in compelling efficient TCRβ rearrangements in DN progenitors during T-cell development.
Collapse
Affiliation(s)
- Yang Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hao Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongfu Tu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guoliang Qing
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Grill S, Padmanaban S, Friedman A, Perkey E, Allen F, Tesmer VM, Chase J, Khoriaty R, Keegan CE, Maillard I, Nandakumar J. TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight 2021; 6:138059. [PMID: 33822766 PMCID: PMC8262337 DOI: 10.1172/jci.insight.138059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Ann Friedman
- Life Sciences Institute,,Department of Internal Medicine
| | - Eric Perkey
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jennifer Chase
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and
| | - Rami Khoriaty
- Department of Internal Medicine,,Department of Cell and Developmental Biology
| | - Catherine E. Keegan
- Department of Pediatrics, and,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivan Maillard
- Life Sciences Institute,,Department of Internal Medicine,,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology,,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
32
|
Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 2021; 18:619-632. [PMID: 33094664 PMCID: PMC8078528 DOI: 10.1080/15476286.2020.1838783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune system is responsible for generating immunological response and immunological memory. Regulation of adaptive immunity including B cell and T cell biology was mainly understood from the protein and microRNA perspective. However, long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs (ncRNAs) that influence key factors in lymphocyte biology such as NOTCH, PAX5, MYC and EZH2. LncRNAs were described to modulate lymphocyte activation by regulating pathways such as NFAT, NFκB, MYC, interferon and TCR/BCR signalling (NRON, NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-AS1, TH2-LCR). Here we review lncRNA involvement in adaptive immunity and the implications for autoimmune diseases (multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis) and T/B cell leukaemias and lymphomas (CLL, MCL, DLBCL, T-ALL). It is becoming clear that lncRNAs are important in adaptive immune response and provide new insights into its orchestration.
Collapse
Affiliation(s)
- Pedro Faria Zeni
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
34
|
Assumpção ALFV, Fu G, Singh DK, Lu Z, Kuehnl AM, Welch R, Ong IM, Wen R, Pan X. A lineage-specific requirement for YY1 Polycomb Group protein function in early T cell development. Development 2021; 148:dev.197319. [PMID: 33766932 DOI: 10.1242/dev.197319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 01/22/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.
Collapse
Affiliation(s)
- Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Guoping Fu
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Deependra K Singh
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Ashley M Kuehnl
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Rene Welch
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Irene M Ong
- Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Renren Wen
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
35
|
Di Martino O, Niu H, Hadwiger G, Kuusanmaki H, Ferris MA, Vu A, Beales J, Wagner C, Menéndez-Gutiérrez MP, Ricote M, Heckman C, Welch JS. Endogenous and combination retinoids are active in myelomonocytic leukemias. Haematologica 2021; 106:1008-1021. [PMID: 33241677 PMCID: PMC8017822 DOI: 10.3324/haematol.2020.264432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Retinoid therapy transformed response and survival outcomes in acute promyelocytic leukemia (APL) but has demonstrated only modest activity in non-APL forms of acute myeloid leukemia (AML). The presence of natural retinoids in vivo could influence the efficacy of pharmacologic agonists and antagonists. We found that natural RXRA ligands, but not RARA ligands, were present in murine MLL-AF9-derived myelomonocytic leukemias in vivo and that the concurrent presence of receptors and ligands acted as tumor suppressors. Pharmacologic retinoid responses could be optimized by concurrent targeting of RXR ligands (e.g., bexarotene) and RARA ligands (e.g., all-trans retinoic acid), which induced either leukemic maturation or apoptosis depending on cell culture conditions. Co-repressor release from the RARA:RXRA heterodimer occurred with RARA activation, but not RXRA activation, providing an explanation for the combination synergy. Combination synergy could be replicated in additional, but not all, AML cell lines and primary samples, and was associated with improved survival in vivo, although tolerability of bexarotene administration in mice remained an issue. These data provide insight into the basal presence of natural retinoids in leukemias in vivo and a potential strategy for clinical retinoid combination regimens in leukemias beyond APL.
Collapse
Affiliation(s)
- Orsola Di Martino
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Haixia Niu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 3333
| | - Gayla Hadwiger
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Heikki Kuusanmaki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - Margaret A Ferris
- Department of Pediatrics, Washington University, St Louis, Missouri, 63110
| | - Anh Vu
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Jeremy Beales
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Carl Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, 85281 USA
| | - María P Menéndez-Gutiérrez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Caroline Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - John S Welch
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| |
Collapse
|
36
|
Roy U, Raghavan SC. Deleterious point mutations in T-cell acute lymphoblastic leukemia: Mechanistic insights into leukemogenesis. Int J Cancer 2021; 149:1210-1220. [PMID: 33634864 DOI: 10.1002/ijc.33527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by the leukemogenic transformation of immature T cells, which accumulate an array of genetic and epigenetic lesions, leading to a sustained proliferation of abnormal T cells. Genetic alterations in the DNA repair genes, protooncogenes, transcription factors, and epigenetic modifiers have been studied in the past decade using next-generation sequencing and high-resolution copy number arrays. While other genomic lesions like chromosomal rearrangements, inversions, insertions, and gene fusions have been well studied at functional level, the mechanism of generation of driver mutations in T-ALL is the subject of current investigation. Novel oncogenic mutations in the TP53, BRCA2, PTEN, IL7R, RAS, NOTCH1, ETV6, BCL11B, WT1, DNMT3A, PRC2, PHF6, USP7, KDM6A and an array of other genes disrupt the genetic and epigenetic homeostasis in T-ALL. In this review, we have summarized the mechanistic role of deleterious driver mutations in T-ALL initiation and progression. We speculate that the formation of non-B DNA structures could be one of the primary reasons for the occurrence of different genomic lesions seen in T-ALL, which warrants further investigation. Understanding the mechanism behind the genesis of oncogenic mutations will pave the way to develop targeted therapies that can improve the overall survival and treatment outcome.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
37
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
38
|
Tottone L, Lancho O, Loh JW, Singh A, Kimura S, Roels J, Kuchmiy A, Strubbe S, Lawlor MA, da Silva-Diz V, Luo S, Gachet S, García-Prieto CA, Hagelaar R, Esteller M, Meijerink JPP, Soulier J, Taghon T, Van Vlierberghe P, Mullighan CG, Khiabanian H, Rocha PP, Herranz D. A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. Blood Cancer Discov 2020; 2:92-109. [PMID: 33458694 DOI: 10.1158/2643-3230.bcd-20-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.
Collapse
Affiliation(s)
- Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jui-Wan Loh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Matthew A Lawlor
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Stéphanie Gachet
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Carlos A García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | | | - Jean Soulier
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
39
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
40
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
41
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
42
|
miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells 2020; 9:cells9071726. [PMID: 32708470 PMCID: PMC7408026 DOI: 10.3390/cells9071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.
Collapse
|
43
|
McCarter AC, Gatta GD, Melnick A, Kim E, Sha C, Wang Q, Nalamolu JK, Liu Y, Keeley TM, Yan R, Sun M, Kodgule R, Kunnath N, Ambesi-Impiombato A, Kuick R, Rao A, Ryan RJH, Kee BL, Samuelson LC, Ostrowski MC, Ferrando AA, Chiang MY. Combinatorial ETS1-dependent control of oncogenic NOTCH1 enhancers in T-cell leukemia. Blood Cancer Discov 2020; 1:178-197. [PMID: 32924017 DOI: 10.1158/2643-3230.bcd-20-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Notch activation is highly prevalent among cancers, in particular T-cell acute lymphoblastic leukemia (T-ALL). However, the use of pan-Notch inhibitors to treat cancers has been hampered by adverse effects, particularly intestinal toxicities. To circumvent this barrier in T-ALL, we aimed to inhibit ETS1, a developmentally important T-cell transcription factor previously shown to co-bind Notch response elements. Using complementary genetic approaches in mouse models, we show that ablation of Ets1 leads to strong Notch-mediated suppressive effects on T-cell development and leukemogenesis, but milder intestinal effects than pan-Notch inhibitors. Mechanistically, genome-wide chromatin profiling studies demonstrate that Ets1 inactivation impairs recruitment of multiple Notch-associated factors and Notch-dependent activation of transcriptional elements controlling major Notch-driven oncogenic effector pathways. These results uncover previously unrecognized hierarchical heterogeneity of Notch-controlled genes and points to Ets1-mediated enucleation of Notch-Rbpj transcriptional complexes as a target for developing specific anti-Notch therapies in T-ALL that circumvent the barriers of pan-Notch inhibition.
Collapse
Affiliation(s)
- Anna C McCarter
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,These authors contributed equally
| | - Giusy Della Gatta
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,These authors contributed equally
| | - Ashley Melnick
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Erin Kim
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Cher Sha
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jahnavi K Nalamolu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Mengxi Sun
- Department of Pathology, University of Chicago
| | - Rohan Kodgule
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | | | - Linda C Samuelson
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY.,Department of Pediatrics, Columbia University Medical Center, New York, NY.,Department of Systems Biology, Columbia University, New York, NY
| | - Mark Y Chiang
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
44
|
Evaluation of Notch1 gene expression in prostate carcinoma. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.680864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Wendorff AA, Ferrando AA. Modeling NOTCH1 driven T-cell Acute Lymphoblastic Leukemia in Mice. Bio Protoc 2020; 10:e3620. [PMID: 33659293 DOI: 10.21769/bioprotoc.3620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/13/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that arises from transformation of T-cell primed hematopoietic progenitors. Although T-ALL is a heterogenous and molecularly complex disease, more than 65% of T-ALL patients carry activating mutations in the NOTCH1 gene. The majority of T-ALL-associated NOTCH1 mutations either disrupt the negative regulatory region, allowing signal activation in the absence of ligand binding, or result in truncation of the C-terminal PEST domain involved in the termination of NOTCH1 signaling by proteasomal degradation. To date, retroviral transduction models have relied heavily on the overexpression of aggressively truncated variants of NOTCH1 (such as ICN1 or ΔE-NOTCH1), which result in supraphysiological levels of signaling activity and are rarely found in human T-ALL. The current protocol describes the method for mouse bone marrow isolation, hematopoietic stem and progenitor cell (HSC) enrichment, followed by retroviral transduction with an oncogenic mutant form of the NOTCH1 receptor (NOTCH1-L1601P-ΔP) that closely resembles the gain-of-function mutations most commonly found in patient samples. A hallmark of this forced expression of constitutively active NOTCH1 is a transient wave of extrathymic immature T-cell development, which precedes oncogenic transformation to T-ALL. Furthermore, this approach models leukemic transformation and progression in vivo by allowing for crosstalk between leukemia cells and the microenvironment, an aspect unaccounted for in cell-line based in vitro studies. Thus, the HSC transduction and transplantation model more faithfully recapitulates development of the human disease, providing a highly comprehensive and versatile tool for further in vivo and ex vivo functional studies.
Collapse
Affiliation(s)
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, USA.,Department of Systems Biology, Columbia University, New York, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| |
Collapse
|
47
|
MAML1-Dependent Notch-Responsive Genes Exhibit Differing Cofactor Requirements for Transcriptional Activation. Mol Cell Biol 2020; 40:MCB.00014-20. [PMID: 32179552 DOI: 10.1128/mcb.00014-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Mastermind proteins are required for transcription of Notch target genes, yet the molecular basis for mastermind function remains incompletely understood. Previous work has shown that Notch can induce transcriptional responses by binding to promoters but more often by binding to enhancers, with HES4 and DTX1 as representative mammalian examples of promoter and enhancer responsiveness, respectively. Here, we show that mastermind dependence of the Notch response at these loci is differentially encoded in Jurkat T-cell acute lymphoblastic leukemia (T-ALL) cells. Knockout of Mastermind-like 1 (MAML1) eliminates Notch-responsive activation of both these genes, and reduced target gene expression is accompanied by a decrease in H3K27 acetylation, consistent with the importance of MAML1 for p300 activity. Add-back of MAML1 variants in knockout cells identifies residues 151 to 350 of MAML1 as essential for expression of either Notch-responsive gene. Fusion of the Notch-binding region of MAML1 to the histone acetyltransferase (HAT) domain of p300 rescues expression of HES4 but not DTX1, suggesting that an additional activity of MAML1 is needed for gene induction at a distance. Together, these studies establish the functional importance of the MAML1 region from residues 151 to 350 for Notch-dependent transcriptional induction and reveal differential requirements for MAML1-dependent recruitment activities at different Notch-responsive loci, highlighting the molecular complexity of Notch-stimulated transcription.
Collapse
|
48
|
Bertrand FE. The cross-talk of NOTCH and GSK-3 signaling in colon and other cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118738. [PMID: 32389646 DOI: 10.1016/j.bbamcr.2020.118738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.
Collapse
Affiliation(s)
- Fred E Bertrand
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 2020; 35:377-388. [PMID: 32382081 PMCID: PMC7647950 DOI: 10.1038/s41375-020-0845-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate (THF), whose production by the enzyme DHFR is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme SHMT, whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.
Collapse
|
50
|
Grazioli P, Orlando A, Giordano N, Noce C, Peruzzi G, Scafetta G, Screpanti I, Campese AF. NF-κB1 Regulates Immune Environment and Outcome of Notch-Dependent T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 11:541. [PMID: 32346377 PMCID: PMC7169422 DOI: 10.3389/fimmu.2020.00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive pediatric malignancy that arises from the transformation of immature T-cell progenitors and has no definitive cure. Notch signaling governs many steps of T cell development and its dysregulation represents the most common causative event in the pathogenesis of T-ALL. The activation of canonical NF-κB pathway has been described as a critical downstream mediator of Notch oncogenic functions, through the sustaining of tumor cell survival and growth. The potential role of Notch/NF-κB partnership is also emerging in the generation and function of regulatory T cells (Tregs) in the context of cancer. However, little is known about the effects of combined mutations of Notch and NF-κB in regulating immune-environment and progression of T-ALL. To shed light on the topics above we generated double-mutant mice, harboring conventional knock-out mutation of NF-κB1/p50 on the genetic background of a transgenic model of Notch-dependent T-ALL. The immunophenotyping of double-mutant mice demonstrates that NF-κB1 deletion inhibits the progression of T-ALL and strongly modifies immune-environment of the disease. Double-mutant mice display indeed a dramatic reduction of pre-leukemic CD4+CD8+ (DP) T cells and regulatory T cells (Tregs) and, concurrently, the rising of an aggressive myeloproliferative trait with a massive expansion of CD11b+Gr-1+ cells in the periphery, and an accumulation of the granulocyte/monocyte progenitors in the bone-marrow. Interestingly, double-mutant T cells are able to improve the growth of CD11b+Gr-1+ cells in vitro, and, more importantly, the in vivo depletion of T cells in double-mutant mice significantly reduces the expansion of myeloid compartment. Our results strongly suggest that the myeloproliferative trait observed in double-mutant mice may depend on non-cell-autonomous mechanism/s driven by T cells. Moreover, we demonstrate that the reduction of CD4+CD8+ (DP) T cells and Tregs in double-mutant mice relies on a significant enhancement of their apoptotic rate. In conclusion, double-mutant mice may represent a useful model to deepen the knowledge of the consequences on T-ALL immune-environment of modulating Notch/NF-κB relationships in tumor cells. More importantly, information derived from these studies may help in the refinement of multitarget therapies for the disease.
Collapse
Affiliation(s)
- Paola Grazioli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudia Noce
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gaia Scafetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| | | | | |
Collapse
|