1
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 PMCID: PMC11659946 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| | - Falk Nimmerjahn
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
2
|
He C, Hua G, Liu Y, Li S. Unveiling the hidden role of the interaction between CD36 and FcγRIIb: implications for autoimmune disorders. Cell Mol Biol Lett 2024; 29:76. [PMID: 38762740 PMCID: PMC11102138 DOI: 10.1186/s11658-024-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Chenfei He
- Center for Research in Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Guoying Hua
- Center for Research in Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna Campus, Stockholm, Sweden
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China.
- Heilongjiang Province Key Laboratory of Research On Molecular Targeted Anti-Tumor Drugs, Harbin, China.
| |
Collapse
|
3
|
Ossendorp F, Ho NI, Van Montfoort N. How B cells drive T-cell responses: A key role for cross-presentation of antibody-targeted antigens. Adv Immunol 2023; 160:37-57. [PMID: 38042585 DOI: 10.1016/bs.ai.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
In this review we discuss an underexposed mechanism in the adaptive immune system where B cell and T cell immunity collaborate. The main function of B cell immunity is the generation of antibodies which are well known for their high affinity and antigen-specificity. Antibodies can bind antigens in soluble form making so-called immune complexes (ICs) or can opsonize antigen-exposing cells or particles for degradation. This leads to well-known effector mechanisms complement activation, antibody-dependent cytotoxicity and phagocytosis. What is less realized is that antibodies can play an important role in the targeting of antigen to dendritic cells (DCs) and thereby can drive T cell immunity. Here we summarize the studies that described this highly efficient process of antibody-mediated antigen uptake in DCs in vitro and in vivo. Only very low doses of antigen can be captured by circulating antibodies and subsequently trapped by DCs in vivo. We studied the handling of these ICs by DCs in subcellular detail. Upon immune complex engulfment DCs can sustain MHC class I and II antigen presentation for many days. Cell biological analysis showed that this function is causally related to intracellular antigen-storage compartments which are functional endolysosomal organelles present in DCs. We speculate that this function is immunologically very important as DCs require time to migrate from the site of infection to the draining lymph nodes to activate T cells. The implications of these findings and the consequences for the immune system, immunotherapy with tumor-specific antibodies and novel vaccination strategies are discussed.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands.
| | - Nataschja I Ho
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands
| | - Nadine Van Montfoort
- Leiden University Medical Center, department of Gastroenterology and Hepatology, Leiden, The Netherlands.
| |
Collapse
|
4
|
Shankar D, Merchand-Reyes G, Buteyn NJ, Santhanam R, Fang H, Kumar K, Mo X, Ganesan LP, Jarjour W, Butchar JP, Tridandapani S. Inhibition of BET Proteins Regulates Fcγ Receptor Function and Reduces Inflammation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7623. [PMID: 37108786 PMCID: PMC10143512 DOI: 10.3390/ijms24087623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.
Collapse
Affiliation(s)
- Divya Shankar
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - Ramasamy Santhanam
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Huiqing Fang
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Krishan Kumar
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
5
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
6
|
The Effect of Race and Shear Stress on CRP-Induced Responses in Endothelial Cells. Mediators Inflamm 2021; 2021:6687250. [PMID: 34899053 PMCID: PMC8660250 DOI: 10.1155/2021/6687250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background C-reactive protein (CRP) is an independent biomarker of systemic inflammation and a predictor of future cardiovascular disease (CVD). More than just a pure bystander, CRP directly interacts with endothelial cells to decrease endothelial nitric oxide synthase (eNOS) expression and bioactivity, decrease nitric oxide (NO) production, and increase the release of vasoconstrictors and adhesion molecules. Race is significantly associated with CRP levels and CVD risks. With aerobic exercise, the vessel wall is exposed to chronic high laminar shear stress (HiLSS) that shifts the endothelium phenotype towards an anti-inflammatory, antioxidant, antiapoptotic, and antiproliferative environment. Thus, the purpose of this study was to assess the racial differences concerning the CRP-induced effects in endothelial cells and the potential role of HiLSS in mitigating these differences. Methods Human umbilical vein endothelial cells (HUVECs) from four African American (AA) and four Caucasian (CA) donors were cultured and incubated under the following conditions: (1) static control, (2) CRP (10 μg/mL, 24 hours), (3) CRP receptor (FcγRIIB) inhibitor followed by CRP stimulation, (4) HiLSS (20 dyne/cm2, 24 hours), and (5) HiLSS followed by CRP stimulation. Results AA HUVECs had significantly higher FcγRIIB receptor expression under both basal and CRP incubation conditions. Blocking FcγRIIB receptor significantly attenuated the CRP-induced decrements in eNOS expression only in AA HUVECs. Finally, HiLSS significantly counteracted CRP-induced effects. Conclusion Understanding potential racial differences in endothelial function is important to improve CVD prevention. Our results shed light on FcγRIIB receptor as a potential contributor to racial differences in endothelial function in AA.
Collapse
|
7
|
Sawada K, Hamaguchi Y, Mizumaki K, Oishi K, Maeda S, Ikawa Y, Komuro A, Takehara K, Matsushita T. A role for FcγRIIB in the development of murine bleomycin-induced fibrosis. J Dermatol Sci 2021; 104:201-209. [PMID: 34844843 DOI: 10.1016/j.jdermsci.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by excessive fibrosis. FcγRIIB is a low-affinity receptor for the Fc fragment of IgG. FcγRIIB is expressed on the surface of various leukocyte subsets and signals negative feedback pathways to down-regulate B-cell antigen receptor signaling. OBJECTIVE The aim of the present study was to investigate the role of FcγRIIB in the development of a murine bleomycin-induced scleroderma model. METHODS The experimental fibrosis model was generated by the intradermal injection of bleomycin into wild-type (WT) and FcγRIIB-deficient (FcγRIIB-/-) mice. We histologically assessed skin and lung fibrosis as well as inflammatory cell infiltration. Cytokine and chemokine expression levels were measured with RT-PCR. RESULTS The severity of fibrosis in the skin and lung was significantly worse in FcγRIIB-/- mice than in WT mice. In the skin of bleomycin-treated mice, the numbers of CD8+ T cells, F4/80+ macrophages, MPO+ neutrophils, NK1.1+NK cells, and B220+ B cells were significantly higher in FcγRIIB-/- mice than in WT mice. The expression of TNF-α and IL-1β was significantly higher in FcγRIIB-/- mice than in WT mice as was the expression of ICAM-1, CXCL2, and CCL3 in the affected skin. An adoptive transfer of splenic leukocytes from FcγRIIB-/- mice into WT mice showed exacerbated skin and lung fibrosis compared to WT mice without an adoptive transfer. CONCLUSION These results indicate that FcγRIIB plays an inhibitory role in skin and lung fibrosis. Moreover, modulating FcγRIIB signaling has potential as a therapeutic approach for SSc.
Collapse
Affiliation(s)
- Kaori Sawada
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Oishi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shintaro Maeda
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Ikawa
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akito Komuro
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Identification of candidate regulators of mandibular bone loss in FcγRIIB -/- Mice. Sci Rep 2021; 11:18726. [PMID: 34548536 PMCID: PMC8455620 DOI: 10.1038/s41598-021-98108-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) have increased inflammatory cytokines, leading to periodontitis and alveolar bone loss. However, the mechanisms driving this phenomenon are still unknown. Here, we have identified novel therapeutic targets for and mediators of lupus-mediated bone loss using RNA-sequencing (RNA-seq) in a FcγRIIB-/- mouse model of lupus associated osteopenia. A total of 2,710 upregulated and 3,252 downregulated DEGs were identified. The GO and KEGG annotations revealed that osteoclast differentiation, bone mineralization, ossification, and myeloid cell development were downregulated. WikiPathways indicated that Hedgehog, TNFα NF-κB and Notch signaling pathway were also decreased. We identified downregulated targets, Sufu and Serpina12, that have important roles in bone homeostasis. Sufu and Serpina12 were related to Hedgehog signaling proteins, including Gli1, Gli2, Gli3, Ptch1, and Ptch2. Gene knockdown analysis demonstrated that Sufu, and Serpina12 contributed to osteoclastogenesis and osteoblastogenesis, respectively. Osteoclast and osteoblast marker genes were significantly decreased in Sufu-deficient and Serpina12-deficient cells, respectively. Our results suggest that alterations in Hedgehog signaling play an important role in the pathogenesis of osteopenia in FcγRIIB-/- mice. The novel DEGs and pathways identified in this study provide new insight into the underlying mechanisms of mandibular bone loss during lupus development.
Collapse
|
9
|
Zuo Y, Deng GM. Fc Gamma Receptors as Regulators of Bone Destruction in Inflammatory Arthritis. Front Immunol 2021; 12:688201. [PMID: 34248975 PMCID: PMC8262610 DOI: 10.3389/fimmu.2021.688201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bone erosion is one of the primary features of inflammatory arthritis and is caused by excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcγRs) have been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcγRI is required for RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We reviewed the results of studies that analyzed the association between FcγRs and bone erosion in inflammatory arthritis. The analysis revealed the dual roles of FcγRs in bone destruction in inflammatory arthritis. Thus, IgG/FcγR signaling molecules may serve as potential therapeutic targets against bone erosion.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Freeman S, Grinstein S. Promoters and Antagonists of Phagocytosis: A Plastic and Tunable Response. Annu Rev Cell Dev Biol 2021; 37:89-114. [PMID: 34152790 DOI: 10.1146/annurev-cellbio-120219-055903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Spencer Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
11
|
Sakunrangsit N, Metheepakornchai P, Kumpunya S, Greenblatt MB, Leelahavanichkul A, Pisitkun P, Lotinun S. Etanercept prevents TNF-α mediated mandibular bone loss in FcγRIIb-/- lupus model. PLoS One 2021; 16:e0250215. [PMID: 33861790 PMCID: PMC8051757 DOI: 10.1371/journal.pone.0250215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
Patients with systemic lupus erythematosus are at increased risk for alveolar bone loss due to periodontitis possibly as a result of a pathogenic immune response to oral bacteria and inflammation. The aim of the present study was to investigate whether an anti-TNF-α antagonist could prevent mandibular bone loss in the FcγRIIb-/- mouse model of lupus. Mice lacking FcγRIIb had decreased cancellous and cortical bone volume at 6 months of age. Etanercept increased cancellous but not cortical bone volume in WT and increased both cancellous bone volume and cortical thickness in FcγRIIb-deficient mice. FcγRIIb deficiency decreased mRNA levels for osteoblast marker genes, Osx, Col1a1 and Alp without any change in osteoclast marker genes. Etanercept increased Osx, Alp, and Ocn in both WT and FcγRIIb-/- mice. Osteoclast marker genes including TNF-α, Trap and RANKL/OPG ratio was decreased in WT. Serum markers of proinflammatory cytokines, TNF-α, IFNγ, IL-6, and IL-17A, were increased in FcγRIIb-/- mice and etanercept antagonized these effects in FcγRIIb-/- mice. Etanercept increased serum PTH levels in the FcγRIIb-/- mouse model of lupus. Our results suggest that deletion of FcγRIIb induces osteopenia by increasing the level of proinflammatory cytokines. Etanercept is effective in preventing mandibular bone loss in FcγRIIb-/- mice, suggesting that anti-TNF-α therapy may be able to ameliorate mandibular bone loss in SLE patients with periodontitis.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Skeletal Disorders Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Piyanuch Metheepakornchai
- Skeletal Disorders Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sarinya Kumpunya
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Matthew Blake Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Research Division, Hospital for Special Surgery, New York, NY, United States of America
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sutada Lotinun
- Skeletal Disorders Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
12
|
Vaartjes D, Klaczkowska D, Cragg MS, Nandakumar KS, Bäckdahl L, Holmdahl R. Genetic dissection of a major haplotype associated with arthritis reveal FcγR2b and FcγR3 to act additively. Eur J Immunol 2021; 51:682-693. [PMID: 33244759 PMCID: PMC7984332 DOI: 10.1002/eji.202048605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.
Collapse
Affiliation(s)
- Daniëlle Vaartjes
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dorota Klaczkowska
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Mark S Cragg
- Antibody and Vaccine GroupCentre for Cancer ImmunologyUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Kutty Selva Nandakumar
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Liselotte Bäckdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Farley CR, Morris AB, Tariq M, Bennion KB, Potdar S, Kudchadkar R, Lowe MC, Ford ML. FcγRIIB is a T cell checkpoint in antitumor immunity. JCI Insight 2021; 6:135623. [PMID: 33616086 PMCID: PMC7934918 DOI: 10.1172/jci.insight.135623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
In the setting of cancer, T cells upregulate coinhibitory molecules that attenuate TCR signaling and lead to the loss of proliferative capacity and effector function. Checkpoint inhibitors currently in clinical use have dramatically improved mortality from melanoma yet are not effective in all patients, suggesting that additional pathways may contribute to suppression of tumor-specific CD8+ T cell responses in melanoma. Here, we show that FcγRIIB, an inhibitory Fc receptor previously thought to be exclusively expressed on B cells and innate immune cells, is upregulated on tumor-infiltrating effector CD8+ T cells in an experimental melanoma model and expressed on CD8+ T cells in patients with melanoma. Genetic deficiency of Fcgr2b resulted in enhanced tumor-infiltrating CD8+ T cell responses and significantly reduced tumor burden. Adoptive transfer experiments of Fcgr2b–/– tumor antigen-specific T cells into FcγRIIB-sufficient hosts resulted in an increased frequency of tumor-infiltrating CD8+ T cells with greater effector function. Finally, FcγRIIB was expressed on CD8+ memory T cells isolated from patients with melanoma. These data illuminate a cell-intrinsic role for the FcγRIIB checkpoint in suppressing tumor-infiltrating CD8+ T cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ragini Kudchadkar
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Michael C Lowe
- Department of Surgery and.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
14
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Kristyanto H, Blomberg NJ, Slot LM, van der Voort EIH, Kerkman PF, Bakker A, Burgers LE, Ten Brinck RM, van der Helm-van Mil AHM, Spits H, Baeten DL, Huizinga TWJ, Toes REM, Scherer HU. Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Sci Transl Med 2020; 12:eaaz5327. [PMID: 33208502 PMCID: PMC7615909 DOI: 10.1126/scitranslmed.aaz5327] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Autoreactive B cells mediate autoimmune pathology, but exactly how remains unknown. A hallmark of rheumatoid arthritis (RA), a common autoimmune disease, is the presence of disease-specific anticitrullinated protein antibodies (ACPAs). Here, we showed that ACPA-positive B cells in patients with RA strongly expressed T cell-stimulating ligands, produced abundant proinflammatory cytokines, and were proliferative while escaping inhibitory signals. This activated state was found at different degrees in different stages of disease: highest in patients with recent-onset RA, moderate in patients with established RA, and far less pronounced in ACPA-positive individuals "at risk" for developing disease. The activated autoreactive B cell response persisted in patients who achieved clinical remission with conventional treatment. ACPA-positive B cells in blood and synovial fluid secreted increased amounts of the chemoattractant interleukin-8, which attracted neutrophils, the most abundant immune cell in arthritic joints. Tetanus toxoid-specific B cells from the same patients exhibited properties of memory B cells without the activation and proliferation phenotype, but these cells transiently acquired a similar proliferative phenotype upon booster vaccination. Together, these data indicated that continuous antigenic triggering of autoreactive B cells occurs in human autoimmune disease and support the emerging concept of immunological activity that persists under treatment even in clinical remission, which may revise our current concept of treatment targets for future therapeutic interventions. In addition, our data pointed to a pathogenic role of ACPA-positive B cells in the inflammatory disease process underlying RA and favor approaches that aim at their antigen-specific inactivation or depletion.
Collapse
Affiliation(s)
- Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - Nienke J Blomberg
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | | | - Priscilla F Kerkman
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, Netherlands
| | - Aleida Bakker
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - Leonie E Burgers
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - Robin M Ten Brinck
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | | | - Hergen Spits
- Department of Experimental Immunology and Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Center, location AMC, 1105AZ Amsterdam, Netherlands
- AIMM Therapeutics, 1045BA Amsterdam, Netherlands
| | - Dominique L Baeten
- Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Center, location AMC, 1105AZ Amsterdam, Netherlands
- UCB Pharma, 1070 Brussels, Belgium
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, 2300RC Leiden, Netherlands.
| |
Collapse
|
16
|
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20:633-643. [PMID: 32782358 PMCID: PMC7418887 DOI: 10.1038/s41577-020-00410-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic. Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Aaron Gupta
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Kovacs B, Tillmann J, Freund LC, Nimmerjahn F, Sadik CD, Bieber K, Ludwig RJ, Karsten CM, Köhl J. Fcγ Receptor IIB Controls Skin Inflammation in an Active Model of Epidermolysis Bullosa Acquisita. Front Immunol 2020; 10:3012. [PMID: 31993051 PMCID: PMC6971089 DOI: 10.3389/fimmu.2019.03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune skin blistering disease characterized by IgG autoantibodies (aAb) against type VII collagen (COL7). The mechanisms controlling the formation of such aAbs and their effector functions in the skin tissue are incompletely understood. Here, we assessed whether the inhibitory IgG Fc receptor, FcγRIIB, controls the development of autoimmune skin blistering disease in an active model of EBA. For this purpose, we immunized congenic EBA-susceptible B6.SJL-H2s (B6.s) and B6.s-Fcgr2b−/− mice with the immunodominant vWFA2 region of COL7. B6.s-Fcgr2b−/− mice developed a strong clinical phenotype with 15 ± 3.3% of affected body surface area at week 4. In contrast, the body surface area in B6.s mice was affected to a maximum of 5% at week 6 with almost no disease signs at week 4. Surprisingly, we already found strong but similar COL7-specific serum IgG1 and IgG2b aAb production at week 2. Further, aAb and C3b deposition in the skin of B6.s and B6.s-Fcgr2b−/− mice increased between weeks 2 and 6 after vWFA2 immunization. Importantly, neutrophil skin infiltration and activation was much stronger in B6s-Fcgr2b−/− than in B6.s mice and already present at week 2. Also, the early aAb response in B6.s-Fcgr2b−/− mice was more diverse than in wt B6.s mice. Reactive oxygen species (ROS) release from infiltrating neutrophils play a crucial role as mediator of skin inflammation in EBA. In line, sera from B6.s and B6.s-Fcgr2b−/− mice induced strong ROS release from bone marrow-neutrophils in vitro. In contrast to the antibody-transfer-induced EBA model, individual targeting of FcγRIII or FcγRIV decreased ROS release to 50%. Combined FcγR blocking abrogated ROS release from BM neutrophils. Also, ROS release induced by COL7-specific serum IgG aAbs was significantly higher using BM neutrophils from B6.s-Fcgr2b−/− than from B6.s mice. Together, our findings identified FcγRIIB as a suppressor of skin inflammation in the active EBA model through inhibition of early epitope spreading, protection from strong early neutrophil infiltration to and activation of neutrophils in the skin and suppression of FcγRIII activation by IgG1 aAbs which drive strong ROS release from neutrophils leading to tissue destruction at the dermal-epidermal junction.
Collapse
Affiliation(s)
- Balint Kovacs
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Lisa-Christin Freund
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Katja Bieber
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
19
|
Abstract
Osteoporotic fracture is a major cause of morbidity in patients with systemic lupus erythematosus (SLE). Mice lacking Fc gamma receptor IIb (FcγRIIB) spontaneously develop lupus-like disease or SLE at 6-month-old. The aim of this study was to investigate whether FcγRIIB deletion induces osteopenia. μCT analysis indicated that deleting FcγRIIB did not affect cancellous bone microarchitecture in 3-month-old mice in which SLE had not yet developed. However, 6- and 10-month-old FcγRIIB−/− males that developed an SLE-like phenotype were osteopenic and FcγRIIB deletion resulted in decreased cancellous bone volume. Histomorphometry confirmed a significant decrease in cancellous bone volume in 6- and 10-month-old FcγRIIB−/− males. The osteoclast number was increased without any change in osteoblast number. In vitro assays indicated that deleting FcγRIIB increased osteoclast differentiation while alkaline phosphatase activity and mineralization were unaltered. These changes were associated with increases in steady-state mRNA levels for the osteoclast marker genes Trap and Ctsk. Moreover, FcγRIIB−/− mice had higher level of serum TNFα, a proinflammatory cytokine. A soluble TNFα receptor, etanercept, prevented cancellous bone loss in FcγRIIB−/− mice. Our results indicate that FcγRIIB indirectly regulates cancellous bone homeostasis following SLE development. FcγRIIB deletion induces inflammatory bone loss due to increased TNFα-mediated bone resorption without any change in bone formation in mice with SLE-like syndrome.
Collapse
|
20
|
Kasahara Y, Shirota H, Umegaki S, Ishioka C. Contribution of Fcγ receptor IIB to creating a suppressive tumor microenvironment in a mouse model. Cancer Immunol Immunother 2019; 68:1769-1778. [PMID: 31616964 DOI: 10.1007/s00262-019-02413-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022]
Abstract
Various immune cells are recruited in the tumor microenvironment. It is well established that cellular immune responses, such as cytotoxic or suppressive activities, play an important role in regulating tumor growth and metastasis. However, the contribution of humoral immune responses against tumors is poorly understood. Fc receptors constitute critical elements for the up- or downregulation of immune responses through immune complexes. Here, we examined the potential role of the inhibitory Fc receptor, Fcγ receptor IIB (FcγRIIB), in tumor immunity using a mouse model. Our findings indicated that tumor-specific antibodies are induced in tumor-bearing mice and control tumor immunity. FcγRIIB deletion significantly improved both cellular and humoral immunity against tumors and delayed tumor growth. These findings indicated that spontaneous antibodies against tumors create a suppressive tumor microenvironment through FcγRIIB signaling, thus suggesting an attractive therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Kasahara
- Department of Clinical Oncology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hidekazu Shirota
- Department of Clinical Oncology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Sho Umegaki
- Department of Clinical Oncology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
21
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
22
|
Li Y, Li J, Gong Z, Pan XH, Ma ZH, Ma SY, Wang HM, Dong HL, Gong FY, Gao XM. M860, a Monoclonal Antibody against Human Lactoferrin, Enhances Tumoricidal Activity of Low Dosage Lactoferrin via Granzyme B Induction. Molecules 2019; 24:molecules24203640. [PMID: 31600968 PMCID: PMC6832554 DOI: 10.3390/molecules24203640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/05/2022] Open
Abstract
Lactoferrin (LF) is a soluble glycoprotein of the transferring family found in most biological fluids, functioning as a major first line defense molecule against infection in mammals. It also shows certain anti-tumor activity, but its clinical application in tumor therapy is limited because high dosage is required. In this study, we demonstrate that M860, a monoclonal antibody against human LF (hLF), could significantly increase the anti-tumor potential of low dosage hLF by forming LF-containing immune complex (IC). Human monocytes primed with LF-IC, but not hLF or M860 alone, or control ICs, showed strong tumoricidal activity on leukemia cell lines Jurkat and Raji through induction of secreted Granzyme B (GzB). LF-IC is able to colligate membrane-bound CD14 (a TLR4 co-receptor) and FcγRIIa (a low affinity activating Fcγ receptor) on the surface of human monocytes, thereby triggering the Syk-PI3K-AKT-mTOR pathway leading to GzB production. Our work identifies a novel pathway for LF-mediated tumoricidal activity and may extend the clinical application of LF in tumor therapy.
Collapse
Affiliation(s)
- Ya Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China
| | - Jie Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao-Hua Pan
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zi-Han Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shu-Yan Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Min Wang
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Liang Dong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang-Yuan Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| | - Xiao-Ming Gao
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| |
Collapse
|
23
|
Lu X, Peng S, Wang X, Shan Z, Teng W. Decreased expression of FcγRII in active Graves' disease patients. J Clin Lab Anal 2019; 33:e22904. [PMID: 31033004 PMCID: PMC6642309 DOI: 10.1002/jcla.22904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Background Graves' disease (GD) is a common autoimmune disease characterized by genetic and environmental factors. Fcγ receptors (FcγRs) are involved in several autoimmune disorders through recognizing immunoglobulin (Ig) G antibodies and mediating immune response. The study on the expression of FcγRs in GD patients is scarce. The purpose of this study was to evaluate the expression of three different types of FcγRs in patients with active and remissive GD. Methods Blood samples of patients and healthy subjects were collected to analyze the percentage of FcγRI (CD64), FcγRII (CD32), and FcγRIII (CD16) on peripheral blood mononuclear cells (PBMCs) and monocytes by flow cytometry and Western blotting. CD32 isotypes were also examined in cases and controls by real‐time PCR. Results The cell percentages expressed CD32 and protein expressions of CD32 on PBMCs, and monocytes from patients with active GD were significantly reduced compared to controls and patients with remissive GD. In particular, the expression of CD32B on PBMC was also decreased in active GD patients. However, the cell percentages expressed CD16 and CD64 from PBMCs and monocytes were comparable between three groups. Besides, the percentages of CD14+CD32+ cells were negatively correlated with TRAb titers in active GD patients (r = −0.5825, P < 0.001). Conclusion These results suggested that CD32 may act as a novel marker for active GDs. The expression of monocytic CD32, in particular CD32B, in GD patients might play a crucial role in maintaining FcγRs function and be a therapeutic target in GD patients.
Collapse
Affiliation(s)
- Xixuan Lu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC. FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human. Nat Commun 2019; 10:1970. [PMID: 31036800 PMCID: PMC6488660 DOI: 10.1038/s41467-019-09434-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen. The inhibitory receptor, FcγRIIb, is reported to limit autoimmune B cell response. Here the authors show that FcγRIIb has a dual role in both human and mouse, with reduced FcγRIIb expression or function associated with enhanced pre-immune B cell tolerance, yet defective control of mature autoreactive B cells in the germinal center.
Collapse
Affiliation(s)
- Marion Espéli
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France.
| | - Rachael Bashford-Rogers
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Nagham Alouche
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France
| | - Limy Wong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK
| | - Alice E Denton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Michelle A Linterman
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Kenneth G C Smith
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
25
|
Saiworn W, Thim-Uam A, Visitchanakun P, Atjanasuppat K, Chantaraaumporn J, Mokdara J, Chungchatupornchai S, Pisitkun P, Leelahavanichkul A, Poolthong S, Baron R, Lotinun S. Cortical Bone Loss in a Spontaneous Murine Model of Systemic Lupus Erythematosus. Calcif Tissue Int 2018; 103:686-697. [PMID: 30116830 DOI: 10.1007/s00223-018-0464-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023]
Abstract
Patients with systemic lupus erythematosus (SLE), a chronic inflammatory disease characterized by loss of T- and B-cell tolerance to autoantigens, are at increased risk for osteoporosis and fractures. Mice deficient in Fc gamma receptor IIb (FcγRIIB) exhibit spontaneous SLE and its restoration rescues the disease. To determine whether deleting FcγRIIB affects cortical bone mass and mechanical properties, we analyzed cortical bone phenotype of FcγRIIB knockouts at different ages. FACS analysis revealed that 6-month-old FcγRIIB-/- mice had increased B220lowCD138+ cells, markers of plasma cells, indicating active SLE disease. In contrast, 3-month-old FcγRIIB-/- mice did not develop the active SLE disease. µCT analysis indicated that FcγRIIB deletion did not affect cortical bone in 3-month-old mutants. However, 6- and 10-month-old FcγRIIB-/- males and females had osteopenic cortical bone and the severity of bone loss increased with disease duration. FcγRIIB deletion decreased cross-sectional area, cortical area, and marrow area in 6-month-old males. Cortical area and cortical thickness were decreased in 10-month-old FcγRIIB-/- males. Lack of FcγRIIB decreased cortical thickness without affecting cortical area in females. However, deletion of a single FcγRIIB allele was insufficient to induce cortical bone loss. The bending strength was decreased in 6- and 10-month-old FcγRIIB-deficient males compared to WT controls. A microindentation analysis demonstrated significantly decreased hardness in both 10-month-old FcγRIIB-/- males and females. Our data indicate that FcγRIIB contributes to the regulation of cortical bone homeostasis subsequent to SLE development and that deletion of FcγRIIB in mice leads to SLE-like disease associated with cortical bone loss and decreased bending strength and hardness.
Collapse
Affiliation(s)
- Worasit Saiworn
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Korakot Atjanasuppat
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jiratha Chantaraaumporn
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jutarat Mokdara
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Chungchatupornchai
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suchit Poolthong
- Department of Prosthodontics and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sutada Lotinun
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
26
|
Bartsch YC, Rahmöller J, Mertes MMM, Eiglmeier S, Lorenz FKM, Stoehr AD, Braumann D, Lorenz AK, Winkler A, Lilienthal GM, Petry J, Hobusch J, Steinhaus M, Hess C, Holecska V, Schoen CT, Oefner CM, Leliavski A, Blanchard V, Ehlers M. Sialylated Autoantigen-Reactive IgG Antibodies Attenuate Disease Development in Autoimmune Mouse Models of Lupus Nephritis and Rheumatoid Arthritis. Front Immunol 2018; 9:1183. [PMID: 29928274 PMCID: PMC5997785 DOI: 10.3389/fimmu.2018.01183] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Pro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR) transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II)-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Maria M M Mertes
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Susanne Eiglmeier
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Felix K M Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexander D Stoehr
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexandra K Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - André Winkler
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Constanze Hess
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Vivien Holecska
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin T Schoen
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin M Oefner
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany.,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
27
|
Di Ceglie I, Ascone G, Cremers NAJ, Sloetjes AW, Walgreen B, Vogl T, Roth J, Verbeek JS, van de Loo FAJ, Koenders MI, van der Kraan PM, Blom AB, van den Bosch MHJ, van Lent PLEM. Fcγ receptor-mediated influx of S100A8/A9-producing neutrophils as inducer of bone erosion during antigen-induced arthritis. Arthritis Res Ther 2018; 20:80. [PMID: 29720243 PMCID: PMC5932875 DOI: 10.1186/s13075-018-1584-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). Methods AIA was induced in knee joints of wild-type (WT), FcγRI,II,III−/−, and FcγRI,II,III,IV−/− mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. Results FcγRI,II,III,IV−/− mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV−/− mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV−/− and WT mice. In line with these observations, numbers of TRAP+ osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV−/− mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV−/− mice, AIA induction in knee joints of FcγRI,II,III−/− mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant correlations were found between bone erosion and the number of neutrophils present in the joint as well as between bone erosion and the number of S100A8-positive cells, with S100A8 being an alarmin strongly produced by neutrophils that stimulates osteoclast resorbing activity. Conclusions FcγRs play a crucial role in the development of bone erosion during AIA by inducing inflammation. In particular, FcγRIV mediates bone erosion in AIA by inducing the influx of S100A8/A9-producing neutrophils into the arthritic joint. Electronic supplementary material The online version of this article (10.1186/s13075-018-1584-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Giuliana Ascone
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Niels A J Cremers
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Annet W Sloetjes
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Birgitte Walgreen
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - J Sjef Verbeek
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Abstract
IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Taia T Wang
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Rony Dahan
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jad Maamary
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| |
Collapse
|
29
|
Immune complex negatively regulates toll-like receptor 3-triggered tumour necrosis factor α production in B cells. Cent Eur J Immunol 2017; 42:223-230. [PMID: 29204085 PMCID: PMC5708202 DOI: 10.5114/ceji.2017.70962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Inappropriate activation of toll-like receptor 3 (TLR3) has been implicated in the pathogenesis of autoimmune diseases, so the negative regulation of TLR3-triggered immune response has received increasing attention. Nonpathogenic immune complex (IC) has been used as treatment for many inflammatory and autoimmune diseases. However, the role of IC in the regulation of TLR3-triggered immune responses and the underlying mechanisms need to be investigated. In this study we demonstrate that IC or intravenous immunoglobulin (Ig) stimulation of B cells attenuates polyinosinic:polycytidylic acid (poly I:C)-induced CD40 expression; IC, but not Ig, can significantly inhibit poly I:C-induced pro-inflammatory tumour necrosis factor α (TNF-α) production by B cells. Moreover, IC/Ig stimulation does not alter the expression of TLR3 in B cells. Further experiments suggest that receptor for the Fc portion of IgGIIb (FcγRIIb) is involved in the suppressive effect of IC on TLR3-mediated TNF-α production, but not CD40 expression. Thus, we provide a new means of negative regulation of TLR3-triggered immune responses in B cells via FcγRIIb, and we provide a new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory or autoimmune diseases.
Collapse
|
30
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
31
|
Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 2017; 130:2121-2130. [PMID: 28899854 DOI: 10.1182/blood-2017-05-784876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/06/2017] [Indexed: 01/21/2023] Open
Abstract
Red blood cell (RBC) transfusions are of vital importance in patients with sickle cell disease (SCD). However, a major complication of transfusion therapy is alloimmunization. The low-affinity Fcγ receptors, expressed on immune cells, are important regulators of antibody responses. Genetic variation in FCGR genes has been associated with various auto- and alloimmune diseases. The aim of this study was to evaluate the association between genetic variation of FCGR and RBC alloimmunization in SCD. In this case-control study, DNA samples from 2 cohorts of transfused SCD patients were combined (France and The Netherlands). Cases had a positive history of alloimmunization, having received ≥1 RBC unit. Controls had a negative history of alloimmunization, having received ≥20 RBC units. Single nucleotide polymorphisms and copy number variation of the FCGR2/3 gene cluster were studied in a FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared using logistic regression. Two hundred seventy-two patients were included (130 controls, 142 cases). The nonclassical open reading frame in the FCGR2C gene (FCGR2C.nc-ORF) was strongly associated with a decreased alloimmunization risk (odds ratio [OR] 0.26, 95% confidence [CI] 0.11-0.64). This association persisted when only including controls with exposure to ≥100 units (OR 0.30, CI 0.11-0.85) and appeared even stronger when excluding cases with Rh or K antibodies only (OR 0.19, CI 0.06-0.59). In conclusion, SCD patients with the FCGR2Cnc-ORF polymorphism have over a 3-fold lower risk for RBC alloimmunization in comparison with patients without this mutation. This protective effect was strongest for exposure to antigens other than the immunogenic Rh or K antigens.
Collapse
|
32
|
Abstract
The antiviral activity of antibodies reflects the bifunctional properties of these molecules. While the Fab domains mediate highly specific antigenic recognition to block virus entry, the Fc domain interacts with diverse types of Fcγ receptors (FcγRs) expressed on the surface of effector leukocytes to induce the activation of distinct immunomodulatory pathways. Fc-FcγR interactions are tightly regulated to control IgG-mediated inflammation and immunity and are largely determined by the structural heterogeneity of the IgG Fc domain, stemming from differences in the primary amino acid sequence of the various subclasses, as well as the structure and composition of the Fc-associated N-linked glycan. Engagement of specific FcγR types on effector leukocytes has diverse consequences that affect several aspects of innate and adaptive immunity. In this review, we provide an overview of the complexity of FcγR-mediated pathways, discussing their role in the in vivo protective activity of anti-HIV-1 antibodies. We focus on recent studies on broadly neutralizing anti-HIV-1 antibodies that revealed that Fc-FcγR interactions are required to achieve full therapeutic activity through clearance of IgG-opsonized virions and elimination of HIV-infected cells. Manipulation of Fc-FcγR interactions to specifically activate distinct FcγR-mediated pathways has the potential to affect downstream effector responses, influencing thereby the in vivo protective activity of anti-HIV-1 antibodies; a strategy that has already been successfully applied to other IgG-based therapeutics, substantially improving their clinical efficacy.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
33
|
Abstract
A key determinant for the survival of organisms is their capacity to recognize and respond efficiently to foreign antigens. This is largely accomplished by the orchestrated activity of the innate and adaptive branches of the immune system. Antibodies are specifically generated in response to foreign antigens, facilitating thereby the specific recognition of antigens of almost infinite diversity. Receptors specific for the Fc domain of antibodies, Fc receptors, are expressed on the surface of the various myeloid leukocyte populations and mediate the binding and recognition of antibodies by innate leukocytes. By directly linking the innate and the adaptive components of immunity, Fc receptors play a central role in host defense and the maintenance of tissue homeostasis through the induction of diverse proinflammatory, anti-inflammatory, and immunomodulatory processes that are initiated upon engagement by the Fc domain. In this chapter, we discuss the mechanisms that regulate Fc domain binding to the various types of Fc receptors and provide an overview of the astonishing diversity of effector functions that are mediated through Fc-FcR interactions on myeloid cells. Lastly, we discuss the impact of FcR-mediated interactions in the context of IgG-mediated inflammation, autoimmunity, susceptibility to infection, and responsiveness to antibody-based therapeutics.
Collapse
|
34
|
Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017; 29:303-310. [PMID: 28472280 PMCID: PMC5890892 DOI: 10.1093/intimm/dxx025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
35
|
Chauhan P, Hu S, Sheng WS, Prasad S, Lokensgard JR. Modulation of Microglial Cell Fcγ Receptor Expression Following Viral Brain Infection. Sci Rep 2017; 7:41889. [PMID: 28165503 PMCID: PMC5292951 DOI: 10.1038/srep41889] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Dhole P, Nakayama EE, Saito A, Limkittikul K, Phanthanawiboon S, Shioda T, Kurosu T. Sequence diversity of dengue virus type 2 in brain and thymus of infected interferon receptor ko mice: implications for dengue virulence. Virol J 2016; 13:199. [PMID: 27903277 PMCID: PMC5129197 DOI: 10.1186/s12985-016-0658-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that a clinical isolate of dengue virus (DENV) is capable of causing acute-phase systemic infection in mice harboring knockouts of the genes encoding type-I and -II interferon IFN receptors (IFN-α/β/γR KO mice); in contrast, other virulent DENV isolates exhibited slow disease progression in this mice, yielding lethal infection around 20 days post-infection (p.i.). In the present study, we sought to clarify the dynamics of slow disease progression by examining disease progression of a type-2 DENV clinical isolate (DV2P04/08) in mice. METHODS The tissue distributions of DV2P04/08 in several organs of infeted mice were examined at different time points. Whole genome viral sequences from organs were determined. RESULTS At day 6 p.i., high levels of viral RNA (vRNA) were detected in non-neuronal organs (including peritoneal exudate cells (PECs), spleen, kidney, liver, lung, and bone marrow) but not in brain. By day 14 p.i, vRNA levels subsequently decreased in most organs, with the exception of thymus and brain. Sequence analysis of the whole genome of the original P04/08 and those of viruses recovered from mouse brain and thymus demonstrated the presence of both synonymous and non-synonymous mutations. Individual mice showed different virus populations in the brain. The vRNA sequence derived from brain of one mouse was nearly identical to the original DV2P04/08 inoculum, suggesting that there was no need for adaptation of DV2P04/08 for growth in the brain. However, quasispecies (that is, mixed populations, detected as apparent nucleotide mixtures during sequencing) were observed in the thymus of another mouse, and interestingly only mutant population invaded the brain at a late stage of infection. CONCLUSIONS These results suggested that the mouse nearly succeeded in eliminating virus from non-neuronal organs but failed to do so from brain. Although the cause of death by DV2P04/08 infection is likely to be the result of virus invasion to brain, its processes to the death are different in individual mice. This study will provide a new insight into disease progression of DENV in mice.
Collapse
Affiliation(s)
- Priya Dhole
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Takeshi Kurosu
- Department of Virology I, National Institute for Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
37
|
Carmi Y, Prestwood TR, Spitzer MH, Linde IL, Chabon J, Reticker-Flynn NE, Bhattacharya N, Zhang H, Zhang X, Basto PA, Burt BM, Alonso MN, Engleman EG. Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity. JCI Insight 2016; 1:e89020. [PMID: 27812544 DOI: 10.1172/jci.insight.89020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing. To investigate the basis for this phenomenon, we compared the response of BMDC, TADC, and MoDC to tumor IgG-IC. Our findings revealed, in both mice and humans, that upon exposure to IgG-IC, BMDC internalized the IC, increased costimulatory molecule expression, and stimulated autologous T cells. In contrast, TADC and, surprisingly, MoDC remained inert upon contact with IC due to dysfunctional signaling following engagement of Fcγ receptors. Such dysfunction is associated with elevated levels of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and phosphatases regulating Akt activation. Indeed, concomitant inhibition of both SHP-1 and phosphatases that regulate Akt activation conferred upon TADC and MoDC the capacity to take up and process IC and induce antitumor immunity in vivo. This work identifies the molecular checkpoints that govern activation of MoDC and TADC and their capacity to elicit T cell immunity.
Collapse
Affiliation(s)
- Yaron Carmi
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Tyler R Prestwood
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Ian L Linde
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan Chabon
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hong Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pamela A Basto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bryan M Burt
- Division of General Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael N Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
38
|
Abstract
In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH UK
| |
Collapse
|
39
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
40
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
41
|
Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol 2016; 12:593-604. [DOI: 10.1038/nrrheum.2016.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Lünemann JD, Quast I, Dalakas MC. Efficacy of Intravenous Immunoglobulin in Neurological Diseases. Neurotherapeutics 2016; 13:34-46. [PMID: 26400261 PMCID: PMC4720677 DOI: 10.1007/s13311-015-0391-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Owing to its anti-inflammatory efficacy in various autoimmune disease conditions, intravenous immunoglobulin (IVIG)-pooled IgG obtained from the plasma of several thousands individuals-has been used for nearly three decades and is proving to be efficient in a growing number of neurological diseases. IVIG therapy has been firmly established for the treatment of Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and multifocal motor neuropathy, either as first-line therapy or adjunctive treatment. IVIG is also recommended as rescue therapy in patients with worsening myasthenia gravis and is beneficial as a second-line therapy for dermatomyositis and stiff-person syndrome. Subcutaneous rather than intravenous administration of IgG is gaining momentum because of its effectiveness in patients with primary immunodeficiency and the ease with which it can be administered independently from hospital-based infusions. The demand for IVIG therapy is growing, resulting in rising costs and supply shortages. Strategies to replace IVIG with recombinant products have been developed based on proposed mechanisms that confer the anti-inflammatory activity of IVIG, but their efficacy has not been tested in clinical trials. This review covers new developments in the immunobiology and clinical applications of IVIG in neurological diseases.
Collapse
Affiliation(s)
- Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland.
- Department of Neurology, University Hospital of Basel, Basel, Switzerland.
| | - Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Marinos C Dalakas
- Neuroimmunology Unit, University of Athens Medical School, Athens, Greece
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
43
|
Fatehchand K, Ren L, Elavazhagan S, Fang H, Mo X, Vasilakos JP, Dietsch GN, Hershberg RM, Tridandapani S, Butchar JP. Toll-like Receptor 4 Ligands Down-regulate Fcγ Receptor IIb (FcγRIIb) via MARCH3 Protein-mediated Ubiquitination. J Biol Chem 2015; 291:3895-904. [PMID: 26694610 DOI: 10.1074/jbc.m115.701151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022] Open
Abstract
Monocytes and macrophages are critical for the effectiveness of monoclonal antibody therapy. Responses to antibody-coated tumor cells are largely mediated by Fcγ receptors (FcγRs), which become activated upon binding to immune complexes. FcγRIIb is an inhibitory FcγR that negatively regulates these responses, and it is expressed on monocytes and macrophages. Therefore, deletion or down-regulation of this receptor may substantially enhance therapeutic outcomes. Here we screened a panel of Toll-like receptor (TLR) agonists and found that those selective for TLR4 and TLR8 could significantly down-regulate the expression of FcγRIIb. Upon further examination, we found that treatment of monocytes with TLR4 agonists could lead to the ubiquitination of FcγRIIb protein. A search of our earlier microarray database of monocytes activated with the TLR7/8 agonist R-848 (in which FcγRIIb was down-regulated) revealed an up-regulation of membrane-associated ring finger (C3HC4) 3 (MARCH3), an E3 ubiquitin ligase. Therefore, we tested whether LPS treatment could up-regulate MARCH3 in monocytes and whether this E3 ligase was involved with LPS-mediated FcγRIIb down-regulation. The results showed that LPS activation of TLR4 significantly increased MARCH3 expression and that siRNA against MARCH3 prevented the decrease in FcγRIIb following LPS treatment. These data suggest that activation of TLR4 on monocytes can induce a rapid down-regulation of FcγRIIb protein and that this involves ubiquitination.
Collapse
Affiliation(s)
| | - Li Ren
- the Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130000 Jilin, China
| | | | | | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio 43210
| | - John P Vasilakos
- the 3M Drug Delivery Systems Division, St. Paul, Minnesota 55144, and
| | | | | | | | | |
Collapse
|
44
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
45
|
Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 2015; 146:497-507. [PMID: 26173489 DOI: 10.1111/imm.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease in which excessive inflammation, autoantibodies and complement activation lead to multisystem tissue damage. The contribution of the individual genetic composition has been extensively studied, and several susceptibility genes related to immune pathways that participate in SLE pathogenesis have been identified. It has been proposed that SLE takes place when susceptibility factors interact with environmental stimuli leading to a deregulated immune response. Experimental evidence suggests that such events are related to the failure of T-cell and B-cell suppression mediated by defects in cell signalling, immune tolerance and apoptotic mechanism promoting autoimmunity. In addition, it has been reported that dendritic cells (DCs) from SLE patients, which are crucial in the modulation of peripheral tolerance to self-antigens, show an increased ratio of activating/inhibitory receptors on their surfaces. This phenotype and an augmented expression of co-stimulatory molecules is thought to be critical for disease pathogenesis. Accordingly, tolerogenic DCs can be a potential strategy for developing antigen-specific therapies to reduce detrimental inflammation without causing systemic immunosuppression. In this review article we discuss the most relevant data relative to the contribution of DCs to the triggering of SLE.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina.,Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Carolina Llanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|
46
|
Human adipose-derived mesenchymal stem cells attenuate collagen antibody-induced autoimmune arthritis by inducing expression of FCGIIB receptors. BMC Musculoskelet Disord 2015. [PMID: 26210906 PMCID: PMC4515315 DOI: 10.1186/s12891-015-0634-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) derived from adipose tissue. MSCs have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and human diseases. However, the mechanisms underlying this wide range of effects need to be explored. Methods Collagen antibody-induced arthritis (CAIA) is a unique model in which arthritis is rapidly and strongly induced. ASCs were intraperitoneally infused into CAIA mice before or after arthritis induction. The serum levels of various cytokines, adipokines, and chemokines were measured. The expression of FC gamma receptors (FCGRs) was investigated in peritoneal macrophages ex vivo. RAW264.7 cells and ASCs were co-cultured to elucidate the direct and indirect role of ASCs on FCGR expression. Results ASCs attenuated arthritis in CAIA mice. Serum levels of tumor necrosis factor α, interleukin (IL)-15, resistin, and leptin were reduced in ASC-treated CAIA mice, whereas serum levels of IL-6 and adiponectin were not affected. In peritoneal macrophages isolated from ASC-treated mice, expression of FCGRIIB, which is immunoinhibitory, was higher than that of FCGRI. Co-culture of ASCs with RAW264.7 cells modulated the expression of FCGRs. The expression patterns and timings of peak expression differed among FCGRs. Expression of FCGRIIB was higher and peaked earlier than that of FCGRI. FCGRIII expression was not affected by this co-culture. Conclusions This is a study to show that ASCs have anti-arthritic effects in CAIA mice. Modulation of FCGRs by ASCs might be a therapeutic mechanism in this antibody-associated arthritis model.
Collapse
|
47
|
Palm AKE, Friedrich HC, Mezger A, Salomonsson M, Myers LK, Kleinau S. Function and regulation of self-reactive marginal zone B cells in autoimmune arthritis. Cell Mol Immunol 2015; 12:493-504. [PMID: 25958842 DOI: 10.1038/cmi.2015.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022] Open
Abstract
Polyreactive innate-type B cells account for many B cells expressing self-reactivity in the periphery. Improper regulation of these B cells may be an important factor that underlies autoimmune disease. Here we have explored the influence of self-reactive innate B cells in the development of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis. We show that splenic marginal zone (MZ), but not B-1 B cells exhibit spontaneous IgM reactivity to autologous collagen II in naı¨ve mice. Upon immunization with heterologous collagen II in complete Freund's adjuvant the collagen-reactive MZ B cells expanded rapidly, while the B-1 B cells showed a modest anti-collagen response. The MZ B cells were easily activated by toll-like receptor (TLR) 4 and 9-ligands in vitro, inducing proliferation and cytokine secretion, implying that dual engagement of the B-cell receptor and TLRs may promote the immune response to self-antigen. Furthermore, collagen-primed MZ B cells showed significant antigen-presenting capacity as reflected by cognate T-cell proliferation in vitro and induction of IgG anti-collagen antibodies in vivo. MZ B cells that were deficient in complement receptors 1 and 2 demonstrated increased proliferation and cytokine production, while Fcγ receptor IIb deficiency of the cells lead to increased cytokine production and antigen presentation. In conclusion, our data highlight self-reactive MZ B cells as initiators of the autoimmune response in CIA, where complement and Fc receptors are relevant in controlling the self-reactivity in the cells.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Heike C Friedrich
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anja Mezger
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maya Salomonsson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Linda K Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Ng HP, Zhu X, Harmon EY, Lennartz MR, Nagarajan S. Reduced Atherosclerosis in apoE-inhibitory FcγRIIb-Deficient Mice Is Associated With Increased Anti-Inflammatory Responses by T Cells and Macrophages. Arterioscler Thromb Vasc Biol 2015; 35:1101-12. [PMID: 25792447 PMCID: PMC4409543 DOI: 10.1161/atvbaha.115.305290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Fcγ receptors (FcγRs) are classified as activating (FcγRI, III, and IV) and inhibitory (FcγRII) receptors. We have reported that deletion of activating FcγRs in apolipoprotein E (apoE) single knockout mice attenuated atherosclerosis. In this report, we investigated the hypothesis that deficiency of inhibitory FcγRIIb exacerbates atherosclerosis. APPROACH AND RESULTS ApoE-FcγRIIb double knockout mice, congenic to the C57BL/6 (apoE-FcγRIIbB6 (-/-)), were generated and atherosclerotic lesions were assessed. In contrary to our hypothesis, when compared with apoE single knockout mice, arterial lesions were significantly decreased in apoE-FcγRIIbB6 (-/-) male and female mice fed chow or high-fat diets. Chimeric mice generated by transplanting apoE-FcγRIIbB6 (-/-) marrow into apoE single knockout mice also developed reduced lesions. CD4(+) T cells from apoE-FcγRIIbB6 (-/-) mice produced higher levels of interleukin-10 and transforming growth factor-β than their apoE single knockout counterparts. As our findings conflict with a previous report using apoE-FcγRIIb129/B6 (-/-) mice on a mixed genetic background, we investigated whether strain differences contributed to the anti-inflammatory response. Macrophages from FcγRIIb129/B6 (-/-) mice on a mixed genetic background produced more interleukin-1β and MCP-1 (monocyte chemoattractant protein-1) in response to immune complexes, whereas congenic FcγRIIbB6 (-/-) mice generated more interleukin-10 and significantly less interleukin-1β. Interestingly, the expression of lupus-associated slam genes, located in proximity to fcgr2b in mouse chromosome 1, is upregulated only in mixed FcγRIIb129/B6 (-/-) mice. CONCLUSIONS Our findings demonstrate a detrimental role for FcγRIIb signaling in atherosclerosis and the contribution of anti-inflammatory cytokine responses in the attenuated lesions observed in apoE-FcγRIIbB6 (-/-) mice. As 129/sv genome-derived lupus-associated genes have been implicated in lupus phenotype in FcγRIIb129/B6 (-/-) mice, our findings suggest possible epistatic mechanism contributing to the decreased lesions.
Collapse
Affiliation(s)
- Hang Pong Ng
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Xinmei Zhu
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Erin Y Harmon
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Michelle R Lennartz
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.)
| | - Shanmugam Nagarajan
- From the Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, PA (H.P.N., X.Z., S.N.); Department of Microbiology and Immunology (H.P.N., S.N.), University of Arkansas for Medical Sciences, Little Rock; and Center for Cell Biology and Cancer Research, Albany Medical College, NY (E.Y.H., M.R.L.).
| |
Collapse
|
49
|
Liu Y, Liu M, Zhang Y, Qu C, Lu G, Huang Y, Zhang H, Yu N, Yuan S, Gao Y, Gao Y, Guo X. The expression of Fcγ receptors in Hashimoto's thyroiditis. Cell Immunol 2015; 294:33-8. [PMID: 25670392 DOI: 10.1016/j.cellimm.2015.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/08/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
The pathophysiological mechanism underlying Hashimoto's thyroiditis (HT) is still unclear. Thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) are diagnostic hallmarks of HT. These IgG antibodies regulate the balance of immunologic tolerance and autoimmunity via Fcγ receptors (FcγRs). The aim of our study was to investigate the role of FcγRs in the pathogenesis of HT. The percentage of peripheral blood mononuclear cells (PBMCs) from HT patients bearing FcγRII was significantly lower than that seen in healthy donors, and the mean fluorescence intensity (MFI) value of FcγRII on PBMCs from HT patients was significantly higher. The percentage of PBMCs positive for FcγRIII also was significantly higher in HT patients, and the percentage of B cells bearing FcγRIIB in HT patients was significantly lower than that seen in healthy donors. Our study therefore provides evidence for FcγRs, especially FcγRIIB, being involved in the pathogenesis of HT.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Science, Beijing 100005, PR China.
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, PR China.
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Hong Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Nan Yu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Shanshan Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Yanming Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| |
Collapse
|
50
|
Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. Autoimmun Rev 2015; 14:127-39. [DOI: 10.1016/j.autrev.2014.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|