1
|
Poschel DB, Kehinde-Ige M, Klement JD, Yang D, Merting AD, Savage NM, Shi H, Liu K. IRF8 Regulates Intrinsic Ferroptosis through Repressing p53 Expression to Maintain Tumor Cell Sensitivity to Cytotoxic T Lymphocytes. Cells 2023; 12:310. [PMID: 36672246 PMCID: PMC9856547 DOI: 10.3390/cells12020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.
Collapse
Affiliation(s)
- Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mercy Kehinde-Ige
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
2
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Moorman HR, Reategui Y, Poschel DB, Liu K. IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:2630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G- polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
Affiliation(s)
- Hannah R. Moorman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yazmin Reategui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
4
|
Pulianmackal AJ, Kanakousaki K, Flegel K, Grushko OG, Gourley E, Rozich E, Buttitta LA. Misregulation of Nucleoporins 98 and 96 leads to defects in protein synthesis that promote hallmarks of tumorigenesis. Dis Model Mech 2022; 15:dmm049234. [PMID: 35107131 PMCID: PMC8938402 DOI: 10.1242/dmm.049234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/15/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin 98KD (Nup98) is a promiscuous translocation partner in hematological malignancies. Most disease models of Nup98 translocations involve ectopic expression of the fusion protein under study, leaving the endogenous Nup98 loci unperturbed. Overlooked in these approaches is the loss of one copy of normal Nup98 in addition to the loss of Nup96 - a second Nucleoporin encoded within the same mRNA and reading frame as Nup98 - in translocations. Nup98 and Nup96 are also mutated in a number of other cancers, suggesting that their disruption is not limited to blood cancers. We found that reducing Nup98-96 function in Drosophila melanogaster (in which the Nup98-96 shared mRNA and reading frame is conserved) de-regulates the cell cycle. We found evidence of overproliferation in tissues with reduced Nup98-96, counteracted by elevated apoptosis and aberrant signaling associated with chronic wounding. Reducing Nup98-96 function led to defects in protein synthesis that triggered JNK signaling and contributed to hallmarks of tumorigenesis when apoptosis was inhibited. We suggest that partial loss of Nup98-96 function in translocations could de-regulate protein synthesis, leading to signaling that cooperates with other mutations to promote tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura A. Buttitta
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Katz SG, Edappallath S, Xu ML. IRF8 is a Reliable Monoblast Marker for Acute Monocytic Leukemias. Am J Surg Pathol 2021; 45:1391-1398. [PMID: 34172624 DOI: 10.1097/pas.0000000000001765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blast evaluation in patients with acute monocytic leukemias (AMoL) is notoriously difficult due to the lack of reliable surface markers and cytologic subtleties on the aspirate smears. While blasts of most nonmonocytic acute leukemias express CD34, available immunohistochemical antibodies to monocytic blasts also mark normal background mature monocytes. We searched for a potential biomarker candidate by surveying specific gene expression profiles of monocyte progenitors. Our investigations led us to IRF8, which is a lineage-specific transcription factor critical for the production of monocytic and dendritic cell progenitors. In this study, we tested and validated a monoclonal antibody to IRF8 as a novel immunohistochemical stain for trephine core biopsies of human bone marrow. We assessed the expression of IRF8 in 90 cases of AMoL, including posttherapy staging bone marrows, 23 cases of chronic myelomonocytic leukemia, 26 cases of other acute myeloid leukemia subtypes, and 18 normal control marrows. In AMoL, there was high correlation of IRF8-positive cells to aspirate blast count (R=0.95). Comparison of IRF8 staining to aspirate blast percentage in chronic myelomonocytic leukemia also showed good correlation (R=0.86). In contrast, IRF8-positive cells did not correlate with blast count in other subtypes of acute myeloid leukemia (R=0.56) and staining was <5% in all normal control marrows, even those with reactive monocytosis. We found that IRF8 was also weakly reactive in B cells and hematogones, with the latter accounting for rare cases of discrepancies. When IRF8 was used to categorize cases as AMoL, positive for residual leukemia or negative, the sensitivity was 98%, specificity was 82%, positive predictive value was 86%, and negative predictive value was 98%. These results demonstrate that IRF8 may serve as a clinically useful immunostain to diagnose and track AMoLs on bone marrow core biopsies. This can be particularly impactful in the setting of poor aspiration and focal blast increase. In the era of new targeted therapies that have been reported to induce monocytic outgrowths of leukemia, a marker for malignant monoblasts may prove even more critical.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale New-Haven Hospital, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
6
|
Alomari M. TRIM21 - A potential novel therapeutic target in cancer. Pharmacol Res 2021; 165:105443. [PMID: 33508433 DOI: 10.1016/j.phrs.2021.105443] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing protein 21 (TRIM21) is well known to be involved in innate immunity, systemic lupus erythematosus and Sjögren's syndrome. In addition, TRIM21 involvement in cancer proliferation has been observed. However, the clinical significance of TRIM21 and its role in cancer cell proliferation and suppression remains elusive. Here we discuss the effects of TRIM21 on major cancer promoting proteins such as NF-κB, STAT3, BCL2, p53, p27 and Snail, comparing its signaling pathways under normal conditions and in the presence of a variety of carcinogenesis effectors (oncogenic, genotoxic and UV irradiation). Depending on the cancer type and the carcinogenesis effector, TRIM21 may enhance cancer proliferation, or alternatively it may increase the ubiquitination of many cancer-triggering proteins, resulting in their proteasomal degradation. This indicates the importance of TRIM21 in cancer proliferation and/or apoptosis and suggests its potential as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
7
|
Smith AD, Lu C, Payne D, Paschall AV, Klement JD, Redd PS, Ibrahim ML, Yang D, Han Q, Liu Z, Shi H, Hartney TJ, Nayak-Kapoor A, Liu K. Autocrine IL6-Mediated Activation of the STAT3-DNMT Axis Silences the TNFα-RIP1 Necroptosis Pathway to Sustain Survival and Accumulation of Myeloid-Derived Suppressor Cells. Cancer Res 2020; 80:3145-3156. [PMID: 32554751 PMCID: PMC7416440 DOI: 10.1158/0008-5472.can-19-3670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Although accumulation of myeloid-derived suppressor cells (MDSC) is a hallmark of cancer, the underlying mechanism of this accumulation within the tumor microenvironment remains incompletely understood. We report here that TNFα-RIP1-mediated necroptosis regulates accumulation of MDSCs. In tumor-bearing mice, pharmacologic inhibition of DNMT with the DNA methyltransferease inhibitor decitabine (DAC) decreased MDSC accumulation and increased activation of antigen-specific cytotoxic T lymphocytes. DAC-induced decreases in MDSC accumulation correlated with increased expression of the myeloid cell lineage-specific transcription factor IRF8 in MDSCs. However, DAC also suppressed MDSC-like cell accumulation in IRF8-deficient mice, indicating that DNA methylation may regulate MDSC survival through an IRF8-independent mechanism. Instead, DAC decreased MDSC accumulation by increasing cell death via disrupting DNA methylation of RIP1-dependent targets of necroptosis. Genome-wide DNA bisulfite sequencing revealed that the Tnf promoter was hypermethylated in tumor-induced MDSCs in vivo. DAC treatment dramatically increased TNFα levels in MDSC in vitro, and neutralizing TNFα significantly increased MDSC accumulation and tumor growth in tumor-bearing mice in vivo. Recombinant TNFα induced MDSC cell death in a dose- and RIP1-dependent manner. IL6 was abundantly expressed in MDSCs in tumor-bearing mice and patients with human colorectal cancer. In vitro, IL6 treatment of MDSC-like cells activated STAT3, increased expression of DNMT1 and DNMT3b, and enhanced survival. Overall, our findings reveal that MDSCs establish a STAT3-DNMT epigenetic axis, regulated by autocrine IL6, to silence TNFα expression. This results in decreased TNFα-induced and RIP1-dependent necroptosis to sustain survival and accumulation. SIGNIFICANCE: These findings demonstrate that targeting IL6 expression or function represent potentially effective approaches to suppress MDSC survival and accumulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Daniela Payne
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Qimei Han
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | | | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
8
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abrams SI, Netherby CS, Twum DYF, Messmer MN. Relevance of Interferon Regulatory Factor-8 Expression in Myeloid-Tumor Interactions. J Interferon Cytokine Res 2018; 36:442-53. [PMID: 27379866 DOI: 10.1089/jir.2015.0174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perturbations in myelopoiesis are a common feature in solid tumor biology, reflecting the central premise that cancer is not only a localized affliction but also a systemic disease. Because the myeloid compartment is essential for the induction of adaptive immunity, these alterations in myeloid development contribute to the failure of the host to effectively manage tumor progression. These "dysfunctional" myeloid cells have been coined myeloid-derived suppressor cells (MDSCs). Interestingly, such cells not only arise in neoplasia but also are associated with many other inflammatory or pathologic conditions. MDSCs affect disease outcome through multiple mechanisms, including their ability to mediate generalized or antigen-specific immune suppression. Consequently, MDSCs pose a significant barrier to effective immunotherapy in multiple disease settings. Although much interest has been devoted to unraveling mechanisms by which MDSCs mediate immune suppression, a large gap has remained in our understanding of the mechanisms that drive their development in the first place. Investigations into this question have identified an unrecognized role of interferon regulatory factor-8 (IRF-8), a member of the IRF family of transcription factors, in tumor-induced myeloid dysfunction. Ordinarily, IRF-8 is involved in diverse stages of myelopoiesis, namely differentiation and lineage commitment toward monocytes, dendritic cells, and granulocytes. Several recent studies now support the hypothesis that IRF-8 functions as a "master" negative regulator of MDSC formation in vivo. This review focuses on IRF-8 as a potential target suppressed by tumors to cripple normal myelopoiesis, redirecting myeloid differentiation toward the emergence of MDSCs. Understanding the bases by which neoplasia drives MDSC accumulation has the potential to improve the efficacy of therapies that require a competent myeloid compartment.
Collapse
Affiliation(s)
- Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Colleen S Netherby
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| |
Collapse
|
10
|
Netherby CS, Messmer MN, Burkard-Mandel L, Colligan S, Miller A, Cortes Gomez E, Wang J, Nemeth MJ, Abrams SI. The Granulocyte Progenitor Stage Is a Key Target of IRF8-Mediated Regulation of Myeloid-Derived Suppressor Cell Production. THE JOURNAL OF IMMUNOLOGY 2017; 198:4129-4139. [PMID: 28356386 DOI: 10.4049/jimmunol.1601722] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
Abstract
Alterations in myelopoiesis are common across various tumor types, resulting in immature populations termed myeloid-derived suppressor cells (MDSCs). MDSC burden correlates with poorer clinical outcomes, credited to their ability to suppress antitumor immunity. MDSCs consist of two major subsets, monocytic and polymorphonuclear (PMN). Intriguingly, the latter subset predominates in many patients and tumor models, although the mechanisms favoring PMN-MDSC responses remain poorly understood. Ordinarily, lineage-restricted transcription factors regulate myelopoiesis that collectively dictate cell fate. One integral player is IFN regulatory factor (IRF)-8, which promotes monocyte/dendritic cell differentiation while limiting granulocyte development. We recently showed that IRF8 inversely controls MDSC burden in tumor models, particularly the PMN-MDSC subset. However, where IRF8 acts in the pathway of myeloid differentiation to influence PMN-MDSC production has remained unknown. In this study, we showed that: 1) tumor growth was associated with a selective expansion of newly defined IRF8lo granulocyte progenitors (GPs); 2) tumor-derived GPs had an increased ability to form PMN-MDSCs; 3) tumor-derived GPs shared gene expression patterns with IRF8-/- GPs, suggesting that IRF8 loss underlies GP expansion; and 4) enforced IRF8 overexpression in vivo selectively constrained tumor-induced GP expansion. These findings support the hypothesis that PMN-MDSCs result from selective expansion of IRF8lo GPs, and that strategies targeting IRF8 expression may limit their load to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Colleen S Netherby
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Sean Colligan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263.,Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
11
|
Montano G, Ullmark T, Jernmark-Nilsson H, Sodaro G, Drott K, Costanzo P, Vidovic K, Gullberg U. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein. Leuk Res 2015; 40:60-7. [PMID: 26563595 DOI: 10.1016/j.leukres.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
Abstract
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter.
Collapse
Affiliation(s)
- Giorgia Montano
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Tove Ullmark
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Helena Jernmark-Nilsson
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Gaetano Sodaro
- Department of Molecular Medicine, and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Paola Costanzo
- Department of Molecular Medicine, and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Karina Vidovic
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Urban Gullberg
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| |
Collapse
|
12
|
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Adv Cancer Res 2015. [PMID: 26216631 DOI: 10.1016/bs.acr.2015.04.002] [Citation(s) in RCA: 395] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress innate and adaptive immunity. MDSCs are present in many disease settings; however, in cancer, they are a major obstacle for both natural antitumor immunity and immunotherapy. Tumor and host cells in the tumor microenvironment (TME) produce a myriad of pro-inflammatory mediators that activate MDSCs and drive their accumulation and suppressive activity. MDSCs utilize a variety of mechanisms to suppress T cell activation, induce other immune-suppressive cell populations, regulate inflammation in the TME, and promote the switching of the immune system to one that tolerates and enhances tumor growth. Because MDSCs are present in most cancer patients and are potent immune-suppressive cells, MDSCs have been the focus of intense research in recent years. This review describes the history and identification of MDSCs, the role of inflammation and intracellular signaling events governing MDSC accumulation and suppressive activity, immune-suppressive mechanisms utilized by MDSCs, and recent therapeutics that target MDSCs to enhance antitumor immunity.
Collapse
Affiliation(s)
- Katherine H Parker
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Daniel W Beury
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
14
|
Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342-51. [DOI: 10.1007/s12185-015-1761-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
15
|
IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood 2015; 125:1452-9. [DOI: 10.1182/blood-2014-09-600833] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Key Points
IRF8 does not instruct monocytic lineage specification in oligopotent granulocyte-monocyte progenitors. IRF8 regulates the survival and differentiation of lineage-committed progenitors to promote monocyte and suppress neutrophil production.
Collapse
|
16
|
Paschall AV, Zhang R, Qi CF, Bardhan K, Peng L, Lu G, Yang J, Merad M, McGaha T, Zhou G, Mellor A, Abrams SI, Morse HC, Ozato K, Xiong H, Liu K. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2369-79. [PMID: 25646302 DOI: 10.4049/jimmunol.1402412] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Ruihua Zhang
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Liang Peng
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Geming Lu
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jianjun Yang
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miriam Merad
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tracy McGaha
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Gang Zhou
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Andrew Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Keiko Ozato
- Programs in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Huabao Xiong
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood VA Medical Center, Augusta, GA 30904;
| |
Collapse
|
17
|
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, Inujima A, Nakayama T, Yoshie O, Sakurai H, Saiki I, Koizumi K. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer 2014; 14:949. [PMID: 25495942 PMCID: PMC4300614 DOI: 10.1186/1471-2407-14-949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/08/2014] [Indexed: 12/23/2022] Open
Abstract
Background Inhibition of metastasis through upregulation of immune surveillance is a major purpose of chemokine gene therapy. In this study, we focused on a membrane-bound chemokine CXCL16, which has shown a correlation with a good prognosis for colorectal cancer (CRC) patients. Methods We generated a CXCL16-expressing metastatic CRC cell line and identified changes in TNF and apoptosis-related factors. To investigate the effect of CXCL16 on colorectal liver metastasis, we injected SL4-Cont and SL4-CXCL16 cells into intraportal vein in C57BL/6 mice and evaluated the metastasis. Moreover, we analyzed metastatic liver tissues using flow cytometry whether CXCL16 expression regulates the infiltration of M1 macrophages. Results CXCL16 expression enhanced TNF-α-induced apoptosis through activation of PARP and the caspase-3-mediated apoptotic pathway and through inactivation of the NF-κB-mediated survival pathway. Several genes were changed by CXCL16 expression, but we focused on IRF8, which is a regulator of apoptosis and the metastatic phenotype. We confirmed CXCL16 expression in SL4-CXCL16 cells and the correlation between CXCL16 and IRF8. Silencing of IRF8 significantly decreased TNF-α-induced apoptosis. Liver metastasis of SL4-CXCL16 cells was also inhibited by TNF-α-induced apoptosis through the induction of M1 macrophages, which released TNF-α. Our findings suggest that the accumulation of M1 macrophages and the enhancement of apoptosis by CXCL16 might be an effective dual approach against CRC liver metastasis. Conclusions Collectively, this study revealed that CXCL16 regulates immune surveillance and cell signaling. Therefore, we provide the first evidence of CXCL16 serving as an intracellular signaling molecule. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-949) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
18
|
Zhang Q, Zhang L, Li L, Wang Z, Ying J, Fan Y, Xu B, Wang L, Liu Q, Chen G, Tao Q, Jin J. Interferon regulatory factor 8 functions as a tumor suppressor in renal cell carcinoma and its promoter methylation is associated with patient poor prognosis. Cancer Lett 2014; 354:227-34. [PMID: 25109451 DOI: 10.1016/j.canlet.2014.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
Abstract
Interferon regulatory factor 8 (IRF8), as a central element of IFN-γ-signaling, plays a critical role in tumor suppression. However, its expression and underlying molecular mechanism remain elusive in renal cell carcinoma (RCC). Here, we examined IRF8 expression and methylation in RCC cell lines and primary tumors, and further assessed its tumor suppressive functions. We found that IRF8 was widely expressed in human normal tissues including kidney, but frequently downregulated by promoter methylation in RCC cell lines. IRF8 methylation was detected in 25% of primary tumors, but not in adjacent non-malignant renal tissues, and associated with higher tumor nuclear grade of RCC. Ectopic expression of IRF8 inhibited colony formation and migration abilities of RCC cells, through inducing cell cycle G2/M arrest and apoptosis. IFN-γ could induce IRF8 expression in RCC cells, together with increased cleaved-PARP. We further found that IRF8 inhibited expression of oncogenes YAP1 and Survivin, as well as upregulated expression of tumor suppressor genes CASP1, p21 and PTEN. Collectively, our data demonstrate that IRF8 as a functional tumor suppressor is frequently methylated in RCC, and IRF8-mediated interferon signaling is involved in RCC pathogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - LiLi Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Zhaohui Wang
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lu Wang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Guangfu Chen
- Department of Urology, PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong.
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China.
| |
Collapse
|
19
|
Dzikiewicz-Krawczyk A, Macieja A, Mały E, Januszkiewicz-Lewandowska D, Mosor M, Fichna M, Strauss E, Nowak J. Polymorphisms in microRNA target sites modulate risk of lymphoblastic and myeloid leukemias and affect microRNA binding. J Hematol Oncol 2014; 7:43. [PMID: 24886876 PMCID: PMC4059877 DOI: 10.1186/1756-8722-7-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts. METHODS We analyzed with specialized algorithms the 3' untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding. RESULTS Here we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP26_rs187729 creates an illegitimate binding site for miR-18a-3p, while the A allele of PML_rs9479 enhances binding of miR-510-5p and the C allele of ETV6_rs1573613 weakens binding of miR-34c-5p and miR-449b-5p. CONCLUSIONS Our study implicates that microRNA-binding site polymorphisms modulate leukemia risk by interfering with the miRNA-mediated regulation. Our findings underscore the significance of variability in 3' untranslated regions in leukemia.
Collapse
Affiliation(s)
| | - Anna Macieja
- Faculty of Biology and Environmental Protection, University of Łódź, Pilarskiego 14/16, 90-231 Łódź, Poland
| | - Ewa Mały
- Department of Medical Diagnostics, Dobra 38, 60-595 Poznań, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
- Department of Medical Diagnostics, Dobra 38, 60-595 Poznań, Poland
- Department of Oncology, Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
- Department of Endocrinology and Metabolism, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| |
Collapse
|
20
|
Interferon consensus sequence-binding protein (ICSBP) promotes epithelial-to-mesenchymal transition (EMT)-like phenomena, cell-motility, and invasion via TGF-β signaling in U2OS cells. Cell Death Dis 2014; 5:e1224. [PMID: 24832596 PMCID: PMC4047854 DOI: 10.1038/cddis.2014.189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 11/09/2022]
Abstract
Interferon consensus sequence-binding protein (ICSBP) is a transcription factor induced by interferon gamma (IFN-γ) and a member of the interferon regulatory factor (IRF) family. ICSBP is predominantly expressed in hematopoietic cells and regulates the immune response and cell growth and differentiation. However, little is known about its function in non-hematopoietic cells. Here we show a novel function for ICSBP in epithelial-to-mesenchymal transition (EMT)-like phenomena (ELP), cell motility, and invasion in human osteosarcoma cell lines, including U2OS cells. IFN-γ treatment induced ICSBP expression and EMT-like morphological change in U2OS cells, which were suppressed by ICSBP knockdown. To further investigate the role of ICSBP in ELP, we established a stable U2OS cell line that overexpresses ICSBP. ICSBP expression caused U2OS cells to have a more elongated shape and an increased vimentin and fibronectin expression. ICSBP expression also promoted adhesiveness, motility, and invasiveness of U2OS cells. ICSBP upregulated transforming growth factor (TGF)-β receptors and activated TGF-β signaling cascades, which were responsible for ELP as well as increased cell motility and invasion. In addition, ICSBP-induced TGF-β receptor activation resulted in the upregulation of Snail. Knockdown of Snail attenuated the ICSBP-induced augmentation of cell motility and invasion. Upregulation of Snail, ELP, and increased invasion by ICSBP expression were also observed in other osteosarcoma cell lines, such as Saos-2 and 143B. Furthermore, ICSBP and TGF-β receptor I were expressed in 45/54 (84%) and 47/54 (87%) of human osteosarcoma tissues, respectively, and showed significant correlation (r=0.47, P=0.0007) with respect to their expression levels. Taken altogether, these data demonstrate a novel function for ICSBP in ELP, cell motility, and invasion through the TGF-β and Snail signaling pathways.
Collapse
|
21
|
Mattei F, Schiavoni G, De Ninno A, Lucarini V, Sestili P, Sistigu A, Fragale A, Sanchez M, Spada M, Gerardino A, Belardelli F, Businaro L, Gabriele L. A multidisciplinary study usingin vivotumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J Immunotoxicol 2014; 11:337-46. [DOI: 10.3109/1547691x.2014.891677] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
23
|
Scheller M, Schönheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A. Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance. ACTA ACUST UNITED AC 2013; 210:2239-56. [PMID: 24101380 PMCID: PMC3804946 DOI: 10.1084/jem.20130706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross talk between Wnt and IFN signaling determines the development of CML-leukemia–initiating cells and represents a mechanism for the acquisition of resistance to Imatinib at later stages of CML. Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/β-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of β-catenin results in up-regulation of Irf8, which in turn limits oncogenic β-catenin functions. Self-renewal and myeloproliferation become dependent on β-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive β-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL–induced LICs, and Imatinib resistance. Interestingly, activated β-catenin enhances a preexisting Irf8-deficient gene signature, identifying β-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin–driven leukemia and imply both factors as targets in combinatorial therapy.
Collapse
Affiliation(s)
- Marina Scheller
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 2013; 123:4464-78. [PMID: 24091328 DOI: 10.1172/jci68189] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise immature myeloid populations produced in diverse pathologies, including neoplasia. Because MDSCs can impair antitumor immunity, these cells have emerged as a significant barrier to cancer therapy. Although much research has focused on how MDSCs promote tumor progression, it remains unclear how MDSCs develop and why the MDSC response is heavily granulocytic. Given that MDSCs are a manifestation of aberrant myelopoiesis, we hypothesized that MDSCs arise from perturbations in the regulation of interferon regulatory factor-8 (IRF-8), an integral transcriptional component of myeloid differentiation and lineage commitment. Overall, we demonstrated that (a) Irf8-deficient mice generated myeloid populations highly homologous to tumor-induced MDSCs with respect to phenotype, function, and gene expression profiles; (b) IRF-8 overexpression in mice attenuated MDSC accumulation and enhanced immunotherapeutic efficacy; (c) the MDSC-inducing factors G-CSF and GM-CSF facilitated IRF-8 downregulation via STAT3- and STAT5-dependent pathways; and (d) IRF-8 levels in MDSCs of breast cancer patients declined with increasing MDSC frequency, implicating IRF-8 as a negative regulator in human MDSC biology. Together, our results reveal a previously unrecognized role for IRF-8 expression in MDSC subset development, which may provide new avenues to target MDSCs in neoplasia.
Collapse
|
25
|
Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog 2013; 9:e1003491. [PMID: 23853600 PMCID: PMC3708918 DOI: 10.1371/journal.ppat.1003491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. Cerebral malaria is a severe and often lethal complication from infection with Plasmodium falciparum which is driven in part by pathological host inflammatory response to parasitized red cells′ adherence in the brain microvasculature. However, the pathways that initiate and amplify this pathological neuroinflammation are not well understood. As susceptibility to cerebral malaria is variable and has been shown to be partially heritable, we have studied this from a genetic perspective using a mouse model of infection with P. berghei which induces experimental cerebral malaria (ECM). Here we show that mice bearing mutations in the myeloid transcription factor IRF8 and its heterodimerization partner IRF1 are completely resistant to ECM. We have identified the genes and associated networks that are activated by IRF8 during ECM. Loss-of-function mutations of several IRF8 targets are also shown to be protective. Parallel analysis of lungs infected with Mycobacterium tuberculosis show that IRF8-associated core pathways are also engaged during tuberculosis where they play a protective role. This contrast illustrates the balancing act required by the immune system to respond to pathogens and highlights a lynchpin role for IRF8 in both. Finally, several genes in these networks have been individually associated with chronic or acute inflammatory conditions in humans.
Collapse
Affiliation(s)
- Joanne Berghout
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - David Langlais
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Irena Radovanovic
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Mifong Tam
- McGill University Health Centre, Montreal, Quebec, Canada
| | - John D. MacMicking
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Philippe Gros
- Department of Biochemistry and Complex Traits Group, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
26
|
IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 2013; 14:1223-35. [PMID: 23308054 DOI: 10.1593/neo.121444] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/31/2022] Open
Abstract
The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8(-/-)) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8(-/-) mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2'-deoxycytidine into melanoma-bearing IRF-8(-/-) animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness.
Collapse
|
27
|
Hu X, Bardhan K, Paschall AV, Yang D, Waller JL, Park MA, Nayak-Kapoor A, Samuel TA, Abrams SI, Liu K. Deregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer. J Biol Chem 2013; 288:19103-15. [PMID: 23677993 DOI: 10.1074/jbc.m112.434530] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Banerjee S, Lu J, Cai Q, Saha A, Jha HC, Dzeng RK, Robertson ES. The EBV Latent Antigen 3C Inhibits Apoptosis through Targeted Regulation of Interferon Regulatory Factors 4 and 8. PLoS Pathog 2013; 9:e1003314. [PMID: 23658517 PMCID: PMC3642079 DOI: 10.1371/journal.ppat.1003314] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers. Interferon regulatory factor (IRF) family members have different roles in context of pathogen response, signal transduction, cell proliferation and hematopoietic development. IRF4 and IRF8 are members of the IRF family and are critical mediators of B-cell development. Enhanced expression of IRF4 is often associated with multiple myeloma and adult T-cell lymphomas. Furthermore, IRF8 can function as a tumor suppressor in myeloid cancers. Epstein-Barr virus (EBV), one of the first characterized human tumor viruses is associated with several lymphoid malignancies. One of the essential antigens, EBV encoded nuclear antigen 3C (EBNA3C), plays a critical role in EBV-induced B-cell transformation. In our study, we now demonstrate that EBNA3C forms a molecular complex with IRF4 and IRF8 specifically through its N-terminal domain. We show that IRF4 is stabilized by EBNA3C, which resulted in downregulation of IRF8 through proteasome-mediated degradation and subsequent inhibition of its tumor suppressive activity. Moreover, si-RNA-mediated inhibition of IRF4 showed a substantial reduction in EBV transformed B-cell proliferation, and also enhanced their sensitivity to DNA-damage induced apoptosis. Therefore, our findings demonstrated that targeted disruption of EBNA3C-mediated differential regulation of IRF4 and IRF8 may have potential therapeutic value for treating EBV induced B-cell malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Salem S, Gros P. Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:45-80. [DOI: 10.1007/978-1-4614-6111-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Banik D, Khan ANH, Walseng E, Segal BH, Abrams SI. Interferon regulatory factor-8 is important for histone deacetylase inhibitor-mediated antitumor activity. PLoS One 2012; 7:e45422. [PMID: 23028998 PMCID: PMC3446900 DOI: 10.1371/journal.pone.0045422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The notion that epigenetic alterations in neoplasia are reversible has provided the rationale to identify epigenetic modifiers for their ability to induce or enhance tumor cell death. Histone deacetylase inhibitors (HDACi) represent one such class of anti-neoplastic agents. Despite great interest for clinical use, little is known regarding the molecular targets important for response to HDACi-based cancer therapy. We had previously shown that interferon regulatory factor (IRF)-8, originally discovered as a leukemia suppressor gene by regulating apoptosis, also regulates Fas-mediated killing in non-hematologic tumor models. Furthermore, we and others have shown that epigenetic mechanisms are involved in repression of IRF-8 in tumors. Therefore, in our preclinical tumor model, we tested the hypothesis that IRF-8 expression is important for response to HDACi-based antitumor activity. In the majority of experiments, we selected the pan-HDACi, Trichostatin A (TSA), because it was previously shown to restore Fas sensitivity to tumor cells. Overall, we found that: 1) TSA alone and more so in combination with IFN-γ enhanced both IRF-8 expression and Fas-mediated death of tumor cells in vitro; 2) TSA treatment enhanced IRF-8 promoter activity via a STAT1-dependent pathway; and 3) IRF-8 was required for this death response, as tumor cells rendered IRF-8 incompetent were significantly less susceptible to Fas-mediated killing in vitro and to HDACi-mediated antitumor activity in vivo. Thus, IRF-8 status may underlie a novel molecular basis for response to HDACi-based antitumor treatment.
Collapse
Affiliation(s)
- Debarati Banik
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - A. Nazmul H. Khan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Even Walseng
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Döring Y, Soehnlein O, Drechsler M, Shagdarsuren E, Chaudhari SM, Meiler S, Hartwig H, Hristov M, Koenen RR, Hieronymus T, Zenke M, Weber C, Zernecke A. Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2012; 32:1613-23. [DOI: 10.1161/atvbaha.111.236539] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective—
Inflammatory leukocyte accumulation drives atherosclerosis. Although monocytes/macrophages and polymorphonuclear neutrophilic leukocytes (PMN) contribute to lesion formation, sequelae of myeloproliferative disease remain to be elucidated.
Methods and Results—
We used mice deficient in interferon regulatory factor 8 (IRF8
−/−
) in hematopoietic cells that develop a chronic myelogenous leukemia-like phenotype. Apolipoprotein E-deficient mice reconstituted with IRF8
−/−
or IRF8
−/−
apolipoprotein E-deficient bone marrow displayed an exacerbated atherosclerotic lesion formation compared with controls. The chronic myelogenous leukemia-like phenotype in mice with IRF8
−/−
bone marrow, reflected by an expansion of PMN in the circulation, was associated with an increased lesional accumulation and apoptosis of PMN, and enlarged necrotic cores. IRF8
−/−
compared with IRF8
+/+
PMN displayed unaffected reactive oxygen species formation and discharge of PMN granule components. In contrast, accumulating in equal numbers at sites of inflammation, IRF8
−/−
macrophages were defective in efferocytosis, lipid uptake, and interleukin-10 cytokine production. Importantly, depletion of PMN in low-density lipoprotein receptor or apolipoprotein E-deficient mice with IRF8
−/−
or IRF8
−/−
apolipoprotein E-deficient bone marrow abrogated increased lesion formation.
Conclusion—
These findings indicate that a chronic myelogenous leukemia-like phenotype contributes to accelerated atherosclerosis in mice. Among proatherosclerotic effects of other cell types, this, in part, is linked to an expansion of functionally intact PMN.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Erdenechimeg Shagdarsuren
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Sweena M. Chaudhari
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Svenja Meiler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Helene Hartwig
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Mihail Hristov
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Rory R. Koenen
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Thomas Hieronymus
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Martin Zenke
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Alma Zernecke
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| |
Collapse
|
32
|
Stewart TJ, Greeneltch KM, Reid JE, Liewehr DJ, Steinberg SM, Liu K, Abrams SI. Interferon regulatory factor-8 modulates the development of tumour-induced CD11b+Gr-1+ myeloid cells. J Cell Mol Med 2011; 13:3939-50. [PMID: 20196788 PMCID: PMC3858838 DOI: 10.1111/j.1582-4934.2009.00685.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumour-induced myeloid-derived suppressor cells (MDSC) promote immune suppression and mediate tumour progression. However, the molecular basis for the generation of MDSC, which in mice co-express the CD11b+ and Gr-1+ cell surface markers remains unclear. Because CD11b+Gr-1+ cells expand during progressive tumour growth, this suggests that tumour-induced events alter signalling pathways that affect normal myeloid cell development. Interferon regulatory factor-8 (IRF-8), a member of the IFN-γ regulatory factor family, is essential for normal myelopoiesis. We therefore examined whether IRF-8 modulated tumour-induced CD11b+Gr-1+ cell development or accumulation using both implantable (4T1) and transgenic (MMTV-PyMT) mouse models of mammary tumour growth. In the 4T1 model, both splenic and bone marrow-derived CD11b+Gr-1+ cells of tumour-bearing mice displayed a marked reduction in IRF-8 expression compared to control populations. A causal link between IRF-8 expression and the emergence of tumour-induced CD11b+Gr-1+ cells was explored in vivo using a double transgenic (dTg) mouse model designed to express transgenes for both IRF-8 and mammary carcinoma development. Despite the fact that tumour growth was unaffected, splenomegaly, as well as the frequencies and absolute numbers of CD11b+Gr-1+ cells were significantly lower in dTg mice when compared with single transgenic tumour-bearing mice. Overall, these data reveal that IRF-8 plays an important role in tumour-induced development and/or accumulation of CD11b+Gr-1+ cells, and establishes a molecular basis for the potential manipulation of these myeloid populations for cancer therapy.
Collapse
Affiliation(s)
- Trina J Stewart
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang J, Hu X, Zimmerman M, Torres CM, Yang D, Smith SB, Liu K. Cutting edge: IRF8 regulates Bax transcription in vivo in primary myeloid cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4426-30. [PMID: 21949018 DOI: 10.4049/jimmunol.1101034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A prominent phenotype of IRF8 knockout (KO) mice is the uncontrolled expansion of immature myeloid cells. The molecular mechanism underlying this myeloproliferative syndrome is still elusive. In this study, we observed that Bax expression level is low in bone marrow preginitor cells and increases dramatically in primary myeloid cells in wt mice. In contrast, Bax expression level remained at a low level in primarymyeloid cells in IRF8 KO mice. However, in vitro IRF8 KO bone marrow-differentiated myeloid cells expressed Bax at a level as high as that in wild type myeloid cells. Furthermore, we demonstrated that IRF8 specifically binds to the Bax promoter region in primary myeloid cells. Functional analysis indicated that IRF8 deficiency results in increased resistance of the primary myeloid cells to Fas-mediated apoptosis. Our findings show that IRF8 directly regulates Bax transcription in vivo, but not in vitro during myeloid cell lineage differentiation.
Collapse
Affiliation(s)
- Jine Yang
- Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Interferon consensus sequence binding protein-induced cell proliferation is mediated by TGF-β signaling and p38 MAPK activation. J Transl Med 2011; 91:1304-13. [PMID: 21625229 DOI: 10.1038/labinvest.2011.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon consensus sequence binding protein (ICSBP), also known as interferon regulatory factor (IRF)-8, is a member of the interferon (IFN)-γ regulatory transcription factors. Studies have suggested a connection between TGF-β signaling and IRFs. Thus, we investigated the effect of ICSBP on transforming growth factor (TGF)-β signaling in HL-60, an acute promyelocytic leukemia cell line. Stable expression of ICSBP in HL-60 cells resulted in strong induction of TGF-β receptor expression and activation of non-Smad as well as Smad pathways. ICSBP expression also augmented cell growth. ICSBP knockdown with small interfering RNA (siRNA) attenuated cell growth and decreased TGF-β receptor I (TGF-βRI) expression. In addition, reduction of TGF-βRI using siRNA or pharmacological inhibitor reduced growth of ICSBP-expressing cells. ICSBP expression also led to increased phosphorylation and activation of Akt and p38 MAPK. However, p38 MAPK, but not PI3K-Akt, inhibition abrogated ICSBP-mediated proliferation. Furthermore, siRNA knockdown of either ICSBP or TGF-βRI resulted in decreased p38 activation. Intriguingly, TGF-β-activated kinase 1 (TAK-1), which phosphorylates p38, was activated in ICSBP-expressing cells and its activity was reduced by TGF-βRI inhibition. Finally, siRNA knockdown of ICSBP or TGF-βRI reduced TAK-1 phosphorylation. This study identifies a novel role for ICSBP in regulating cell growth via TGF-β receptor upregulation and subsequent activation of the TGF-β receptor/TAK-1/p38 pathway.
Collapse
|
35
|
Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 2011; 71:2882-91. [PMID: 21487040 DOI: 10.1158/0008-5472.can-10-2493] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.
Collapse
MESH Headings
- Acid Ceramidase/biosynthesis
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- Ceramides/metabolism
- DNA Methylation
- Fas Ligand Protein/immunology
- Fas Ligand Protein/pharmacology
- HT29 Cells
- Humans
- Interferon Regulatory Factors/biosynthesis
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/metabolism
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, and Cancer Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Otto N, Manukjan G, Göhring G, Hofmann W, Scherer R, Luna JC, Lehmann U, Ganser A, Welte K, Schlegelberger B, Steinemann D. ICSBP promoter methylation in myelodysplastic syndromes and acute myeloid leukaemia. Leukemia 2011; 25:1202-7. [PMID: 21475251 DOI: 10.1038/leu.2011.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Sonda N, Chioda M, Zilio S, Simonato F, Bronte V. Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr Opin Immunol 2011; 23:279-85. [DOI: 10.1016/j.coi.2010.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
|
38
|
Cooperative contributions of interferon regulatory factor 1 (IRF1) and IRF8 to interferon-γ-mediated cytotoxic effects on oligodendroglial progenitor cells. J Neuroinflammation 2011; 8:8. [PMID: 21261980 PMCID: PMC3039583 DOI: 10.1186/1742-2094-8-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Administration of exogenous interferon-γ (IFNγ) aggravates the symptoms of multiple sclerosis (MS), whereas interferon-β (IFNβ) is used for treatment of MS patients. We previously demonstrated that IFNγ induces apoptosis of oligodendroglial progenitor cells (OPCs), suggesting that IFNγ is more toxic to OPCs than IFNβ. Thus we hypothesized that a difference in expression profiles between IFNγ-inducible and IFNβ-inducible genes in OPCs would predict the genes responsible for IFNγ-mediated cytotoxic effects on OPCs. We have tested this hypothesis particularly focusing on the interferon regulatory factors (IRFs) well-known transcription factors up-regulated by IFNs. Methods Highly pure primary rat OPC cultures were treated with IFNγ and IFNβ. Cell death and proliferation were assessed by MTT reduction, caspse-3-like proteinase activity, Annexin-V binding, mitochondrial membrane potential, and BrdU-incorporation. Induction of all nine IRFs was comprehensively compared by quantitative PCR between IFNγ-treated and IFNβ-treated OPCs. IRFs more strongly induced by IFNγ than by IFNβ were selected, and tested for their ability to induce OPC apoptosis by overexpression and by inhibition by dominant-negative proteins or small interference RNA either in the presence or absence of IFNγ. Results Unlike IFNγ, IFNβ did not induce apoptosis of OPCs. Among nine IRFs, IRF1 and IRF8 were preferentially up-regulated by IFNγ. In contrast, IRF7 was more robustly induced by IFNβ than by IFNγ. Overexpressed IRF1 elicited apoptosis of OPCs, and a dominant negative IRF1 protein partially protected OPCs from IFNγ-induced apoptosis, indicating a substantial contribution of IRF1 to IFNγ-induced OPC apoptosis. On the other hand, overexpression of IRF8 itself had only marginal proapoptotic effects. However, overexpressed IRF8 enhanced the IFNγ-induced cytotoxicity and the proapoptotic effect of overexpressed IRF1, and down-regulation of IRF8 by siRNA partially but significantly reduced preapoptotic cells after treatment with IFNγ, suggesting that IRF8 cooperatively enhances IFNγ-induced OPC apoptosis. Conclusions This study has identified that IRF1 and IRF8 mediate IFNγ-signaling leading to OPC apoptosis. Therapies targeting at these transcription factors and their target genes could reduce IFNγ-induced OPC loss and thereby enhance remyelination in MS patients.
Collapse
|
39
|
Abstract
In vertebrates, myeloid cells comprise polymorphonuclear and mononuclear lineages that arise from 2 successive waves of development: a transitory primitive wave giving rise to limited myeloid cells during embryonic stage and a definitive wave capable of producing myeloid cells throughout the fetal and adult life. One key unresolved question is what factors dictate polymorphonuclear versus mononuclear lineage fates during myelopoiesis. Here we show that during zebrafish embryogenesis interferon regulatory factor-8 (irf8) is expressed specifically in macrophages but not neutrophils. Suppression of Irf8 function in zebrafish causes a depletion of macrophages and an enhanced output of neutrophils but does not affect the overall number, proliferation, and survival of primitive myeloid cells. These data indicate that the skewed myeloid lineage development in Irf8 knockdown embryos results from a cell-fate switching. Such a conclusion is further supported by the observation showing that overexpression of Irf8 promotes macrophage formation at the expense of neutrophil development. Genetic epistasis analysis reveals that Irf8 acts downstream of Pu.1 but is insufficient to promote macrophage development in the absence of Pu.1. Our findings demonstrate that Irf8 is a critical determinant for neutrophil versus macrophage fate choice during zebrafish primitive myelopoiesis.
Collapse
|
40
|
Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116:2759-67. [PMID: 20585039 DOI: 10.1182/blood-2009-07-234559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon regulatory factor 4 (IRF-4) plays important functions in B- and T-cell development and immune response regulation and was originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. Although IRF-4 is expressed in myeloid cells, its function in that lineage is not known. The closely related family member IRF-8 is a critical regulator of myelopoiesis, which when deleted in mice results in a syndrome highly similar to human chronic myelogenous leukemia. In early lymphoid development, we have shown previously that IRF-4 and IRF-8 can function redundantly. We therefore investigated the effects of a combined loss of IRF-4 and IRF-8 on hematologic tumorigenesis. We found that mice deficient in both IRF-4 and IRF-8 develop from a very early age a more aggressive chronic myelogenous leukemia-like disease than mice deficient in IRF-8 alone, correlating with a greater expansion of granulocyte-monocyte progenitors. Although these results demonstrate, for the first time, that IRF-4 can function as tumor suppressor in myeloid cells, interestingly, all mice deficient in both IRF-4 and IRF-8 eventually develop and die of a B-lymphoblastic leukemia/lymphoma. Combined losses of IRF-4 and IRF-8 therefore can cooperate in the development of both myeloid and lymphoid tumors.
Collapse
|
41
|
Abrams SI. A multi-functional role of interferon regulatory factor-8 in solid tumor and myeloid cell biology. Immunol Res 2010; 46:59-71. [PMID: 19756408 DOI: 10.1007/s12026-009-8125-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding mechanisms of tumor escape are critically important not only to improving our knowledge of cancer biology, but also for the overall development of more effective anti-neoplastic therapies. Our laboratory focuses on mechanisms of apoptotic resistance, with emphasis on Fas loss of function as an important determinant of tumor progression. Our work in solid tumor systems has led to the identification of interferon regulatory factor-8 (IRF-8) as a differentially expressed gene important for tumor cell response to cytotoxicity, including Fas-mediated apoptosis and host-anti-tumor immunosurveillance mechanisms. Although IRF-8 was originally identified in the regulation of normal and neoplastic myeloid cell development, these findings revealed a new functional role for IRF-8 in non-hematopoietic malignancies and establish a molecular basis for its potential manipulation during cancer therapy.
Collapse
Affiliation(s)
- Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
42
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
43
|
Koenigsmann J, Carstanjen D. Loss of Irf8 does not co-operate with overexpression of BCL-2 in the induction of leukemias in vivo. Leuk Lymphoma 2010; 50:2078-82. [PMID: 19814688 DOI: 10.3109/10428190903296913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 2009; 227:234-47. [PMID: 19120488 DOI: 10.1111/j.1600-065x.2008.00718.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pathogen invasion induces a rapid inflammatory response initiated through the recognition of pathogen-derived molecules by pattern recognition receptors (PRRs) expressed on both immune and non-immune cells. The initial wave of pro-inflammatory cytokines and chemokines limits pathogen spread and recruits and activates immune cells to eradicate the invaders. Dendritic cells (DCs) are responsible for initiating a subsequent phase of immunity, dominated by the action of pathogen-specific T and B cells. As for the early pro-inflammatory response, DC activation is triggered by PRR signals. These signals convert resting DCs into potent antigen-presenting cells capable of promoting the expansion and effector differentiation of naive pathogen-specific T cells. However, it has been argued that signals from PRRs are not a prerequisite for DC activation and that pro-inflammatory cytokines have the same effect. Although this may appear like an efficient way to expand the number of DCs that initiate adaptive immunity, evidence is accumulating that DCs activated indirectly by inflammatory cytokines are unable to induce functional T-cell responses. Here, we review the differences between PRR-triggered and cytokine-induced DC activation and speculate on a potential role for DCs activated by inflammatory signals in tolerance induction rather than immunity.
Collapse
Affiliation(s)
- Olivier Joffre
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | |
Collapse
|
45
|
Abstract
Chronic myeloid leukemia (CML) has been regarded as the paradigmatic example of a malignancy defined by a unique molecular event, the BCR-ABL1 oncogene. Decades of research zeroing in on the role of BCR-ABL1 kinase in the pathogenesis of CML have culminated in the development of highly efficacious therapeutics that, like imatinib mesylate, target the oncogenic kinase activity of BCR-ABL1. In recent years, most research efforts in CML have been devoted to developing novel tyrosine kinase inhibitors (TKIs) as well as to elucidating the mechanisms of resistance to imatinib and other TKIs. Nonetheless, primordial aspects of the pathogenesis of CML, such as the mechanisms responsible for the transition from chronic phase to blast crisis, the causes of genomic instability and faulty DNA repair, the phenomenon of stem cell quiescence, the role of tumor suppressors in TKI resistance and CML progression, or the cross-talk between BCR-ABL1 and other oncogenic signaling pathways, still remain poorly understood. Herein, we synthesize the most relevant and current knowledge on such areas of the pathogenesis of CML.
Collapse
|
46
|
Yang D, Wang S, Brooks C, Dong Z, Schoenlein PV, Kumar V, Ouyang X, Xiong H, Lahat G, Hayes-Jordan A, Lazar A, Pollock R, Lev D, Liu K. IFN regulatory factor 8 sensitizes soft tissue sarcoma cells to death receptor-initiated apoptosis via repression of FLICE-like protein expression. Cancer Res 2009; 69:1080-8. [PMID: 19155307 DOI: 10.1158/0008-5472.can-08-2520] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFN regulatory factor 8 (IRF8) has been shown to suppress tumor development at least partly through regulating apoptosis of tumor cells; however, the molecular mechanisms underlying IRF8 regulation of apoptosis are still not fully understood. Here, we showed that disrupting IRF8 function resulted in inhibition of cytochrome c release, caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase cleavage in soft tissue sarcoma (STS) cells. Inhibition of the mitochondrion-dependent apoptosis signaling cascade is apparently due to blockage of caspase-8 and Bid activation. Analysis of signaling events upstream of caspase-8 revealed that disrupting IRF8 function dramatically increases FLIP mRNA stability, resulting in increased IRF8 protein level. Furthermore, primary myeloid cells isolated from IRF8-null mice also exhibited increased FLIP protein level, suggesting that IRF8 might be a general repressor of FLIP. Nuclear IRF8 protein was absent in 92% (55 of 60) of human STS specimens, and 99% (59 of 60) of human STS specimens exhibited FLIP expression, suggesting that the nuclear IRF8 protein level is inversely correlated with FLIP level in vivo. Silencing FLIP expression significantly increased human sarcoma cells to both FasL-induced and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, and ectopic expression of IRF8 also significantly increased the sensitivity of these human sarcoma cells to FasL- and TRAIL-induced apoptosis. Taken together, our data suggest that IRF8 mediates FLIP expression level to regulate apoptosis and targeting IRF8 expression is a potentially effective therapeutic strategy to sensitize apoptosis-resistant human STS to apoptosis, thereby possibly overcoming chemoresistance of STS, currently a major obstacle in human STS therapy.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Biochemistry, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McGough JM, Yang D, Huang S, Georgi D, Hewitt SM, Röcken C, Tänzer M, Ebert MPA, Liu K. DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol Cancer Res 2008; 6:1841-51. [PMID: 19074829 PMCID: PMC2605678 DOI: 10.1158/1541-7786.mcr-08-0280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IFN regulatory factor 8 (IRF8) is both constitutively expressed and IFN-gamma inducible in hematopoietic and nonhematopoietic cells. We have shown that IRF8 expression is silenced by DNA methylation in human colon carcinoma cells, but the molecular mechanism underlying methylation-dependent IRF8 silencing remains elusive. In this study, we observed that IRF8 protein level is inversely correlated with the methylation status of the IRF8 promoter and the metastatic phenotype in human colorectal carcinoma specimens in vivo. Demethylation treatment or knocking down DNMT1 and DNMT3b expression rendered the tumor cells responsive to IFN-gamma to activate IRF8 transcription in vitro. Bisulfite genomic DNA sequencing revealed that the entire CpG island of the IRF8 promoter is methylated. Electrophoresis mobility shift assay revealed that DNA methylation does not directly inhibit IFN-gamma-activated phosphorylated signal transducer and activator of transcription 1 (pSTAT1) binding to the IFN-gamma activation site element in the IRF8 promoter in vitro. Chromatin immunoprecipitation assay revealed that pSTAT1 is associated with the IFN-gamma activation site element of the IRF8 promoter in vivo regardless of the methylation status of the IRF8 promoter. However, DNA methylation results in preferential association of PIAS1, a potent inhibitor of pSTAT1, with pSTAT1 in the methylated IRF8 promoter region. Silencing methyl-CpG binding domain protein 1 (MBD1) expression resulted in IRF8 activation by IFN-gamma in human colon carcinoma cells with methylated IRF8 promoter. Our data thus suggest that human colon carcinoma cells silence IFN-gamma-activated IRF8 expression through MBD1-dependent and PIAS1-mediated inhibition of pSTAT1 function at the methylated IRF8 promoter.
Collapse
Affiliation(s)
- Jon M. McGough
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Shuang Huang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| | - David Georgi
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912. USA
| | - Stephen M. Hewitt
- Tissue Array Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Marc Tänzer
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912. USA
| |
Collapse
|
48
|
Tshuikina M, Jernberg-Wiklund H, Nilsson K, Oberg F. Epigenetic silencing of the interferon regulatory factor ICSBP/IRF8 in human multiple myeloma. Exp Hematol 2008; 36:1673-1681. [PMID: 18922617 DOI: 10.1016/j.exphem.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Multiple myeloma (MM) is presently an incurable malignant plasma cell tumor. The objective of this study was to investigate expression of the interferon regulatory factor family (IRF1-9) and the potential role of DNA methylation in silencing IRF genes in MM cell lines and purified MM cells from patients. MATERIALS AND METHODS Using a panel of 13 human MM cell lines and purified CD138+ cells from nine MM patients, expression of IRF genes was investigated by quantitative reverse transcriptase polymerase chain reaction and Western blot. DNA methylation of the interferon consensus sequence-binding protein (ICSBP/IRF8) gene was measured using pyrosequencing, and the effect of promoter methylation on expression was analyzed by in vitro methylation of a cloned ICSBP/IRF8 promoter, and treatment of MM cells with 5-aza-2'-deoxycytidine (DAC). RESULTS Eight of thirteen of the MM cell lines were found to lack ICSBP/IRF8 expression, associated with hypermethylation of the CpG island in the ICSBP/IRF8 promoter. We also found that ICSBP/IRF8 was significantly underexpressed in primary MM cells, whereas the ICSBP/IRF8 promoter was methylated in only one of nine of primary purified CD138+ MM samples. DAC-mediated demethylation restored endogenous ICSBP/IRF8 expression, whereas in vitro methylation silenced the promoter. CONCLUSION Expression of the ICSBP/IRF8 gene is silenced in a majority of MM cell lines and primary CD138+ MM cells. DNA methylation of the ICSBP/IRF8 gene is a frequent event in MM cell lines, but silencing is also observed in the absence of methylation. These results suggest that silencing of ICSBP/IRF8 expression, by DNA methylation or other epigenetic mechanisms, may be associated with the malignant phenotype of MM.
Collapse
Affiliation(s)
- Marina Tshuikina
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
49
|
Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26:535-84. [PMID: 18303999 DOI: 10.1146/annurev.immunol.26.021607.090400] [Citation(s) in RCA: 989] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Collapse
Affiliation(s)
- Tomohiko Tamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
50
|
Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci 2008; 99:467-78. [PMID: 18190617 PMCID: PMC11159419 DOI: 10.1111/j.1349-7006.2007.00720.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 01/03/2023] Open
Abstract
A family of transcription factors, the interferon regulatory factors (IRF), was identified originally in the context of the regulation of the type I interferon (IFN)-alpha/beta system. The IRF family has now expanded to nine members, and gene-disruption studies have revealed the critical involvement of these members in multiple facets of host defense systems, such as innate and adaptive immune responses and tumor suppression. In the present review article, we aim at summarizing our current knowledge of the roles of IRF in host defense, with special emphasis on their involvement in the regulation of oncogenesis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|