1
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
2
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
3
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
4
|
Guan J, Peske JD, Valerio MM, Park C, Robey EA, Sadegh-Nasseri S. Commensal Bacteria Maintain a Qa-1 b -restricted Unconventional CD8 + T Population in Gut Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530600. [PMID: 36909616 PMCID: PMC10002720 DOI: 10.1101/2023.03.01.530600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8 + T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1 b -restricted CD8 + T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1 b -dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigen, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1 b -restricted IEL landscape.
Collapse
|
5
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
6
|
Mayassi T, Barreiro LB, Rossjohn J, Jabri B. A multilayered immune system through the lens of unconventional T cells. Nature 2021; 595:501-510. [PMID: 34290426 PMCID: PMC8514118 DOI: 10.1038/s41586-021-03578-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.
Collapse
Affiliation(s)
- Toufic Mayassi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Luis B. Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Pediatrics, University of Chicago, Chicago, IL, USA.,Correspondence and requests for materials should be addressed to B.J.,
| |
Collapse
|
7
|
Goodall KJ, Nguyen A, McKenzie C, Eckle SBG, Sullivan LC, Andrews DM. The murine CD94/NKG2 ligand, Qa-1 b, is a high-affinity, functional ligand for the CD8αα homodimer. J Biol Chem 2020; 295:3239-3246. [PMID: 31992596 PMCID: PMC7062157 DOI: 10.1074/jbc.ra119.010509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
The immune co-receptor CD8 molecule (CD8) has two subunits, CD8α and CD8β, which can assemble into homo or heterodimers. Nonclassical (class-Ib) major histocompatibility complex (MHC) molecules (MHC-Ibs) have recently been identified as ligands for the CD8αα homodimer. This was demonstrated by the observation that histocompatibility 2, Q region locus 10 (H2-Q10) is a high-affinity ligand for CD8αα which also binds the MHC-Ib molecule H2-TL. This suggests that MHC-Ib proteins may be an extended source of CD8αα ligands. Expression of H2-T3/TL and H2-Q10 is restricted to the small intestine and liver, respectively, yet CD8αα-containing lymphocytes are present more broadly. Therefore, here we sought to determine whether murine CD8αα binds only to tissue-specific MHC-Ib molecules or also to ubiquitously expressed MHC-Ib molecules. Using recombinant proteins and surface plasmon resonance-based binding assays, we show that the MHC-Ib family furnishes multiple binding partners for murine CD8αα, including H2-T22 and the CD94/NKG2-A/B-activating NK receptor (NKG2) ligand Qa-1b We also demonstrate a hierarchy among MHC-Ib proteins with respect to CD8αα binding, in which Qa-1b > H2-Q10 > TL. Finally, we provide evidence that Qa-1b is a functional ligand for CD8αα, distinguishing it from its human homologue MHC class I antigen E (HLA-E). These findings provide additional clues as to how CD8αα-expressing cells are controlled in different tissues. They also highlight an unexpected immunological divergence of Qa-1b/HLA-E function, indicating the need for more robust studies of murine MHC-Ib proteins as models for human disease.
Collapse
Affiliation(s)
- Katharine Jennifer Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Craig McKenzie
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Sidonia Barbara Guiomar Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Lucy Catherine Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Daniel Mark Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
8
|
Raynor J, Lin A, Hummel SA, Lampe K, Jordan M, Hoebe K, Hildeman DA. The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Front Immunol 2020; 11:197. [PMID: 32153566 PMCID: PMC7044186 DOI: 10.3389/fimmu.2020.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points to a key role for NK cells in controlling adaptive immune responses. In studies examining the role of CD1d on CD4+ T cell responses, we found that a line of CD1d-deficient mice on the C57BL/6J background had a homozygous 129 locus on chromosome 6 containing the entire NK cell gene cluster. Mice possessing this locus (C57BL/6.NKC129) displayed a >10-fold reduction in antigen-specific CD4+ T cell responses after intracranial infection with lymphocytic choriomeningitis virus (LCMV). Neither parental strain displayed defects in viral-specific CD4+ T cell responses. Interestingly, following infection, increased numbers of NK cells accumulated in the lymph nodes of C57BL/6.NKC129 mice and displayed enhanced in vivo functionality. Moreover, depletion of NK cells with anti-asialo-GM-1 antibody in C57BL/6.NKC129 mice resulted in a >20-fold increase in viral-specific CD4+ T cell responses. Mechanistically, we found that dendritic cell antigen presentation and early type I IFN production were significantly decreased in C57BL/6.NKC129 mice, but were restored in perforin-deficient C57BL/6.NKC129 mice or following NK depletion. Together, these data reveal that the variable genomic regions containing the activating/inhibitory NK cell receptors are key determinants of antigen-specific CD4+ T cell responses, controlling type I IFN production and the antigen-presenting capacity of dendritic cells.
Collapse
Affiliation(s)
- Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Adora Lin
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah A Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristin Lampe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kasper Hoebe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2019; 18:514-525. [PMID: 29717233 DOI: 10.1038/s41577-018-0013-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal epithelial barrier is patrolled by resident intraepithelial lymphocytes (IELs) that are involved in host defence against pathogens, wound repair and homeostatic interactions with the epithelium, microbiota and nutrients. Intestinal IELs are one of the largest populations of lymphocytes in the body and comprise several distinct subsets, the identity and lineage relationships of which have long remained elusive. Here, we review advances in unravelling the complexity of intestinal IEL populations, which comprise conventional αβ T cell receptor (TCRαβ)+ subsets, unconventional TCRαβ+ and TCRγδ+ subsets, group 1 innate lymphoid cells (ILC1s) and ILC1-like cells. Although these intestinal IEL lineages have partially overlapping effector programmes and recognition properties, they have strikingly different developmental pathways. We suggest that evolutionary pressure has driven the recurrent generation of cytolytic effector lymphocytes to protect the intestinal epithelial layer, but they may also precipitate intestinal inflammatory disorders, such as coeliac disease.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA.,Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
11
|
Mayassi T, Jabri B. Human intraepithelial lymphocytes. Mucosal Immunol 2018; 11:1281-1289. [PMID: 29674648 PMCID: PMC6178824 DOI: 10.1038/s41385-018-0016-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/04/2023]
Abstract
The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ+CD8αβ+ IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ+CD8αα+ and adaptively induced TCRαβ+CD8αβ+ IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.
Collapse
Affiliation(s)
- Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, USA
- Committee on Immunology, University of Chicago, Chicago, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, USA.
- Committee on Immunology, University of Chicago, Chicago, USA.
- Department of Pathology, University of Chicago, Chicago, USA.
- Department of Pediatrics, University of Chicago, Chicago, USA.
| |
Collapse
|
12
|
Schattgen SA, Thomas PG. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Immunol Rev 2018; 284:79-90. [PMID: 29944761 PMCID: PMC6128411 DOI: 10.1111/imr.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last several decades, novel populations of unconventional T cells have been identified; defined by an invariant (or nearly invariant) T cell receptor (TCR) with a fixed specificity to non-canonical antigens and major histocompatibility (MHC) molecules, they form large, functionally monoclonal populations tasked with surveying for their specific antigens. With residence in both lymphoid and non-lymphoid tissues coupled with their ability to rapidly produce a spectrum of cytokines and effector molecules, the unconventional T cells are poised as some of the first responders to infection/damage and are thought to provide critical coverage before more focused, conventional T cell responses are mobilized. However, new technologies for the measurement and characterization of TCR repertoires have identified an underappreciated amount of TCR diversity in the unconventional T cells. In many cases, the specificities of these diverse TCRs converge on the same or similar antigens as their invariant counterparts, while others have yet to be defined. Here, we will review the current knowledge of the TCR repertoires of unconventional T cells and discuss how repertoires might be used as a framework for their organization, and further our understanding of their role not only during an immune response, but also their contribution in maintaining homeostasis.
Collapse
Affiliation(s)
| | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
13
|
Olivares-Villagómez D, Van Kaer L. Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol 2018; 39:264-275. [PMID: 29221933 PMCID: PMC8056148 DOI: 10.1016/j.it.2017.11.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are a large and diverse population of lymphoid cells that reside between the intestinal epithelial cells (IECs) that form the intestinal mucosal barrier. Although IEL biology has traditionally focused on T cells, recent studies have identified several subsets of T cell receptor (TCR)-negative IELs with intriguing properties. New insight into the development, homeostasis, and functions of distinct IEL subsets has recently been provided. Additional studies have revealed intricate interactions between different IEL subsets, reciprocal interactions between IELs and IECs, and communication of IELs with immune cells that reside outside the intestinal epithelium. We review here sentinel functions of IELs in the maintenance of the mucosal barrier integrity, as well as how dysregulated IEL responses can contribute to pathology.
Collapse
Affiliation(s)
- Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Konjar Š, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal Barrier Interactions with Specialized CD8 T Cells. Front Immunol 2017; 8:1281. [PMID: 29075263 PMCID: PMC5641586 DOI: 10.3389/fimmu.2017.01281] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
The trillions of microorganisms that reside in the gastrointestinal tract, essential for nutrient absorption, are kept under control by a single cell barrier and large amounts of immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment supporting microbial colonization and immunological tolerance. A large population of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and external environment and the host tissues, they seem ideally positioned to balance immune tolerance and protection to preserve the fragile intestinal barrier from invasion as well as immunopathology. IELs are a heterogeneous population, with a large innate-like contribution of unknown specificity, intercalated with antigen-specific tissue-resident memory T cells. In this review, we provide a comprehensive overview of IEL physiology and how they interact with the IECs and contribute to immune surveillance to preserve intestinal homeostasis and host-microbial relationships.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Robles E. F, Vázquez V. P, Emiliano J. R, Amaro R. G, Briones S. L. High fat diet induces alterations to intraepithelial lymphocyte and cytokine mRNA in the small intestine of C57BL/6 mice. RSC Adv 2017. [DOI: 10.1039/c6ra24689c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this work was to investigate the possible effect of high fat diet (HFD) induced obesity on iIEL subsets and their cytokine mRNA levels in C57BL/6 mice.
Collapse
Affiliation(s)
- Franco Robles E.
- Departamento de Ciencias Médicas
- División de Ciencias de la Salud
- Campus León
- Universidad de Guanajuato
- Mexico
| | - Pérez Vázquez V.
- Departamento de Ciencias Médicas
- División de Ciencias de la Salud
- Campus León
- Universidad de Guanajuato
- Mexico
| | - Ramírez Emiliano J.
- Departamento de Ciencias Médicas
- División de Ciencias de la Salud
- Campus León
- Universidad de Guanajuato
- Mexico
| | - González Amaro R.
- Departamento de Inmunología
- Escuela de Medicina
- Universidad Autónoma de San Luís Potosí
- San Luís Potosí
- Mexico
| | - López Briones S.
- Departamento de Medicina y Nutrición
- División de Ciencias de la Salud
- Campus León-Edificio de Laboratorios
- Universidad de Guanajuato
- León
| |
Collapse
|
16
|
Obata F, Subrahmanyam PB, Vozenilek AE, Hippler LM, Jeffers T, Tongsuk M, Tiper I, Saha P, Jandhyala DM, Kolling GL, Latinovic O, Webb TJ. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice. Front Microbiol 2015; 6:262. [PMID: 25904903 PMCID: PMC4389548 DOI: 10.3389/fmicb.2015.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.
Collapse
Affiliation(s)
- Fumiko Obata
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Molecular Pathology, University of Yamanashi Graduate School of Medicine Chuo, Japan
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Lauren M Hippler
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tynae Jeffers
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Methinee Tongsuk
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Irina Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Progyaparamita Saha
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Dakshina M Jandhyala
- Department of Molecular Biology and Microbiology, Tufts University Boston, MA, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA, USA
| | - Olga Latinovic
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Institute of Human Virology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
17
|
|
18
|
Mayans S, Stepniak D, Palida S, Larange A, Dreux J, Arlian B, Shinnakasu R, Kronenberg M, Cheroutre H, Lambolez F. αβT cell receptors expressed by CD4(-)CD8αβ(-) intraepithelial T cells drive their fate into a unique lineage with unusual MHC reactivities. Immunity 2014; 41:207-218. [PMID: 25131531 PMCID: PMC4142827 DOI: 10.1016/j.immuni.2014.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/12/2014] [Indexed: 11/25/2022]
Abstract
Coreceptor CD4 and CD8αβ double-negative (DN) TCRαβ(+) intraepithelial T cells, although numerous, have been greatly overlooked and their contribution to the immune response is not known. Here we used T cell receptor (TCR) sequencing of single cells combined with retrogenic expression of TCRs to study the fate and the major histocompatibility complex (MHC) restriction of DN TCRαβ(+) intraepithelial T cells. The data show that commitment of thymic precursors to the DN TCRαβ(+) lineage is imprinted by their TCR specificity. Moreover, the TCRs they express display a diverse and unusual pattern of MHC restriction that is nonoverlapping with that of CD4(+) or CD8αβ(+) T cells, indicating that they sense antigens that are not recognized by the conventional T cell subsets. The new insights indicate that DN TCRαβ(+) T cells form a third lineage of TCRαβ T lymphocytes expressing a variable TCR repertoire, which serve nonredundant immune functions.
Collapse
Affiliation(s)
- Sofia Mayans
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Clinical Microbiology-Immunology, NUS Building 6C, 901 85 Umeå, Sweden
| | - Dariusz Stepniak
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- eBioscience, 10255 Science center drive, San Diego, CA, 92121, USA
| | - Sakina Palida
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- HHMI – UCSD, 9500 Gilman Dr, George Palade 310 La Jolla, CA 92093-0647, USA
| | - Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Joanna Dreux
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Britni Arlian
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, MB-209, La Jolla, CA, 92037, USA
| | - Ryo Shinnakasu
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Florence Lambolez
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
McDonald BD, Bunker JJ, Ishizuka IE, Jabri B, Bendelac A. Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ(+)CD4(-)CD8β(-) intraepithelial lymphocyte lineage. Immunity 2014; 41:219-29. [PMID: 25131532 DOI: 10.1016/j.immuni.2014.07.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/27/2014] [Indexed: 12/16/2022]
Abstract
The origin and developmental pathway of intestinal T cell receptor αβ(+) CD4(-)CD8β(-) intraepithelial lymphocytes (unconventional iIELs), a major population of innate-like resident cytolytic T cells, have remained elusive. By cloning and expressing several TCRs isolated from unconventional iIELs, we identified immature CD4(lo)CD8(lo)(DP(lo))CD69(hi)PD-1(hi) thymocytes as the earliest postsignaling precursors for these cells. Although these precursors displayed multiple signs of elevated TCR signaling, a sizeable fraction of them escaped deletion to selectively engage in unconventional iIEL differentiation. Conversely, TCRs cloned from DP(lo)CD69(hi)PD-1(hi) thymocytes, a population enriched in autoreactive thymocytes, selectively gave rise to unconventional iIELs upon transgenic expression. Thus, the unconventional iIEL precursor overlaps with the DP(lo) population undergoing negative selection, indicating that, concomitant with the downregulation of both CD4 and CD8 coreceptors, a balance between apoptosis and survival signals results in outcomes as divergent as clonal deletion and differentiation to the unconventional iIEL lineage.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Isabel E Ishizuka
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012; 34:551-66. [PMID: 22660791 DOI: 10.1007/s00281-012-0316-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | | | | |
Collapse
|
21
|
Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, Tournier JN, Goossens PL. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog 2012; 8:e1002481. [PMID: 22253596 PMCID: PMC3257302 DOI: 10.1371/journal.ppat.1002481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms. NK cells are important immune effectors that perform a surveillance task and react to transformed, stressed, and virally infected cells. They represent a first-line defence against cancer and pathogen invasion. Different pathogens trigger distinct NK-cell activation pathways. The Bacillus anthracis spore is the highly resistant form that enters the host and provokes anthrax. This microbe kills through a combination of acute bacterial infection and devastating toxemia. In the present study, we characterise the crosstalk between NK cells and spores, as well as the strategies used by B. anthracis to evade initial control mechanisms and impact anthrax pathogenesis. Our findings exemplify the spores' property to efficiently drive a high production of IFN-γ by NK cells, as well as the complex pathways used for activation which require both cytokine and cellular signaling. B. anthracis subverts this response through its toxins by paralysing essential NK cell functions. Furthermore, edema toxin from B. anthracis blocks natural cytotoxicity without affecting IFN-γ secretion. The CyaA toxin of Bordetella pertussis possesses the same enzymatic activity and has a similar effect. The high efficiency of these toxins in blocking cytotoxicity in vivo implies possible exploitation of their subverting activity to modulate excessive cytotoxic responses in immunopathological diseases.
Collapse
MESH Headings
- Animals
- Bacillus anthracis/immunology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- Female
- Homeostasis/drug effects
- Homeostasis/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/immunology
- Spores, Bacterial/immunology
- Spores, Bacterial/physiology
Collapse
Affiliation(s)
- Maria Klezovich-Bénard
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Philippe Corre
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | | | - Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier, St-Martin-d'Hères, France
| | - Nick Burjek
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- École du Val-de-Grâce, Paris, France
| | - Pierre L. Goossens
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
22
|
DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA, Semrad C, Kupfer SS, Belkaid Y, Guandalini S, Jabri B. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011; 471:220-4. [PMID: 21307853 DOI: 10.1038/nature09849] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 01/19/2011] [Indexed: 12/18/2022]
Abstract
Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte antigen (HLA) HLA-DQ2 or HLA-DQ8 molecules develop inflammatory T-cell and antibody responses against dietary gluten, a protein present in wheat. The mechanisms underlying this dysregulated mucosal immune response to a soluble antigen have not been identified. Retinoic acid, a metabolite of vitamin A, has been shown to have a critical role in the induction of intestinal regulatory responses. Here we find in mice that in conjunction with IL-15, a cytokine greatly upregulated in the gut of coeliac disease patients, retinoic acid rapidly activates dendritic cells to induce JNK (also known as MAPK8) phosphorylation and release the proinflammatory cytokines IL-12p70 and IL-23. As a result, in a stressed intestinal environment, retinoic acid acted as an adjuvant that promoted rather than prevented inflammatory cellular and humoral responses to fed antigen. Altogether, these findings reveal an unexpected role for retinoic acid and IL-15 in the abrogation of tolerance to dietary antigens.
Collapse
Affiliation(s)
- R W DePaolo
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Egan CE, Craven M, Leng J, Mack M, Simpson KW, Denkers EY. CCR2-dependent intraepithelial lymphocytes mediate inflammatory gut pathology during Toxoplasma gondii infection. Mucosal Immunol 2009; 2:527-35. [PMID: 19741601 PMCID: PMC2860785 DOI: 10.1038/mi.2009.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mice of the C57BL/6 strain develop acute ileal inflammation after infection with the protozoan parasite Toxoplasma gondii. This pathology resembles many key features of human Crohn's disease, including a Th1 cytokine profile with high levels of interferon gamma (IFN-gamma), interleukin 12 (IL)-12, and tumor necrosis factor alpha (TNF)-alpha, presence of pathogenic CD4(+) T cells, and infiltration of gut flora into inflammed tissue. Using CCR2(-/-) mice, we identify a role for this chemokine receptor in the pathogenesis of inflammatory pathology during T. gondii infection. Lack of chemokine (C-C motif) receptor 2 (CCR2) was associated with low levels of CD103(+) T lymphocytes in the intraepithelial compartment, Peyer's patch, and lamina propria relative to wild-type animals. Adoptive transfer of wild-type, but not IFN-gamma(-/-), intraepithelial T lymphocytes converted CCR2 knockout mice from a resistant to susceptible phenotype with respect to parasite-triggered inflammatory gut pathology. These results for the first time show a role for intraepithelial T lymphocytes in pathogenesis of ileitis triggered by a microbial pathogen.
Collapse
Affiliation(s)
- C. E. Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - M.D. Craven
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J. Leng
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - M. Mack
- Department of Internal Medicine II, University of Regensburg, 93053 Regensburg, Germany
| | - K. W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - E. Y. Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Smith TRF, Tang X, Maricic I, Garcia Z, Fanchiang S, Kumar V. Dendritic Cells Use Endocytic Pathway for Cross-Priming Class Ib MHC-Restricted CD8αα+TCRαβ+T Cells with Regulatory Properties. THE JOURNAL OF IMMUNOLOGY 2009; 182:6959-68. [DOI: 10.4049/jimmunol.0900316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Hong C, Lee H, Park YK, Shin J, Jung S, Kim H, Hong S, Park SH. Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res 2009; 69:4301-8. [PMID: 19401453 DOI: 10.1158/0008-5472.can-08-1721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The physiologic function of natural killer T (NKT) cells in adaptive immunity remains largely unknown because most studies have used NKT cell agonists. In the present study, the role of NKT cells during the secondary effector phase was investigated separately from the primary immunization phase via adoptive transfer of differentiated effector T cells into naive recipients. We found that secondary antitumor CD8(+) T-cell responses were optimal when NKT cells were present. Tumor-specific CD8(+) effector T cells responded less strongly to tumor cell challenge in NKT cell-deficient recipients than in recipients with intact NKT cells. NKT cell-mediated enhancement of the secondary antitumor CD8(+) T-cell response was concurrent with increased number and activity of tumor-specific CD8(+) T cells. These findings provide the first demonstration of a direct role for NKT cells in the regulation of antigen-specific secondary T-cell responses without the use of exogenous NKT cell agonists such as alpha-galactosylceramide (alpha-GalCer). Furthermore, forced activation of NKT cells with alpha-GalCer during the secondary immune response in suboptimally immunized animals enhanced otherwise poor tumor rejection responses. Taken together, our findings strongly emphasize the importance of NKT cells in secondary CD8(+) T-cell immune responses.
Collapse
Affiliation(s)
- Changwan Hong
- School of Life Sciences and Biotechnology, Korea University, Sungbukku Anamdong, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Venanzi ES, Melamed R, Mathis D, Benoist C. The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc Natl Acad Sci U S A 2008; 105:15860-5. [PMID: 18838677 PMCID: PMC2572942 DOI: 10.1073/pnas.0808070105] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Indexed: 12/30/2022] Open
Abstract
The Aire transcription factor plays an important role in immunological self-tolerance by mediating the ectopic expression of peripheral self-antigens by thymic medullary epithelial cells (MECs), and the deletion of thymocytes that recognize them. In Aire-deficient humans or mice, central tolerance is incomplete and multiorgan autoimmune disease results. We examined the variability of Aire's effects on ectopic transcription among individual mice of three different inbred strains. Aire's function was, overall, quite similar in the three backgrounds, although generally stronger in C57BL/6 than in BALB/c or NOD mice, and a minority of Aire-regulated genes did show clear differences. Gene expression profiling of wild-type MECs from single mice, or from the two thymic lobes of the same mouse, revealed significantly greater variability in Aire-controlled ectopic gene expression than in Aire-independent transcripts. This "noisy" ectopic expression did not result from parental or early developmental imprinting, but from programming occurring after the formation of the thymic anlage, resulting from epigenetic effects or from the stochastic nature of Aire activity. Together, genetic and nongenetic variability in ectopic expression of peripheral antigens in the thymus make for differences in the portion of self determinants presented for tolerance induction. This variable self may be beneficial in preventing uniform holes in the T-cell repertoire in individuals of a species, but at the cost of variable susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Emily S. Venanzi
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215
| | - Rachel Melamed
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
27
|
Smith TRF, Kumar V. Revival of CD8+ Treg-mediated suppression. Trends Immunol 2008; 29:337-42. [PMID: 18514574 DOI: 10.1016/j.it.2008.04.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 01/19/2023]
Abstract
Despite their first recognition almost 40 years ago, CD8(+) 'suppressor' T cells remain poorly characterized. Recent studies of these lymphocytes, now popularly referred to as regulatory CD8(+) T cells (CD8(+) Tregs), have helped clarify their important role in the regulation of autoimmune disease. Here, we review progress related to the identification, phenotype and function of CD8(+) Tregs. We also focus on a newly described subset, CD8alphaalpha(+)TCRalphabeta(+) Tregs, which in mice recognize a T-cell receptor-derived peptide in the context of the class Ib major histocompatibility complex molecule Qa-1. These Tregs target only activated T cells and complement the suppression provided by CD4(+)Foxp3(+) Tregs. Investigations leading to the detailed identification, expansion, maintenance and function of CD8alphaalpha(+) Tregs should result in new therapeutic strategies for human inflammatory diseases.
Collapse
Affiliation(s)
- Trevor R F Smith
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | |
Collapse
|
28
|
Ma X, Torbenson M, Hamad ARA, Soloski MJ, Li Z. High-fat diet modulates non-CD1d-restricted natural killer T cells and regulatory T cells in mouse colon and exacerbates experimental colitis. Clin Exp Immunol 2007; 151:130-8. [PMID: 17991290 DOI: 10.1111/j.1365-2249.2007.03530.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Environmental factors such as diet are known to play important roles in inflammatory bowel disease (IBD). Epidemiological studies have indicated that a high-fat diet is a risk factor for IBD. In addition, the balance between effector T cells (T(eff)) and regulatory T cells (T(reg)) contributes to the pathogenesis of mucosal inflammation. The aim of this study was to understand the mechanisms by which a high-fat diet can regulate susceptibility to intestinal inflammation. Wild-type C57BL/6 mice were fed either a commercial high-fat diet or a normal diet, then exposed to dextran sulphate sodium (DSS) to induce colonic inflammation. Intraepithelial lymphocytes (IEL) were isolated from the colon, and their phenotype and cytokine profile were analysed by flow cytometry. Mice receiving the high-fat diet were more susceptible to DSS-induced colitis. They had higher numbers of non-CD1d-restricted natural killer (NK) T cells in the colonic IEL, when compared to mice fed a normal diet. These cells expressed tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, which are up-regulated by high-fat diets. Mice fed the high-fat diet also had decreased levels of colonic T(reg). Depletion of colonic NK T cells or adoptive transfer of T(reg) reduced the DSS colitis in these mice, and reduced the colonic expression of TNF-alpha and IFN-gamma. We conclude that a high-fat diet can increase non-CD1d-restricted NK T cells and decrease T(reg) in the colonic IEL population. This altered colonic IEL population leads to increased susceptibility to DSS-induced colitis. This effect may help to explain how environmental factors can increase the susceptibility to IBD.
Collapse
Affiliation(s)
- X Ma
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Denning TL, Granger SW, Granger S, Mucida D, Graddy R, Leclercq G, Zhang W, Honey K, Rasmussen JP, Cheroutre H, Rudensky AY, Kronenberg M. Mouse TCRalphabeta+CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:4230-9. [PMID: 17371979 DOI: 10.4049/jimmunol.178.7.4230] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mouse small intestine intraepithelial lymphocytes (IEL) that express alphabetaTCR and CD8alphaalpha homodimers are an enigmatic T cell subset, as their specificity and in vivo function remain to be defined. To gain insight into the nature of these cells, we performed global gene expression profiling using microarray analysis combined with real-time quantitative PCR and flow cytometry. Using these methods, TCRalphabeta(+)CD8alphaalpha IEL were compared with their TCRalphabeta(+)CD8beta(+) and TCRgammadelta(+) counterparts. Interestingly, TCRalphabeta(+)CD8alphaalpha IEL were found to preferentially express genes that would be expected to down-modulate their reactivity. They have a unique expression pattern of members of the Ly49 family of NK receptors and tend to express inhibitory receptors, along with some activating receptors. The signaling machinery of both TCRalphabeta(+)CD8alphaalpha and TCRgammadelta(+) IEL is constructed differently than other IEL and peripheral T cells, as evidenced by their low-level expression of the linker for activation of T cells and high expression of the non-T cell activation linker, which suppresses T cell activation. The TCRalphabeta(+)CD8alphaalpha IEL subset also has increased expression of genes that could be involved in immune regulation, including TGF-beta(3) and lymphocyte activation gene-3. Collectively, these data underscore the fact that, while TCRalphabeta(+)CD8alphaalpha IEL resemble TCRgammadelta(+) IEL, they are a unique population of cells with regulated Ag reactivity that could have regulatory function.
Collapse
Affiliation(s)
- Timothy L Denning
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tang X, Maricic I, Kumar V. Anti-TCR antibody treatment activates a novel population of nonintestinal CD8 alpha alpha+ TCR alpha beta+ regulatory T cells and prevents experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:6043-50. [PMID: 17475828 DOI: 10.4049/jimmunol.178.10.6043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- CD8 Antigens/biosynthesis
- CD8 Antigens/physiology
- Cell Line
- Clone Cells
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Genes, T-Cell Receptor beta/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/classification
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Xiaolei Tang
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | |
Collapse
|
31
|
Holler PD, Yamagata T, Jiang W, Feuerer M, Benoist C, Mathis D. The same genomic region conditions clonal deletion and clonal deviation to the CD8alphaalpha and regulatory T cell lineages in NOD versus C57BL/6 mice. Proc Natl Acad Sci U S A 2007; 104:7187-92. [PMID: 17438291 PMCID: PMC1855402 DOI: 10.1073/pnas.0701777104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clonal deviation is a mechanism by which immature thymocytes expressing a self-reactive T cell antigen receptor (TCR) are rescued from clonal deletion by adopting an alternative differentiation pathway resistant to apoptosis. Here, we confirm and generalize previous indications that genetic alleles in NOD mice condition ineffective clonal deviation toward the CD8alphaalpha lineage, a peculiar population of TCRalphabeta lymphocytes that electively colonizes the intraepithelial lymphocyte pool in the gut. Thymic selection of CD8alphaalpha cells was very age-dependent, occurring almost exclusively in the postnatal period. Fewer CD8alphaalpha cells were found in the thymus and intraepithelial lymphocytes of BDC2.5 TCR transgenic mice on the NOD than on the C57BL/6 (B6) background; this paucity extended to standard NOD mice, albeit to a lesser extent. CD8alphaalpha cells resided in the BDC2.5 pancreatic infiltrate, and they were more abundant on the B6 than the NOD background, correlating with aggressivity of the lesion. A (B6(g7) x NOD)F(2) intercross in agonist-challenged BDC2.5 fetal thymic organ cultures demonstrated the existence of a major quantitative trait locus on chromosome 3, coincident with an interval associated with resistance to clonal deletion. A replicate linkage confirmed these positions and showed that the same region also controls clonal deviation toward the CD4(+)FoxP3(+) regulatory T cell lineage. That clonal deviation toward the CD8alphaalpha and regulatory T cell pathways share genetic control further highlights the similarities between these two "rescue lineages," consistent with an immunoregulatory role for CD8alphaalpha cells.
Collapse
Affiliation(s)
- Phillip D. Holler
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Wenyu Jiang
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Markus Feuerer
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Sagiv Y, Bai L, Wei DG, Agami R, Savage PB, Teyton L, Bendelac A. A distal effect of microsomal triglyceride transfer protein deficiency on the lysosomal recycling of CD1d. ACTA ACUST UNITED AC 2007; 204:921-8. [PMID: 17403933 PMCID: PMC2118556 DOI: 10.1084/jem.20061568] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)–resident lipid transfer protein involved in the biosynthesis and lipid loading of apolipoprotein B. MTP was recently suggested to directly regulate the biosynthesis of the MHC I–like, lipid antigen presenting molecule CD1d, based on coprecipitation experiments and lipid loading assays. However, we found that the major impact of MTP deficiency occurred distal to the ER and Golgi compartments. Thus, although the rates of CD1d biosynthesis, glycosylation maturation, and internalization from the cell surface were preserved, the late but essential stage of recycling from lysosome to plasma membrane was profoundly impaired. Likewise, functional experiments indicated defects of CD1d-mediated lipid presentation in the lysosome but not in the secretory pathway. These intriguing findings suggest a novel, unexpected role of MTP at a late stage of CD1d trafficking in the lysosomal compartment.
Collapse
Affiliation(s)
- Yuval Sagiv
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kunisawa J, Takahashi I, Kiyono H. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol Rev 2007; 215:136-53. [PMID: 17291285 DOI: 10.1111/j.1600-065x.2006.00475.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the front line of the body's immunological defense system, the gastrointestinal tract faces a large number of food-derived antigens, allergens, and nutrients, as well as commensal and pathogenic microorganisms. To maintain intestinal homeostasis, the gut immune system regulates two opposite immunological reactions: immune activation and quiescence. With their versatile immunological features, intraepithelial lymphocytes (IELs) play an important role in this regulation. IELs are mainly composed of T cells, but these T cells are immunologically distinct from peripheral T cells. Not only do IELs differ immunologically from peripheral T cells but they are also comprised of heterogeneous populations showing different phenotypes and immunological functions, as well as trafficking and developmental pathways. Though IELs in the small and large intestine share common features, they have also developed differences as they adjust to the two different environments. This review seeks to shed light on the immunological diversity of small and large intestinal IELs.
Collapse
Affiliation(s)
- Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Schrantz N, Sagiv Y, Liu Y, Savage PB, Bendelac A, Teyton L. The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. ACTA ACUST UNITED AC 2007; 204:841-52. [PMID: 17389239 PMCID: PMC2118543 DOI: 10.1084/jem.20061562] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Niemann-Pick type C2 (NPC2) protein is a small, soluble, lysosomal protein important for cholesterol and sphingolipid transport in the lysosome. The immunological phenotype of NPC2-deficient mice was limited to an impaired thymic selection of Vα14 natural killer T cells (NKT cells) and a subsequent reduction of NKT cells in the periphery. The remaining NKT cells failed to produce measurable quantities of interferon-γ in vivo and in vitro after activation with α-galactosylceramide. In addition, thymocytes and splenocytes from NPC2-deficient mice were poor presenters of endogenous and exogenous lipids to CD1d-restricted Vα14 hybridoma cells. Importantly, we determined that similar to saposins, recombinant NPC2 was able to unload lipids from and load lipids into CD1d. This transfer activity was associated with a dimeric form of NPC2, suggesting a unique mechanism of glycosphingolipid transfer by NPC2. Similar to saposin B, NPC2 dimers were able to load isoglobotrihexosylceramide (iGb3), the natural selecting ligand of NKT cells in the thymus, into CD1d. These observations strongly suggested that the phenotype observed in NPC2-deficient animals was directly linked to the efficiency of the loading of iGb3 into CD1d molecules expressed by thymocytes. This conclusion was supported by the rescue of endogenous and exogenous iGb3 presentation by recombinant NPC2. Thus, the loading of endogenous and exogenous lipids and glycolipids onto CD1d is dependent on various small, soluble lipid transfer proteins present in the lysosome.
Collapse
Affiliation(s)
- Nicolas Schrantz
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jabri B, Ebert E. Human CD8+intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol Rev 2007; 215:202-14. [PMID: 17291290 DOI: 10.1111/j.1600-065x.2006.00481.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epithelium of the human small intestine contains a large population of intraepithelial cytolytic alphabeta T-cell receptor (TCR) CD8 alpha beta T lymphocytes (IE-CTLs), whose main role is to sustain epithelial integrity by rapidly eliminating infected and damaged cells. In mouse, the recognition of inducible/modified self-molecules, i.e. non-classical major histocompatibility complex (MHC) class I molecules, is mediated by the TCR and natural killer receptors (NKRs) co-expressed on the cell surface of a non-conventional autoreactive CD8 alpha alpha alpha beta TCR cell subset. In contrast, in humans, the recognition of non-classical MHC class I molecules induced by stress and inflammation on intestinal epithelial cells (IECs) is principally mediated by NKRs expressed on conventional CD8 alpha beta alpha beta TCR cells. By sensing microenvironmental signals of inflammation and stress through NKRs, IE-CTLs fine tune their TCR activation threshold. Furthermore, IE-CTLs under particular conditions, involving interleukin-15 upregulation, acquire the capacity to kill distressed intestinal epithelial cells in an antigen non-specific manner. Adaptive IE-CTLs appear hence to have autoreactive properties and modulate their immune response based on innate signals, reflecting the fitness of the tissue.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Pathology, Medicine and Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
36
|
Abstract
The gut epithelial border is in continuous contact with exogenous antigens and harbors a distinctive and very abundant CD8 alpha alpha intraepithelial T-lymphocyte effector population. We describe here the characteristics of these cells that distinguish them from all other T-cell types in the body as well as their functions in local protection. We also describe how these cells differentiate from local precursors present in the gut cryptopatches (CPs) following a pathway of T-cell differentiation unique to the gut wall. Finally, we describe the origin of the precursors of CD8 alpha alpha T cells, which come from the bone marrow in athymic mice but are first imprinted in the thymus in euthymic mice. Indeed, CD3(-)CD4(-)CD8(-) T-cell-committed precursors can leave the thymus before T-cell receptor rearrangements and then colonize the gut CPs, proceeding with their differentiation within the gut wall.
Collapse
Affiliation(s)
- Benedita Rocha
- Institut National de la Santé et de la Recherche Médicale (INSERM), U591, Faculté de Médecine René Descarte Paris V, Institut Necker, Paris, France.
| |
Collapse
|
37
|
Abstract
Intraepithelial lymphocytes (IELs) contain several subsets, but the origin of the T-cell receptor (TCR)alphabeta(+) CD8 alpha alpha(+) IELs has been particularly controversial. Here we provide a synthesis, based on recent work, that attempts to unify the divergent views. The intestine has a primordial function in lymphopoiesis, and precursors with the potential to differentiate into T cells are found both in the epithelium and underlying lamina propria. Moreover, the thymus has been reported to export cells to the intestine that are not fully differentiated. TCR alpha beta(+) CD8 alpha alpha(+) IELs can differentiate in the intestine from each of these sources, but in normal euthymic mice, the thymus appears to be the major source for TCR alpha beta(+) CD8 alpha alpha(+) IELs. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similar to other regulatory T-cell populations. IELs transition through a double-positive (DP) intermediate in the thymus, but they originate from a subset of the DP cells that can be identified by its expression of CD8 alpha alpha homodimers. The agonist-selected cells in the thymus are TCRbeta(+) but CD4 and CD8 double negative. The evidence suggests that reacquired expression of CD8 alpha alpha and downregulation of CD5 occur after thymus export, perhaps in the intestine under the influence of interleukin-15. As a result of agonist exposure, a new gene expression program is activated. Therefore, the increased understanding of the developmental origin of TCR alpha beta(+) CD8 alpha alpha(+) IELs may help us to understand how they participate in immune regulation and protection in the intestine.
Collapse
Affiliation(s)
- Florence Lambolez
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
38
|
Johansson-Lindbom B, Agace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 2007; 215:226-42. [PMID: 17291292 DOI: 10.1111/j.1600-065x.2006.00482.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa represents the largest body surface toward the external environment and harbors numerous T lymphocytes that take up resident within the intestinal epithelium or in the underlying lamina propria (LP). The intraepithelial lymphocytes include subsets of 'unconventional' T cells with unclear ontogeny and reactivity that localize to this site independently of antigen-specific activation in secondary lymphoid organs. In contrast, the majority of the 'conventional' gut T cells are recruited into the intestinal mucosa subsequent to their activation in intestinal inductive sites, including Peyer's patches (PPs) and mesenteric lymph nodes (MLNs). T cells homing to the small intestine express a distinct pattern of homing molecules, allowing them to interact with and transmigrate across intestinal postcapillary endothelium. At least some of these homing molecules, including the integrin alpha(4)beta(7) and the chemokine receptor CCR9, are induced on T cells during their activation in PPs or MLNs. Mucosal dendritic cells (DCs) play a key role in this process, but not all intestinal DCs possess the ability to confer a gut-homing capacity to T cells. Instead, functionally specialized CD103(+) DCs derived from the small intestinal LP appear to selectively regulate T-cell homing to the small intestine.
Collapse
|
39
|
Lambert C, Claude L, Ibrahim M, Mohammad I, Iobagiu C, Cristina I, Genin C, Christian G. Significance of unconventional peripheral CD4+CD8dim T cell subsets. J Clin Immunol 2006; 25:418-27. [PMID: 16160910 DOI: 10.1007/s10875-005-5257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 04/11/2005] [Indexed: 11/27/2022]
Abstract
Routine T cells phenotyping occasionally reveals a CD4+CD8dim T cell subset with an apparently homogeneous dot plot. The aim of this study was to elucidate their immunological significance from analysis of 31 healthy donors, 21 elderly and 220 immune deficient patients. CD4+CD8dim T cells expressed reduced levels of CD8 (11-17,000 compared to 96-128,000 mol/cell on CD8+ T Cells). CD4 was expressed at the same level as on CD4+ T cells. The occurrence of raised CD4+CD8dim T cells (> 20 cells/muL) was similar in kidney transplant recipients (28.4%) and healthy donors (26%). It was somewhat lower in HIV+ patients (19.7%) possibly due to virally induced CD4+ T lymphopenia. However, an age effect is possible because the occurrence was raised (33.3%) in 70 volunteers (chi2 test NS). On the other hand, the size of the CD4+CD8dim subset was not correlated with age. CD4+CD8dim T cells did not express the activation markers CD69 (n = 220) or CD25 (n = 10) and expressed the homodimeric (alphaalpha) isoform of CD8, suggesting they are related to mucosal immunity (MALT). We selected 29 patients with unambiguous dot plots. In 26 of them one predominant TCR Vbeta clonotype was expressed on 18 to 94% of CD4+CD8dim T cells and never on more than 10% of conventional T cells. The predominant clonotypes were Vbeta8 (n = 5), Vbeta2 (n = 4), Vbeta13.1 and Vbeta 21 (n = 3 each). Whether this reveals a chronic stimulation or an emerging lymphoproliferative disorder must be elucidated. We propose to name this entity: "Oligoclonal Clonopathy of Undetermined Significance (OCUS)."
Collapse
Affiliation(s)
- Claude Lambert
- Immunology Laboratory, University Hospital of St Etienne, France.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schümann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G. Targeted Expression of Human CD1d in Transgenic Mice Reveals Independent Roles for Thymocytes and Thymic APCs in Positive and Negative Selection of Vα14i NKT Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:7303-10. [PMID: 16301636 DOI: 10.4049/jimmunol.175.11.7303] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.
Collapse
Affiliation(s)
- Jens Schümann
- Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A. Characterization of the early stages of thymic NKT cell development. ACTA ACUST UNITED AC 2005; 202:485-92. [PMID: 16087715 PMCID: PMC2212852 DOI: 10.1084/jem.20050456] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Upon reaching the mature heat stable antigen (HSA)low thymic developmental stage, CD1d-restricted Vα14-Jα18 thymocytes undergo a well-characterized sequence of expansion and differentiation steps that lead to the peripheral interleukin-4/interferon-γ–producing NKT phenotype. However, their more immature HSAhigh precursors have remained elusive, and it has been difficult to determine unambiguously whether NKT cells originate from a CD4+CD8+ double-positive (DP) stage, and when the CD4+ and CD4−CD8− double-negative (DN) NKT subsets are formed. Here, we have used a CD1d tetramer-based enrichment strategy to physically identify HSAhigh precursors in thymuses of newborn mice, including an elusive DPlow stage and a CD4+ stage, which were present at a frequency of ∼10−6. These HSAhigh DP and CD4+ stages appeared to be nondividing, and already exhibited the same Vβ8 bias that characterizes mature NKT cells. This implied that the massive expansion of NKT cells is separated temporally from positive selection, but faithfully amplifies the selected TCR repertoire. Furthermore, we found that, unlike the DN γδ T cells, the DN NKT cells did not originate from a pTα-independent pathway bypassing the DP stage, but instead were produced during a short window of time from the conversion of a fraction of HSAlow NK1.1neg CD4 cells. These findings identify the HSAhigh CD4+ stage as a potential branchpoint between NKT and conventional T lineages and between the CD4 and DN NKT sublineages.
Collapse
Affiliation(s)
- Kamel Benlagha
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
42
|
Cheroutre H, Kronenberg M. Mucosal T lymphocytes--peacekeepers and warriors. ACTA ACUST UNITED AC 2005; 27:147-65. [PMID: 15931528 DOI: 10.1007/s00281-005-0205-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/18/2005] [Indexed: 12/30/2022]
Abstract
Normal immune homeostasis of the intestine requires peaceful coexistence with commensal flora, combined with host defense against pathogens. Perhaps as a result of this unique dilemma, distinct populations of regulatory and effector T lymphocytes are found in the lamina propria and epithelium of the intestine. Here we summarize the properties and functions of these unusual T cells, and describe the molecular and cellular interactions that lead to their development and function. Some mucosal T cells, sometimes called type a, are conventional activated/memory T cells that have received instructions to migrate to the intestine during priming by dendritic cells in the mesenteric lymph node and elsewhere. Others, however, particularly subsets residing permanently in the epithelium, are intestine-specific T cell subpopulations generated by an atypical differentiation pathway.
Collapse
Affiliation(s)
- Hilde Cheroutre
- The La Jolla Institute for Allergy and Immunology, San Diego, CA, USA.
| | | |
Collapse
|
43
|
Khodoun MV, Orekhova T, Potter C, Morris S, Finkelman FD. Basophils initiate IL-4 production during a memory T-dependent response. ACTA ACUST UNITED AC 2004; 200:857-70. [PMID: 15466620 PMCID: PMC2213291 DOI: 10.1084/jem.20040598] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Experiments were performed to characterize and identify the cellular sources of the secondary interleukin (IL)-4 response to a T cell–dependent antigen. Mice were primed by immunization with goat anti–mouse immunoglobulin (Ig)D antibody (GaMD), which stimulates naive CD4+ T cells to secrete IL-4 in 3–4 d. When challenged with goat serum 14 d after immunization, GaMD-primed mice generated an IL-4 response that exceeded the primary response by ∼100-fold, started in <2 h, and lasted for 4 d. Studies with 4get mice, in which cells with an accessible Il4 gene express a green fluorescent protein (GFP), revealed CD4+ memory T cells, natural killer T cells, basophils, mast cells, and eosinophils as possible rapid producers of IL-4. GFP+CD4+ T cells and basophils expanded more in the spleen than the other cell types during the primary response to GaMD. Quantitation of in vivo IL-4 production by the in vivo cytokine capture assay after individual cell types were selectively stimulated or deleted demonstrated that basophils and memory CD4+ T cells account for most of the secondary IL-4 response, with basophils initiating that response through IgE/FcɛRI-mediated signaling but secreting IL-4 for <4 h and memory T cells secreting IL-4 within 4 h and continuing to secrete this cytokine for 4 d.
Collapse
Affiliation(s)
- Marat V Khodoun
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
44
|
Davies A, Lopez-Briones S, Ong H, O'Neil-Marshall C, Lemonnier FA, Nagaraju K, Metcalf ES, Soloski MJ. Infection-induced expansion of a MHC Class Ib-dependent intestinal intraepithelial gammadelta T cell subset. THE JOURNAL OF IMMUNOLOGY 2004; 172:6828-37. [PMID: 15153501 DOI: 10.4049/jimmunol.172.11.6828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salmonella species invade the host via the intestinal epithelium. Hence, intestinal intraepithelial lymphocytes (iIELs) are potentially the first element of the immune system to encounter Salmonella during infection. In this study, we demonstrate, in a mouse model, the expansion of a CD8alphabeta(+)CD94(-)TCRgammadelta(+) T cell subset within the iIEL population in response to oral infection with virulent or avirulent Salmonella. This population can be detected 3 days following infection, represents up to 15% of the TCRgammadelta(+) iIELs, and is dependent on the MHC class Ib molecule T23 (Qa-1). Qa-1 is expressed by intestinal epithelial cells and thus accessible for iIEL recognition. Such cells may play a role in the early immune response to Salmonella.
Collapse
Affiliation(s)
- Adrian Davies
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The gastrointestinal tract is the central organ for uptake of fluids and nutrients, and at the same time it forms the main protective barrier between the sterile environment of the body and the outside world. In mammals, the intestine has further evolved to harbor a vast load of commensal bacteria that have important functions for the host. Discrimination by the host defense system of nonself from self can prevent invasion of pathogens, but equivalent responses to dietary or colonizing bacteria can lead to devastating consequences for the organism. This dilemma imposed by the gut environment has probably contributed significantly to the evolutionary drive that has led to sophisticated mechanisms and diversification of the immune system to allow for protection while maintaining the integrity of the mucosal barrier. The immense expansion and specialization of the immune system is particularly mirrored in the phylogeny, ontogeny, organization, and regulation of the adaptive intraepithelial lymphocytes, or IEL, which are key players in the unique intestinal defense mechanisms that have evolved in mammals.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
46
|
Benlagha K, Park SH, Guinamard R, Forestier C, Karlsson L, Chang CH, Bendelac A. Mechanisms governing B cell developmental defects in invariant chain-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:2076-83. [PMID: 14764672 DOI: 10.4049/jimmunol.172.4.2076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Invariant chain (Ii)-deficient mice exhibit profound B cell defects that have remained poorly understood, because they could not be simply explained by impaired Ag presentation. We found that Ii deficiency induced cell autonomous defects of two distinct B cell lineages. The life span of mature follicular (FO) B cells was reduced, accounting for their markedly decreased frequency, whereas, in contrast, marginal zone (MZ) B cells accumulated. Other Ii-expressing lineages such as B1 B cells and dendritic cells were unaffected. Surprisingly, the life span of FO B cells was fully corrected in Ii/I-Abeta doubly deficient mice, revealing that Ii-free I-Abeta chains alter FO B cell survival. In contrast, the accumulation of MZ B cells was controlled by a separate mechanism independent of I-Abeta. Interestingly, in Ii-deficient mice lacking FO B cells, the MZ B cells invaded the FO zone, suggesting that intact follicules contribute to the retention of B cells in the MZ. These findings reveal unexpected consequences of Ii deficiency on the development and organization of B cell follicles.
Collapse
Affiliation(s)
- Kamel Benlagha
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gangadharan D, Cheroutre H. The CD8 isoform CD8αα is not a functional homologue of the TCR co-receptor CD8αβ. Curr Opin Immunol 2004; 16:264-70. [PMID: 15134773 DOI: 10.1016/j.coi.2004.03.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although structurally similar, CD8alphabeta and CD8alphaalpha have notably diverted with regard to function. Whereas CD8alphabeta functions as a T-cell receptor (TCR) co-receptor on MHC-class-I-restricted thymocytes and mature T cells, CD8alphaalpha is unable to support conventional positive selection, and can be expressed on T cells independent of the MHC restriction of their TCR. CD8alphaalpha induction is consistent with antigenic stimulation through the TCR, and recent developments have now shown that CD8alphaalpha induced on agonist-triggered immature thymocytes, antigenic-stimulated conventional CD8alphabeta T cells and mucosal T cells mediates the specific modulation of TCR activation signals to facilitate their survival and differentiation into various specialized T-cell subsets.
Collapse
Affiliation(s)
- Denise Gangadharan
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
48
|
|
49
|
Cheroutre H, Madakamutil L. Acquired and natural memory T cells join forces at the mucosal front line. Nat Rev Immunol 2004; 4:290-300. [PMID: 15057787 DOI: 10.1038/nri1333] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA.
| | | |
Collapse
|
50
|
Saurer L, Seibold I, Rihs S, Vallan C, Dumrese T, Mueller C. Virus-Induced Activation of Self-Specific TCRαβ CD8αα Intraepithelial Lymphocytes Does Not Abolish Their Self-Tolerance in the Intestine. THE JOURNAL OF IMMUNOLOGY 2004; 172:4176-83. [PMID: 15034030 DOI: 10.4049/jimmunol.172.7.4176] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TCRalphabeta CD8alphaalpha intestinal intraepithelial lymphocytes (IEL) represent an enigmatic subset of T cells, particularly, in regard to their potential functions and the apparent persistence of cells expressing self-specific TCR. We have used mice that are transgenic for the TCRalphabeta specific for the lymphocytic choriomeningitis virus (LCMV)-derived peptide gp33, and TCRalphabeta-transgenic mice that coexpress the gp33 Ag ubiquitously, to analyze the functional properties of TCRalphabeta CD8alphaalpha IEL in the presence, or absence, of their specific MHC-restricted Ag, and to assess the impact of molecular mimicry during a potent LCMV infection on potentially self-reactive TCRalphabeta CD8alphaalpha IEL. In this study, we show that the presence of the specific self-Ag results in reduced expression of IL-2, IFN-gamma, and IL-10 by resident TCRalphabeta CD8alphaalpha IEL while expression of mRNA for TGFbeta is not affected. We further demonstrate that despite their secluded location in the epithelium, TCRalphabeta CD8alphaalpha IEL are activated after infection of the intestinal mucosa with LCMV. Importantly, LCMV-induced activation of self-specific TCRalphabeta CD8alphaalpha IEL does not reverse their tolerance as no cytotoxic activity or up-regulated expression of proinflammatory cytokines is detected and no overt signs of autoimmunity are seen. Taken together, these results are in support of an immunoregulatory role for self-specific TCRalphabeta CD8alphaalpha in the intestinal mucosa and clearly speak against an involvement of this cell subset in inflammatory reactions and tissue destruction.
Collapse
Affiliation(s)
- Leslie Saurer
- Institute of Pathology, Division of Immunopathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|