1
|
Brady C, Tipton T, Carnell O, Longet S, Gooch K, Hall Y, Salguero J, Tomic A, Carroll M. A systems biology approach to define SARS-CoV-2 correlates of protection. NPJ Vaccines 2025; 10:69. [PMID: 40229322 PMCID: PMC11997207 DOI: 10.1038/s41541-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Correlates of protection (CoPs) for SARS-CoV-2 have yet to be sufficiently defined. This study uses the machine learning platform, SIMON, to accurately predict the immunological parameters that reduced clinical pathology or viral load following SARS-CoV-2 challenge in a cohort of 90 non-human primates. We found that anti-SARS-CoV-2 spike antibody and neutralising antibody titres were the best predictors of clinical protection and low viral load in the lung. Since antibodies to SARS-CoV-2 spike showed the greatest association with clinical protection and reduced viral load, we next used SIMON to investigate the immunological features that predict high antibody titres. It was found that a pre-immunisation response to seasonal beta-HCoVs and a high frequency of peripheral intermediate and non-classical monocytes predicted low SARS-CoV-2 spike IgG titres. In contrast, an elevated T cell response as measured by IFNγ ELISpot predicted high IgG titres. Additional predictors of clinical protection and low SARS-CoV-2 burden included a high abundance of peripheral T cells. In contrast, increased numbers of intermediate monocytes predicted clinical pathology and high viral burden in the throat. We also conclude that an immunisation strategy that minimises pathology post-challenge did not necessarily mediate viral control. This would be an important finding to take forward into the development of future vaccines aimed at limiting the transmission of SARS-CoV-2. These results contribute to SARS-CoV-2 CoP definition and shed light on the factors influencing the success of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Caolann Brady
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| | - Tom Tipton
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Oliver Carnell
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Stephanie Longet
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Saint-Etienne, France
| | - Karen Gooch
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Javier Salguero
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Medical School, Boston, MA, USA
- Biomedical Engineering, Boston University, College of Engineering, Boston, MA, USA
| | - Miles Carroll
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Jennen L, De Weerdt L, Kouriannidi E, Hanning N, Toledo Cornejo AS, Willen L, Maertens K. Cytokine Levels in Mother-infant Pairs at Term and Preterm Delivery. Pediatr Infect Dis J 2025; 44:S61-S65. [PMID: 39951077 DOI: 10.1097/inf.0000000000004666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
BACKGROUND Cell-mediated immunity (CMI), in addition to the humoral immune response, is crucial in clearing infections. Cytokines are important mediators of the immune system and play a role during pregnancy and childbirth. This study assesses circulating cytokine levels in peripartum maternal and cord blood samples at term and preterm delivery. MATERIALS AND METHODS Samples from 37 mother-infant pairs from a previously conducted maternal immunization study were used to quantify levels of 6 cytokines [interferon (IFN)-γ, interleukin (IL)-10, IL-17A, IL-1β, IL-6 and tumor necrosis factor-α] using the Meso Scale Discovery® ultrasensitive S-plex assay. The effect of various factors on measured cytokine levels was determined. RESULTS Weak to moderate correlations between maternal and cord blood cytokine levels were found. A trend for lower cytokine levels for preterm compared with term delivery was observed. The trend for lower cytokine levels was also seen for cesarean section compared with vaginal delivery and multiparous compared with primiparous women, but only in maternal serum samples. After correction for other variables, the effects of gestational age at delivery and parity were only significant for, respectively, IFN-γ and IL-6 in maternal serum. CONCLUSIONS The assessment of circulating cytokine levels in mother-infant pairs at term and preterm deliveries provides a unique insight into the presence of cytokines in maternal and cord blood and their interplay at delivery. It also highlights the complexity of the maternal-fetal immune relationship and underscores the need for further investigation into the origin of cytokines in newborns and the impact of vaccination in pregnancy on CMI at delivery.
Collapse
Affiliation(s)
- Lisa Jennen
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| | - Louise De Weerdt
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| | - Elli Kouriannidi
- Department of Internal Medicine, National Kapodistrian University of Athens, Sotiria General Hospital for Thoracic Diseases, Athens, Greece
| | - Nikita Hanning
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| | - Anniuska Suemy Toledo Cornejo
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| | - Laura Willen
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| | - Kirsten Maertens
- From the Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Edegem, Belgium
| |
Collapse
|
3
|
Sedney CJ, Masters J, Callender M, Dewan K, Caulfield A, Harvill ET. Neonatal Neutrophil-mediated Control of Bordetella pertussis Is Disrupted by Pertussis Toxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:ji2400363. [PMID: 39475256 PMCID: PMC11605672 DOI: 10.4049/jimmunol.2400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The increased susceptibility of infants and young children to some diseases has often been explained as the neonatal immune system (NIS) being incomplete and/or underdeveloped. However, our recent work demonstrated that neonatal mice could clear a Bordetella pertussis (Bp) strain lacking pertussis toxin (PTx) (BpΔptx) much more efficiently than adult mice, indicating that the NIS can be extremely effective, but this ability is highly sensitive to being blocked by PTx. In this article, we investigated immunological mechanisms by which neonates efficiently and rapidly clear BpΔptx to better understand how the NIS functions and how PTx disrupts it. Depleting neutrophils, or blocking their recruitment, inhibited pups' ability to rapidly clear BpΔptx, revealing a critical role for neutrophils. Pups deficient in complement (C3-/-) failed to recruit neutrophils and did not efficiently clear BpΔptx but recovered these abilities upon treatment with C3a. Neutrophil depletion in C3-/- pups led to further failure to control BpΔptx, suggesting that neutrophils and complement have independent roles in rapid clearance of BpΔptx. Depleting or disrupting neutrophils and complement had negligible effect on the rapid growth of wild-type Bp, indicating that PTx blocks these otherwise highly effective aspects of the NIS.
Collapse
Affiliation(s)
- Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Jillian Masters
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
4
|
Natrajan MS, Hall JM, Weigand MR, Peng Y, Williams MM, Momin M, Damron FH, Dubey P, Tondella ML, Pawloski LC. Genome-based prediction of cross-protective, HLA-DR-presented epitopes as putative vaccine antigens for multiple Bordetella species. Microbiol Spectr 2024; 12:e0352723. [PMID: 38054724 PMCID: PMC10783135 DOI: 10.1128/spectrum.03527-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Pertussis, caused by Bordetella pertussis, can cause debilitating respiratory symptoms, so whole-cell pertussis vaccines (wPVs) were introduced in the 1940s. However, reactogenicity of wPV necessitated the development of acellular pertussis vaccines (aPVs) that were introduced in the 1990s. Since then, until the COVID-19 pandemic began, reported pertussis incidence was increasing, suggesting that aPVs do not induce long-lasting immunity and may not effectively prevent transmission. Additionally, aPVs do not provide protection against other Bordetella species that are observed during outbreaks. The significance of this work is in determining potential new vaccine antigens for multiple Bordetella species that are predicted to elicit long-term immune responses. Genome-based approaches have aided the development of novel vaccines; here, these methods identified Bordetella vaccine candidates that may be cross-protective and predicted to induce strong memory responses. These targets can lead to an improved vaccine with a strong safety profile while also strengthening the longevity of the immune response.
Collapse
Affiliation(s)
- Muktha S. Natrajan
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Laboratory Leadership Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohamed Momin
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Frederick Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maria Lucia Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucia C. Pawloski
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Valeri V, Sochon A, Cousu C, Chappert P, Lecoeuche D, Blanc P, Weill JC, Reynaud CA. The whole-cell pertussis vaccine imposes a broad effector B cell response in mouse heterologous prime-boost settings. JCI Insight 2022; 7:157034. [PMID: 36136586 PMCID: PMC9675447 DOI: 10.1172/jci.insight.157034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
ÍSince the introduction of new generation pertussis vaccines, resurgence of pertussis has been observed in many developed countries. Former whole-cell pertussis (wP) vaccines are able to protect against disease and transmission but have been replaced in several industrialized countries because of their reactogenicity and adverse effects. Current acellular pertussis (aP) vaccines, made of purified proteins of Bordetella pertussis, are efficient at preventing disease but fail to induce long-term protection from infection. While the systemic and mucosal T cell immunity induced by the 2 types of vaccines has been well described, much less is known concerning B cell responses. Taking advantage of an inducible activation-induced cytidine deaminase fate-mapping mouse model, we compared effector and memory B cells induced by the 2 classes of vaccines and showed that a stronger and broader memory B cell and plasma cell response was achieved by a wP prime. We also observed that homologous or heterologous vaccine combinations that include at least 1 wP administration, even as a booster dose, were sufficient to induce this broad effector response, thus highlighting its dominant imprint on the B cell profile. Finally, we describe the settlement of memory B cell populations in the lung following subcutaneous wP prime vaccination.
Collapse
Affiliation(s)
- Viviana Valeri
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Akhésa Sochon
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clara Cousu
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Damiana Lecoeuche
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
7
|
Ma L, Sedney C, Su Y, Dewan KK, Linz B, Harvill ET. Contribution of a Novel Pertussis Toxin-Like Factor in Mediating Persistent Otitis Media. Front Cell Infect Microbiol 2022; 12:795230. [PMID: 35360099 PMCID: PMC8963424 DOI: 10.3389/fcimb.2022.795230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media (COM) is the long-term infection and inflammation of the middle ears typically caused by upper respiratory tract pathogens that are able to ascend the Eustachian tube. Our understanding of contributing factors is limited because human otopathogens cannot naturally colonize or persist in the middle ears of mice. We recently described a natural COM in mice caused by Bordetella pseudohinzii and proposed this as an experimental system to study bacterial mechanisms of immune evasion that allow persistent infection of the middle ear. Here we describe a novel pertussis toxin (PTx)-like factor unique to B. pseudohinzii, apparently acquired horizontally, that is associated with its particularly efficient persistence and pathogenesis. The catalytic subunit of this toxin, PsxA, has conserved catalytic sites and substantial predicted structural homology to pertussis toxin catalytic subunit PtxA. Deletion of the gene predicted to encode the catalytic subunit, psxA, resulted in a significant decrease in persistence in the middle ears. The defect was not observed in mice lacking T cells, indicating that PsxA is necessary for persistence only when T cells are present. These results demonstrate the role of a novel putative toxin in the persistence of B. pseudohinzii and its generation of COM. This PsxA-mediated immune evasion strategy may similarly be utilized by human otopathogens, via other PTx-like toxins or alternative mechanisms to disrupt critical T cell functions necessary to clear bacteria from the middle ear. This work demonstrates that this experimental system can allow for the detailed study of general strategies and specific mechanisms that otopathogens use to evade host immune responses to persist in the middle ear to cause COM.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Colleen Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Weaver KL, Blackwood CB, Horspool AM, Pyles GM, Sen-Kilic E, Grayson EM, Huckaby AB, Witt WT, DeJong MA, Wolf MA, Damron FH, Barbier M. Long-Term Analysis of Pertussis Vaccine Immunity to Identify Potential Markers of Vaccine-Induced Memory Associated With Whole Cell But Not Acellular Pertussis Immunization in Mice. Front Immunol 2022; 13:838504. [PMID: 35211125 PMCID: PMC8861382 DOI: 10.3389/fimmu.2022.838504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emily M. Grayson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
9
|
Lambert EE, van Twillert I, Beckers L, Poelen MCM, Han WGH, Pieren DKJ, van Els CACM. Reduced Bordetella pertussis-specific CD4+ T-Cell Responses at Older Age. FRONTIERS IN AGING 2022; 2:737870. [PMID: 35822011 PMCID: PMC9261443 DOI: 10.3389/fragi.2021.737870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022]
Abstract
Pertussis, a human-specific respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis (Bp), remains endemic with epidemic years despite high vaccination coverage. Whereas pertussis vaccines and natural infection with Bp confer immune protection, the duration of protection varies and is not lifelong. Recent evidence indicates a considerable underestimation of the pertussis burden among older adults. Whereas the impact of increasing age on Bp-specific humoral immunity has been demonstrated, little is known on immunosenescence of CD4+ T-cell responses in the context of Bp. Here, we aimed to address whether increasing age impacts responsiveness of the Bp-specific CD4+ T-cells in the memory pool following a clinically symptomatic pertussis infection in whole cell vaccine-primed pediatric and adult cases. Cytokine and proliferative responses and phenotypical profiles of CD4+ T cells specific for Bp antigens at an early and late convalescent timepoint were compared. Responses of various Th cytokines, including IFNγ, were significantly lower in older adults at early and late timepoints post diagnosis. In addition, we found lower frequencies of Bp-specific proliferated CD4+ T cells in older adults, in the absence of differences in replication profile. Phenotyping of Bp-specific CD4+ T cells suggested reduced expression of activation markers rather than increased expression of co-inhibitory markers. Altogether, our findings show that the magnitude and functionality of the Bp-specific memory CD4+ T-cell pool decrease at older age. Declined CD4+ T-cell responsiveness to Bp is suggested to contribute to the burden of pertussis in older adults.
Collapse
|
10
|
Cimolai N. Non-primate animal models for pertussis: back to the drawing board? Appl Microbiol Biotechnol 2022; 106:1383-1398. [PMID: 35103810 PMCID: PMC8803574 DOI: 10.1007/s00253-022-11798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Despite considerable progress in the understanding of clinical pertussis, the contemporary emergence of antimicrobial resistance for Bordetella pertussis and an evolution of concerns with acellular component vaccination have both sparked a renewed interest. Although simian models of infection best correlate with the observed attributes of human infection, several animal models have been used for decades and have positively contributed in many ways to the related science. Nevertheless, there is yet the lack of a reliable small animal model system that mimics the combination of infection genesis, variable upper and lower respiratory infection, systemic effects, infection resolution, and vaccine responses. This narrative review examines the history and attributes of non-primate animal models for pertussis and places context with the current use and needs. Emerging from the latter is the necessity for further such study to better create the optimal model of infection and vaccination with use of current molecular tools and a broader range of animal systems. KEY POINTS: • Currently used and past non-primate animal models of B. pertussis infection often have unique and focused applications. • A non-primate animal model that consistently mimics human pertussis for the majority of key infection characteristics is lacking. • There remains ample opportunity for an improved non-primate animal model of pertussis with the use of current molecular biology tools and with further exploration of species not previously considered.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
- Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C., V6H3V4, Canada.
| |
Collapse
|
11
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
12
|
Soumana IH, Linz B, Dewan KK, Sarr D, Gestal MC, Howard LK, Caulfield AD, Rada B, Harvill ET. Modeling Immune Evasion and Vaccine Limitations by Targeted Nasopharyngeal Bordetella pertussis Inoculation in Mice. Emerg Infect Dis 2021; 27:2107-2116. [PMID: 34286682 PMCID: PMC8314809 DOI: 10.3201/eid2708.203566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conventional pertussis animal models deliver hundreds of thousands of Bordetella pertussis bacteria deep into the lungs, rapidly inducing severe pneumonic pathology and a robust immune response. However, human infections usually begin with colonization and growth in the upper respiratory tract. We inoculated only the nasopharynx of mice to explore the course of infection in a more natural exposure model. Nasopharyngeal colonization resulted in robust growth in the upper respiratory tract but elicited little immune response, enabling prolonged and persistent infection. Immunization with human acellular pertussis vaccine, which prevents severe lung infections in the conventional pneumonic infection model, had little effect on nasopharyngeal colonization. Our infection model revealed that B. pertussis can efficiently colonize the mouse nasopharynx, grow and spread within and between respiratory organs, evade robust host immunity, and persist for months. This experimental approach can measure aspects of the infection processes not observed in the conventional pneumonic infection model.
Collapse
|
13
|
Peer V, Muhsen K, Betser M, Green MS. Antibody Response to Pertussis Vaccination in Pregnant and Non-Pregnant Women-The Role of Sex Hormones. Vaccines (Basel) 2021; 9:vaccines9060637. [PMID: 34200795 PMCID: PMC8230440 DOI: 10.3390/vaccines9060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pertussis containing vaccine is recommended for pregnant women to protect neonates prior to being fully immunized against the disease. The immune response during pregnancy may be impacted by changes in the hormonal status. The aim of this study was to evaluate the immune response to pertussis immunization in pregnancy and to assess the role of sex hormones. In a cross-sectional study, blood samples were drawn from 174 pregnant and 74 non-pregnant women 45-60 days following immunization. Anti-pertussis toxin (Anti-PT) IgG antibody levels, estrogen, and progestogen concentrations were compared between the two groups. Multiple logistic regression analysis was used to examine the association between serum antibody and sex hormone concentrations in each group, controlling for age, body mass index (BMI), and smoking status. The geometric mean concentration (GMC) of anti-PT IgG antibody was significantly higher in non-pregnant women compared with pregnant women (median of 2.09 and 1.86, interquartile range = 2.36-1.8 and 2.11-1.16 respectively, p < 0.0001). Among pregnant women, the anti-PT IgG antibody GMC was negatively associated with both progesterone (odds ratio = 0.300, 95% CI = 0.116, 0.772, p = 0.013) and estrogen (odds ratio = 0.071, 95% CI = 0.017, 0.292, p < 0.0001), after controlling for age, BMI, and smoking. Pregnancy was associated with lower anti-PT IgG antibody levels (odds ratio = 0.413, 95% CI = -0.190, 0.899, p = 0.026). This appears to be at least partially explained by the higher levels of hormones during pregnancy. These findings demonstrate the important role of sex hormones in the response to pertussis vaccine during pregnancy and can help to evaluate the optimum vaccination schedule.
Collapse
Affiliation(s)
- Victoria Peer
- School of Public Health, University of Haifa, Abba Khoushy 199, Mount Carmel, Haifa 3498838, Israel;
- Correspondence:
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University Ramat Aviv, Ramat Aviv, Tel Aviv 6139001, Israel;
| | - Moshe Betser
- Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (Formerly Assaf Harofeh Medical Center), Zerifin 70300, Israel;
| | - Manfred S Green
- School of Public Health, University of Haifa, Abba Khoushy 199, Mount Carmel, Haifa 3498838, Israel;
| |
Collapse
|
14
|
Lin A, Apostolovic D, Jahnmatz M, Liang F, Ols S, Tecleab T, Wu C, van Hage M, Solovay K, Rubin K, Locht C, Thorstensson R, Thalen M, Loré K. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J Clin Invest 2021; 130:2332-2346. [PMID: 31945015 DOI: 10.1172/jci135020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDThe live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.METHODSWe performed multiple assays to dissect the immune responses induced in humans (n = 12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n = 12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, potentially novel immunogenic B. pertussis antigens were identified.RESULTSAll BPZE1 vaccinees showed robust B. pertussis-specific antibody responses with regard to significant increase in 1 or more of the following parameters: IgG, IgA, and memory B cells to B. pertussis antigens. BPZE1-specific T cells showed a Th1 phenotype, and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccines showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared with the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated ROS production in neutrophils and enhanced bactericidal function, which was in line with the finding that antibodies against adenylate cyclase toxin were only elicited by BPZE1.CONCLUSIONThe breadth of the antibodies, the Th1-type cellular response, and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission.TRIAL REGISTRATIONClinicalTrials.gov NCT02453048, NCT00870350.FUNDINGILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-Lung Foundation.
Collapse
Affiliation(s)
- Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Maja Jahnmatz
- The Public Health Agency of Sweden, Stockholm, Sweden
| | - Frank Liang
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Chenyan Wu
- Division of Immunology and Allergy, Department of Medicine Solna, and
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, and
| | - Ken Solovay
- ILiAD Biotechnologies, New York, New York, USA
| | - Keith Rubin
- ILiAD Biotechnologies, New York, New York, USA
| | - Camille Locht
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, and.,Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Cole LE, Zhang J, Pacheco KM, Lhéritier P, Anosova NG, Piolat J, Zheng L, Reveneau N. Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines (Basel) 2020; 8:vaccines8040729. [PMID: 33276673 PMCID: PMC7761625 DOI: 10.3390/vaccines8040729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
While both whole-cell (wP) and acellular pertussis (aP) vaccines have been highly effective at reducing the global pertussis disease burden, there are concerns that compared to wP vaccination, the immune responses to aP vaccination may wane more rapidly. To gain insights into the vaccine elicited immune responses, pre-adult baboons were immunized with either aP or wP vaccines, boosted with an aP vaccine, and observed over a nearly two-year period. Priming with a wP vaccine elicited a more Th17-biased response than priming with aP, whereas priming with an aP vaccine led to a more Th2-biased response than priming with wP. These differences were maintained after aP vaccine boost immunizations. Compared to aP, animals primed with a wP vaccine exhibited greater numbers of pertussis specific memory B cells. While aP and wP vaccine priming initially elicited similar levels of anti-pertussis toxin antibody, titers declined more rapidly in aP vaccine primed animals leading to a 4-fold difference. Both wP and aP vaccine immunization could induce serum bactericidal activity (SBA); however, only one wP vaccine immunization was required to elicit SBA while multiple aP vaccine immunizations were required to elicit lower, less durable SBA titers. In conclusion, when compared to aP vaccine, priming with wP vaccine elicits distinct cellular and humoral immune responses that persist after aP vaccine boosting.
Collapse
Affiliation(s)
- Leah E. Cole
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| | - Jinrong Zhang
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | - Kristl M. Pacheco
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | | | | | - Julie Piolat
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
| | | | - Nathalie Reveneau
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| |
Collapse
|
16
|
Bakhshaei P, Kazemi MH, Golara M, Abdolmaleki S, Khosravi-Eghbal R, Khoshnoodi J, Judaki MA, Salimi V, Douraghi M, Jeddi-Tehrani M, Shokri F. Investigation of the Cellular Immune Response to Recombinant Fragments of Filamentous Hemagglutinin and Pertactin of Bordetella pertussis in BALB/c Mice. J Interferon Cytokine Res 2019; 38:161-170. [PMID: 29638208 DOI: 10.1089/jir.2017.0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccination with whole-cell or acellular (Ac) vaccines has been very effective for the control of pertussis. The immune response to Ac vaccines has been generally associated with a shift toward the Th2 profile. In the present study, overlapping recombinant fragments of filamentous hemagglutinin (FHA) and pertactin (PRN) were produced in Escherichia coli. BALB/c mice were immunized with recombinant FHA and PRN together with the native pertussis toxin and alum or CpG as adjuvant. Immunized mice were subsequently aerosol challenged with Bordetella pertussis. Bacterial growth was assessed in bronchoalveolar lavage samples and the levels of cytokines were quantitated in supernatants of stimulated splenocytes by enzyme-linked immunosorbent assay. Our results demonstrated that both PRN and FHA antigens were able to induce IFN-γ, IL-4, and to some extent IL-17 cytokines in challenged mice. The level of IFN-γ was higher in response to CpG formulated antigens. These findings indicate immunoprotective efficacy of our recombinant FHA and PRN antigens in mice.
Collapse
Affiliation(s)
- Peyman Bakhshaei
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Maryam Golara
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Sara Abdolmaleki
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Roya Khosravi-Eghbal
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Jalal Khoshnoodi
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Ali Judaki
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Vahid Salimi
- 2 Department of Virology, Tehran University of Medical Sciences , Tehran, Iran
| | - Masoumeh Douraghi
- 3 Department of Microbiology, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- 4 Hybridoma Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Fazel Shokri
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran .,4 Hybridoma Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| |
Collapse
|
17
|
Deng N, Ramirez JC, Carey M, Miao H, Arias CA, Rice AP, Wu H. Investigation of temporal and spatial heterogeneities of the immune responses to Bordetella pertussis infection in the lung and spleen of mice via analysis and modeling of dynamic microarray gene expression data. Infect Dis Model 2019; 4:215-226. [PMID: 31236525 PMCID: PMC6579965 DOI: 10.1016/j.idm.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
Bordetella pertussis (B. pertussis) is the causative agent of pertussis, also referenced as whooping cough. Although pertussis has been appropriately controlled by routine immunization of infants, it has experienced a resurgence since the beginning of the 21st century. Given that elucidating the immune response to pertussis is a crucial factor to improve therapeutic and preventive treatments, we re-analyzed a time course microarray dataset of B. pertussis infection by applying a newly developed dynamic data analysis pipeline. Our results indicate that the immune response to B. pertussis is highly dynamic and heterologous across different organs during infection. Th1 and Th17 cells, which are two critical types of T helper cell populations in the immune response to B. pertussis, and follicular T helper cells (TFHs), which are also essential for generating antibodies, might be generated at different time points and distinct locations after infection. This phenomenon may indicate that different lymphoid organs may have their unique functions during infection. These findings provide a better understanding of the basic immunology of bacterial infection, which may provide valuable insights for the improvement of pertussis vaccine design in the future.
Collapse
Affiliation(s)
- Nan Deng
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan C Ramirez
- Facultad de Ingeniería de Sistemas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Michelle Carey
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), UTHealth McGovern Medical School, USA.,Divicon of Infectious Diseases and Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, USA.,Center for Infectious Diseases, UTHealth School of Public Health, USA.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Andrew P Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
18
|
Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Curr Opin Immunol 2019; 59:72-78. [PMID: 31078081 DOI: 10.1016/j.coi.2019.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Abstract
Despite high vaccine coverage, reported cases of pertussis have increased steadily over the last twenty years. This resurgence has stimulated interest in host responses to pertussis infection and vaccination with the goal of developing more effective next-generation vaccines and vaccination strategies. Optimal protection against Bordetella pertussis appears to be multifactorial requiring both humoral and cellular responses. Natural infection and whole-cell pertussis vaccination induce Th1 and Th17-dominated responses. In contrast, acellular vaccines induce Th2-dominated responses. Available immunological data indicate that while antibodies provide protection against disease, Th1 and Th17-mediated immune responses are required for bacterial clearance and long-lasting protection. The nature of the priming in children appears to be important in modulating bias and durability of immune responses required to provide protection against B. pertussis. This review summarizes the current understanding of differences in immune responses and their role in protection against B. pertussis following infection or vaccination.
Collapse
Affiliation(s)
- Parul Kapil
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring MD 20993, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring MD 20993, USA.
| |
Collapse
|
19
|
Lambert EE, Buisman AM, van Els CACM. Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:81-98. [PMID: 31321753 DOI: 10.1007/5584_2019_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis remains endemic in vaccinated populations due to waning of vaccine-induced immunity and insufficient interruption of transmission. Correlates of long-term protection against whooping cough remain elusive but increasing evidence from experimental models indicates that the priming of particular lineages of B. pertussis (Bp) specific CD4+ T cells is essential to control bacterial load. Critical hallmarks of these protective CD4+ T cell lineages in animals are suggested to be their differentiation profile as Th1 and Th17 cells and their tissue residency. These features seem optimally primed by previous infection but insufficiently or only partially by current vaccines. In this review, evidence is sought indicating whether infection also drives such superior Bp specific CD4+ T cell lineages in humans. We highlight key features of effector immunity downstream of Th1 and Th17 cell cytokines that explain clearing of primary Bp infections in naïve hosts, and effective prevention of infection in convalescent hosts during secondary challenge. Outstanding questions are put forward that need answers before correlates of human Bp infection-primed CD4+ T cell immunity can be used as benchmark for the development of improved pertussis vaccines.
Collapse
Affiliation(s)
- Eleonora E Lambert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
20
|
Functional Programming of Innate Immune Cells in Response to Bordetella pertussis Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:53-80. [PMID: 31432398 DOI: 10.1007/5584_2019_404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite widespread vaccination, B. pertussis remains one of the least controlled vaccine-preventable diseases. Although it is well known that acellular and whole cell pertussis vaccines induce distinct immune functionalities in memory cells, much less is known about the role of innate immunity in this process. In this review, we provide an overview of the known differences and similarities in innate receptors, innate immune cells and inflammatory signalling pathways induced by the pertussis vaccines either licensed or in development and compare this to primary infection with B. pertussis. Despite the crucial role of innate immunity in driving memory responses to B. pertussis, it is clear that a significant knowledge gap remains in our understanding of the early innate immune response to vaccination and infection. Such knowledge is essential to develop the next generation of pertussis vaccines with improved host defense against B. pertussis.
Collapse
|
21
|
Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γδT cells, NK cells, and dendritic cells. Immunol Res 2018; 65:1139-1149. [PMID: 29052125 DOI: 10.1007/s12026-017-8957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-mediated immune responses characterized by the secretion of IFNγ and IL-17 play an important role in the immune response to Bordetella pertussis (B. pertussis). We investigated innate sources of IFNγ and IL-17 upon stimulation of spleen cells from BALB/c (B/c) and C57BL/6 (B6) mice with heat-killed B. pertussis (hkBp). Spleen cells from B/c mice secreted less IFNγ and more IL-17 than those from B6 mice. Innate IFNγ was produced predominantly by NK cells in B/c mice and by CD8 T cells and NK cells in B6 mice. Innate IL-17 was produced primarily by γδT cells in both mouse strains. The secretion of IFNγ was abrogated by anti-IL-12, and the production of IL-17 was abolished by anti-IL-1β- and anti-IL23-neutralizing antibodies. B/c dendritic cells (DCs) stimulated with hkBp secreted significantly more IL-1β and less IL-12 than B6 DCs. Differences in JNK phosphorylation in DCs suggest that this pathway plays a role in the differences between B/c and B6 strains. Mixed cultures of DCs and γδT cells from B/c and B6 showed that cytokines from DCs as well as γδT cell-intrinsic factors contributed to the robust innate IL-17 response in B/c strain. Stimulation of γδT cells with IL-1β and IL-23 was sufficient for IL-17 secretion whereas IL-12 inhibited the secretion of IL-17. A larger fraction of γδT cells were γδT-17 cells in B/c mice than B6 mice. Our data indicate important roles for genetically determined factors in the innate IFNγ and IL-17 responses to B. pertussis.
Collapse
|
22
|
Burdin N, Handy LK, Plotkin SA. What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines. Cold Spring Harb Perspect Biol 2017; 9:a029454. [PMID: 28289064 PMCID: PMC5710106 DOI: 10.1101/cshperspect.a029454] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pertussis is resurgent in some countries, particularly those in which children receive acellular pertussis (aP) vaccines in early infancy and boosters later in life. Immunologic studies show that, whereas whole-cell pertussis (wP) vaccines orient the immune system toward Th1/Th17 responses, acellular pertussis vaccines orient toward Th1/Th2 responses. Although aP vaccines do provide protection during the first years of life, the change in T-cell priming results in waning effectiveness of aP as early as 2-3 years post-boosters. Although other factors, such as increased virulence of pertussis strains, better diagnosis, and better surveillance may play a role, the increase in pertussis appears to be the result of waning immunity. In addition, studies in baboon models, requiring confirmation in humans, show that aP is less able to prevent nasopharyngeal colonization of Bordetella pertussis than wP or natural infection.
Collapse
Affiliation(s)
- Nicolas Burdin
- EU Research and Non Clinical Safety, R&D, Sanofi Pasteur, Campus Mérieux, 69280 Marcy l'Etoile, France
| | - Lori Kestenbaum Handy
- Assistant Professor of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Division of Infectious Diseases, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania 18902
| |
Collapse
|
23
|
Fatal Pertussis in the Neonatal Mouse Model Is Associated with Pertussis Toxin-Mediated Pathology beyond the Airways. Infect Immun 2017; 85:IAI.00355-17. [PMID: 28784932 DOI: 10.1128/iai.00355-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
In infants, Bordetella pertussis can cause severe disease, manifested as pronounced leukocytosis, pulmonary hypertension, and even death. The exact cause of death remains unknown, and no effective therapies for treating fulminant pertussis exist. In this study, a neonatal mouse model of critical pertussis is characterized, and a central role for pertussis toxin (PT) is described. PT promoted colonization, leukocytosis, T cell phenotypic changes, systemic pathology, and death in neonatal but not adult mice. Surprisingly, PT inhibited lung inflammatory pathology in neonates, a result which contrasts dramatically with observed PT-promoted pathology in adult mice. Infection with a PT-deficient strain induced severe pulmonary inflammation but not mortality in neonatal mice, suggesting that death in these mice was not associated with impaired lung function. Dissemination of infection beyond the lungs was also detected in neonatal mice, which may contribute to the observed systemic effects of PT. We propose that it is the systemic activity of pertussis toxin and not pulmonary pathology that promotes mortality in critical pertussis. In addition, we observed transmission of infection between neonatal mice, the first report of B. pertussis transmission in mice. This model will be a valuable tool to investigate causes of pertussis pathogenesis and identify potential therapies for critical pertussis.
Collapse
|
24
|
Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins (Basel) 2017; 9:toxins9100293. [PMID: 28934122 PMCID: PMC5666340 DOI: 10.3390/toxins9100293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/27/2023] Open
Abstract
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
Collapse
|
25
|
Kwon HJ, Han SB, Kim BR, Kang KR, Huh DH, Choi GS, Ahn DH, Kang JH. Assessment of safety and efficacy against Bordetella pertussis of a new tetanus-reduced dose diphtheria-acellular pertussis vaccine in a murine model. BMC Infect Dis 2017; 17:247. [PMID: 28376777 PMCID: PMC5381055 DOI: 10.1186/s12879-017-2369-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccination during adolescence was introduced in response to the resurgence of pertussis in various countries. A new Tdap vaccine was manufactured in Korea as a countermeasure against a predicted Tdap vaccine shortage. This study was performed to evaluate the immunogenicity, safety, and protection efficacy against Bordetella pertussis of the new Tdap vaccine in a murine model. METHODS Four-week-old BABL/c mice were used for assessment of immunogenicity and protection efficacy. A single dose of primary diphtheria-tetanus-acellular pertussis (DTaP) vaccine was administered, followed by a single dose of Tdap booster vaccine after a 12-week interval. Anti-pertussis toxin (PT), anti-filamentous hemagglutinin (FHA), and anti-pertactin (PRN) IgG titers were measured before primary vaccination, and before and after booster vaccination. An intranasal challenge test was performed after booster vaccination to determine protection efficacy. To assess safety, mouse weight gain test and leukocytosis promotion test were performed using 4-week-old ddY female mice. RESULTS Anti-PT and anti-FHA IgG titers after booster vaccination were significantly higher than those before booster vaccination with either the new vaccine or a commercially available Tdap vaccine (P = 0.01 for all occasions). After booster vaccination, no significant difference was observed between the two vaccines in antibody titers against pertussis antigens (P = 0.53 for anti-PT IgG, P = 0.91 for anti-FHA IgG, P = 0.39 for anti-PRN IgG). In the intranasal challenge test, inoculated B. pertussis was eradicated 7 days after infection. On days 4 and 7 after infection, colony counts of B. pertussis were not significantly different between the new and positive control vaccine groups (P = 1.00). Mean body weight changes and leukocyte counts of the new vaccine, positive control, and negative control groups were not significantly different 7 days after vaccination (P = 0.87 and P = 0.37, respectively). All leukocyte counts in the new vaccine group were within a mean ± 3 standard deviations range. CONCLUSIONS A murine model involving a single dose primary DTaP vaccination followed by a single dose Tdap booster vaccination can be used for non-clinical studies of Tdap vaccines. The new Tdap vaccine manufactured in Korea exhibited comparable immunogenicity, protection efficacy, and safety with a commercially available Tdap vaccine.
Collapse
Affiliation(s)
- Hyo Jin Kwon
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Beom Han
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo Ram Kim
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Ri Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Ho Huh
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi Sub Choi
- Research Center, Green Cross Corporation, Yongin, Republic of Korea
| | - Dong Ho Ahn
- Research Center, Green Cross Corporation, Yongin, Republic of Korea
| | - Jin Han Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Chen W. Current advances and challenges in the development of Acinetobacter vaccines. Hum Vaccin Immunother 2016; 11:2495-500. [PMID: 26158773 DOI: 10.1080/21645515.2015.1052354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a major cause of healthcare-associated infections worldwide with high morbidity and mortality. The clinical treatment of A. baumannii infections has become increasingly difficult because of the rapid emerging of multidrug and extremely drug resistant strains. Thus, there is an urgent need for the development of novel intervention strategies to combat this multidrug-resistant pathogen. Vaccine is one of the most effective medical measures for infection control and is likely to overcome the development of multidrug resistance by A. baumannii. Here we discussed the recent advances and potential challenges in development of A. baumannii vaccines with a focus on the 3 most important steps in the preclinical vaccine development: antigen selection, immune correlates of protection, and animal models for efficacy evaluation.
Collapse
Affiliation(s)
- Wangxue Chen
- a Human Health Therapeutics; National Research Council Canada ; Ottawa, Ontario , Canada.,b Department of Biology ; Brock University ; St. Catharines , Ontario , Canada
| |
Collapse
|
27
|
Pichichero ME, Casey JR, Almudevar A, Basha S, Surendran N, Kaur R, Morris M, Livingstone AM, Mosmann TR. Functional Immune Cell Differences Associated With Low Vaccine Responses in Infants. J Infect Dis 2016; 213:2014-9. [PMID: 26908730 DOI: 10.1093/infdis/jiw053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We sought to understand why some children respond poorly to vaccinations in the first year of life. METHODS A total of 499 children (6-36 months old) provided serum and peripheral blood mononuclear cell samples after their primary and booster vaccination. Vaccine antigen-specific antibody levels were analyzed with enzyme-linked immunosorbent assay, and frequency of memory B cells, functional T-cell responses, and antigen-presenting cell responses were assessed in peripheral blood mononuclear cell samples with flow cytometric analysis. RESULTS Eleven percent of children were low vaccine responders, defined a priori as those with subprotective immunoglobulin G antibody levels to ≥66% of vaccines tested. Low vaccine responders generated fewer memory B cells, had reduced activation by CD4(+) and CD8(+) T cells on polyclonal stimulation, and displayed lower major histocompatibility complex II expression by antigen-presenting cells. CONCLUSIONS We conclude that subprotective vaccine responses in infants are associated with a distinct immunologic profile.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital
| | | | | | - Saleem Basha
- Center for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital
| | - Naveen Surendran
- Center for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital
| | - Ravinder Kaur
- Center for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital
| | - Matthew Morris
- Center for Infectious Disease and Vaccine Immunology, Research Institute, Rochester General Hospital
| | | | - Tim R Mosmann
- Department of Microbiology and Immunology, University of Rochester, New York
| |
Collapse
|
28
|
Scheller EV, Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis 2015; 73:ftv079. [PMID: 26416077 DOI: 10.1093/femspd/ftv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines.
Collapse
Affiliation(s)
- Erich V Scheller
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
29
|
van Twillert I, Han WGH, van Els CACM. Waning and aging of cellular immunity to Bordetella pertussis. Pathog Dis 2015; 73:ftv071. [PMID: 26371178 DOI: 10.1093/femspd/ftv071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 02/04/2023] Open
Abstract
While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| |
Collapse
|
30
|
Martín C, Etxaniz A, Uribe KB, Etxebarria A, González-Bullón D, Arlucea J, Goñi FM, Aréchaga J, Ostolaza H. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Sci Rep 2015; 5:13774. [PMID: 26346097 PMCID: PMC4642564 DOI: 10.1038/srep13774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.
Collapse
Affiliation(s)
- César Martín
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Asier Etxaniz
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B. Uribe
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Aitor Etxebarria
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - David González-Bullón
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Jon Arlucea
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Félix M. Goñi
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Juan Aréchaga
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Helena Ostolaza
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
31
|
Brummelman J, Wilk MM, Han WGH, van Els CACM, Mills KHG. Roads to the development of improved pertussis vaccines paved by immunology. Pathog Dis 2015; 73:ftv067. [PMID: 26347400 PMCID: PMC4626578 DOI: 10.1093/femspd/ftv067] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/17/2023] Open
Abstract
Current acellular pertussis vaccines have various shortcomings, which may contribute to their suboptimal efficacy and waning immunity in vaccinated populations. This calls for the development of new pertussis vaccines capable of inducing long-lived protective immunity. Immunization with whole cell pertussis vaccines and natural infection with Bordetella pertussis induce distinct and more protective immune responses when compared with immunization with acellular pertussis vaccines. Therefore, the immune responses induced with whole cell vaccine or after infection can be used as a benchmark for the development of third-generation vaccines against pertussis. Here, we review the literature on the immunology of B. pertussis infection and vaccination and discuss the lessons learned that will help in the design of improved pertussis vaccines. To develop improved pertussis vaccines capable of inducing long-lived protective immunity, lessons have to be learned from immunology of Bordetella pertussis infection and current vaccination.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Mieszko M Wilk
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Fedele G, Cassone A, Ausiello CM. T-cell immune responses to Bordetella pertussis infection and vaccination. Pathog Dis 2015; 73:ftv051. [PMID: 26242279 DOI: 10.1093/femspd/ftv051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
The recent immunological investigations, stemming from the studies performed in the nineties within the clinical trials of the acellular pertussis vaccines, have highlighted the important role played by T-cell immunity to pertussis in humans. These studies largely confirmed earlier investigations in the murine respiratory infection models that humoral immunity alone is not sufficient to confer protection against Bordetella pertussis infection and that T-cell immunity is required. Over the last years, knowledge of T-cell immune response to B. pertussis has expanded broadly, taking advantage of the general progress in the understanding of anti-bacterial immunity and of refinements in methods to approach immunological investigations. In particular, experimental models of B. pertussis infection highlighted the cooperative role played by T-helper (Th)1 and Th17 cells for protection. Furthermore, the new baboon experimental model suggested a plausible explanation for the differences observed in the strength and persistence of protective immunity induced by the acellular or whole-cell pertussis vaccines and natural infection in humans, contributing to explain the upsurge of recent pertussis outbreaks. Despite the progress, open questions remain, the answer to them will possibly provide better tools to fight one of the hardest-to-control vaccine preventable disease.
Collapse
Affiliation(s)
- Giorgio Fedele
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cassone
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy Center of functional genomics, Polo della genomica, genetica e biologia, University of Perugia, 06132 Perugia, Italy
| | - Clara Maria Ausiello
- Anti-Infectious Immunity Unit, Department of Infectious Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
33
|
Acosta AM, DeBolt C, Tasslimi A, Lewis M, Stewart LK, Misegades LK, Messonnier NE, Clark TA, Martin SW, Patel M. Tdap vaccine effectiveness in adolescents during the 2012 Washington State pertussis epidemic. Pediatrics 2015; 135:981-9. [PMID: 25941309 PMCID: PMC5736389 DOI: 10.1542/peds.2014-3358] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acellular pertussis vaccines replaced whole-cell vaccines for the 5-dose childhood vaccination series in 1997. A sixth dose of pertussis-containing vaccine, tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis, adsorbed (Tdap), was recommended in 2005 for adolescents and adults. Studies examining Tdap vaccine effectiveness (VE) among adolescents who have received all acellular vaccines are limited. METHODS To assess Tdap VE and duration of protection, we conducted a matched case-control study during the 2012 pertussis epidemic in Washington among adolescents born during 1993-2000. All pertussis cases reported from January 1 through June 30, 2012, in 7 counties were included; 3 controls were matched by primary provider clinic and birth year to each case. Vaccination histories were obtained through medical records, the state immunization registry, and parent interviews. Participants were classified by type of pertussis vaccine received on the basis of birth year: a mix of whole-cell and acellular vaccines (1993-1997) or all acellular vaccines (1998-2000). We used conditional logistic regression to calculate odds ratios comparing Tdap receipt between cases and controls. RESULTS Among adolescents who received all acellular vaccines (450 cases, 1246 controls), overall Tdap VE was 63.9% (95% confidence interval [CI]: 50% to 74%). VE within 1 year of vaccination was 73% (95% CI: 60% to 82%). At 2 to 4 years postvaccination, VE declined to 34% (95% CI: -0.03% to 58%). CONCLUSIONS Tdap protection wanes within 2 to 4 years. Lack of long-term protection after vaccination is likely contributing to increases in pertussis among adolescents.
Collapse
Affiliation(s)
- Anna M. Acosta
- Epidemic Intelligence Service, Scientific Education and Professional Development Program Office, Atlanta, Georgia,Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Chas DeBolt
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Azadeh Tasslimi
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Melissa Lewis
- Biostatistics Office, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laurie K. Stewart
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Lara K. Misegades
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Nancy E. Messonnier
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Thomas A. Clark
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Stacey W. Martin
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Manisha Patel
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
34
|
Han WGH, Helm K, Poelen MMC, Otten HG, van Els CACM. Ex vivo peptide-MHC II tetramer analysis reveals distinct end-differentiation patterns of human pertussis-specific CD4(+) T cells following clinical infection. Clin Immunol 2015; 157:205-15. [PMID: 25728491 DOI: 10.1016/j.clim.2015.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Pertussis is occurring in highly vaccinated populations, suggesting insufficient protective memory CD4(+) T cells to Bordetella (B.) pertussis. P.69 Pertactin (P.69 Prn) is an important virulence factor of B. pertussis, and P.69 Prn7-24 is an immunodominant CD4(+) T cell epitope in mice and broadly recognized in humans. P.69 Prn7-24 peptide-MHC II tetramers (DRB4*0101/IVKT) were designed to ex vivo interrogate the presence and differentiation state of P.69 Prn7-24 specific CD4(+) T cells in six symptomatic pertussis cases. Cases with relatively more CD45RA(-)CCR7(+) central memory CD4(+)DRB4*0101/IVKT(+) T cells secreted Th1 cytokines, while cases with more CD45RA(-)CCR7(-) effector memory CD4(+)DRB4*0101/IVKT(+) T cells secreted both Th1 and Th2 cytokines upon peptide stimulation. CD45RA(+)CCR7(-) terminal differentiation pattern was associated with low or non-functionality based on cytokine secretion. This study provides proof of principle for further peptide-MHC II tetramer guided approaches in the elucidation of limited immunological memory to B. pertussis and the resurgence of pertussis.
Collapse
Affiliation(s)
- Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien M C Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
35
|
Brummelman J, Helm K, Hamstra HJ, van der Ley P, Boog CJP, Han WGH, van Els CACM. Modulation of the CD4(+) T cell response after acellular pertussis vaccination in the presence of TLR4 ligation. Vaccine 2015; 33:1483-91. [PMID: 25659267 DOI: 10.1016/j.vaccine.2015.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/16/2014] [Accepted: 01/24/2015] [Indexed: 01/06/2023]
Abstract
Whole cell pertussis (wP) vaccines are gradually being replaced by aluminum salt-adjuvanted acellular pertussis (aP) vaccines. These promote CD4(+) T cell responses with a non-protective Th2 component, while protective immune mechanisms to B. pertussis may rather involve long-lived Th1/Th17 type CD4(+) T cells. Here we asked whether addition of a non-toxic meningococcal LPS derivative, LpxL1, as adjuvant can favorably modulate the aP-induced pertussis-specific CD4(+) T cell response in mice. To assess the effect of TLR4 ligation, Th type, quantity, and memory potential of pertussis-specific CD4(+) T cells were determined at the single-cell level after aP and aP+LpxL1 vaccination using intracellular cytokine staining and MHC class II tetramers. Adding LpxL1 to the aP vaccine weakened the Th2 component and strengthened the Th1/Th17 component of the specific CD4(+) T cell response. Notably, LpxL1 addition also induced higher frequencies of tetramer positive CD4(+) T cells in draining lymph nodes or blood, depending on the phase after vaccination. Moreover, there was a net profit in the number of CD4(+) T cells with a central memory phenotype, preferred for long-term immunity. Thus, adding a TLR4 ligand as adjuvant to a current aP vaccine was associated with a more favorable pertussis-specific CD4(+) T cell response.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Claire J P Boog
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
36
|
Raeven RHM, Brummelman J, Pennings JLA, Nijst OEM, Kuipers B, Blok LER, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One 2014; 9:e104548. [PMID: 25137043 PMCID: PMC4138111 DOI: 10.1371/journal.pone.0104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cecile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G. H. Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
37
|
Sheridan SL, Frith K, Snelling TL, Grimwood K, McIntyre PB, Lambert SB. Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis vaccine: recent epidemiology. Expert Rev Vaccines 2014; 13:1081-106. [DOI: 10.1586/14760584.2014.944167] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS One 2014; 9:e104064. [PMID: 25084094 PMCID: PMC4118975 DOI: 10.1371/journal.pone.0104064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/05/2014] [Indexed: 11/19/2022] Open
Abstract
Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4+ and CD8+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4+CD25+Foxp3+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8+ T cell proliferation and limited the induction of IFN-γ producing CD8+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.
Collapse
|
39
|
Allen AC, Mills KHG. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity. Expert Rev Vaccines 2014; 13:1253-64. [PMID: 25017925 DOI: 10.1586/14760584.2014.936391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.
Collapse
Affiliation(s)
- Aideen C Allen
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
40
|
Pertussis-specific memory B-cell and humoral IgG responses in adolescents after a fifth consecutive dose of acellular pertussis vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1301-8. [PMID: 25008903 DOI: 10.1128/cvi.00280-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to impede the increase in pertussis incidence in the adolescent group, a school-leaving booster dose administered at the age of 14 to 16 years will be introduced in Sweden in 2016. Preceding this introduction, an open-label, randomized, multicenter, clinical trial without a control group and with blinded analysis was performed, investigating both safety and immunogenicity. Reported here are the memory B-cell and serological responses detected in a smaller cohort (n = 34) of the 230 subjects recruited to the study. All subjects had received primary vaccination consisting of three doses of diphtheria-tetanus-5-component pertussis (DTaP5) vaccine, at 3, 5, and 12 months of age, and a tetanus-low-dose diphtheria-5-component pertussis (Tdap5) vaccine booster at 5.5 years. In this study, the subjects were randomly assigned and received either a Tdap1 or Tdap5 booster. Of the 230 participants, 34 subjects had samples available for evaluation of IgG-producing memory B-cell responses. Both vaccine groups had significant increases in pertussis toxin-specific serum IgG levels, but only the 1-component group showed significant increases in pertussis toxin-specific memory B cells. The 5-component group had significant increases in filamentous hemagglutinin- and pertactin-specific memory B-cell and serum IgG levels; these were not seen in the 1-component group, as expected. In conclusion, this study shows that a 5th consecutive dose of an acellular pertussis vaccine induces B-cell responses in vaccinated adolescents. (This study has been registered at EudraCT under registration no. 2008-008195-13 and at ClinicalTrials.gov under registration no. NCT00870350.).
Collapse
|
41
|
Mills KHG, Gerdts V. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis. J Infect Dis 2014; 209 Suppl 1:S16-9. [PMID: 24626866 DOI: 10.1093/infdis/jit488] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | | |
Collapse
|
42
|
Jahnmatz M, Amu S, Ljungman M, Wehlin L, Chiodi F, Mielcarek N, Locht C, Thorstensson R. B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial. Vaccine 2014; 32:3350-6. [PMID: 24793938 DOI: 10.1016/j.vaccine.2014.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
Despite high vaccination coverage, pertussis is still a global concern in infant morbidity and mortality, and improved pertussis vaccines are needed. A live attenuated Bordetella pertussis strain, named BPZE1, was designed as an intranasal vaccine candidate and has recently been tested in man in a phase I clinical trial. Here, we report the evaluation of the B-cell responses after vaccination with BPZE1. Forty-eight healthy males with no previous pertussis-vaccination were randomized into one of three dose-escalating groups or into a placebo group. Plasma blast- and memory B-cell responses were evaluated by ELISpot against three different pertussis antigens: pertussis toxin, filamentous haemagglutinin and pertactin. Seven out of the 36 subjects who had received the vaccine were colonized by BPZE1, and significant increases in the memory B-cell response were detected against all three tested antigens in the culture-positive subjects between days 0 and 28 post-vaccination. The culture-positive subjects also mounted a significant increase in the filamentous haemagglutinin-specific plasma blast response between days 7 and 14 post-vaccination. No response could be detected in the culture-negatives or in the placebo group post-vaccination. These data show that BPZE1 is immunogenic in humans and is therefore a promising candidate for a novel pertussis vaccine. This trial is registered at ClinicalTrials.gov (NCT01188512).
Collapse
Affiliation(s)
- Maja Jahnmatz
- Public Health Agency of Sweden, Solna, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Sylvie Amu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lena Wehlin
- Public Health Agency of Sweden, Solna, Sweden
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Mielcarek
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; University Lille Nord de France, Lille, France
| | - Camille Locht
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; University Lille Nord de France, Lille, France
| | | |
Collapse
|
43
|
Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:641-50. [PMID: 24599530 DOI: 10.1128/cvi.00665-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Collapse
|
44
|
Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy. Hum Immunol 2014; 75:440-51. [PMID: 24530743 DOI: 10.1016/j.humimm.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Accepted: 02/04/2014] [Indexed: 11/21/2022]
Abstract
The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level.
Collapse
|
45
|
van Twillert I, van Gaans-van den Brink JAM, Poelen MCM, Helm K, Kuipers B, Schipper M, Boog CJP, Verheij TJM, Versteegh FGA, van Els CACM. Age related differences in dynamics of specific memory B cell populations after clinical pertussis infection. PLoS One 2014; 9:e85227. [PMID: 24454823 PMCID: PMC3890308 DOI: 10.1371/journal.pone.0085227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Betsy Kuipers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Maarten Schipper
- Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Theo J. M. Verheij
- Julius Center Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cécile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
van der Ark AAJ, Hozbor DF, Boog CJP, Metz B, van den Dobbelsteen GPJM, van Els CACM. Resurgence of pertussis calls for re-evaluation of pertussis animal models. Expert Rev Vaccines 2014; 11:1121-37. [DOI: 10.1586/erv.12.83] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Han WGH, van Twillert I, Poelen MCM, Helm K, van de Kassteele J, Verheij TJM, Versteegh FGA, Boog CJP, van Els CACM. Loss of multi-epitope specificity in memory CD4(+) T cell responses to B. pertussis with age. PLoS One 2013; 8:e83583. [PMID: 24391789 PMCID: PMC3877060 DOI: 10.1371/journal.pone.0083583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/06/2013] [Indexed: 02/05/2023] Open
Abstract
Pertussis is still occurring in highly vaccinated populations, affecting individuals of all ages. Long-lived Th1 CD4(+) T cells are essential for protective immunity against pertussis. For better understanding of the limited immunological memory to Bordetella pertussis, we used a panel of Pertactin and Pertussis toxin specific peptides to interrogate CD4(+) T cell responses at the epitope level in a unique cohort of symptomatic pertussis patients of different ages, at various time intervals after infection. Our study showed that pertussis epitope-specific T cell responses contained Th1 and Th2 components irrespective of the epitope studied, time after infection, or age. In contrast, the breadth of the pertussis-directed CD4(+) T cell response seemed dependent on age and closeness to infection. Multi-epitope specificity long-term after infection was lost in older age groups. Detailed knowledge on pertussis specific immune mechanisms and their insufficiencies is important for understanding resurgence of pertussis in highly vaccinated populations.
Collapse
Affiliation(s)
- Wanda G. H. Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Inonge van Twillert
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan van de Kassteele
- Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Theo J. M. Verheij
- Julius Center Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Cécile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
48
|
Smits K, Pottier G, Smet J, Dirix V, Vermeulen F, De Schutter I, Carollo M, Locht C, Ausiello CM, Mascart F. Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination. Vaccine 2013; 32:111-8. [PMID: 24176499 DOI: 10.1016/j.vaccine.2013.10.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
Abstract
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Collapse
Affiliation(s)
- Kaatje Smits
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaelle Pottier
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Smet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Vermeulen
- Pediatric Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Iris De Schutter
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Maria Carollo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Camille Locht
- INSERM U 1019, Lille, France; CNRS, UMR8204, Lille, France; Université Lille Nord de France, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Clara Maria Ausiello
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
49
|
The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:445-57. [PMID: 23955529 DOI: 10.1007/s00005-013-0242-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/04/2013] [Indexed: 01/05/2023]
Abstract
Approximately 40 million whooping cough cases and between 200,000 and 400,000 pertussis-linked deaths are recorded each year. Although several types of vaccines are licensed and widely used, Bordetella pertussis continues to circulate in populations with high vaccine coverage of infants and children due to the waning of protection induced by the vaccination. B. pertussis typically expresses a wide array of virulence factors which promote bacterial adhesion and invasion by altering the local environment, including pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and the lipooligosaccharide. The virulence factors of B. pertussis also possess immunomodulatory properties, exerted through their enzymatic and receptor-binding activities. Both pro- and anti-inflammatory effects are mediated, that can subvert host innate and adaptive immunity and favor the onset of a long-term infection. This review describes the capacities of B. pertussis virulence factors to modulate host immune responses and the mechanisms employed, which have been the subject of extensive research in the recent years, both in murine and human experimental systems. Knowledge of these mechanisms is gaining increasing importance, since it could provide in the near future the basis for the identification of therapeutic agents for modulating the immune system as well as novel molecular targets to treat pertussis.
Collapse
|
50
|
Differential T- and B-cell responses to pertussis in acellular vaccine-primed versus whole-cell vaccine-primed children 2 years after preschool acellular booster vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1388-95. [PMID: 23825195 DOI: 10.1128/cvi.00270-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated long-term cellular and humoral immunity against pertussis after booster vaccination of 4-year-old children who had been vaccinated at 2, 3, 4, and 11 months of age with either whole-cell pertussis (wP) or acellular pertussis (aP) vaccine. Immune responses were evaluated until 2 years after the preschool booster aP vaccination. In a cross-sectional study (registered trial no. ISRCTN65428640), blood samples were taken from wP- and aP-primed children prebooster and 1 month and 2 years postbooster. Pertussis vaccine antigen-specific IgG levels, antibody avidities, and IgG subclasses, as well as T-cell cytokine levels, were measured by fluorescent bead-based multiplex immunoassays. The numbers of pertussis-specific memory B cells and gamma interferon (IFN-γ)-producing T cells were quantified by enzyme-linked immunosorbent spot assays. Even 2 years after booster vaccination, memory B cells were still present and higher levels of pertussis-specific antibodies than prebooster were found in aP-primed children and, to a lesser degree, also in wP-primed children. The antibodies consisted mainly of the IgG1 subclass but also showed an increased IgG4 portion, primarily in the aP-primed children. The antibody avidity indices for pertussis toxin and pertactin in aP-primed children were already high prebooster and remained stable at 2 years, whereas those in wP-primed children increased. All measured prebooster T-cell responses in aP-primed children were already high and remained at similar levels or even decreased during the 2 years after booster vaccination, whereas those in wP-primed children increased. Since the Dutch wP vaccine has been replaced by aP vaccines, the induction of B-cell and T-cell memory immune responses has been enhanced, but antibody levels still wane after five aP vaccinations. Based on these long-term immune responses, the Dutch pertussis vaccination schedule can be optimized, and we discuss here several options.
Collapse
|