1
|
Geng J, Xie M, Yan M, Xie X, Wang F, Zhu R, Han M. Invariant NK T cells counteract HCC metastasis by mediating the migration of splenic CD4 + T cells into the white pulp and infiltration of B cells. Commun Biol 2025; 8:351. [PMID: 40033139 DOI: 10.1038/s42003-025-07798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Despite significant advances in the diagnosis and treatment of hepatocellular carcinoma (HCC), metastasis and recurrence remain two major obstacles to improving the clinical outcomes for HCC patients. Here, we demonstrate that splenic invariant natural killer T (iNKT) cells can significantly inhibit Hepa1-6-mediated intrahepatic HCC metastasis. Interestingly, in the HCC metastasis model, iNKT deficiency can result in a significant decrease in percentage and absolute number of CD4+ T cell and interleukin-4 level, thus suggesting the involvement of the cross-talk between iNKTs and CD4+ T cells in limiting HCC metastasis to the spleen. Transcriptional signatures of CD4+ T cells following iNKT deficiency displaying impairment of their cell migration function. During HCC metastasis, splenic iNKT rapidly secrete interferon-γ to promote the migration of CD4+ T cells from the marginal zone into the white pulp, thereby triggering subsequent migration of splenic B cells to the liver and exerting anti-tumor immune effects on Hepa1-6 cells. In conclusion, interactions between interferon-γ and its receptor on iNKT and CD4+ T cells can effectively coordinate immune activity between the marginal zone and the white pulp, thereby ultimately inhibiting intrahepatic HCC metastasis. These findings reveal the mechanism underlying the resistance of splenic iNKT to tumor metastasis.
Collapse
Affiliation(s)
- Jinke Geng
- Center for Medical Laboratory Science, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengxiao Xie
- Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Meina Yan
- Center for Medical Laboratory Science, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaoyan Xie
- Center for Medical Laboratory Science, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Fuxin Wang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Mutian Han
- Center for Medical Laboratory Science, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
- Center for Research and Experimental, Suzhou Vocational Health College, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Zhang Z, Zhang F, Xie W, Niu Y, Wang H, Li G, Zhao L, Wang X, Xie W. Induced Necroptosis and Its Role in Cancer Immunotherapy. Int J Mol Sci 2024; 25:10760. [PMID: 39409087 PMCID: PMC11477008 DOI: 10.3390/ijms251910760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has garnered significant attention as a potential cancer treatment. Basic information for the creation of nano-biomedical treatments is provided by studies on the mechanisms underlying tumor necroptosis. Receptor-interacting protein kinase 1 (RIPK1)-RIPK3-mediated necroptosis, Toll-like receptor domain-containing adapter-inducing interferon (IFN)-β (TRIF)-RIPK3-mediated necroptosis, Z-DNA-binding protein 1 (ZBP1)-RIPK3-mediated necroptosis, and IFNR-mediated necroptosis are the four signaling pathways that collectively account for triggered necroptosis in this review. Necroptosis has garnered significant interest as a possible cancer treatment strategy because, in contrast to apoptosis, it elicits immunological responses that are relevant to therapy. Thus, a thorough discussion is held on the connections between tumor cell necroptosis and the immune environment, cancer immunosurveillance, and cells such as dendritic cells (DCs), cytotoxic T cells, natural killer (NK) cells, natural killer T (NKT) cells, and their respective cytokines. Lastly, a summary of the most recent nanomedicines that cause necroptosis in order to cause immunogenic cell death is provided in order to emphasize their promise for cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyao Zhang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Fangming Zhang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Wenjing Xie
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Yubo Niu
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Haonan Wang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Guofeng Li
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Xing Wang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Wensheng Xie
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| |
Collapse
|
4
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
5
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
6
|
Kou J, Bie Y, Liu M, Wang L, Liu X, Sun Y, Zheng X. Identification and bioinformatics analysis of lncRNAs in serum of patients with ankylosing spondylitis. BMC Musculoskelet Disord 2024; 25:291. [PMID: 38622662 PMCID: PMC11017588 DOI: 10.1186/s12891-024-07396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES The aim of this study was to explore the long non-coding RNA (lncRNA) expression profiles in serum of patients with ankylosing spondylitis (AS). The role of these lncRNAs in this complex autoimmune situation needs to be evaluated. METHODS We used high-throughput whole-transcriptome sequencing to generate sequencing data from three patients with AS and three normal controls (NC). Then, we performed bioinformatics analyses to identify the functional and biological processes associated with differentially expressed lncRNAs (DElncRNAs). We confirmed the validity of our RNA-seq data by assessing the expression of eight lncRNAs via quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 20 AS and 20 NC samples. We measured the correlation between the expression levels of lncRNAs and patient clinical index values using the Spearman correlation test. RESULTS We identified 72 significantly upregulated and 73 significantly downregulated lncRNAs in AS patients compared to NC. qRT-PCR was performed to validate the expression of selected DElncRNAs; the results demonstrated that the expression levels of MALAT1:24, NBR2:9, lnc-DLK1-35:13, lnc-LARP1-1:1, lnc-AIPL1-1:7, and lnc-SLC12A7-1:16 were consistent with the sequencing analysis results. Enrichment analysis showed that DElncRNAs mainly participated in the immune and inflammatory responses pathways, such as regulation of protein ubiquitination, major histocompatibility complex class I-mediated antigen processing and presentation, MAPkinase activation, and interleukin-17 signaling pathways. In addition, a competing endogenous RNA network was constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs (MALAT1:24 and NBR2:9). We further found the expression of MALAT1:24 and NBR2:9 to be positively correlated with disease severity. CONCLUSION Taken together, our study presents a comprehensive overview of lncRNAs in the serum of AS patients, thereby contributing novel perspectives on the underlying pathogenic mechanisms of this condition. In addition, our study predicted MALAT1 has the potential to be deeply involved in the pathogenesis of AS.
Collapse
Affiliation(s)
- Jianqiang Kou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongchen Bie
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mingquan Liu
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liqin Wang
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyun Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanliang Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiujun Zheng
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
7
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Pardo-Cea MA, Farré X, Esteve A, Palade J, Espín R, Mateo F, Alsop E, Alorda M, Blay N, Baiges A, Shabbir A, Comellas F, Gómez A, Arnan M, Teulé A, Salinas M, Berrocal L, Brunet J, Rofes P, Lázaro C, Conesa M, Rojas JJ, Velten L, Fendler W, Smyczynska U, Chowdhury D, Zeng Y, He HH, Li R, Van Keuren-Jensen K, de Cid R, Pujana MA. Biological basis of extensive pleiotropy between blood traits and cancer risk. Genome Med 2024; 16:21. [PMID: 38308367 PMCID: PMC10837955 DOI: 10.1186/s13073-024-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.
Collapse
Affiliation(s)
- Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Xavier Farré
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Anna Esteve
- Badalona Applied Research Group in Oncology (B-ARGO), Catalan Institute of Oncology, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA
| | - Marc Alorda
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Natalia Blay
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Francesc Comellas
- Department of Mathematics, Technical University of Catalonia, Castelldefels, 08860, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Department of Biosciences, Faculty of Sciences and Technology (FCT), University of Vic - Central University of Catalonia (UVic-UCC), Vic, 08500, Barcelona, Catalonia, Spain
| | - Montserrat Arnan
- Department of Hematology, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Alex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Monica Salinas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Laura Berrocal
- OncoGir, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Catalonia, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- OncoGir, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Miquel Conesa
- Department of Pathology and Experimental Therapies, University of Barcelona (UB), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Juan Jose Rojas
- Department of Pathology and Experimental Therapies, University of Barcelona (UB), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- University Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Center for BRCA and Related Genes, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Kendall Van Keuren-Jensen
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA.
| | - Rafael de Cid
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain.
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain.
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28222, Madrid, Spain.
| |
Collapse
|
9
|
Dean I, Lee CYC, Tuong ZK, Li Z, Tibbitt CA, Willis C, Gaspal F, Kennedy BC, Matei-Rascu V, Fiancette R, Nordenvall C, Lindforss U, Baker SM, Stockmann C, Sexl V, Hammond SA, Dovedi SJ, Mjösberg J, Hepworth MR, Carlesso G, Clatworthy MR, Withers DR. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat Commun 2024; 15:683. [PMID: 38267402 PMCID: PMC10808449 DOI: 10.1038/s41467-024-44789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.
Collapse
Affiliation(s)
- Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin Y C Lee
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zewen K Tuong
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christopher A Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Syed Murtuza Baker
- Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Clinical Lung and Allergy Research, Medical unit for Lung and Allergy Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Menna R Clatworthy
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
11
|
Abstract
Natural Killer T (NKT) cells are distinct innate lymphocytes that recognize lipid antigens in the context of nonpolymorphic molecule CD1d. Multiple myeloma (MM) is a hematologic malignancy wherein malignant plasma cells express CD1d and are sensitive to lysis by NKT cells. Progressive malignancy in MM is characterized by NKT cell dysfunction. Several studies have tried to harness the anti-tumor properties of NKT cells in MM to mediate tumor regression. NKT cells are also attractive targets for approaches at immune redirection in MM with chimeric-antigen receptor NKT (CAR-NKT) and bispecific antibodies. In addition to the commonly studied invariant-NKT (iNKT) cells, MM patients often also exhibit alterations in type-II NKT cells and their ligands. In patients and mouse models with Gaucher disease (GD), an inherited lipid-storage disorder with markedly increased risk for MM, distinct type-II NKT cells exhibit a T-follicular helper (NKT-TFH) phenotype and provide help to lipid-specific B cells. Chronic immune activation in this setting eventually sets the stage for malignancy, which can be targeted in both mouse models and GD patients by reducing the underlying antigen. NKT cells are thus integrally linked to MM pathogenesis and an attractive target for MM immunotherapy.
Collapse
|
12
|
NISHIKAWA H. Establishment of immune suppression by cancer cells in the tumor microenvironment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:114-122. [PMID: 38346752 PMCID: PMC10978970 DOI: 10.2183/pjab.100.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 02/15/2024]
Abstract
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
Collapse
Affiliation(s)
- Hiroyoshi NISHIKAWA
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Das R. T Cell Receptor-Engaging Monoclonal Antibodies Mobilize the Anti-Tumor Functions of Invariant Natural Killer T Cells. Crit Rev Oncog 2024; 29:69-81. [PMID: 38421715 PMCID: PMC11062185 DOI: 10.1615/critrevoncog.2023049947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Invariant natural killer T cells (iNKTs) are innate-type T lymphocytes that directly kill tumor cells or tumor-growth promoting immunosuppressive cells such astumor-associated macrophages. Additionally, iNKTs robustly transactivate the antitumor functions of T, B, natural killer, and dendritic cells as well as reinvigorate exhausted immune cells in the tumor microenvironment. As such, iNKTs make excellent candidates for inclusion in anti-cancer cellular therapies. However, to capitalize on the potential benefits of iNKT cell-based approaches, it is imperative that we develop new and clinically viable strategies to enhance their antitumor function. To that end, two novel monoclonal antibodies (mAbs) that selectively bind to the human (NKTT320) or murine (NKT14m) invariant T cell receptor have been recently developed and characterized. Studies using purified human iNKTs (in vitro) and a model of non-human primate (in vivo) reveal that NKTT320 promotes swift, vigorous and sustained iNKT cell activation that is accompanied by robust production of inflammatory mediators and bystander immune cell activation. Furthermore, NKTT320 augments expression of cytotoxic markers and human iNKT cell degranulation. Similarly, NKT14m prompts dramatic murine iNKT cell activation and functional response both in vitro and in vivo. However, antitumor efficacy of a single dose of NKT14m injection in tumor-bearing mice is limited and tumor-model dependent. In contrast, combination treatment of NKT14m with either low dose interleukin (IL)-12 or the chemotherapeutic agent, cyclophosphamide results in a superior antitumor response in vivo. This is evident by activation of both iNKTs and other immune cells, prolonged survival of the tumor-challenged mice, and long-lasting immunity. Collectively, these recent studies justify further development of anti-iTCR mAbs that can be used alone or in conjunction with immunomodulatory agents to enhance iNKT cell antitumor immunity against various cancers.
Collapse
Affiliation(s)
- Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
16
|
Maeoka R, Nakazawa T, Matsuda R, Morimoto T, Shida Y, Yamada S, Nishimura F, Nakamura M, Nakagawa I, Park YS, Tsujimura T, Nakase H. Therapeutic Anti-KIR Antibody of 1-7F9 Attenuates the Antitumor Effects of Expanded and Activated Human Primary Natural Killer Cells on In Vitro Glioblastoma-like Cells and Orthotopic Tumors Derived Therefrom. Int J Mol Sci 2023; 24:14183. [PMID: 37762486 PMCID: PMC10531877 DOI: 10.3390/ijms241814183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor, where prognosis for which has remained extremely poor for two decades. Immunotherapy has recently drawn attention as a cancer treatment, including for GBM. Natural killer (NK) cells are immune cells that attack cancer cells directly and produce antitumor immunity-related cytokines. The adoptive transfer of expanded and activated NK cells is expected to be a promising GBM immunotherapy. We previously established an efficient expansion method that produced highly purified, activated primary human NK cells, which we designated genuine induced NK cells (GiNKs). The GiNKs demonstrated antitumor effects in vitro and in vivo, which were less affected by blockade of the inhibitory checkpoint receptor programmed death 1 (PD-1). In the present study, we assessed the antitumor effects of GiNKs, both alone and combined with an antibody targeting killer Ig-like receptor 2DLs (KIR2DL1 and DL2/3, both inhibitory checkpoint receptors of NK cells) in vitro and in vivo with U87MG GBM-like cells and the T98G GBM cell line. Impedance-based real-time cell growth assays and apoptosis detection assays revealed that the GiNKs exhibited growth inhibitory effects on U87MG and T98G cells by inducing apoptosis. KIR2DL1 blockade attenuated the growth inhibition of the cell lines in vitro. The intracranial administration of GiNKs prolonged the overall survival of the U87MG-derived orthotopic xenograft brain tumor model. The KIR2DL1 blockade did not enhance the antitumor effects; rather, it attenuated it in the same manner as in the in vitro experiment. GiNK immunotherapy directly administered to the brain could be a promising immunotherapeutic alternative for patients with GBM. Furthermore, KIR2DL1 blockade appeared to require caution when used concomitantly with GiNKs.
Collapse
Affiliation(s)
- Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan;
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Yoichi Shida
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan;
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara 634-8521, Japan; (R.M.); (T.M.); (Y.S.); (S.Y.); (F.N.); (M.N.); (I.N.); (Y.-S.P.); (H.N.)
| |
Collapse
|
17
|
Aoki T, Motohashi S, Koseki H. Regeneration of invariant natural killer T (iNKT) cells: application of iPSC technology for iNKT cell-targeted tumor immunotherapy. Inflamm Regen 2023; 43:27. [PMID: 37170375 PMCID: PMC10176773 DOI: 10.1186/s41232-023-00275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells restricted by a major histocompatibility complex (MHC) class I-like molecule, CD1d. iNKT cells express an invariant T cell receptor (TCR) encoded by Vα14 Jα18 in mice and Vα24 Jα18 in humans and are activated by recognizing glycolipid antigens, such as α-galactosylceramide (αGalCer), presented by CD1d. iNKT cells exhibit anti-tumor activity via their NK-like cytotoxicity and adjuvant activity. Although iNKT cell-targeted immunotherapy is a conceptually promising approach, we still found a technical hurdle for its clinical implementation which is mainly due to the low frequency of iNKT cells, particularly in humans. To compensate for this, we proposed to generate adequate numbers of clinically competent NKT cells from induced pluripotent stem cells (iPSCs) for cancer immunotherapy. Toward this goal, we first obtained the proof of concept (POC) for this approach in mice. We developed a technology to differentiate iPSCs into iNKT cells (iPSC-iNKT cells) and found iPSC-iNKT cells efficiently rejected a syngeneic experimental thymoma by inducing antigen-specific CD8 T cells. After achieving the POC in mice, we developed human iPSC-iNKT cells, which had a high correlation in their gene expression profiles with parental iNKT cells. Human iPSC-iNKT cells also exhibited anti-tumor activity and adjuvant activity for human NK cells in vivo. Based on this supporting evidence for the anti-tumor activity of human iPSC-iNKT cells, we began to generate good manufacturing practice (GMP)-grade iPSC-iNKT cells. As of now, the first-in-human clinical trial of iPSC-iNKT cell therapy is ongoing as a single-agent, dose-escalation study for patients with advanced head and neck cancer. Demonstration of the safety of iPSC-iNKT cell therapy may allow us to improve the strategy by further reinforcing the therapeutic activity of iPSC-iNKT, cells either by gene-editing or combinatorial use with other immune cell products such as dendritic cells. Sixteen years after the establishment of the iPSC technology, we are reaching the first checkpoint to evaluate the clinical efficacy of iPSC-derived immune cells.
Collapse
Affiliation(s)
- Takahiro Aoki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
18
|
Lopes N, Vivier E, Narni-Mancinelli E. Natural killer cells and type 1 innate lymphoid cells in cancer. Semin Immunol 2023; 66:101709. [PMID: 36621291 DOI: 10.1016/j.smim.2022.101709] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Innate lymphoid cells (ILCs) are a group of innate lymphocytes that do not express RAG-dependent rearranged antigen-specific cell surface receptors. ILCs are classified into five groups according to their developmental trajectory and cytokine production profile. They encompass NK cells, which are cytotoxic, helper-like ILCs 1-3, which functionally mirror CD4+ T helper (Th) type 1, Th2 and Th17 cells respectively, and lymphoid tissue inducer (LTi) cells. NK cell development depends on Eomes (eomesodermin), whereas the ILC1 program is regulated principally by the transcription factor T-bet (T-box transcription factor Tbx21), that of ILC2 is regulated by GATA3 (GATA-binding protein 3) and that of ILC3 is regulated by RORγt (RAR-related orphan receptor γ). NK cells were discovered close to fifty years ago, but ILC1s were first described only about fifteen years ago. Within the ILC family, NK and ILC1s share many similarities, as witnessed by their cell surface phenotype which largely overlap. NK cells and ILC1s have been reported to respond to tissue inflammation and intracellular pathogens. Several studies have reported an antitumorigenic role for NK cells in both humans and mice, but data for ILC1s are both scarce and contradictory. In this review, we will first describe the different NK cell and ILC1 subsets, their effector functions and development. We will then discuss their role in cancer and the effects of the tumor microenvironment on their metabolism.
Collapse
Affiliation(s)
- Noella Lopes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Innate Pharma Research Laboratories, Innate Pharma, Marseille, France; APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
19
|
Ma S, Barr T, Yu J. Recent Advances of RNA m 6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treat Res 2023; 190:49-94. [PMID: 38112999 DOI: 10.1007/978-3-031-45654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, 91010, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
20
|
Varghese B, Lynch L, Vriend LE, Draganov D, Clark JM, Kissick HT, Varghese S, Sanda MG, Dranoff G, Arredouani MS, Balk SP, Exley MA. Invariant NKT cell-augmented GM-CSF-secreting tumor vaccine is effective in advanced prostate cancer model. Cancer Immunol Immunother 2022; 71:2943-2955. [PMID: 35523889 PMCID: PMC10992623 DOI: 10.1007/s00262-022-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Invariant natural killer T cells (iNKT cells) express a semi-invariant T cell receptor that recognizes certain glycolipids (including α-galactosylceramide, αGC) bound to CD1d, and can induce potent antitumor responses. Here, we assessed whether αGC could enhance the efficacy of a GM-CSF-producing tumor cell vaccine in the transgenic SV40 T antigen-driven TRAMP prostate cancer model. In healthy mice, we initially found that optimal T cell responses were obtained with αGC-pulsed TRAMP-C2 cells secreting GM-CSF and milk fat globule epidermal growth factor protein-8 (MFG-E8) with an RGD to RGE mutation (GM-CSF/RGE TRAMP-C2), combined with systemic low dose IL-12. In a therapeutic model, transgenic TRAMP mice were then castrated at ~ 20 weeks, followed by treatment with the combination vaccine. Untreated mice succumbed to tumor by ~ 40 weeks, but survival was markedly prolonged by vaccine treatment, with most mice surviving past 80 weeks. Prostates in the treated mice were heavily infiltrated with T cells and iNKT cells, which both secreted IFNγ in response to tumor cells. The vaccine was not effective if the αGC, IL-12, or GM-CSF secretion was eliminated. Finally, immunized mice were fully resistant to challenge with TRAMP-C2 cells. Together these findings support further development of therapeutic vaccines that exploit iNKT cell activation.
Collapse
Affiliation(s)
- Bindu Varghese
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Sana Biotechnology Inc., Boston, MA, USA
| | - Lydia Lynch
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA
| | - Lianne E Vriend
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Dobrin Draganov
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Sanofi Inc., San Diego, CA, USA
| | - Justice M Clark
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Haydn T Kissick
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Sharlin Varghese
- Medical Center School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Martin G Sanda
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Glenn Dranoff
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Novartis Biomedical Institutes of Research, Cambridge, MA, USA
| | - M Simo Arredouani
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Intellia Inc., Cambridge, MA, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Mark A Exley
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA.
- Imvax Inc., Philadelphia, PA, USA.
- University of Manchester, Manchester, UK.
- MiNK Therapeutics Inc., New York, NY, USA.
| |
Collapse
|
21
|
To kill or not to kill - The role of the tumor microenvironment in shaping group 1 ILC functions. Semin Immunol 2022; 61-64:101670. [PMID: 36372017 PMCID: PMC7613863 DOI: 10.1016/j.smim.2022.101670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Group 1 innate lymphoid cells (ILC) comprise two major IFN-γ producing populations, namely Natural Killer (NK) cells, and ILC1s. Recent studies have revealed a complex and diverse composition of group 1 ILC subsets infiltrating different tumors. In this review, we will outline the commonalities and differences between group 1 ILC subsets in both mice and humans, discuss how the tissue and tumor microenvironment shapes their phenotype and functions, as well as describe their contrasting roles in the response to different cancers.
Collapse
|
22
|
Afshari AR, Sanati M, Mollazadeh H, Kesharwani P, Johnston TP, Sahebkar A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Sirajuddin N, Yin XT, Stuart PM. Role of NK T cells in transplantation with particular emphasis on corneal transplantation. Transpl Immunol 2022; 75:101727. [PMID: 36183944 DOI: 10.1016/j.trim.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022]
Abstract
Natural killer T cells (NKT cells) are a unique subset of the immune system that possess characteristics of both an innate and adaptive immune response. This study reviews the reported roles of NKT cells in different solid transplantations such as cardiac, skin, liver, and corneal grafts as well as investigates a novel role of NKT cells in steroid-resistant corneal rejections. It is unknown why there is late corneal graft rejection despite being treated with immunosuppression. Our experimental data suggests NKT cells are playing a crucial part in steroid-resistant late graft rejections. While the pathophysiology of acute rejection is better understood, the process of chronic graft rejection is much less clear. Our data suggests NKT cells as a potential therapeutic target to prevent chronic transplant rejection which needs further investigation.
Collapse
Affiliation(s)
- Nadia Sirajuddin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
26
|
Necroptosis-Associated lncRNA Prognostic Model and Clustering Analysis: Prognosis Prediction and Tumor-Infiltrating Lymphocytes in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7099930. [PMID: 35528236 PMCID: PMC9068297 DOI: 10.1155/2022/7099930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Necroptosis plays an important role in tumor genesis and progression. This study aims to identify necroptosis-related lncRNAs (NR-lncRNAs) in breast cancer (BC), and their prognostic value and relationship with the tumor immune environment (TIE) through bioinformatics. Methods. A total of 67 necroptosis-related genes (NRGs) are retrieved, and 13 prognostically relevant NR-lncRNAs are identified by co-expression and Univariate Cox regression analyses. After unsupervised clustering analysis, the patients are classified into three clusters, and their survival and immune infiltration are compared. Lasso regression analysis is conducted to construct a prognostic model using eight lncRNAs (USP30-AS1, AC097662.1, AC007686.3, AL133467.1, AP006284.1, NDUFA6-DT, LINC01871, AL135818.1). The model is validated by Kaplan-Meier survival analysis, Multivariate Cox regression analysis, and receiver-operating characteristic (ROC) curves. Correlation analysis is useful to identify associations between risk scores and clinicopathological features. GSEA, drug prediction, and immune checkpoints analysis are further used to differentiate between the risk groups. Results. The C3 cluster has longer overall survival (OS) and the highest immune score, indicative of an immunologically hot tumor that may be sensitive to immunotherapy. Furthermore, the OS is significantly higher in the low-risk group, even after dividing the patients into subgroups with different clinical characteristics. The area under the ROC curve (AUC) for 1-, 3-, and 5-year survival in the training set are 0.761, 0.734, and 0.664, respectively, which indicate the moderate predictive performance of the model. Conclusion. NR-lncRNAs can predict the prognosis of BC, distinguish between hot and cold tumors, and are potential predictive markers of the immunotherapy response.
Collapse
|
27
|
Nelson A, Gebremeskel S, Lichty BD, Johnston B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J Immunother Cancer 2022; 10:e003923. [PMID: 35246474 PMCID: PMC8900046 DOI: 10.1136/jitc-2021-003923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the leading causes of cancer death, with a 5-year -year survival rate of less than 10%. This results from late detection, high rates of metastasis, and resistance to standard chemotherapies. Furthermore, chemotherapy and radiation are associated with significant morbidity, underscoring the need for novel therapies. Recent clinical studies have shown that immunotherapies can provide durable outcomes in cancer patients, but successes in pancreatic cancer have been limited. It is likely that novel and combined therapies will be needed to achieve clinical benefits. METHODS Using experimental mouse models of pancreatic ductal adenocarcinoma, we examined natural killer T (NKT) cell activation therapy in combination with a recombinant oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express the cytokine IL-15 (VSV-IL-15). Panc02 pancreatic ductal carcinoma cells were implanted subcutaneously or orthotopically into syngeneic C57BL/6 mice. Mice were then treated with VSV expressing green fluorescent protein (VSV-GFP) or VSV-IL-15 and/or NKT cell activation therapy via delivery of α-GalCer-loaded DCs. We further assessed whether the addition of PD-1 blockade could increase the therapeutic benefit of our combination treatment. Three days after NKT cell activation, some groups of mice were treated with anti-PD-1 antibodies weekly for 3 weeks. RESULTS VSV-GFP and VSV-IL-15 mediated equal killing of human and mouse pancreatic cancer lines in vitro. In vivo, VSV-IL-15 combined with NKT cell activation therapy to enhance tumor regression and increase survival time over individual treatments, and was also superior to NKT cell therapy combined with VSV-GFP. Enhanced tumor control was associated with increased immune cell infiltration and anti-tumor effector functions (cytotoxicity and cytokine production). While ineffective as a monotherapy, the addition of blocking PD-1 antibodies to the combined protocol sustained immune cell activation and effector functions, resulting in prolonged tumor regression and complete tumor clearance in 20% of mice. Mice who cleared the initial tumor challenge exhibited reduced tumor growth uponon rechallenge, consistent with the formation of immune memory. CONCLUSION TThese results demonstrate that NKT cell immunotherapy combined with oncolytic VSV-IL-15 virotherapy and PD-1 blockade enhances tumor control and presents a promising treatment strategy for targeting pancreatic cancer.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Arnaiz E, Harris AL. Role of Hypoxia in the Interferon Response. Front Immunol 2022; 13:821816. [PMID: 35251003 PMCID: PMC8895238 DOI: 10.3389/fimmu.2022.821816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In solid tumors, as the tumor grows and the disease progresses, hypoxic regions are often generated, but in contrast to most normal cells which cannot survive under these conditions, tumour cells adapt to hypoxia by HIF-driven mechanisms. Hypoxia can further promote cancer development by generating an immunosuppressive environment within the tumour mass, which allows tumour cells to escape the immune system recognition. This is achieved by recruiting immunosuppressive cells and by upregulating molecules which block immune cell activation. Hypoxia can also confer resistance to antitumor therapies by inducing the expression of membrane proteins that increase drug efflux or by inhibiting the apoptosis of treated cells. In addition, tumor cells require an active interferon (IFN) signalling pathway for the success of many anticancer therapies, such as radiotherapy or chemotherapy. Therefore, hypoxic effects on this pathway needs to be addressed for a successful treatment.
Collapse
Affiliation(s)
- Esther Arnaiz
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Adrian L. Harris,
| |
Collapse
|
29
|
Vela-Patiño S, Salazar MI, Remba-Shapiro I, Peña-Martínez E, Silva-Roman G, Andoneui-Elguera S, Ordoñez-Garcia JDJ, Taniguchi-Ponciano K, Bonifaz L, Aguilar-Flores C, Marrero-Rodríguez D, Mercado M. Neuroendocrine-immune Interface: Interactions of Two Complex Systems in Health and Disease. Arch Med Res 2022; 53:240-251. [DOI: 10.1016/j.arcmed.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/25/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
|
30
|
Nettersheim FS, Picard FSR, Hoyer FF, Winkels H. Immunotherapeutic Strategies in Cancer and Atherosclerosis-Two Sides of the Same Coin. Front Cardiovasc Med 2022; 8:812702. [PMID: 35097027 PMCID: PMC8792753 DOI: 10.3389/fcvm.2021.812702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development and clinical approval of immunotherapies has revolutionized cancer therapy. Although the role of adaptive immunity in atherogenesis is now well-established and several immunomodulatory strategies have proven beneficial in preclinical studies, anti-atherosclerotic immunotherapies available for clinical application are not available. Considering that adaptive immune responses are critically involved in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the treatment of cancer and atherosclerosis may exert undesirable but also desirable side effects on the other condition, respectively. For example, the high antineoplastic efficacy of immune checkpoint inhibitors, which enhance effector immune responses against tumor cells by blocking co-inhibitory molecules, was recently shown to be constrained by substantial proatherogenic properties. In this review, we outline the specific role of immune responses in the development of cancer and atherosclerosis. Furthermore, we delineate how current cancer immunotherapies affect atherogenesis and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact on carcinogenesis.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Abstract
Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed. A potential approach is to harness the potent immunoregulatory properties of natural killer T (NKT) cells which are true T cells, not natural killer (NK) cells, that recognize lipid instead of peptide antigens presented by the non-classical major histocompatibility (MHC) molecule CD1d. The NKT cell subpopulation is known to play a vital role in tumor immunity by bridging innate and adaptive immune responses. In GI cancers, NKT cells can contribute to either antitumor or protumor immunity depending on the cytokine profile expressed and type of cancer. This review discusses the complexities of the role of NKT cells in liver, colon, pancreatic and gastric cancers with an emphasis on type I NKT cells.
Collapse
Affiliation(s)
- Julian Burks
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Julian Burks National Cancer Institute, National Institute of Health, Building 41/Room D702, 41 Medlars Drive, Bethesda, Maryland20892, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Vienne M, Etiennot M, Escalière B, Galluso J, Spinelli L, Guia S, Fenis A, Vivier E, Kerdiles YM. Type 1 Innate Lymphoid Cells Limit the Antitumoral Immune Response. Front Immunol 2021; 12:768989. [PMID: 34868026 PMCID: PMC8637113 DOI: 10.3389/fimmu.2021.768989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are known to be able to kill established tumor cell lines, but important caveats remain regarding their roles in the detection and elimination of developing primary tumors. Using a genetic model of selective ILC1 and NK cell deficiency, we showed that these cells were dispensable for tumor immunosurveillance and immunoediting in the MCA-induced carcinogenesis model. However, we were able to generate primary cell lines derived from MCA-induced tumors with graded sensitivity to NK1.1+ cells (including NK cells and ILC1). This differential sensitivity was associated neither with a modulation of intratumoral NK cell frequency, nor the capacity of tumor cells to activate NK cells. Instead, ILC1 infiltration into the tumor was found to be a critical determinant of NK1.1+ cell-dependent tumor growth. Finally, bulk tumor RNAseq analysis identified a gene expression signature associated with tumor sensitivity to NK1.1+ cells. ILC1 therefore appear to play an active role in inhibiting the antitumoral immune response, prompting to evaluate the differential tumor infiltration of ILC1 and NK cells in patients to optimize the harnessing of immunity in cancer therapies.
Collapse
Affiliation(s)
- Margaux Vienne
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Marion Etiennot
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Bertrand Escalière
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Justine Galluso
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Lionel Spinelli
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | | | - Eric Vivier
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Yann M Kerdiles
- Aix-Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
33
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
34
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
35
|
Ex Vivo Expanded and Activated Natural Killer Cells Prolong the Overall Survival of Mice with Glioblastoma-like Cell-Derived Tumors. Int J Mol Sci 2021; 22:ijms22189975. [PMID: 34576141 PMCID: PMC8472834 DOI: 10.3390/ijms22189975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.
Collapse
|
36
|
Leung EYL, McNeish IA. Strategies to Optimise Oncolytic Viral Therapies: The Role of Natural Killer Cells. Viruses 2021; 13:1450. [PMID: 34452316 PMCID: PMC8402671 DOI: 10.3390/v13081450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses (OVs) are an emerging class of anti-cancer agents that replicate selectively within malignant cells and generate potent immune responses. Their potential efficacy has been shown in clinical trials, with talimogene laherparepvec (T-VEC or IMLYGIC®) now approved both in the United States and Europe. In healthy individuals, NK cells provide effective surveillance against cancer and viral infections. In oncolytic viral therapy, NK cells may render OV ineffective by rapid elimination of the propagating virus but could also improve therapeutic efficacy by preferential killing of OV-infected malignant cells. Existing evidence suggests that the overall effect of NK cells against OV is context dependent. In the past decade, the understanding of cancer and OV biology has improved significantly, which helped refine this class of treatments in early-phase clinical trials. In this review, we summarised different strategies that have been evaluated to modulate NK activities for improving OV therapeutic benefits. Further development of OVs will require a systematic approach to overcome the challenges of the production and delivery of complex gene and cell-based therapies in clinical settings.
Collapse
Affiliation(s)
- Elaine Y. L. Leung
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, IRDB Building, Imperial College London, London W12 0NN, UK
| |
Collapse
|
37
|
Zhao W, Liu M, Zhang M, Wang Y, Zhang Y, Wang S, Zhang N. Effects of Inflammation on the Immune Microenvironment in Gastric Cancer. Front Oncol 2021; 11:690298. [PMID: 34367971 PMCID: PMC8343517 DOI: 10.3389/fonc.2021.690298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chronic inflammation and immune cell dysfunction in the tumor microenvironment are key factors in the development and progression of gastric tumors. However, inflammation-related genes associated with gastric cancer prognosis and their relationship with the expression of immune genes are not fully understood. METHOD In this study, we established an inflammatory response model score called "Riskscore", based on differentially expressed genes in gastric cancer. We used Survival and Survminer packages in R to analyze patient survival and prognosis in risk groups. The survival curve was plotted using the Kaplan-Meier method, and the log-rank test was used to assess statistical significance, and we performed the ROC analysis using the R language package to analyze the 1-, 3-, and 5-year survival of patients in the GEO and TCGA databases. Single-factor and multi-factor prognostic analyses were carried out for age, sex, T, N, M, and risk score. Pathway enrichment analysis indicated immune factor-related pathway enrichment in both patient groups. Next, we screened for important genes that are involved in immune cell regulation. Finally, we created a correlation curve to explore the correlation between Riskscore and the expression of these genes. RESULTS The prognosis was significantly different between high- and low-risk groups, and the survival rate and survival time of the high-risk group were lower than those of the low-risk group. we found that the pathways related to apoptosis, hypoxia, and immunity were most enriched in the risk groups. we found two common tumor-infiltrating immune cell types (i.e., follicular helper T cells and resting dendritic cells) between the two risk groups and identified 10 genes that regulate these cells. Additionally, we found that these 10 genes are positively associated with the two risk groups. CONCLUSION Finally, a risk model of the inflammatory response in gastric cancer was established, and the inflammation-related genes used to construct the model were found to be directly related to immune infiltration. This model can improve the gastric cancer prognosis prediction. Our findings contribute to the development of immunotherapy for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Weidan Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingqing Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yachen Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yingli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Shiji Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Mattiuz R, Brousse C, Ambrosini M, Cancel J, Bessou G, Mussard J, Sanlaville A, Caux C, Bendriss‐Vermare N, Valladeau‐Guilemond J, Dalod M, Crozat K. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 + and CD8 + T-cell protective responses to breast cancer. Clin Transl Immunology 2021; 10:e1305. [PMID: 34277006 PMCID: PMC8279130 DOI: 10.1002/cti2.1305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To better understand how immune responses may be harnessed against breast cancer, we investigated which immune cell types and signalling pathways are required for spontaneous control of a mouse model of mammary adenocarcinoma. METHODS The NOP23 mammary adenocarcinoma cell line expressing epitopes derived from the ovalbumin model antigen is spontaneously controlled when orthotopically engrafted in syngeneic C57BL/6 mice. We combined this breast cancer model with antibody-mediated depletion of lymphocytes and with mutant mice affected in interferon (IFN) or type 1 conventional dendritic cell (cDC1) responses. We monitored tumor growth and immune infiltration including the activation of cognate ovalbumin-specific T cells. RESULTS Breast cancer immunosurveillance required cDC1, NK/NK T cells, conventional CD4+ T cells and CD8+ cytotoxic T lymphocytes (CTLs). cDC1 were required constitutively, but especially during T-cell priming. In tumors, cDC1 were interacting simultaneously with CD4+ T cells and tumor-specific CTLs. cDC1 expression of the XCR1 chemokine receptor and of the T-cell-attracting or T-cell-activating cytokines CXCL9, IL-12 and IL-15 was dispensable for tumor rejection, whereas IFN responses were necessary, including cDC1-intrinsic signalling by STAT1 and IFN-γ but not type I IFN (IFN-I). cDC1 and IFNs promoted CD4+ and CD8+ T-cell infiltration, terminal differentiation and effector functions. In breast cancer patients, high intratumor expression of genes specific to cDC1, CTLs, CD4+ T cells or IFN responses is associated with a better prognosis. CONCLUSION Interferons and cDC1 are critical for breast cancer immunosurveillance. IFN-γ plays a prominent role over IFN-I in licensing cDC1 for efficient T-cell activation.
Collapse
Affiliation(s)
- Raphaël Mattiuz
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
- Present address:
The Precision Immunology Institute and Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carine Brousse
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Marc Ambrosini
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Jean‐Charles Cancel
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Gilles Bessou
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Julie Mussard
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Amélien Sanlaville
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Christophe Caux
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Nathalie Bendriss‐Vermare
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Jenny Valladeau‐Guilemond
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Marc Dalod
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Karine Crozat
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| |
Collapse
|
39
|
Gao Y, Guo J, Bao X, Xiong F, Ma Y, Tan B, Yu L, Zhao Y, Lu J. Adoptive Transfer of Autologous Invariant Natural Killer T Cells as Immunotherapy for Advanced Hepatocellular Carcinoma: A Phase I Clinical Trial. Oncologist 2021; 26:e1919-e1930. [PMID: 34255901 PMCID: PMC8571770 DOI: 10.1002/onco.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned Administration of autologous invariant natural killer T (iNKT) cells was safe and well‐tolerated in patients with hepatocellular carcinoma (Barcelona Clinic Liver Cancer stage B/C). Expanded iNKT cells produced T‐helper 1–like responses with possible antitumor activity. No severe adverse events were observed in any of the enrolled patients, including one patient who received 1010 in vitro–expanded autologous iNKT cells as a single infusion.
Background Invariant natural killer T cells co‐express T‐cell antigen receptor and natural killer (NK) cell receptors. Invariant natural killer T (iNKT) cells exhibit antitumor activity, but their numbers and functions are impaired in patients with hepatocellular carcinoma (HCC). The adoptive transfer of iNKT cells might treat advanced HCC. Methods This phase I study (NCT03175679) enrolled 10 patients with HCC (Barcelona Clinic Liver Cancer [BCLC] stage B/C) at Beijing YouAn Hospital (April 2017 to May 2018). iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) were expanded and alpha‐galactosylceramide (α‐GalCer)–pulsed. Dosage escalated from 3 × 107 to 6 × 107 to 9 × 107 cells/m2 (3+3 design). An exploratory dose trial (1 × 1010 cells/m2) was conducted in one patient. Results Expanded iNKT cells produced greater quantities of T‐helper 1 (Th1) cytokines (e.g., interferon‐gamma, perforin, and granzyme B) but less interleukin‐4 than nonexpanded iNKT cells. Circulating numbers of iNKT cells and activated NK cells were increased after iNKT cell infusion. Most treatment‐related adverse events were grade 1–2, and three grade 3 adverse events were reported; all resolved without treatment. Four patients were progression‐free at 5.5, 6, 7, and 11 months after therapy, and one patient was alive and without tumor recurrence at the last follow‐up. Five patients died at 1.5 to 11 months after treatment. Conclusion Autologous iNKT cell treatment is safe and well‐tolerated. Expanded iNKT cells produce Th1‐like responses with possible antitumor activity. The antitumor effects of iNKT cell infusion in patients with advanced HCC merit further investigation.
Collapse
Affiliation(s)
- Yao Gao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Guo
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuli Bao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang Xiong
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanpin Ma
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bingqin Tan
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lele Yu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
40
|
Raja R, Wu C, Limbeck F, Butler K, Acharya AP, Curtis M. Instruction of Immunometabolism by Adipose Tissue: Implications for Cancer Progression. Cancers (Basel) 2021; 13:cancers13133327. [PMID: 34283042 PMCID: PMC8267940 DOI: 10.3390/cancers13133327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metabolism is the process by which living organisms and cells generate energy to sustain life. At the organismal level, metabolic homeostasis is a tightly controlled balance between energy consumption and energy expenditure. Many studies have shown that disruption of this homeostasis leads to an inflammatory phenotype within adipose tissue. The aim of this review is to provide an overview of the dynamic metabolic interplay within adipose tissue and its implications for cancer progression and metastasis. Abstract Disruption of metabolic homeostasis at the organismal level can cause metabolic syndrome associated with obesity. The role of adipose tissue in cancer has been investigated over the last several decades with many studies implicating obesity as a risk factor for the development of cancer. Adipose tissue contains a diverse array of immune cell populations that promote metabolic homeostasis through a tightly controlled balance of pro- and anti-inflammatory signals. During obesity, pro-inflammatory cell types infiltrate and expand within the adipose tissue, exacerbating metabolic dysfunction. Some studies have now shown that the intracellular metabolism of immune cells is also deregulated by the lipid-rich environment in obesity. What is not fully understood, is how this may influence cancer progression, metastasis, and anti-tumor immunity. This review seeks to highlight our current understanding of the effect of adipose tissue on immune cell function and discuss how recent results offer new insight into the role that adipose tissue plays in cancer progression and anti-tumor immunity.
Collapse
Affiliation(s)
- Remya Raja
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Christopher Wu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Francesca Limbeck
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Kristina Butler
- Division of Gynecologic Surgery, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Abhinav P. Acharya
- Department of Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA;
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
- College of Medicine and Science, Mayo Clinic, Scottsdale, AZ 85259, USA
- Correspondence:
| |
Collapse
|
41
|
Liu X, Li L, Si F, Huang L, Zhao Y, Zhang C, Hoft DF, Peng G. NK and NKT cells have distinct properties and functions in cancer. Oncogene 2021; 40:4521-4537. [PMID: 34120141 DOI: 10.1038/s41388-021-01880-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lingyun Li
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Chenchen Zhang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
42
|
Brettschneider EES, Terabe M. The Role of NKT Cells in Glioblastoma. Cells 2021; 10:cells10071641. [PMID: 34208864 PMCID: PMC8307781 DOI: 10.3390/cells10071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.
Collapse
Affiliation(s)
- Emily E. S. Brettschneider
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-240-760-6731
| |
Collapse
|
43
|
Park HR, Jung U. Depletion of NK Cells Resistant to Ionizing Radiation Increases Mutations in Mice After Whole-body Irradiation. In Vivo 2021; 35:1507-1513. [PMID: 33910828 DOI: 10.21873/invivo.12403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ionizing radiation is a very powerful genetic mutagenic agent. Although immune cells are very sensitive to radiation, their sensitivity varies between different types of immune cell. We hypothesized that radiation-resistant immune cells survive after irradiation and then play a role in removing mutant cells. MATERIALS AND METHODS Splenic lymphocytes and mice were irradiated with γ-rays. Cell populations were analyzed using flow cytometry after dyeing with antibodies and expression of B-cell lymphoma 2 (BCL2) was measured by western blot analysis. To deplete natural killer (NK) cells, anti-asialo GM1 antiserum was used. Micronuclei in polychromatic erythrocytes were measured by May-Grunwald/Giemsa staining. H-2Kb loss variant in T-cells induced by irradiation of B6C3F1 mice were detected by flow cytometry. RESULTS When splenic lymphocytes were irradiated in vitro, B cells notably died, while NK cells did not. In vivo, on the third day after whole-body irradiation, the total number of lymphocytes in the spleen decreased rapidly, but the proportion of NK cells was approximately three times higher than that of the normal control group. In addition, it was confirmed that high expression of BCL2 in NK cells was maintained after irradiation, whereas that of B-cells was not. Removal of NK cells by injection with anti-asialo GM1 antiserum immediately after irradiation increased the micronuclei of polychromatic erythrocytes in the bone marrow and the variant fraction with H-2kb loss in the spleen. CONCLUSION These results provide important evidence that radioresistant NK cells apparently survive by escaping apoptosis in the early stages after irradiation, and work to eliminate mutant cells resulting from γ-ray irradiation. Future studies are needed to reveal why NK cells are resistant to radiation and the in-depth mechanisms involved in the elimination of radiation-induced mutant cells.
Collapse
Affiliation(s)
- Hae-Ran Park
- Research Division for Radiation Science, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Republic of Korea;
| | - Uhee Jung
- Environmental Safety Research Team, Risk and Environmental Safety Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
| |
Collapse
|
44
|
Aoyama S, Nakagawa R, Nemoto S, Perez-Villarroel P, Mulé JJ, Mailloux AW. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002269. [PMID: 34135102 PMCID: PMC8211075 DOI: 10.1136/jitc-2020-002269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth. Methods C57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays. Results The distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth. Conclusions Despite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Ryosuke Nakagawa
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Satoshi Nemoto
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | | | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Adam William Mailloux
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
45
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
46
|
Immunosurveillance of Cancer and Viral Infections with Regard to Alterations of Human NK Cells Originating from Lifestyle and Aging. Biomedicines 2021; 9:biomedicines9050557. [PMID: 34067700 PMCID: PMC8156987 DOI: 10.3390/biomedicines9050557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed to increased risks of cancer and severe viral infections. However, functional alterations of human NK cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate sleep, moderate exercise, forest bathing, and listening to music are associated with functional healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for immunosurveillance of cancer and viral infections with healthy NK cells.
Collapse
|
47
|
Werner LR, Gibson KA, Goodman ML, Helm DE, Walter KR, Holloran SM, Trinca GM, Hastings RC, Yang HH, Hu Y, Wei J, Lei G, Yang XY, Madan R, Molinolo AA, Markiewicz MA, Chalise P, Axelrod ML, Balko JM, Hunter KW, Hartman ZC, Lange CA, Hagan CR. Progesterone promotes immunomodulation and tumor development in the murine mammary gland. J Immunother Cancer 2021; 9:e001710. [PMID: 33958486 PMCID: PMC8103939 DOI: 10.1136/jitc-2020-001710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical studies have linked usage of progestins (synthetic progesterone [P4]) to breast cancer risk. However, little is understood regarding the role of native P4, signaling through the progesterone receptor (PR), in breast tumor formation. Recently, we reported a link between PR and immune signaling pathways, showing that P4/PR can repress type I interferon signaling pathways. Given these findings, we sought to investigate whether P4/PR drive immunomodulation in the mammary gland and promote tumor formation. METHODS To determine the effect of P4 on immune cell populations in the murine mammary gland, mice were treated with P4 or placebo pellets for 21 days. Immune cell populations in the mammary gland, spleen, and inguinal lymph nodes were subsequently analyzed by flow cytometry. To assess the effect of PR overexpression on mammary gland tumor development as well as immune cell populations in the mammary gland, a transgenic mouse model was used in which PR was overexpressed throughout the entire mouse. Immune cell populations were assessed in the mammary glands, spleens, and inguinal lymph nodes of 6-month-old transgenic and control mice by flow cytometry. Transgenic mice were also monitored for mammary gland tumor development over a 2-year time span. Following development of mammary gland tumors, immune cell populations in the tumors and spleens of transgenic and control mice were analyzed by flow cytometry. RESULTS We found that mice treated with P4 exhibited changes in the mammary gland indicative of an inhibited immune response compared with placebo-treated mice. Furthermore, transgenic mice with PR overexpression demonstrated decreased numbers of immune cell populations in their mammary glands, lymph nodes, and spleens. On long-term monitoring, we determined that multiparous PR-overexpressing mice developed significantly more mammary gland tumors than control mice. Additionally, tumors from PR-overexpressing mice contained fewer infiltrating immune cells. Finally, RNA sequencing analysis of tumor samples revealed that immune-related gene signatures were lower in tumors from PR-overexpressing mice as compared with control mice. CONCLUSION Together, these findings offer a novel mechanism of P4-driven mammary gland tumor development and provide rationale in investigating the usage of antiprogestin therapies to promote immune-mediated elimination of mammary gland tumors.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Breast Neoplasms/chemically induced
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Implants
- Female
- Galectin 4/genetics
- Galectin 4/metabolism
- Immunity, Innate/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mice, Transgenic
- Ovariectomy
- Progesterone/administration & dosage
- Receptors, Progesterone/agonists
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Time Factors
- Tumor Burden/drug effects
- Tumor Escape/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Lauryn R Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katelin A Gibson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dominika E Helm
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katherine R Walter
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sean M Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Richard C Hastings
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Junping Wei
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Rashna Madan
- Division of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alfredo A Molinolo
- Department of Pathology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Carol A Lange
- Department of Medicine (Hematology, Oncology, and Transplantation), University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
- Department of Pharmacology, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
48
|
Zhong P, Shu R, Wu H, Liu Z, Shen X, Hu Y. Low KRT15 expression is associated with poor prognosis in patients with breast invasive carcinoma. Exp Ther Med 2021; 21:305. [PMID: 33717248 PMCID: PMC7885068 DOI: 10.3892/etm.2021.9736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Although keratin 15 (KRT15) has been indicated to be overexpressed in several types of tumor, its role in breast invasive carcinoma (BRCA) has so far remained elusive. The aim of the present study was to explore KRT15 expression in BRCA based on data obtained from The Cancer Genome Atlas and The Genotype-Tissue Expression. KRT15 expression was compared using a Wilcoxon rank-sum test. Functional enrichment analysis was performed to reveal the biological roles and pathways of KRT15. The association between KRT15 expression and immune-cell infiltration was evaluated via single-sample gene set enrichment analysis (ssGSEA). To investigate the relationship between clinicopathological features and KRT15 expression, the prognostic value of KRT15 and other clinical factors was evaluated using Cox regression analysis and Kaplan-Meier (KM) plots. Subgroup prognostic analysis was also performed using forest plots and KM curves. Finally, a tissue microarray was used to assess KRT15 expression in BRCA tissues. KRT15 expression was significantly lower in BRCA tissues compared with that in normal tissues. Functional enrichment analysis suggested that KRT15-related genes were primarily enriched in the transmembrane transporter complex, cornification and ligand-receptor interactions. Increased KRT15 was associated with several tumor-suppressive pathways. ssGSEA revealed that high KRT15 expression was significantly associated with natural killer-cell, B-cell and mast-cell infiltration. Significant associations were observed between low KRT15 expression and advanced stage clinicopathological factors, as well as unfavorable overall survival (OS) and disease-specific survival. Multivariate Cox regression analysis suggested that KRT15 was an independent prognostic factor for OS (P=0.039; hazard ratio, 0.590; 95% CI, 0.358-0.974). Subgroup prognostic analysis demonstrated that low KRT15 was a reliable predictor of poor OS. Immunohistochemistry of a tissue microarray indicated that positive KRT15 expression rates were significantly higher in normal tissues compared with those in the BRCA tissues. In conclusion, low KRT15 expression was significantly associated with poor prognosis in patients with BRCA. Thus, KRT15 may serve an important role in BRCA progression and may be used as a promising prognostic marker for diagnostic and prognostic analyses in patients with BRCA.
Collapse
Affiliation(s)
- Pengcheng Zhong
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Rong Shu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huiwen Wu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhiwen Liu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoling Shen
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yingjie Hu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
49
|
Friedrich M, Vaxevanis CK, Biehl K, Mueller A, Seliger B. Targeting the coding sequence: opposing roles in regulating classical and non-classical MHC class I molecules by miR-16 and miR-744. J Immunother Cancer 2021; 8:jitc-2019-000396. [PMID: 32571994 PMCID: PMC7307530 DOI: 10.1136/jitc-2019-000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Background To control gene expression, microRNAs (miRNAs) are of key importance and their deregulation is associated with the development and progression of various cancer types. In this context, a discordant messenger RNA/protein expression pointing to extensive post-transcriptional regulation of major histocompatibility complex (MHC) class I molecules was already shown. However, only a very limited number of miRNAs targeting these molecules have yet been identified. Despite an increasing evidence of coding sequence (CDS)-located miRNA binding sites, there exists so far, no detailed study of the interaction of miRNAs with the CDS of MHC class I molecules. Methods Using an MS2-tethering approach in combination with small RNA sequencing, a number of putative miRNAs binding to the CDS of human leukocyte antigen (HLA)-G were identified. These candidate miRNAs were extensively screened for their effects in the HLA-G-positive JEG3 cell line. Due to the high sequence similarity between HLA-G and classical MHC class I molecules, the impact of HLA-G candidate miRNAs on HLA class I surface expression was also analyzed. The Cancer Genome Atlas data were used to correlate candidate miRNAs and HLA class I gene expression. Results Transfection of candidate miRNAs revealed that miR-744 significantly downregulates HLA-G protein levels. In contrast, overexpression of the candidate miRNAs miR-15, miR-16, and miR-424 sharing the same seed sequence resulted in an unexpected upregulation of HLA-G. Comparable results were obtained for classical MHC class I members after transfection of miRNA mimics into HEK293T cells. Analyses of The Cancer Genome Atlas data sets for miRNA and MHC class I expression further validated the results. Conclusions Our data expand the knowledge about MHC class I regulation and showed for the first time an miRNA-dependent control of MHC class I antigens mediated by the CDS. CDS-located miRNA binding sites could improve the general use of miRNA-based therapeutic approaches as these sites are highly independent of structural variations (e.g. mutations) in the gene body. Surprisingly, miR-16 family members promoted MHC class I expression potentially in a gene activation-like mechanism.
Collapse
Affiliation(s)
- Michael Friedrich
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | | | - Katharina Biehl
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Anja Mueller
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Barbara Seliger
- Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|
50
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|