1
|
Congdon EE, Pan R, Jiang Y, Sandusky-Beltran LA, Dodge A, Lin Y, Liu M, Kuo MH, Kong XP, Sigurdsson EM. Single domain antibodies targeting pathological tau protein: Influence of four IgG subclasses on efficacy and toxicity. EBioMedicine 2022; 84:104249. [PMID: 36099813 PMCID: PMC9475275 DOI: 10.1016/j.ebiom.2022.104249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eleven tau immunoglobulin G (IgG) antibodies have entered clinical trials to treat tauopathies, including Alzheimer's disease, but it is unclear which IgG subclass/subtype has the ideal efficacy and safety profile. Only two subtypes, with or without effector function, have been examined in the clinic and not for the same tau antibody. The few preclinical studies on this topic have only compared two subtypes of one antibody each and have yielded conflicting results. METHODS We selected two single domain antibodies (sdAbs) derived from a llama immunized with tau proteins and utilized them to generate an array of Fc-(sdAb)2 subclasses containing identical tau binding domains but differing Fc region. Unmodified sdAbs and their IgG subclasses were tested for efficacy in primary cultures and in vivo microdialysis using JNPL3 tauopathy mice. FINDINGS Unmodified sdAbs were non-toxic, blocked tau toxicity and promoted tau clearance. However, the efficacy/safety profile of their Fc-(sdAb)2 subclasses varied greatly within and between sdAbs. For one of them, all its subtypes were non-toxic, only those with effector function cleared tau, and were more effective in vivo than unmodified sdAb. For the other sdAb, all its subtypes were toxic in tauopathy cultures but not in wild-type cells, suggesting that bivalent binding of its tau epitope stabilizes a toxic conformation of tau, with major implications for tau pathogenesis. Likewise, its subclasses were less effective than the unmodified sdAb in clearing tau in vivo. INTERPRETATION These findings indicate that tau antibodies with effector function are safe and better at clearing pathological tau than effectorless antibodies, Furthermore, tau antibodies can provide a valuable insight into tau pathogenesis, and some may aggravate it. FUNDING Funding for these studies was provided by the National Institute of Health (R01 AG032611, R01 NS077239, RF1 NS120488, R21 AG 069475, R21 AG 058282, T32AG052909), and the NYU Alzheimer's Disease Center Pilot Grant Program (via P30 AG008051).
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Leslie A Sandusky-Beltran
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Andie Dodge
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
There Is Strength in Numbers: Quantitation of Fc Gamma Receptors on Murine Tissue-Resident Macrophages. Int J Mol Sci 2021; 22:ijms222212172. [PMID: 34830050 PMCID: PMC8620503 DOI: 10.3390/ijms222212172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Many of the effector functions of antibodies rely on the binding of antibodies/immune complexes to cellular Fcγ receptors (FcγRs). Since the majority of innate immune effector cells express both activating and inhibitory Fc receptors, the outcome of the binding of immune complexes to cells of a given population is influenced by the relative affinities of the respective IgG subclasses to these receptors, as well as by the numbers of activating and inhibitory FcγRs on the cell surface. A group of immune cells that has come into focus more recently is the various subsets of tissue-resident macrophages. The central functions of FcγRs on tissue macrophages include the clearance of opsonized pathogens, the removal of small immune complexes from the circulation and the depletion of antibody-opsonized cells in the therapy of autoimmunity and cancer. Despite these essential functions of FcγRs on tissue-resident macrophages, an in-depth quantification of FcγRs is lacking. Thus, the aim of our current study was to quantify the various Fcγ receptors on macrophages in murine liver, lung, kidney, brain, skin and spleen. Our study identified a pronounced heterogeneity between FcγR expression patterns of the different tissue macrophages, which may reflect their specialized functions within their unique niches in different organ environments.
Collapse
|
3
|
Legrain S, Su D, Gaignage M, Breukel C, Claassens J, Brouwers C, Linssen MM, Izui S, Verbeek JS, Coutelier JP. Involvement of Virus-Induced Interferon Production in IgG Autoantibody-Mediated Anemia. Int J Mol Sci 2021; 22:9027. [PMID: 34445732 PMCID: PMC8396558 DOI: 10.3390/ijms22169027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Infection with viruses, such as the lactate dehydrogenase-elevating virus (LDV), is known to trigger the onset of autoimmune anemia through the enhancement of the phagocytosis of autoantibody-opsonized erythrocytes by activated macrophages. Type I interferon receptor-deficient mice show enhanced anemia, which suggests a protective effect of these cytokines, partly through the control of type II interferon production. The development of anemia requires the expression of Fcγ receptors (FcγR) I, III, and IV. Whereas LDV infection decreases FcγR III expression, it enhances FcγR I and IV expression in wild-type animals. The LDV-associated increase in the expression of FcγR I and IV is largely reduced in type I interferon receptor-deficient mice, through both type II interferon-dependent and -independent mechanisms. Thus, the regulation of the expression of FcγR I and IV, but not III, by interferons may partly explain the exacerbating effect of LDV infection on anemia that results from the enhanced phagocytosis of IgG autoantibody-opsonized erythrocytes.
Collapse
Affiliation(s)
- Sarah Legrain
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (S.L.); (D.S.); (M.G.)
| | - Dan Su
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (S.L.); (D.S.); (M.G.)
| | - Mélanie Gaignage
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (S.L.); (D.S.); (M.G.)
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (C.B.); (J.C.); (C.B.); (M.M.L.); (J.S.V.)
| | - Jill Claassens
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (C.B.); (J.C.); (C.B.); (M.M.L.); (J.S.V.)
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (C.B.); (J.C.); (C.B.); (M.M.L.); (J.S.V.)
| | - Margot M. Linssen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (C.B.); (J.C.); (C.B.); (M.M.L.); (J.S.V.)
| | - Shozo Izui
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, 4 1211 Geneva, Switzerland;
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (C.B.); (J.C.); (C.B.); (M.M.L.); (J.S.V.)
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium; (S.L.); (D.S.); (M.G.)
| |
Collapse
|
4
|
Schäfer AL, Eichhorst A, Hentze C, Kraemer AN, Amend A, Sprenger DTL, Fluhr C, Finzel S, Daniel C, Salzer U, Rizzi M, Voll RE, Chevalier N. Low Dietary Fiber Intake Links Development of Obesity and Lupus Pathogenesis. Front Immunol 2021; 12:696810. [PMID: 34335609 PMCID: PMC8320762 DOI: 10.3389/fimmu.2021.696810] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changed dietary habits in Western countries such as reduced fiber intake represent an important lifestyle factor contributing to the increase in inflammatory immune-mediated diseases. The mode of action of beneficial fiber effects is not fully elucidated, but short-chain fatty acids (SCFA) and gut microbiota have been implicated. The aim of this study was to explore the impact of dietary fiber on lupus pathology and to understand underlying mechanisms. Here, we show that in lupus-prone NZB/WF1 mice low fiber intake deteriorates disease progression reflected in accelerated mortality, autoantibody production and immune dysregulation. In contrast to our original assumption, microbiota suppression by antibiotics or direct SCFA feeding did not influence the course of lupus-like disease. Mechanistically, our data rather indicate that in low fiber-fed mice, an increase in white adipose tissue mass, fat-inflammation and a disrupted intestinal homeostasis go along with systemic, low-grade inflammation driving autoimmunity. The links between obesity, intestinal leakage and low-grade inflammation were confirmed in human samples, while adaptive immune activation predominantly correlated with lupus activity. We further propose that an accelerated gastro-intestinal passage along with energy dilution underlies fiber-mediated weight regulation. Thus, our data highlight the often-overlooked effects of dietary fiber on energy homeostasis and obesity prevention. Further, they provide insight into how intricately the pathologies of inflammatory immune-mediated conditions, such as obesity and autoimmunity, might be interlinked, possibly sharing common pathways.
Collapse
MESH Headings
- Adaptive Immunity
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animal Feed
- Animals
- Autoantibodies/blood
- Autoimmunity
- Case-Control Studies
- Dietary Fiber/administration & dosage
- Dietary Fiber/deficiency
- Disease Models, Animal
- Disease Progression
- Energy Metabolism
- Female
- Humans
- Inflammation Mediators/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lupus Erythematosus, Systemic/etiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Mice, Inbred NZB
- Middle Aged
- Nutritive Value
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/pathology
- Permeability
- Young Adult
- Mice
Collapse
Affiliation(s)
- Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Alexandra Eichhorst
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Carolin Hentze
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Anaïs Amend
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Cara Fluhr
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
CD4 + T Cells Induced by Tuberculosis Subunit Vaccine H1 Can Improve the HIV-1 Env Humoral Response by Intrastructural Help. Vaccines (Basel) 2020; 8:vaccines8040604. [PMID: 33066267 PMCID: PMC7711721 DOI: 10.3390/vaccines8040604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023] Open
Abstract
The induction of a potent and long-lasting, broadly neutralizing antibody response is one of the most promising approaches in HIV-1 vaccination. Recently, we demonstrated that Gag-specific T helper cells induced by DNA priming can enhance and modulate the HIV Env-specific B cell response upon virus-like particle (VLP) boost by intrastructural help (ISH). In order to minimize the induction of potentially harmful HIV specific TH cells, we explored the possibility to harness the heterologous TH cells induced by a recombinant tuberculosis subunit vaccine H1, which contains a fusion protein of Ag85B and ESAT-6 antigens in combination with the liposomal adjuvant CAF01. To provide ISH, immunodominant MHC-II restricted peptides from the H1 vaccine were genetically incorporated into the HIV 1 Gag protein and used for HIV VLP production. ISH effects on Env-specific antibody levels and B cell differentiation were analyzed in mice primed against H1 and boosted with VLPs. In contrast to non-primed mice, a significant increase of Env-specific IgG levels for up to 26 weeks after the last immunization was observed. This increase was largely caused by elevated IgG2b and IgG2c levels in mice that received H1 priming. Additionally, ISH enhanced the frequency of Env-specific long-lived plasma cells in the bone marrow. In this study, we were able to demonstrate that a heterologous prime-boost regimen consisting of the H1 tuberculosis subunit vaccine and T helper epitope modified HIV-1 VLPs resulted in enhanced HIV Env antibody and B cell responses, mediated by intrastructural help.
Collapse
|
7
|
Wiedinger K, McCauley J, Bitsaktsis C. Isotype-specific outcomes in Fc gamma receptor targeting of PspA using fusion proteins as a vaccination strategy against Streptococcus pneumoniae infection. Vaccine 2020; 38:5634-5646. [PMID: 32646816 DOI: 10.1016/j.vaccine.2020.06.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Streptococcus pneumoniae (Spn) remains a considerable threat to public health despite the availability of antibiotics and polysaccharide conjugate vaccines. The lack of mucosal immunity in addition to capsular polysaccharide diversity, has proved to be problematic in developing a universal vaccine against Spn. Targeting antigen to Fc receptors is an attractive way to augment both innate and adaptive immunity against mucosal pathogens, by promoting interactions with activating Fcγ receptors (FcγR) that mediate diverse immunomodulatory functions. The effect of targeting FcγR is highly influenced by the IgG subclass, which bares differential affinities for activating and inhibitory FcγR. In the current study we demonstrate targeting activating FcγR with fusion proteins consisting of PspA and IgG2a Fc enhance PspA-specific immune responses, and effectively protect against mucosal Spn challenge. Specifically, targeting PspA to FcγR polarized alveolar macrophage to the AM1 phenotype and increased conventional dendritic cell subsets in the lung in addition to augmenting Th1 cytokines and PspA-specific IgG and IgA. In contrast, fusion proteins consisting of PspA fused to the IgG1 Fc provided minimal benefit over administration of PspA alone, as a result of interaction with the inhibitory FcγRIIB. Protective efficacy of the IgG1 fusion protein was significantly enhanced in animals deficient for FcγRIIB accompanied by increased B cell maturation and proliferation levels in these animals. These studies demonstrate FcγR targeting is an effective strategy for inducing potent cellular and humoral responses via mucosal immunization with Fc fusion proteins, however, careful consideration of the Fc region utilized is required since Fc isotype subclass heavily influenced immunization induced effector functions and survival against lethal Spn challenge. Fc-engineering with specific attention to FcγRIIB engagement presents a valuable vaccine strategy for protecting against Spn infection.
Collapse
Affiliation(s)
- Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - James McCauley
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | | |
Collapse
|
8
|
Wang S, Zhao Y, Wang G, Feng S, Guo Z, Gu G. Group A Streptococcus Cell Wall Oligosaccharide-Streptococcal C5a Peptidase Conjugates as Effective Antibacterial Vaccines. ACS Infect Dis 2020; 6:281-290. [PMID: 31872763 DOI: 10.1021/acsinfecdis.9b00347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group A streptococcus (GAS) is one of the common Gram-positive pathogenic bacteria accounting for a variety of infectious diseases. Currently, there is no commercial vaccine for GAS. To develop efficient GAS vaccines, synthetic tri-, hexa-, and nonasaccharides of a conserved group A carbohydrate (GAC) were conjugated with an inactive mutant of group A streptococcal C5a peptidase (ScpA), ScpA193, to create bivalent conjugate vaccines, which were compared with the corresponding CRM197 and TT conjugates. Systematic evaluations of these semisynthetic conjugates demonstrated that they could induce robust and comparable T-cell-dependent immune responses in mice. It was further disclosed that antibodies provoked by the ScpA193 conjugates, especially that of hexa- and nonasaccharides, could recognize and bind to GAS cells and mediate GAS opsonophagocytosis in vitro. In vivo evaluations of the hexa- and nonasaccharide-ScpA193 conjugates using a mouse model revealed that immunizing mice with especially the latter conjugate could effectively protect the animals from GAS challenges and GAS-induced pulmonary damage and significantly increase animal survival. Further in vitro studies suggested that the two ScpA193 conjugates could function through activating CD4+ T cells and promoting helper T cells (Th) to differentiate into antigen-specific Th1 and Th2 cells. In conclusion, the nonasaccharide-ScpA193 conjugate was identified as a particularly promising GAS vaccine candidate that is worthy of further investigation and development.
Collapse
Affiliation(s)
- Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yisheng Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
9
|
Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I, Leposavić G. Sex differences in Tfh cell help to B cells contribute to sexual dimorphism in severity of rat collagen-induced arthritis. Sci Rep 2020; 10:1214. [PMID: 31988383 PMCID: PMC6985112 DOI: 10.1038/s41598-020-58127-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/06/2020] [Indexed: 12/03/2022] Open
Abstract
The study examined germinal centre (GC) reaction in lymph nodes draining inflamed joints and adjacent tissues (dLNs) in male and female Dark Agouti rat collagen type II (CII)-induced arthritis (CIA) model of rheumatoid arthritis. Female rats exhibiting the greater susceptibility to CIA mounted stronger serum CII-specific IgG response than their male counterparts. This correlated with the higher frequency of GC B cells in female compared with male dLNs. Consistently, the frequency of activated/proliferating Ki-67+ cells among dLN B cells was higher in females than in males. This correlated with the shift in dLN T follicular regulatory (Tfr)/T follicular helper (Tfh) cell ratio towards Tfh cells in females, and greater densities of CD40L and CD40 on their dLN T and B cells, respectively. The higher Tfh cell frequency in females was consistent with the greater dLN expression of mRNA for IL-21/27, the key cytokines involved in Tfh cell generation and their help to B cells. Additionally, in CII-stimulated female rat dLN cell cultures IFN-γ/IL-4 production ratio was shifted towards IFN-γ. Consistently, the serum IgG2a(b)/IgG1 CII-specific antibody ratio was shifted towards an IgG2a(b) response in females. Thus, targeting T-/B-cell interactions should be considered in putative further sex-based translational pharmacology research.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana, 142, Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe, 458, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe, 458, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, Serbia.
| |
Collapse
|
10
|
Sun D, Sun P, He S, Shi M. Rat IgG mediated circulatory cell depletion in mice requires mononuclear phagocyte system and is facilitated by complement. J Leukoc Biol 2020; 107:529-539. [PMID: 31965640 DOI: 10.1002/jlb.4a1219-078r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/25/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Application of exogenous Abs targeting cell surface Ags has been widely used as an experimental approach to induce cell depletion or to inhibit receptor functionality. Moreover, Ab therapy is emerging as one of the mainstream strategies for cancer treatment. Previous studies on the mechanisms of Ab-mediated cell depletion mainly employed Abs from the same species as the research subject. However, there has been a recent trend toward using xenogeneic (cross-species) Abs to achieve cell depletion or block receptor-ligand interactions; with rat Abs used in mice being the most common approach. Considering the molecular differences in Abs from different species, the mechanism(s) of xenogeneic Ab-mediated cell depletion is likely to be different than species-matched Ab supplementation. The current work describes our efforts to identify the mechanism of rat anti-mouse Ly6G (clone: 1A8) mAb mediated depletion of mouse neutrophils. The results showed that neutrophils circulating in the blood but not those in the bone marrow are depleted, and depletion depends on mononuclear phagocyte system, especially liver Kupffer cells that efficiently capture and phagocytize targeted cells. Interestingly, whereas species-matched Ab depletion does not require complement functionality, we found that complement activation significantly facilitates cross-species neutrophil depletion. Finally, we found that some rat mAbs (anti-C5aR, anti-CD11a, anti-CD11b, and anti-VLA4) used to block cell surface receptors also induce cell depletion. Thus, our work strongly recommends controlling for cell depletion effect when using these Abs for receptor blockade purposes.
Collapse
Affiliation(s)
- Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Peng Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA.,School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shenghu He
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Mortazavi SS, Haghighat S, Mahdavi M. Recombinant PBP2a of methicillin-resistant S. aureus formulation in Alum and Montanide ISA266 adjuvants induced cellular and humoral immune responses with protection in Balb/C mice. Microb Pathog 2019; 140:103945. [PMID: 31874228 DOI: 10.1016/j.micpath.2019.103945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is an important cause of both hospital and community acquired infections worldwide. S.aureus can develop multidrug resistance; thus, immunotherapy can be a rational alternative. High level β-lactam resistance of S. aureus has been attributed to the penicillin binding protein 2a (PBP2a). In this study, we assessed the immunogenicity and protectivity of PBP2a formulated in Montanide ISA266 and Alum adjuvants. Recombinant PBP2a with a molecular weight of approximately 13 kDa was expressed and purified by nickel-nitrilotriacetic acid (NI-NTA) affinity chromatography and characterized by SDS-PAGE and Western blot. To investigate the immunogenicity and protective effects of recombinant protein, 20 μg of r-PBP2a in various formulations were subcutaneously injected in different groups. Two booster vaccinations were carried out in two-week intervals and blood samples were collected two weeks after each injection. To determine the type of induced immune response, sera and splenocytes were analyzed by ELISA for total IgG and isotypes (IgG1 and IgG2a) and cytokine secretion (IFN-γ, IL-4, IL-17 and TNF-α), respectively. Three weeks following the last immunization, experimental mice were challenged with 5 × 108 CFU of bacteria intraperitoneally and mortality rate and bacterial load were assessed. Interestingly, analysis of humoral immune responses revealed that administration of r-PBP2a with Montanide ISA266 significantly increased specific IgG responses and also IgG1 isotype compared to alum-adjuvanted vaccine group. Also, r-PBP2a formulation with alum and MontanideISA266 adjuvants raised IFN-γ, IL-4, IL-17 cytokines secretion, and protectivity following experimental challenge. The results of the present study provide evidences for immunogenicity and protectivity of PBP2a protein as a vaccine candidate.
Collapse
Affiliation(s)
- Seyedeh Shadi Mortazavi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Spear S, Candido JB, McDermott JR, Ghirelli C, Maniati E, Beers SA, Balkwill FR, Kocher HM, Capasso M. Discrepancies in the Tumor Microenvironment of Spontaneous and Orthotopic Murine Models of Pancreatic Cancer Uncover a New Immunostimulatory Phenotype for B Cells. Front Immunol 2019; 10:542. [PMID: 30972056 PMCID: PMC6445859 DOI: 10.3389/fimmu.2019.00542] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/28/2019] [Indexed: 12/25/2022] Open
Abstract
B cells are salient features of pancreatic ductal adenocarcinoma (PDAC) tumors, yet their role in this disease remains controversial. Murine studies have indicated a protumoral role for B cells, whereas clinical data show tumor-infiltrating B cells are a positive prognostic factor, both in PDAC and other cancers. This disparity needs to be clarified in order to develop effective immunotherapies. In this study, we provide new evidence that reconcile human and mouse data and highlight the importance of using relevant preclinical tumor models when assessing B cell function. We compared B cell infiltration and activation in both a genetic model of murine PDAC (KPC mouse) and an injectable orthotopic model. A pronounced B cell infiltrate was only observed in KPC tumors and correlated with T cell infiltration, mirroring human disease. In contrast, orthotopic tumors exhibited a relative paucity of B cells. Accordingly, KPC-derived B cells displayed markers of B cell activation (germinal center entry, B cell memory, and plasma cell differentiation) accompanied by significant intratumoral immunoglobulin deposition, a feature markedly weaker in orthotopic tumors. Tumor immunoglobulins, however, did not appear to form immune complexes. Furthermore, in contrast to the current paradigm that tumor B cells are immunosuppressive, when assessed as a bulk population, intratumoral B cells upregulated several proinflammatory and immunostimulatory genes, a distinctly different phenotype to that of splenic-derived B cells; further highlighting the importance of studying tumor-infiltrating B cells over B cells from secondary lymphoid organs. In agreement with the current literature, genetic deletion of B cells (μMT mice) resulted in reduced orthotopic tumor growth, however, this was not recapitulated by treatment with B-cell-depleting anti-CD20 antibody and, more importantly, was not observed in anti-CD20-treated KPC mice. This suggests the result from B cell deficient mice might be caused by their altered immune system, rather than lack of B cells. Therefore, our data indicate B cells do not favor tumor progression. In conclusion, our analysis of relevant preclinical models shows B cells to be active members of the tumor microenvironment, producing immunostimulatory factors that might support the adaptive antitumor immune response, as suggested by human PDAC studies.
Collapse
Affiliation(s)
- Sarah Spear
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Juliana B. Candido
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jacqueline R. McDermott
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Department of Pathology, University College London Hospital, London, United Kingdom
| | - Cristina Ghirelli
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eleni Maniati
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Frances R. Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hemant M. Kocher
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Melania Capasso
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
13
|
Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat Commun 2018; 9:1628. [PMID: 29691398 PMCID: PMC5915532 DOI: 10.1038/s41467-018-04063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity. Germinal center (GC) is where B cells interact with other immune cells for optimal induction of antibody responses. Here the authors show that galectin-3 regulates GC development by modulating interferon-γ and B cell-intrinsic signaling, such that galectin-3 deficiency mice exhibit lupus-like autoimmune symptoms.
Collapse
|
14
|
Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu CX, Agarwal P, Korman AJ, Morse MA, Gouin K, Knott SRV, Lyerly HK, Hartman ZC. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 2018; 7:e1421891. [PMID: 29721371 PMCID: PMC5927534 DOI: 10.1080/2162402x.2017.1421891] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Duke University, Durham, NC, United States
| | - Junping Wei
- Department of Surgery, Duke University, Durham, NC, United States
| | - Xiao Yi Yang
- Department of Surgery, Duke University, Durham, NC, United States
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, NC, United States
| | - Tao Wang
- Department of Surgery, Duke University, Durham, NC, United States
| | - Cong-Xiao Liu
- Department of Surgery, Duke University, Durham, NC, United States
| | - Pankaj Agarwal
- Department of Surgery, Duke University, Durham, NC, United States
| | - Alan J Korman
- Immuno-Oncology Discovery, Bristol-Myers Squibb Company, Redwood City, CA, United States
| | - Michael A Morse
- Department of Surgery, Duke University, Durham, NC, United States.,Department of Medicine, Duke University, Durham, NC, United States
| | - Kenneth Gouin
- Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA, United States
| | - Simon R V Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA, United States
| | - H Kim Lyerly
- Department of Surgery, Duke University, Durham, NC, United States.,Department of Pathology/Immunology, Duke University, Durham, NC, United States
| | | |
Collapse
|
15
|
Khare P, Challa DK, Devanaboyina SC, Velmurugan R, Hughes S, Greenberg BM, Ober RJ, Ward ES. Myelin oligodendrocyte glycoprotein-specific antibodies from multiple sclerosis patients exacerbate disease in a humanized mouse model. J Autoimmun 2018; 86:104-115. [DOI: 10.1016/j.jaut.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
|
16
|
Clay CD, Strait RT, Mahler A, Khodoun MV, Finkelman FD. Anti-FcγRIIB mAb suppresses murine IgG-dependent anaphylaxis by Fc domain targeting of FcγRIII. J Allergy Clin Immunol 2017. [PMID: 28624610 DOI: 10.1016/j.jaci.2017.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The inhibitory receptor FcγRIIB is expressed on human and murine bone marrow-derived cells and limits inflammation by suppressing signaling through stimulatory receptors. OBJECTIVE We sought to evaluate the effects of K9.361, a mouse IgG2a alloantibody to mouse FcγRIIB, on murine anaphylaxis. METHODS Wild-type and FcγR-deficient mice were used to study anaphylaxis, which was induced by injection of 2.4G2 (rat IgG2b mAb that binds both FcγRIIB and the stimulatory receptor FcγRIII), by actively immunizing IgE-deficient mice and then challenging with the immunizing antigen, and by passive immunization with IgG or IgE anti-2,4,6-trinitrophenyl mAb, followed by injection of 2,4,6-trinitrophenyl-ovalbumin. Pretreatment with K9.361 was assessed for its ability to influence anaphylaxis. RESULTS Unexpectedly, K9.361 injection induced mild anaphylaxis, which was both FcγRIIB and FcγRIII dependent and greatly enhanced by β-adrenergic blockade. K9.361 injection also decreased expression of stimulatory Fcγ receptors, especially FcγRIII, and strongly suppressed IgG-mediated anaphylaxis without strongly affecting IgE-mediated anaphylaxis. The F(ab')2 fragment of K9.361 did not induce anaphylaxis, even after β-adrenergic blockade, and did not deplete FcγRIII or suppress IgG-mediated anaphylaxis but prevented intact K9.361-induced anaphylaxis without diminishing intact K9.36 suppression of IgG-mediated anaphylaxis. CONCLUSION Cross-linking FcγRIIB to stimulatory FcγRs through the Fc domains of an anti-FcγRIIB mAb induces and then suppresses IgG-mediated anaphylaxis without affecting IgE-mediated anaphylaxis. Because IgG- and IgE-mediated anaphylaxis can be mediated by the same cell types, this suggests that desensitization acts at the receptor rather than cellular level. Sequential treatment with the F(ab')2 fragment of anti-FcγRIIB mAb followed by intact anti-FcγRIIB safely prevents IgG-mediated anaphylaxis.
Collapse
Affiliation(s)
- Corey D Clay
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Richard T Strait
- Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio; Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashley Mahler
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marat V Khodoun
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio; Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio; Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
17
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
18
|
Sun JB, Holmgren J, Cragg MS, Xiang Z. Lack of Fc Gamma Receptor IIIA Promotes Rather than Suppresses Humoral and Cellular Immune Responses after Mucosal or Parenteral Immunization with Antigen and Adjuvants. Scand J Immunol 2017; 85:264-271. [PMID: 28128471 DOI: 10.1111/sji.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
The Fcγ receptor IIIA (FcγRIIIA) has traditionally been known as a positive regulator of immune responses. Consistent with this, mice deficient in FcγRIIIA are protected from various inflammation-associated pathologies including several autoimmune diseases. In contrast to this accepted dogma, we show here that mice lacking FcγRIIIA developed increased rather than reduced both humoral and cellular immune responses to mucosal (sublingual) immunization with ovalbumin (OVA) given together with the strong mucosal adjuvant cholera toxin as well as to parenteral (subcutaneous) immunization with OVA in complete Freund's adjuvant. After either route of immunization, in comparison with concomitantly immunized wild-type mice, FcγRIIIA-/- mice had increased serum anti-OVA IgG (IgG1 but not IgG2) antibody responses as well as augmented cellular responses that included memory B cells and effector T cells. The increments in immune responses in FcγRIIIA-/- mice were similar to those seen in FcγRIIB-/- mice. Furthermore, OVA-pulsed FcγRIIIA-/- DCs, similar to OVA-specific FcγRIIB-/- DCs, had enhanced capacity to activate OVA-specific OT-II T cells, which was even further pronounced when DCs were pulsed with IgG1-complexed OVA. Our data support an inhibitory-regulatory role of FcγRIIIA on vaccine/adjuvant-induced immune responses and demonstrate that lack of FcγRIIIA can promote rather than suppress both humoral and cellular immune responses.
Collapse
Affiliation(s)
- J-B Sun
- Department of Microbiology and Immunology and University of Gothenburg Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - J Holmgren
- Department of Microbiology and Immunology and University of Gothenburg Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - M S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, Hampshire, UK
| | - Z Xiang
- Department of Microbiology and Immunology and University of Gothenburg Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
19
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
20
|
Tao W, Fu T, He Z, Hu R, Jia L, Hong Y. Evaluation of Immunostimulatory Effects of N-(2-Hydroxy) Propyl-3-Trimethylammonium Chitosan Chloride for Improving Live Attenuated Hepatitis A Virus Vaccine Efficacy. Viral Immunol 2016; 30:120-126. [PMID: 27918250 DOI: 10.1089/vim.2016.0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was to evaluate the immunostimulatory effects of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) as an adjuvant for improving a commercial live attenuated hepatitis A virus (HAV) vaccine efficacy in mice. Mice in the experimental group were intraperitoneally immunized with a solution of HTCC and live attenuated HAV vaccine. And for those injected with sterile water, HTCC or live attenuated HAV vaccine were treated as mock group, negative group, and positive group in turn. The serum HAV-specific IgG titers and the ratios of the serum HAV-specific IgG2a/IgG1 in the experimental group were significantly increased (p = 0.00042 and p = 0.040, respectively). Splenocyte proliferation stimulation index in experimental group was higher than positive group (p = 0.021), and significantly higher than mock group and negative group (p = 0.0078 and p = 0.0050, respectively). The percentages of CD4+ T lymphocytes in the peripheral blood in experimental group were significantly higher than positive group, negative group, and mock group (p = 0.012, p = 0.012, and p = 0.045, respectively). Compared to the other three groups, experimental group showed a slightly higher ratio of CD4+/CD8+, but there were no significant differences (p > 0.05). In the percentages of CD8+ T lymphocytes, there were no significant differences among the four groups (p > 0.05). HTCC can enhance live attenuated HAV vaccine to generate stronger humoral responses and induce a Th1-biased immune response, as well as IgG2a class switching, compared with the live attenuated HAV vaccine alone. This study validated an important concept for further development of a safe and potent vaccine adjuvant.
Collapse
Affiliation(s)
- Wei Tao
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ting Fu
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhuojing He
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ruxi Hu
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Lan Jia
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Yan Hong
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
21
|
Gordan S, Biburger M, Nimmerjahn F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 2016; 268:52-65. [PMID: 26497512 DOI: 10.1111/imr.12347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity.
Collapse
Affiliation(s)
- Sina Gordan
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
23
|
Iglesias M, Augustin JJ, Alvarez P, Santiuste I, Postigo J, Merino J, Merino R. Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes. PLoS One 2016; 11:e0159714. [PMID: 27433938 PMCID: PMC4951111 DOI: 10.1371/journal.pone.0159714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022] Open
Abstract
The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the T-cell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Autoimmunity
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Gene Expression Regulation
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/immunology
- Protective Factors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
Collapse
Affiliation(s)
- Marcos Iglesias
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
| | - Juan Jesús Augustin
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain
| | - Pilar Alvarez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain
| | - Inés Santiuste
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
| | - Jorge Postigo
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
| | - Jesús Merino
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
| | - Ramón Merino
- Departamento de Biología Molecular-IDIVAL Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain
| |
Collapse
|
24
|
Abstract
Mycophenolate mofetil (MMF) has been increasingly used in patients with systemic lupus erythematosus (SLE). While most information concentrates on lupus nephritis, its efficacy in nonrenal manifestations of SLE has not been systematically studied. We describe the successful use of MMF in a patient with SLE-related hemolytic anemia that was refractory to cyclophosphamide, pulse methylprednisolone, intravenous immunoglobulin and cyclosporine. The mechanisms of action of MMF are briefly reviewed.
Collapse
MESH Headings
- Adult
- Anemia, Hemolytic/drug therapy
- Anemia, Hemolytic/etiology
- Anemia, Hemolytic/pathology
- Anemia, Refractory/drug therapy
- Anemia, Refractory/etiology
- Anemia, Refractory/pathology
- Dose-Response Relationship, Drug
- Female
- Glucocorticoids/therapeutic use
- Humans
- Immunosuppressive Agents/therapeutic use
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/pathology
- Mycophenolic Acid/analogs & derivatives
- Mycophenolic Acid/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- A Mak
- Department of Medicine, Tuen Mun Hospital, New Territories, Hong Kong SAR, China.
| | | |
Collapse
|
25
|
Liao G, Zhou Z, Suryawanshi S, Mondal M, Guo Z. Fully Synthetic Self-Adjuvanting α-2,9-Oligosialic Acid Based Conjugate Vaccines against Group C Meningitis. ACS CENTRAL SCIENCE 2016; 2:210-8. [PMID: 27163051 PMCID: PMC4850515 DOI: 10.1021/acscentsci.5b00364] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 05/04/2023]
Abstract
α-2,9-Polysialic acid is an important capsular polysaccharide expressed by serotype C Neisseria meningitidis. Its protein conjugates are current vaccines against group C meningitis. To address some concerns about traditional protein conjugate vaccines, a new type of fully synthetic vaccines composed of oligosialic acids and glycolipids was explored. In this regard, α-2,9-linked di-, tri-, tetra-, and pentasialic acids were prepared and conjugated with monophosphoryl lipid A (MPLA). Immunological studies of the conjugates in C57BL/6J mouse revealed that they alone elicited robust immune responses comparable to that induced by corresponding protein conjugates plus adjuvant, suggesting the self-adjuvanting properties of MPLA conjugates. The elicited antibodies were mainly IgG2b and IgG2c, suggesting T cell dependent immunities. The antisera had strong and specific binding to α-2,9-oligosialic acids and to group C meningococcal polysaccharide and cell, indicating the ability of antibodies to selectively target the bacteria. The antisera also mediated strong bactericidal activities. Structure-activity relationship analysis of the MPLA conjugates also revealed that the immunogenicity of oligosialic acids decreased with elongated sugar chain, but all tested MPLA conjugates elicited robust immune responses. It is concluded that tri- and tetrasialic acid-MPLA conjugates are worthy of further investigation as the first fully synthetic and self-adjuvanting vaccines against group C meningitis.
Collapse
Affiliation(s)
| | | | - Sharad Suryawanshi
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mohabul
A. Mondal
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhongwu Guo
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
26
|
Quast I, Keller CW, Weber P, Schneider C, von Gunten S, Lünemann JD. Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation. J Neuroinflammation 2016; 13:42. [PMID: 26893156 PMCID: PMC4758141 DOI: 10.1186/s12974-016-0506-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 11/11/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIG) proved to be an efficient anti-inflammatory treatment for a growing number of neuroinflammatory diseases and protects against the development of experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS). Methods The clinical efficacy of IVIG and IVIG-derived F(ab’)2 fragments, generated using the streptococcal cysteine proteinase Ide-S, was evaluated in EAE induced by active immunization and by adoptive transfer of myelin-specific T cells. Frequency, phenotype, and functional characteristics of T cell subsets and myeloid cells were determined by flow cytometry. Antibody binding to microbial antigen and cytokine production by innate immune cells was assessed by ELISA. Results We report that the protective effect of IVIG is lost in the adoptive transfer model of EAE and requires prophylactic administration during disease induction. IVIG-derived Fc fragments are not required for protection against EAE, since administration of F(ab’)2 fragments fully recapitulated the clinical efficacy of IVIG. F(ab’)2-treated mice showed a substantial decrease in splenic effector T cell expansion and cytokine production (GM-CSF, IFN-γ, IL-17A) 9 days after immunization. Inhibition of effector T cell responses was not associated with an increase in total numbers of Tregs but with decreased activation of innate myeloid cells such as neutrophils, monocytes, and dendritic cells. Therapeutically effective IVIG-derived F(ab’)2 fragments inhibited adjuvant-induced innate immune cell activation as determined by IL-12/23 p40 production and recognized mycobacterial antigens contained in Freund’s complete adjuvant which is required for induction of active EAE. Conclusions Our data indicate that F(ab’)2-mediated neutralization of adjuvant contributes to the therapeutic efficacy of anti-inflammatory IgG. These findings might partly explain the discrepancy of IVIG efficacy in EAE and MS.
Collapse
Affiliation(s)
- Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | - Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | - Patrick Weber
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | | | | | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
27
|
Liao G, Zhou Z, Liao J, Zu L, Wu Q, Guo Z. 6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines. ACS Infect Dis 2016; 2:123-31. [PMID: 27624963 DOI: 10.1021/acsinfecdis.5b00104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide-KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.
Collapse
Affiliation(s)
- Guochao Liao
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhifang Zhou
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jun Liao
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Luning Zu
- PLA 404 Hospital, 8 Yuquan Road, Weihai, Shandong Province 264200, China
| | - Qiuye Wu
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhongwu Guo
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
|
29
|
Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, Münz C, Nimmerjahn F, Dalakas MC, Lünemann JD. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 2015; 125:4160-70. [PMID: 26436649 DOI: 10.1172/jci82695] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
IgG molecules exert both pro- and antiinflammatory effector functions based on the composition of the fragment crystallizable (Fc) domain glycan. Sialylated IgG Fc domains have antiinflammatory properties that are attributed to their ability to increase the activation threshold of innate effector cells to immune complexes by stimulating the upregulation of the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we report that IgG Fc sialylation of human monoclonal IgG1 molecules impairs their efficacy to induce complement-mediated cytotoxicity (CDC). Fc sialylation of a CD20-targeting antibody had no impact on antibody-dependent cellular cytotoxicity and did not change the affinity of the antibody for activating Fcγ receptors. In contrast, the presence of sialic acid abrogated the increased binding of C1q to Fc-galactosylated IgG1 and resulted in decreased levels of C3b deposition on the cell surface. Similar to monoclonal antibodies, sialic acid inhibited the increased C1q binding to galactosylated Fc fragments in human polyclonal IgG. In sera derived from patients with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system in which humoral immune responses mediate tissue damage, induction of IgG Fc sialylation was associated with clinical disease remission. Thus, impairment of CDC represents an FcγR-independent mechanism by which Fc-sialylated glycovariants might limit proinflammatory IgG effector functions.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/immunology
- B-Lymphocytes/immunology
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Complement C1q/immunology
- Complement C1q/metabolism
- Complement Pathway, Classical
- Complement System Proteins/immunology
- Cytotoxicity, Immunologic
- Glycosylation
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin gamma-Chains/chemistry
- Immunoglobulin gamma-Chains/immunology
- Immunoglobulins, Intravenous/therapeutic use
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Mice
- Myelin-Oligodendrocyte Glycoprotein/immunology
- N-Acetylneuraminic Acid/chemistry
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy
- Protein Processing, Post-Translational
- Receptors, IgG/immunology
- Rituximab/chemistry
- Rituximab/immunology
Collapse
|
30
|
Liao G, Zhou Z, Guo Z. Synthesis and immunological study of α-2,9-oligosialic acid conjugates as anti-group C meningitis vaccines. Chem Commun (Camb) 2015; 51:9647-50. [PMID: 25973942 PMCID: PMC4526240 DOI: 10.1039/c5cc01794g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
α-2,9-Di-, tri-, tetra-, and pentasialic acids were prepared and conjugated with a carrier protein. The resultant glycoconjugates elicited robust T cell-mediated immunity in mice. α-2,9-Trisialic acid was identified as a promising antigen for developing glycoconjugate vaccines against group C Neisseria meningitidis.
Collapse
Affiliation(s)
- Guochao Liao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
31
|
Klimka A, Michels L, Glowalla E, Tosetti B, Krönke M, Krut O. Montanide ISA 71 VG is Advantageous to Freund's Adjuvant in Immunization AgainstS. aureusInfection of Mice. Scand J Immunol 2015; 81:291-7. [DOI: 10.1111/sji.12279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/07/2015] [Indexed: 01/19/2023]
Affiliation(s)
- A. Klimka
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| | - L. Michels
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| | - E. Glowalla
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| | - B. Tosetti
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| | - M. Krönke
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| | - O. Krut
- Institute of Medical Microbiology; Immunology and Hygiene; University Hospital Cologne; Cologne Germany
| |
Collapse
|
32
|
Xu S, Ou X, Huo J, Lim K, Huang Y, Chee S, Lam KP. Mir-17–92 regulates bone marrow homing of plasma cells and production of immunoglobulin G2c. Nat Commun 2015; 6:6764. [DOI: 10.1038/ncomms7764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/25/2015] [Indexed: 12/19/2022] Open
|
33
|
Tuladhar R, Oghumu S, Dong R, Peterson A, Sharpe AH, Satoskar AR. Ox40L-Ox40 pathway plays distinct roles in regulating Th2 responses but does not determine outcome of cutaneous leishmaniasis caused by Leishmania mexicana and Leishmania major. Exp Parasitol 2014; 148:49-55. [PMID: 25447125 DOI: 10.1016/j.exppara.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Abstract
Ox40 ligand (Ox40L)-Ox40 pathway has been shown to enhance Th2 responses and play a role in pathogenesis of cutaneous leishmaniasis (CL) caused by Leishmania major. Using Ox40l(-/-) BALB/c mice we analyzed the role of this pathway in determining the outcome to CL caused by L. mexicana and compared to L. major. Contrary to our expectations, Ox40l(-/-) mice were highly susceptible to both L. major (LV39) and L. mexicana (M379) and developed large non-healing lesions containing parasites comparable to Ox40l(+/+) BALB/c mice. Interestingly, upon in vitro stimulation with Leishmania antigen (LmAg), the lymph node cells from L. major infected Ox40l(-/-) mice produced significantly less IL-4 and IL-10 compared to Ox40l(+/+) mice. L. mexicana infected Ox40l(-/-) and Ox40l(+/+) mice did not show any difference in the production of IL-4 and IL-10. No difference was noted in the amount of Th1 cytokines IFN-ү and IL-12 produced by Ox40l(-/-) and Ox40l(+/+) mice infected with either parasite. These results indicate that the Ox40L-Ox40 pathway promotes Th2 bias only in L. major infection but not L. mexicana infection and this pathway is not critical for susceptibility to CL.
Collapse
Affiliation(s)
- Rashmi Tuladhar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Steve Oghumu
- Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - Ran Dong
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Allison Peterson
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Arlene H Sharpe
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States; Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
34
|
Zimmerer J, Swamy P, Sanghavi P, Wright C, Abdel-Rasoul M, Elzein S, Brutkiewicz R, Bumgardner G. Critical role of NKT cells in posttransplant alloantibody production. Am J Transplant 2014; 14:2491-9. [PMID: 25220596 PMCID: PMC4207222 DOI: 10.1111/ajt.12922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 01/25/2023]
Abstract
We previously reported that posttransplant alloantibody production in CD8-deficient hosts is IL-4+ CD4+ T cell-dependent and IgG1 isotype-dominant. The current studies investigated the hypothesis that IL-4-producing natural killer T cells (NKT cells) contribute to maximal alloantibody production. To investigate this, alloantibody levels were examined in CD8-deficient WT, CD1d KO and Jα18 KO transplant recipients. We found that the magnitude of IgG1 alloantibody production was critically dependent on the presence of type I NKT cells, which are activated by day 1 posttransplant. Unexpectedly, type I NKT cell contribution to enhanced IgG1 alloantibody levels was interferon-γ-dependent and IL-4-independent. Cognate interactions between type I NKT and B cells alone do not stimulate alloantibody production. Instead, NKT cells appear to enhance maturation of IL-4+ CD4+ T cells. To our knowledge, this is the first report to substantiate a critical role for type I NKT cells in enhancing in vivo antibody production in response to endogenous antigenic stimuli.
Collapse
Affiliation(s)
- J.M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - P. Swamy
- Medical Student Research Program, College of Medicine, The Ohio State University, Columbus, OH
| | - P.B. Sanghavi
- Medical Student Research Program, College of Medicine, The Ohio State University, Columbus, OH
| | - C.L. Wright
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - M. Abdel-Rasoul
- Center for Biostatistics, The Ohio State University, Columbus, OH 43221
| | - S.M. Elzein
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - R.R. Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - G.L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
35
|
A poorly neutralizing IgG2a/c response elicited by a DNA vaccine protects mice against Japanese encephalitis virus. J Gen Virol 2014; 95:1983-1990. [DOI: 10.1099/vir.0.067280-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We demonstrated previously that immunization with a DNA vaccine expressing the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection through a poorly neutralizing antibody response. Here, we further investigated the role of the IgG subclass in this antibody-dependent protection using cytokine co-immunization and cytokine-deficient mice. A significant difference in IgG2a/c but not IgG1 was observed between mice that survived or died following a lethal challenge. Correspondingly, the IgG2a/c response and protection increased in IL-4-deficient mice but decreased in IFN-γ-deficient mice, highlighting the importance of IgG2a/c. In addition, the restoration of protection and E-specific IgG2a/c production in IFN-γ-deficient mice by a T helper (Th) type 1-biased intramuscular immunization suggested that IgG2a/c but not IFN-γ was the major component for protection. The failure of protection against a direct intracranial challenge indicated that IgG2a/c-mediated protection was restricted to outside the central nervous system. Consistent with this conclusion, passive transfer of E-specific antisera conferred protection only pre-exposure to JEV. Therefore, our data provided evidence that the IgG subclass plays an important role in protection against JEV, particular in poorly neutralizing E-specific antibodies, and Th1-biased IgG2a/c confers better protection than Th2-biased IgG1 against JEV.
Collapse
|
36
|
Abstract
The phagocytic function of macrophages plays a pivotal role in eliminating apoptotic cells and invading pathogens. Evidence implicating plasminogen (Plg), the zymogen of plasmin, in phagocytosis is extremely limited with the most recent in vitro study showing that plasmin acts on prey cells rather than on macrophages. Here, we use apoptotic thymocytes and immunoglobulin opsonized bodies to show that Plg exerts a profound effect on macrophage-mediated phagocytosis in vitro and in vivo. Plg enhanced the uptake of these prey by J774A.1 macrophage-like cells by 3.5- to fivefold Plg receptors and plasmin proteolytic activity were required for phagocytosis of both preys. Compared with Plg(+/+) mice, Plg(-/-) mice exhibited a 60% delay in clearance of apoptotic thymocytes by spleen and an 85% reduction in uptake by peritoneal macrophages. Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was reduced by 90% in Plg(-/-) mice compared with Plg(+/+) mice. A gene array of splenic and hepatic tissues from Plg(-/-) and Plg(+/+) mice showed downregulation of numerous genes in Plg(-/-) mice involved in phagocytosis and regulation of phagocytic gene expression was confirmed in macrophage-like cells. Thus, Plg may play an important role in innate immunity by changing expression of genes that contribute to phagocytosis.
Collapse
|
37
|
Lux A, Seeling M, Baerenwaldt A, Lehmann B, Schwab I, Repp R, Meidenbauer N, Mackensen A, Hartmann A, Heidkamp G, Dudziak D, Nimmerjahn F. A Humanized Mouse Identifies the Bone Marrow as a Niche with Low Therapeutic IgG Activity. Cell Rep 2014; 7:236-48. [DOI: 10.1016/j.celrep.2014.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/27/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022] Open
|
38
|
Ito K, Furukawa JI, Yamada K, Tran NL, Shinohara Y, Izui S. Lack of galactosylation enhances the pathogenic activity of IgG1 but Not IgG2a anti-erythrocyte autoantibodies. THE JOURNAL OF IMMUNOLOGY 2013; 192:581-8. [PMID: 24337750 DOI: 10.4049/jimmunol.1302488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IgG bears asparagine-linked oligosaccharide side chains in the Fc region. Variations in their extent of galactosylation and sialylation could modulate IgG Fc-dependent effector functions, and hence Ab activity. However, it has not yet been clarified whether the pathogenic potential of IgG autoantibodies is consistently enhanced by the absence of galactose residues per se or the lack of terminal sialylation, which is dependent on galactosylation. Moreover, it remains to be defined whether the increased pathogenicity of agalactosylated IgG is related to activation of the complement pathway by mannose-binding lectin, as suggested by in vitro studies. Using a murine model of autoimmune hemolytic anemia, we defined the contribution of galactosylation or sialylation to the pathogenic activity of IgG1 and IgG2a anti-erythrocyte class-switch variants of 34-3C monoclonal autoantibody. We generated their degalactosylated or highly sialylated glycovariants and compared their pathogenic effects with those of highly galactosylated or desialylated counterparts. Our results demonstrated that lack of galactosylation, but not sialylation, enhanced the pathogenic activity of 34-3C IgG1, but not IgG2a autoantibodies. Moreover, analysis of in vivo complement activation and of the pathogenic activity in mice deficient in C3 or IgG FcRs excluded the implication of mannose-binding lectin-mediated complement activation in the enhanced pathogenic effect of agalactosylated IgG1 anti-erythrocyte autoantibodies.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Hu Y, Hu Z, Wang S, Dong X, Xiao C, Jiang M, Lv A, Zhang W, Liu R. Protective effects of Huang-Lian-Jie-Du-Tang and its component group on collagen-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1137-1144. [PMID: 24212076 DOI: 10.1016/j.jep.2013.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/14/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du-Tang is a famous Traditional Chinese medicine consisting of Rhizoma coptidis (Coptis chinensis Franch, Ranunculaceae), Radix scutellariae (Scutellaria baicalensis Georgi, Labiatae), Cortex phellodendri (Phellodendron amurense Rupr. Rutaceae) and Fructus gardeniae (Gardenia jasminoide Ellis, Rubiaceae) in a weight ratio of 3:2:2:3.This formula was described by Wang Tao (in the Chinese Tang Dynasty) in his treatise "Wai Tai Mi Yao". It has been used to treat inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases in the clinical practice of Traditional Chinese medicine, especially in treating inflammation for nearly two thousand years. However, the essential compounds in it have not been identified, and the mechanisms remain to be addressed. To investigate the protective effects of HLJDT and its component group (HLJDT-CG) on collagen-induced arthritis in rats. MATERIALS AND METHODS CIA was established in male Wistar rats with subcutaneous injection of type II bovine collagen at the base of the tail of animals. CIA rats were treated daily with oral administration of HLJDT aqueous extracts (270 mg/kg) or HLJDT-CG (40 mg/kg) once per day from day 6 to day 28. Rats in normal and vehicle control groups were given an equal volume of vehicle (0.9% saline) and 0.025 mg/kg Dexamethasone was given to the Standard group at the same time. The protective effect of them were assessed by measuring arthritis index, swelling, the cytokines such as TNF-α, IFN-γ and IL-17 in serum, type II collagen antibodies, splenocyte proliferation and so on. RESULTS The results demonstrated that treatment of CIA rat with either HLJDT aqueous extracts or HLJDT-CG not only ameliorated the symptoms of arthritis, prevented joint damage but also reduced the serum levels of TNF-α, IFN-γ and IL-17 in CIA rats. Anti-CII antibodies showed the similar trend except that of IgG1. Furthermore, HLJDT aqueous extracts and HLJDT-CG administration also suppressed CII-induced proliferative response of splenocytes. More importantly, HLJDT-CG exhibited similar pharmacological activities as HLJDT aqueous extracts in all aforementioned experiments. CONCLUSIONS HLJDT aqueous extracts and HLJDT-CG could effectively ameliorate CII-induced arthritis and significantly suppress the immune response against CII with similar pharmacological efficacy. These findings suggest that HLJDT has therapeutic potential in RA treatment and HLJDT-CG can represent the effective-composite of HLJDT.
Collapse
Affiliation(s)
- Yaohua Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yamada K, Ito K, Furukawa JI, Nakata J, Alvarez M, Verbeek JS, Shinohara Y, Izui S. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J Autoimmun 2013; 47:104-10. [PMID: 24055197 DOI: 10.1016/j.jaut.2013.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Murine immune effector cells express three different stimulatory FcγRs (FcγRI, FcγRIII and FcγRIV) and one inhibitory receptor, FcγRIIB. Competitive engagement of stimulatory and inhibitory FcγRs has been shown to be critical for the development of immune complex-mediated inflammatory disorders. Because of the previous demonstration that FcγRIIB was unable to inhibit FcγRIII-mediated autoimmune hemolytic anemia induced by 105-2H IgG1 anti-RBC mAb, we reevaluated the regulatory role of FcγRIIB on the development of anemia using two additional IgG1 anti-RBC mAbs (34-3C and 3H5G1) and different 34-3C IgG subclass-switch variants. We were able to induce a more severe anemia in FcγRIIB-deficient mice than in FcγRIIB-sufficient mice after injection of 34-3C and 3H5G1 IgG1, but not 105-2H IgG1. Structural analysis of N-linked oligosaccharides attached to the CH2 domain revealed that 105-2H was poorly galactosylated as compared with the other mAbs, while the extent of sialylation was comparable between all mAbs. In addition, we observed that a more galactosylated 105-2H variant provoked more severe anemia in FcγRIIB-deficient mice than FcγRIIB-sufficient mice. In contrast, the development of anemia induced by three non-IgG1 subclass variants of the 34-3C mAb was not down-regulated by FcγRIIB, although they were more galactosylated than its IgG1 variant. These data indicate that FcγRIIB-mediated inhibition of autoimmune hemolytic anemia is restricted to the IgG1 subclass and that galactosylation, but not sialylation, of IgG1 (but not other IgG subclasses) is critical for the interaction with FcγR, thereby determining the pathogenic potential of IgG1 autoantibodies.
Collapse
Affiliation(s)
- Kazunori Yamada
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Williams EL, Tutt AL, Beers SA, French RR, Chan CHT, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ. Immunotherapy Targeting Inhibitory Fcγ Receptor IIB (CD32b) in the Mouse Is Limited by Monoclonal Antibody Consumption and Receptor Internalization. THE JOURNAL OF IMMUNOLOGY 2013; 191:4130-40. [DOI: 10.4049/jimmunol.1301430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. ACTA ACUST UNITED AC 2013; 210:1695-710. [PMID: 23897981 PMCID: PMC3754863 DOI: 10.1084/jem.20130579] [Citation(s) in RCA: 1142] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment. Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Tyler R Simpson
- Department of Immunology, M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morkuniene R, Zvirbliene A, Dalgediene I, Cizas P, Jankeviciute S, Baliutyte G, Jokubka R, Jankunec M, Valincius G, Borutaite V. Antibodies bound to Aβ oligomers potentiate the neurotoxicity of Aβ by activating microglia. J Neurochem 2013; 126:604-15. [DOI: 10.1111/jnc.12332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Ramune Morkuniene
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Indre Dalgediene
- Vilnius University; Institute of Biotechnology; Vilnius Lithuania
| | - Paulius Cizas
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Silvija Jankeviciute
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Giedre Baliutyte
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Ramunas Jokubka
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Marija Jankunec
- Vilnius University; Institute of Biochemistry; Vilnius Lithuania
| | | | - Vilmante Borutaite
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
44
|
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013; 13:176-89. [PMID: 23411799 DOI: 10.1038/nri3401] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intravenous immunoglobulin (IVIG) preparations comprise pooled IgG antibodies from the serum of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients. Since the discovery, more than 30 years ago, that IVIG therapy can ameliorate immune thrombocytopenia, the use of IVIG preparations has been extended to a wide range of autoimmune and inflammatory diseases. Despite the broad efficacy of IVIG therapy, its modes of action remain unclear. In this Review, we cover the recent insights into the molecular and cellular pathways that are involved in IVIG-mediated immunosuppression, with a particular focus on IVIG as a therapy for IgG-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Inessa Schwab
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| | | |
Collapse
|
45
|
Cochonneau D, Terme M, Michaud A, Dorvillius M, Gautier N, Frikeche J, Alvarez-Rueda N, Bougras G, Aubry J, Paris F, Birklé S. Cell cycle arrest and apoptosis induced by O-acetyl-GD2-specific monoclonal antibody 8B6 inhibits tumor growth in vitro and in vivo. Cancer Lett 2013; 333:194-204. [PMID: 23370223 DOI: 10.1016/j.canlet.2013.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/19/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022]
Abstract
O-Acetyl-GD2 ganglioside is suitable antigen for tumor immunotherapy with specific therapeutic antibody. Here, we investigate the anti-tumor activity of O-acetyl-GD2-specific monoclonal antibody 8B6 on O-acetyl-GD2-positive tumor cells. The results indicated that mAb 8B6 induced growth inhibition of O-acetyl-GD2-expressing tumor cell lines in vitro with features of cell cycle arrest and apoptosis. Monoclonal antibody 8B6 treatment was also very effective in suppression of tumor growth in mice by reducing the proliferation index and increasing the apoptotic index. Such a study represents a useful framework to optimize immunotherapy with O-acetyl-GD2-specific antibody in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Denis Cochonneau
- Inserm U. 892, Centre de Recherche en Cancérologie de Nantes-Angers, Institut de Recherche en Santé de l'Université de Nantes, 8 quai Moncousu, F-44007 Nantes cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Overcoming Resistance to Therapeutic Antibodies by Targeting Fc Receptors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7654-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Williams EL, Tutt AL, French RR, Chan HTC, Lau B, Penfold CA, Mockridge CI, Roghanian A, Cox KL, Verbeek JS, Glennie MJ, Cragg MS. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcγRIIB (CD32B). Eur J Immunol 2012; 42:2109-20. [DOI: 10.1002/eji.201142302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/03/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Emily L. Williams
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Alison L. Tutt
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ruth R. French
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - H. T. Claude Chan
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Betty Lau
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Christine A. Penfold
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - C. Ian Mockridge
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ali Roghanian
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Kerry L. Cox
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - J. Sjef Verbeek
- Department of Human Genetics; Leiden University Medical Centre; Leiden; The Netherlands
| | - Martin J. Glennie
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| |
Collapse
|
49
|
Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS One 2012; 7:e33534. [PMID: 22438945 PMCID: PMC3306406 DOI: 10.1371/journal.pone.0033534] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/10/2012] [Indexed: 12/16/2022] Open
Abstract
CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.
Collapse
|
50
|
Mannoor K, Matejuk A, Xu Y, Beardall M, Chen C. Expression of Natural Autoantibodies in MRL-lpr Mice Protects from Lupus Nephritis and Improves Survival. THE JOURNAL OF IMMUNOLOGY 2012; 188:3628-38. [DOI: 10.4049/jimmunol.1102859] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|