1
|
Xiang QY, Zuo M, Zhou JH, Feng C. EBV-positive diffuse large B cell lymphoma secondary to activated phosphoinositide 3 kinase δ syndrome type 1 (APDS1): a case report and literature review. Front Immunol 2025; 16:1583405. [PMID: 40406111 PMCID: PMC12095188 DOI: 10.3389/fimmu.2025.1583405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS), an inborn error of immunity associated with gain-of-function mutations in the PIK3CD gene, is characterized by dysregulated PI3Kδ signaling. The clinical spectrum commonly includes recurrent respiratory infections and lymphoproliferative manifestations. We present an adolescent male with APDS1 manifesting recurrent sinopulmonary infections, generalized lymphadenopathy, hepatosplenomegaly, gastrointestinal manifestations, and combined T-cell/B-cell lymphopenia, complicated by Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+ DLBCL). Whole-exome sequencing identified a heterozygous PIK3CD variant (c.3061G>A p.Glu1021Lys), supporting the molecular diagnosis of APDS1. This case adds to emerging evidence linking APDS1 with EBV-driven lymphomagenesis, thereby further supporting the critical role of PI3K δ pathway dysregulation in promoting EBV-associated lymphoid malignancies.
Collapse
Affiliation(s)
- Qiu-yuan Xiang
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Min Zuo
- Department of Pathology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ji-Hao Zhou
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chun Feng
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
2
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Carney M, Pelaia TM, Chew T, Teoh S, Phu A, Kim K, Wang Y, Iredell J, Zerbib Y, McLean A, Schughart K, Tang B, Shojaei M, Short KR. Host transcriptomics and machine learning for secondary bacterial infections in patients with COVID-19: a prospective, observational cohort study. THE LANCET. MICROBE 2024; 5:e272-e281. [PMID: 38310908 DOI: 10.1016/s2666-5247(23)00363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Viral respiratory tract infections are frequently complicated by secondary bacterial infections. This study aimed to use machine learning to predict the risk of bacterial superinfection in SARS-CoV-2-positive individuals. METHODS In this prospective, multicentre, observational cohort study done in nine centres in six countries (Australia, Indonesia, Singapore, Italy, Czechia, and France) blood samples and RNA sequencing were used to develop a robust model of predicting secondary bacterial infections in the respiratory tract of patients with COVID-19. Eligible participants were older than 18 years, had known or suspected COVID-19, and symptoms of a recent respiratory infection. A control cohort of participants without COVID-19 who were older than 18 years and with no infection symptoms was also recruited from one Australian centre. In the pre-analysis phase, data were filtered to include only individuals with complete blood transcriptomics and patient data (ie, age, sex, location, and WHO severity score at the time of sample collection). The dataset was then divided randomly (4:1) into a training set (80%) and a test set (20%). Gene expression data in the training set and control cohort were used for differential expression analysis. Differentially expressed genes, along with WHO severity score, location, age, and sex, were used for feature selection with least absolute shrinkage and selection operator (LASSO) in the training set. For LASSO analysis, samples were excluded if gene expression data were not obtained at study admission, no longitudinal clinical information was available, a bacterial infection at the time of study admission was present, or a fungal infection in the absence of a bacterial infection was detected. LASSO regression was performed using three subsets of predictor variables: patient data alone, gene expression data alone, or a combination of patient data and gene expression data. The accuracy of the resultant models was tested on data from the test set. FINDINGS Between March, 2020, and October, 2021, we recruited 536 SARS-CoV-2-positive individuals and between June, 2013, and January, 2020, we recruited 74 participants into the control cohort. After prefiltering analysis and other exclusions, samples from 158 individuals were analysed in the training set and 47 in the test set. The expression of seven host genes (DAPP1, CST3, FGL2, GCH1, CIITA, UPP1, and RN7SL1) in the blood at the time of study admission was identified by LASSO as predictive of the risk of developing a secondary bacterial infection of the respiratory tract more than 24 h after study admission. Specifically, the expression of these genes in combination with a patient's WHO severity score at the time of study enrolment resulted in an area under the curve of 0·98 (95% CI 0·89-1·00), a true positive rate (sensitivity) of 1·00 (95% CI 1·00-1·00), and a true negative rate (specificity) of 0·94 (95% CI 0·89-1·00) in the test cohort. The combination of patient data and host transcriptomics at hospital admission identified all seven individuals in the training and test sets who developed a bacterial infection of the respiratory tract 5-9 days after hospital admission. INTERPRETATION These data raise the possibility that host transcriptomics at the time of clinical presentation, together with machine learning, can forward predict the risk of secondary bacterial infections and allow for the more targeted use of antibiotics in viral infection. FUNDING Snow Medical Research Foundation, the National Health and Medical Research Council, the Jack Ma Foundation, the Helmholtz-Association, the A2 Milk Company, National Institute of Allergy and Infectious Disease, and the Fondazione AIRC Associazione Italiana per la Ricerca contro il Cancro.
Collapse
Affiliation(s)
- Meagan Carney
- School of Mathematics and Physics, University of Queensland, Brisbane, QLD, Australia
| | - Tiana Maria Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, University of Sydney, Sydney, NSW, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia
| | - Amy Phu
- Faculty of Medicine and Health, Sydney Medical School Westmead, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Karan Kim
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia; The University of Sydney Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jonathan Iredell
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Sydney Institute for Infectious Disease, University of Sydney, Sydney, NSW, Australia; Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Hospital, Western Sydney Local Health District, Westmead, NSW, Australia
| | - Yoann Zerbib
- Intensive Care Department, Amiens University Hospital, Amiens, France
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia; The University of Sydney Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Institute of Virology Münster, University of Münster, Münster, Germany
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia; Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, NSW, Australia; The University of Sydney Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
5
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Hao L, Marshall AJ, Liu L. Suppressive Role of Bam32/DAPP1 in Chemokine-Induced Neutrophil Recruitment. Int J Mol Sci 2021; 22:ijms22041825. [PMID: 33673180 PMCID: PMC7918626 DOI: 10.3390/ijms22041825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/02/2022] Open
Abstract
Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada;
| | - Aaron J. Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E0T5, Canada;
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada;
- Correspondence: ; Tel.: +01-306-966-6300
| |
Collapse
|
7
|
Babur Ö, Melrose AR, Cunliffe JM, Klimek J, Pang J, Sepp ALI, Zilberman-Rudenko J, Tassi Yunga S, Zheng T, Parra-Izquierdo I, Minnier J, McCarty OJT, Demir E, Reddy AP, Wilmarth PA, David LL, Aslan JE. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs. Blood 2020; 136:2346-2358. [PMID: 32640021 PMCID: PMC7702475 DOI: 10.1182/blood.2020005496] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.
Collapse
Affiliation(s)
- Özgün Babur
- Department of Molecular and Medical Genetics
- Computational Biology Program
| | | | | | | | | | | | | | | | | | | | | | | | - Emek Demir
- Department of Molecular and Medical Genetics
- Computational Biology Program
| | | | | | - Larry L David
- Proteomics Shared Resource
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Joseph E Aslan
- Knight Cardiovascular Institute
- Department of Biomedical Engineering
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| |
Collapse
|
8
|
Hao L, Marshall AJ, Liu L. Bam32/DAPP1-Dependent Neutrophil Reactive Oxygen Species in WKYMVm-Induced Microvascular Hyperpermeability. Front Immunol 2020; 11:1028. [PMID: 32536926 PMCID: PMC7267069 DOI: 10.3389/fimmu.2020.01028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
B cell adaptor molecule of 32 kDa (Bam32), known as dual adapter for phosphotyrosine and 3-phosphoinositides 1 (DAPP1), has been implicated in regulating lymphocyte proliferation and recruitment during inflammation. However, its role in neutrophils during inflammation remains unknown. Using intravital microscopy, we examined the role of Bam32 in formyl peptide receptor agonist WKYMVm-induced permeability changes in post-capillary venules and assessed simultaneously neutrophil adhesion and emigration in cremaster muscles of Bam32-deficient (Bam32−/−) and wild-type (WT) control mice. We observed significantly reduced WKYMVm-induced microvascular hyperpermeability accompanied by markedly decreased neutrophil emigration in Bam32−/− mice. The Bam32-specific decrease in WKYMVm-induced hyperpermeability was neutrophil-dependent as this was verified in bone marrow transplanted chimeric mice. We discovered that Bam32 was critically required for WKYMVm-induced intracellular and extracellular production of reactive oxygen species (ROS) in neutrophils. Pharmacological scavenging of ROS eliminated the differences in WKYMVm-induced hyperpermeability between Bam32−/− and WT mice. Deficiency of Bam32 decreased WKYMVm-induced ERK1/2 but not p38 or JNK phosphorylation in neutrophils. Inhibition of ERK1/2 signaling cascade suppressed WKYMVm-induced ROS generation in WT neutrophils and microvascular hyperpermeability in WT mice. In conclusion, our study reveals that Bam32-dependent, ERK1/2-involving ROS generation in neutrophils is critical in WKYMVm-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Wang F, Luo L, Gu Z, Yang N, Wang L, Gao C. Integrative Analysis of Long Noncoding RNAs in Patients with Graft-versus-Host Disease. Acta Haematol 2020; 143:533-551. [PMID: 32289782 DOI: 10.1159/000505255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major cause of late non-recurrence mortality despite remarkable improvements in the field of allogeneic hematopoietic stem cell transplantation. Although recent studies have found that B-cell receptor (BCR)-activated B cells contribute to pathogenesis in cGVHD, the specific molecular mechanisms of B cells in this process remain unclear. METHODS In our study, human long noncoding RNA (lncRNA) microarrays and bioinformatic analysis were performed to identify different expressions of lncRNAs in peripheral blood B cells from cGVHD patients compared with healthy ones. The differential expression of lncRNA was confirmed in additional samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The microarray analysis revealed that 106 of 198 differentially expressed lncRNAs were upregulated and 92 were downregulated in cGVHD patients compared with healthy controls. Intergenic lncRNAs accounted for the majority of differentially expressed lncRNAs. A KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the differentially expressed mRNAs, which were coexpressed with lncRNA, between the cGVHD group and the healthy group were significantly enriched in the BCR signaling pathway. Further analysis of the BCR signaling pathway and its coexpression network identified three lncRNAs with the strongest correlation with BCR signaling and cGVHD, as well as a series of protein-coding genes and transcription factors associated with them. The three candidate lncRNAs were further validated in another group of cGVHD patients by qRT-PCR. CONCLUSIONS This is the first study on the correlation between lncRNA and cGVHD using lncRNA microarray analysis. Our study provides novel enlightenment in exploring the molecular pathogenesis of cGVHD.
Collapse
Affiliation(s)
- Feiyan Wang
- Medical School, Nankai University, Tianjin, China
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Hematology and Oncology, Laoshan Branch, Chinese PLA 401 Hospital, Qingdao, China
| | - Chunji Gao
- Medical School, Nankai University, Tianjin, China,
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,
| |
Collapse
|
10
|
Maazi H, Hartiala JA, Suzuki Y, Crow AL, Shafiei Jahani P, Lam J, Patel N, Rigas D, Han Y, Huang P, Eskin E, Lusis AJ, Gilliland FD, Akbari O, Allayee H. A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genet 2019; 15:e1008528. [PMID: 31869344 PMCID: PMC6944376 DOI: 10.1371/journal.pgen.1008528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/06/2020] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways with contributions from genes, environmental exposures, and their interactions. While genome-wide association studies (GWAS) in humans have identified ~200 susceptibility loci, the genetic factors that modulate risk of asthma through gene-environment (GxE) interactions remain poorly understood. Using the Hybrid Mouse Diversity Panel (HMDP), we sought to identify the genetic determinants of airway hyperreactivity (AHR) in response to diesel exhaust particles (DEP), a model traffic-related air pollutant. As measured by invasive plethysmography, AHR under control and DEP-exposed conditions varied 3-4-fold in over 100 inbred strains from the HMDP. A GWAS with linear mixed models mapped two loci significantly associated with lung resistance under control exposure to chromosomes 2 (p = 3.0x10-6) and 19 (p = 5.6x10-7). The chromosome 19 locus harbors Il33 and is syntenic to asthma association signals observed at the IL33 locus in humans. A GxE GWAS for post-DEP exposure lung resistance identified a significantly associated locus on chromosome 3 (p = 2.5x10-6). Among the genes at this locus is Dapp1, an adaptor molecule expressed in immune-related and mucosal tissues, including the lung. Dapp1-deficient mice exhibited significantly lower AHR than control mice but only after DEP exposure, thus functionally validating Dapp1 as one of the genes underlying the GxE association at this locus. In summary, our results indicate that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans, as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans. The genetic factors that modulate risk of asthma through gene-environment (GxE) interactions are poorly understood, due in large part to the inherent difficulties in carrying out such studies in humans. To address these challenges, we used the Hybrid Mouse Diversity Panel to elucidate the genetic architecture of asthma-related phenotypes in mice and identify loci that are associated with airway hyperreactivity (AHR) under control exposure conditions and in response to diesel exhaust particles (DEP), as a model traffic-related air pollutant. In the absence of exposure, we identified two loci on chromosomes 2 and 19 for AHR. The locus on chromosome 19 harbors Il33 and is syntenic to association signals observed for asthma at the IL33 locus in humans. In response to DEP exposure, we mapped AHR to a region on chromosome 3 and used a genetically modified mouse model to functionally demonstrate that Dapp1 is one of the genes underlying the GxE association at this locus. Collectively, our results support the concept that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans.
Collapse
Affiliation(s)
- Hadi Maazi
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jaana A. Hartiala
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yuzo Suzuki
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amanda L. Crow
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pedram Shafiei Jahani
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan Lam
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nisheel Patel
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Diamanda Rigas
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yi Han
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pin Huang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science and Inter-Departmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Aldons. J. Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Frank D. Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Omid Akbari
- Departments of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (OA); (HA)
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (OA); (HA)
| |
Collapse
|
11
|
Onyilagha C, Uzonna JE. Host Immune Responses and Immune Evasion Strategies in African Trypanosomiasis. Front Immunol 2019; 10:2738. [PMID: 31824512 PMCID: PMC6883386 DOI: 10.3389/fimmu.2019.02738] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/08/2019] [Indexed: 01/11/2023] Open
Abstract
Parasites, including African trypanosomes, utilize several immune evasion strategies to ensure their survival and completion of their life cycles within their hosts. The defense factors activated by the host to resolve inflammation and restore homeostasis during active infection could be exploited and/or manipulated by the parasites in an attempt to ensure their survival and propagation. This often results in the parasites evading the host immune responses as well as the host sustaining some self-inflicted collateral tissue damage. During infection with African trypanosomes, both effector and suppressor cells are activated and the balance between these opposing arms of immunity determines susceptibility or resistance of infected host to the parasites. Immune evasion by the parasites could be directly related to parasite factors, (e.g., antigenic variation), or indirectly through the induction of suppressor cells following infection. Several cell types, including suppressive macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells have been shown to contribute to immunosuppression in African trypanosomiasis. In this review, we discuss the key factors that contribute to immunity and immunosuppression during T. congolense infection, and how these factors could aid immune evasion by African trypanosomes. Understanding the regulatory mechanisms that influence resistance and/or susceptibility during African trypanosomiasis could be beneficial in designing effective vaccination and therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Bhat SS, Ali R, Khanday FA. Syntrophins entangled in cytoskeletal meshwork: Helping to hold it all together. Cell Prolif 2019; 52:e12562. [PMID: 30515904 PMCID: PMC6496184 DOI: 10.1111/cpr.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
Syntrophins are a family of 59 kDa peripheral membrane-associated adapter proteins, containing multiple protein-protein and protein-lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub-cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin-glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer's disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.
Collapse
Affiliation(s)
- Sahar S. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Roshia Ali
- Department of BiotechnologyUniversity of KashmirSrinagarIndia
- Department of BiochemistryUniversity of KashmirSrinagarIndia
| | | |
Collapse
|
13
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
14
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
15
|
Yamamoto E, Kalli AC, Yasuoka K, Sansom MSP. Interactions of Pleckstrin Homology Domains with Membranes: Adding Back the Bilayer via High-Throughput Molecular Dynamics. Structure 2016; 24:1421-1431. [PMID: 27427480 PMCID: PMC4975593 DOI: 10.1016/j.str.2016.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
A molecular simulation pipeline for determining the mode of interaction of pleckstrin homology (PH) domains with phosphatidylinositol phosphate (PIP)-containing lipid bilayers is presented. We evaluate our methodology for the GRP1 PH domain via comparison with structural and biophysical data. Coarse-grained simulations yield a 2D density landscape for PH/membrane interactions alongside residue contact profiles. Predictions of the membrane localization and interactions of 13 PH domains reveal canonical, non-canonical, and dual PIP-binding sites on the proteins. Thus, the PH domains associate with the PIP molecules in the membrane via a highly positively charged loop. Some PH domains exhibit modes of interaction with PIP-containing membranes additional to this canonical binding mode. All 13 PH domains cause a degree of local clustering of PIP molecules upon binding to the membrane. This provides a global picture of PH domain interactions with membranes. The high-throughput approach could be extended to other families of peripheral membrane proteins.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522, Japan
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci U S A 2016; 113:5688-93. [PMID: 27155012 DOI: 10.1073/pnas.1601053113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments.
Collapse
|
17
|
Onyilagha C, Jia P, Jayachandran N, Hou S, Okwor I, Kuriakose S, Marshall A, Uzonna JE. The B cell adaptor molecule Bam32 is critically important for optimal antibody response and resistance to Trypanosoma congolense infection in mice. PLoS Negl Trop Dis 2015; 9:e0003716. [PMID: 25875604 PMCID: PMC4395458 DOI: 10.1371/journal.pntd.0003716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bam32, a 32 kDa adaptor molecule, plays important role in B cell receptor signalling, T cell receptor signalling and antibody affinity maturation in germinal centres. Since antibodies against trypanosome variant surface glycoproteins (VSG) are critically important for control of parasitemia, we hypothesized that Bam32 deficient (Bam32-/-) mice would be susceptible to T. congolense infection. METHODOLOGY/PRINCIPAL FINDINGS We found that T. congolense-infected Bam32-/- mice successfully control the first wave of parasitemia but then fail to control subsequent waves and ultimately succumb to their infection unlike wild type (WT) C57BL6 mice which are relatively resistant. Although infected Bam32-/- mice had significantly higher hepatomegaly and splenomegaly, their serum AST and ALT levels were not different, suggesting that increased liver pathology may not be responsible for the increased susceptibility of Bam32-/- mice to T. congolense. Using direct ex vivo flow cytometry and ELISA, we show that CD4+ T cells from infected Bam32-/- mice produced significantly increased amounts of disease-exacerbating proinflammatory cytokines (including IFN-γ, TNF-α and IL-6). However, the percentages of regulatory T cells and IL-10-producing CD4+ cells were similar in infected WT and Bam32-/- mice. While serum levels of parasite-specific IgM antibodies were normal, the levels of parasite-specific IgG, (particularly IgG1 and IgG2a) were significantly lower in Bam32-/- mice throughout infection. This was associated with impaired germinal centre response in Bam32-/- mice despite increased numbers of T follicular helper (Tfh) cells. Adoptive transfer studies indicate that intrinsic B cell defect was responsible for the enhanced susceptibility of Bam32-/- mice to T. congolense infection. CONCLUSIONS/SIGNIFICANCE Collectively, our data show that Bam32 is important for optimal anti-trypanosome IgG antibody response and suppression of disease-promoting proinflammatory cytokines and its deficiency leads to inability to control T. congolense infection in mice.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Jia
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nipun Jayachandran
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sen Hou
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shiby Kuriakose
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron Marshall
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jude E. Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
18
|
Huang KY, Wu HY, Chen YJ, Lu CT, Su MG, Hsieh YC, Tsai CM, Lin KI, Huang HD, Lee TY, Chen YJ. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals. Database (Oxford) 2014; 2014:bau034. [PMID: 24771658 PMCID: PMC3999940 DOI: 10.1093/database/bau034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 11/13/2022]
Abstract
Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/
Collapse
Affiliation(s)
- Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hsin-Yi Wu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Yi-Ju Chen
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Cheng-Tsung Lu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Min-Gang Su
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Yun-Chung Hsieh
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Chih-Ming Tsai
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Kuo-I Lin
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hsien-Da Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Yu-Ju Chen
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| |
Collapse
|
19
|
Courtney AH, Bennett NR, Zwick DB, Hudon J, Kiessling LL. Synthetic antigens reveal dynamics of BCR endocytosis during inhibitory signaling. ACS Chem Biol 2014; 9:202-10. [PMID: 24131142 DOI: 10.1021/cb400532y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B cells detect foreign antigens through their B cell antigen receptor (BCR). The BCR, when engaged by antigen, initiates a signaling cascade. Concurrent with signaling is endocytosis of the BCR complex, which acts to downregulate signaling and facilitate uptake of antigen for processing and display on the cell surface. The relationship between signaling and BCR endocytosis is poorly defined. Here, we explore the interplay between BCR endocytosis and antigens that either promote or inhibit B cell activation. Specifically, synthetic antigens were generated that engage the BCR alone or both the BCR and the inhibitory co-receptor CD22. The lectin CD22, a member of the Siglec family, binds sialic acid-containing glycoconjugates found on host tissues, inhibiting BCR signaling to prevent erroneous B cell activation. At low concentrations, antigens that can cocluster the BCR and CD22 promote rapid BCR endocytosis; whereas, slower endocytosis occurs with antigens that bind only the BCR. At higher antigen concentrations, rapid BCR endocytosis occurs upon treatment with either stimulatory or inhibitory antigens. Endocytosis of the BCR, in response to synthetic antigens, results in its entry into early endocytic compartments. Although the CD22-binding antigens fail to activate key regulators of antigen presentation (e.g., Syk), they also promote BCR endocytosis, indicating that inhibitory antigens can be internalized. Together, our observations support a functional role for BCR endocytosis in downregulating BCR signaling. The reduction of cell surface BCR levels in the absence of B cell activation should raise the threshold for BCR subsequent activation. The ability of the activating synthetic antigens to trigger both signaling and entry of the BCR into early endosomes suggests strategies for targeted antigen delivery.
Collapse
Affiliation(s)
- Adam H. Courtney
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Nitasha R. Bennett
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel B. Zwick
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Jonathan Hudon
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Bhat HF, Adams ME, Khanday FA. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction. Cell Mol Life Sci 2013; 70:2533-54. [PMID: 23263165 PMCID: PMC11113789 DOI: 10.1007/s00018-012-1233-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.
Collapse
Affiliation(s)
- Hina F Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | | | | |
Collapse
|
21
|
Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation. Nat Commun 2013; 4:1338. [PMID: 23299888 PMCID: PMC3545406 DOI: 10.1038/ncomms2334] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/26/2012] [Indexed: 11/25/2022] Open
Abstract
The human germinal centre associated lymphoma (HGAL) gene is specifically expressed in germinal centre B-lymphocytes and germinal centre-derived B-cell lymphomas, but its function is largely unknown. Here we demonstrate that HGAL directly binds Syk in B-cells, increases its kinase activity upon B-cell receptor stimulation and leads to enhanced activation of Syk downstream effectors. To further investigate these findings in vivo, HGAL transgenic mice were generated. Starting from 12 months of age these mice developed polyclonal B-cell lymphoid hyperplasia, hypergammaglobulinemia and systemic reactive AA amyloidosis, leading to shortened survival. The lymphoid hyperplasia in the HGAL transgenic mice are likely attributable to enhanced B-cell receptor signalling as shown by increased Syk phosphorylation, ex vivo B-cell proliferation and increased RhoA activation. Overall, our study shows for the first time that the germinal centre protein HGAL regulates B-cell receptor signalling in B-lymphocytes which, without appropriate control, may lead to B-cell lymphoproliferation.
Collapse
|
22
|
Kortum RL, Rouquette-Jazdanian AK, Samelson LE. Ras and extracellular signal-regulated kinase signaling in thymocytes and T cells. Trends Immunol 2013; 34:259-68. [PMID: 23506953 DOI: 10.1016/j.it.2013.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/04/2013] [Accepted: 02/12/2013] [Indexed: 12/22/2022]
Abstract
Extracellular signal-regulated kinase (ERK) activation is important for both thymocyte development and T cell function. Classically, signal transduction from the T cell antigen receptor (TCR) to ERK is thought to be regulated by signaling from Ras guanine nucleotide exchange factors (GEFs), through the small G protein Ras, to the three-tiered Raf-MAPK/ERK kinase (MEK)-ERK kinase cascade. Developing and mature T cells express four members of two RasGEF families, RasGRP1, RasGRP4, son of sevenless 1 (Sos1), and Sos2, and several models describing combined signaling from these RasGEFs have been proposed. However, recent studies suggest that existing models need revision to include both distinct and overlapping roles of multiple RasGEFs during thymocyte development and novel, Ras-independent signals to ERK that have been identified in peripheral T cells.
Collapse
Affiliation(s)
- Robert L Kortum
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Rouquette-Jazdanian AK, Sommers CL, Kortum RL, Morrison DK, Samelson LE. LAT-independent Erk activation via Bam32-PLC-γ1-Pak1 complexes: GTPase-independent Pak1 activation. Mol Cell 2012; 48:298-312. [PMID: 22981863 PMCID: PMC3483363 DOI: 10.1016/j.molcel.2012.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/18/2012] [Accepted: 08/07/2012] [Indexed: 01/12/2023]
Abstract
In T cells, the adaptor Bam32 is coupled to Erk activation downstream of the TCR by an unknown mechanism. We characterized in Jurkat cells and primary T lymphocytes a pathway dependent on Bam32-PLC-γ1-Pak1 complexes, in which Pak1 kinase activates Raf-1 and Mek-1, both upstream of Erk. In the Bam32-PLC-γ1-Pak1 complex, catalytically inactive PLC-γ1 is used as a scaffold linking Bam32 to Pak1. PLC-γ1(C-SH2) directly binds S141 of Bam32, preventing LAT-mediated activation of Ras by PLC-γ1. The Bam32-PLC-γ1 interaction enhances the binding of the SH3 domain of the phospholipase with Pak1. The PLC-γ1(SH3)-Pak1 interaction activates Pak1 independently of the small GTPases Rac1/Cdc42, previously described as being the only activators of Pak1 in T cells. Direct binding of the SH3 domain of PLC-γ1 to Pak1 dissociates inactive Pak1 homodimers, a mechanism required for Pak1 activation. We have thus uncovered a LAT/Ras-independent, Bam32-nucleated pathway that activates Erk signaling in T cells.
Collapse
|
24
|
Ortner D, Grabher D, Hermann M, Kremmer E, Hofer S, Heufler C. The adaptor protein Bam32 in human dendritic cells participates in the regulation of MHC class I-induced CD8+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3972-8. [PMID: 21930970 DOI: 10.4049/jimmunol.1003072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is strongly induced during the maturation of dendritic cells (DC). Most known functions of Bam32 are related to the signaling of the B cell receptor for Ag. Because DC do not express receptors specific for Ags, we aim at characterizing the role of Bam32 in human monocyte-derived DC in this study. Our results show that binding of allogeneic T cells to mature DC causes accumulation of Bam32 on the contact sites and that this translocation is mimicked by Ab-mediated engagement of MHC class I. Silencing of Bam32 in mature monocyte-derived DC results in an enhanced proliferation of CD8(+) T cells in an Ag-specific T cell proliferation assay. Further studies identify galectin-1 as an intracellular binding partner of Bam32. Regulating immune responses via regulatory T cell (Treg) modulation is one of the many immunological activities attributed to galectin-1. Therefore, we assayed mixed leukocyte reactions for Treg expansion and found fewer Treg in reactions stimulated with DC silenced for Bam32 compared to reactions stimulated with DC treated with a nontarget control. Based on our findings, we propose a role for Bam32 in the signaling of MHC class I molecules in professional Ag-presenting DC for the regulation of CD8(+) T cell activation. It is distinct from that of MHC class I recognized by CD8(+) T cells leading to target [corrected] cell death. Thus, our data pinpoint a novel level of T cell regulation that may be of biological relevance.
Collapse
Affiliation(s)
- Daniela Ortner
- Department of Dermatology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Harwood NE, Batista FD. The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb Perspect Biol 2011; 3:a002360. [PMID: 21047917 PMCID: PMC3039531 DOI: 10.1101/cshperspect.a002360] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
B cells contribute to protective adaptive immune responses through generation of antibodies and long-lived memory cells, following engagement of the B-cell receptor (BCR) with specific antigen. Recent imaging investigations have offered novel insights into the ensuing molecular and cellular events underlying B-cell activation. Following engagement with antigen, BCR microclusters form and act as sites of active signaling through the recruitment of intracellular signaling molecules and adaptors. Signaling through these "microsignalosomes" is propagated and enhanced through B-cell spreading in a CD19-dependent manner. Subsequently, the mature immunological synapse is formed, and functions as a platform for antigen internalization, enabling the antigen presentation to helper T cells required for maximal B-cell activation. In this review, we discuss the emerging and critical role for the cytoskeleton in the coordination and regulation of these molecular events during B-cell activation.
Collapse
Affiliation(s)
- Naomi E Harwood
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
26
|
Hou S, Pauls SD, Liu P, Marshall AJ. The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcɛRI-induced calcium flux and granule release. Mol Immunol 2010; 48:89-97. [PMID: 20956018 DOI: 10.1016/j.molimm.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022]
Abstract
Mast cell activation triggered by IgE binding to its high affinity receptor FcɛRI is highly dependent on signaling via phosphoinositde 3-kinases (PI3K). The phosphoinositide phosphatase SHIP controls mast cell activation by regulating accumulation of D3 phosphoinositide second messengers generated by PI3K. The PH domain adaptor protein Bam32/DAPP1 binds specifically to the D3 phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 (the substrate and product of SHIP respectively). In B cells, Bam32 is phosphorylated by Src family kinases including Lyn, and is required for antigen receptor-induced activation; however the function of Bam32 in mast cells is unknown. Here we report that Bam32 is expressed in mast cells, is recruited to the plasma membrane upon stimulation and functions in FcɛRI signaling. Examination of bone marrow-derived mast cells (BMMC) isolated from Bam32-deficient mice revealed enhanced FcɛRI-induced degranulation and IL-6 production, indicating that Bam32 may function to restrain signaling via FcɛRI. These enhanced degranulation responses were PI3K-dependent, as indicated by blockade with PI3K inhibitors wortmannin or IC87114. While Bam32-deficient BMMC showed reduced FcɛRI-induced activation of mitogen-activated protein kinases ERK and JNK, FcɛRI-induced calcium flux and phosphorylation of PLCγ1 and Akt were increased. Bam32-deficient BMMC showed significantly reduced phosphorylation of Lyn and SHIP, indicating reduced activity of inhibitory signaling pathways. Together our results identify Bam32 as a novel regulator of mast cell activation, potentially functioning in membrane-proximal integration of positive and negative signaling pathways.
Collapse
Affiliation(s)
- Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | |
Collapse
|
27
|
Fang Y, Rowe T, Leon AJ, Banner D, Danesh A, Xu L, Ran L, Bosinger SE, Guan Y, Chen H, Cameron CC, Cameron MJ, Kelvin DJ. Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J Virol 2010; 84:8369-88. [PMID: 20534862 PMCID: PMC2919000 DOI: 10.1128/jvi.02305-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 05/30/2010] [Indexed: 02/05/2023] Open
Abstract
The 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODN-adjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN-alpha2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freund's adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas Rowe
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Banner
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Danesh
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luoling Xu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Longsi Ran
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven E. Bosinger
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Guan
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Honglin Chen
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cheryl C. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding author. Mailing address: Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China. Phone and fax: (86)-754-88573991. E-mail:
| |
Collapse
|
28
|
Zhang TT, Li H, Cheung SM, Costantini JL, Hou S, Al-Alwan M, Marshall AJ. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev 2010; 232:255-72. [PMID: 19909369 DOI: 10.1111/j.1600-065x.2009.00838.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signaling via phosphoinositide 3-kinases (PI3Ks) has emerged as a central component of lymphocyte activation via immunoreceptors, costimulatory receptors, cytokine receptors, and chemokine receptors. The discovery of phosphoinositide-binding pleckstrin homology (PH) domains has substantially increased understanding of how PI3Ks activate cellular responses. Accumulating evidence indicates that PH-domain containing adapter molecules provide important links between PI3K and lymphocyte function. Here, we review data on PI3K-regulated adapter proteins of the Grb-associated binder (GAB), Src kinase-associated phosphoprotein (SKAP), and B-lymphocyte adapter molecule of 32 kDa (Bam32)/ dual-adapter for phosphotyrosine and 3-phosphoinositides (DAPP)/TAPP families, with a focus on the latter group. Current data support the model that recruitment of these adapters to the plasma membrane of activated lymphocytes is driven by the phosphoinositides phosphatidylinositol-3,4,5-tris-phosphate and phosphatidylinositol-3,4-bisphosphate, generated through the action of PI3Ks and under the regulatory control of lipid phosphatases Src homology 2 domain-containing inositol phosphatase (SHIP), phosphatase and tensin homolog, and inositol polyphosphate 4-phosphatase. At the plasma membrane, these adapters serve to assemble distinct protein complexes. Bam32/DAPP1 and SKAPs function to promote activation of monomeric guanosine triphosphatases, including Rac and Rap, and promote integrin activation, lymphocyte adhesion to matrix proteins, and cell:cell interactions between B and T lymphocytes. GABs can provide feedforward amplification or feedback inhibition of PI3K signaling. Current work is further defining the molecular interactions driven by these molecules and identifying the functions of TAPP adapters, which also appear to be involved in lymphocyte adhesion and are specific effectors downstream of the SHIP product phosphatidylinositol-3,4-bisphosphate.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Al-Alwan M, Hou S, Zhang TT, Makondo K, Marshall AJ. Bam32/DAPP1 promotes B cell adhesion and formation of polarized conjugates with T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6961-9. [PMID: 20495066 DOI: 10.4049/jimmunol.0904176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell Ag receptors function in both signaling activation of Ag-specific cells and in collecting specific Ag for presentation to T lymphocytes. Signaling via PI3K is required for BCR-mediated activation and Ag presentation functions; however, the relevant downstream targets of PI3K in B cells are incompletely defined. In this study, we have investigated the roles of the PI3K effector molecule Bam32/DAPP1 in BCR signaling and BCR-mediated Ag presentation functions. In mouse primary B cells, Bam32 was required for efficient activation of the GTPase Rac1 and downstream signaling to JNK, but not activation of BLNK, phospholipase C gamma2, or calcium responses. Consistent with a role of this adaptor in Rac-mediated cytoskeletal rearrangement, Bam32 was required for BCR-induced cell adhesion and spreading responses on ICAM-1 or fibronectin-coated surfaces. The function of Bam32 in promoting Rac activation and adhesion required tyrosine 139, a known site of phosphorylation by Lyn kinase. After BCR crosslinking by Ag, Bam32-deficient B cells are able to carry out the initial steps of Ag endocytosis and processing, but show diminished ability to form Ag-specific conjugates with T cells and polarize F-actin at the B-T interface. As a result, Bam32-deficient B cells were unable to efficiently activate Ag-specific T cells. Together, these results indicate that Bam32 serves to integrate PI3K and Src kinase signaling to promote Rac-dependent B cell adhesive interactions important for Ag presentation function.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
30
|
Abstract
B cell activation is initiated by the ligation of the B cell receptor (BCR) with antigen and ultimately results in the production of protective antibodies against potentially pathogenic invaders. Here we review recent literature concerned with the spatiotemporal dynamic characterization of the early molecular events of B cell activation, including the initiation of BCR triggering, the formation of BCR microclusters, and the dynamic regulation of BCR signaling. Because these events involve the considerable reorganization of molecules within the membrane, an important role for the cytoskeleton is emerging in the regulation of B cell activation. At each stage we highlight the role of the cytoskeleton, establishing its pivotal position during the initiation and regulation of B cell activation.
Collapse
Affiliation(s)
- Naomi E. Harwood
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | - Facundo D. Batista
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| |
Collapse
|
31
|
Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1. Proc Natl Acad Sci U S A 2010; 107:3511-6. [PMID: 20133602 DOI: 10.1073/pnas.0914658107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations of the inositol 5' phosphatase oculocerebrorenal syndrome of Lowe (OCRL) give rise to the congenital X-linked disorders oculocerebrorenal syndrome of Lowe and Dent disease, two conditions giving rise to abnormal kidney proximal tubule reabsorption, and additional nervous system and ocular defects in the case of Lowe syndrome. Here, we identify two closely related endocytic proteins, Ses1 and Ses2, which interact with the ASH-RhoGAP-like (ASPM-SPD-2-Hydin homology and Rho-GTPase Activating Domain-like) domain of OCRL. The interaction is mediated by a short amino acid motif similar to that used by the rab-5 effector APPL1 (Adaptor Protein containing pleckstrin homology [PH] domain, PTB domain and Leucine zipper motif 1) APPL1 for OCRL binding. Ses binding is mutually exclusive with APPL1 binding, and is disrupted by the same missense mutations in the ASH-RhoGAP-like domain that also disrupt APPL1 binding. Like APPL1, Ses1 and -2 are localized on endosomes but reside on different endosomal subpopulations. These findings define a consensus motif (which we have called a phenylalanine and histidine [F&H] motif) for OCRL binding and are consistent with a scenario in which Lowe syndrome and Dent disease result from perturbations at multiple sites within the endocytic pathway.
Collapse
|
32
|
Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex. Nat Genet 2010; 42:250-4. [PMID: 20101241 DOI: 10.1038/ng.525] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.
Collapse
|
33
|
Zhang TT, Al-Alwan M, Marshall AJ. The pleckstrin homology domain adaptor protein Bam32/DAPP1 is required for germinal center progression. THE JOURNAL OF IMMUNOLOGY 2009; 184:164-72. [PMID: 19949096 DOI: 10.4049/jimmunol.0902505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ab affinity maturation within germinal centers (GCs) requires weeks to complete. Several signaling pathways in B cells have been shown to be required for initiation of the GC response; however, the signaling checkpoints controlling progression and eventual dissolution of the GC reaction are poorly understood. The adaptor protein Bam32/DAPP1 was originally isolated from human GCs and functions downstream of phosphoinositide 3-kinase enzymes, which are known to have critical roles in B cell activation and GC responses. In this study we identify a unique role of Bam32/DAPP1 in promoting GC progression. Bam32-deficient mice show normal GC initiation, but premature GC dissolution after immunization with protein Ag in alum or low doses of sheep red blood cells. Adoptive transfer studies confirmed that Bam32-deficient B cells have an intrinsic impairment in the ability to mount sustained GC responses. Bam32 deficiency was also associated with impaired Ab affinity maturation. Proliferation of Bam32-deficient GC B cells was not compromised; however, these cells show impaired switch to IgG1 and increased apoptosis in situ. GCs formed by Bam32-deficient B cells contain fewer T cells, indicating that Bam32 is required for B cell-dependent T cell accumulation within established GCs. Exogenous CD40 ligand restored GC B cell numbers and switch to IgG1, indicating that Bam32-deficient B cells are competent to respond to CD40 stimulation when ligand is available. These data demonstrate that Bam32 is not required for GC initiation, but rather functions in a late checkpoint of GC progression associated with T cell recruitment and GC B cell survival.
Collapse
Affiliation(s)
- Ting-ting Zhang
- Department of Immunology, University of Manitoba, Manitoba, Canada
| | | | | |
Collapse
|
34
|
TAPP2 links phosphoinositide 3-kinase signaling to B-cell adhesion through interaction with the cytoskeletal protein utrophin: expression of a novel cell adhesion-promoting complex in B-cell leukemia. Blood 2009; 114:4703-12. [PMID: 19786618 DOI: 10.1182/blood-2009-03-213058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation, the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells, including proteins involved in cytoskeletal rearrangement, signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2, syntrophin, and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient, with significantly higher expression in the more aggressive disease subset identified by zeta-chain-associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion, a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin, whereas PH domain-mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin, or treatment with PI3K inhibitors, significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.
Collapse
|
35
|
Abstract
B cells are induced to enter the cell cycle by stimuli including ligation of the B-cell receptor (BCR) complex and Toll-like receptor (TLR) agonists. This review discusses the contribution of several molecules, which act at distinct steps in B-cell activation. The adapter molecule Bam32 (B-lymphocyte adapter of 32 kDa) helps promote BCR-induced cell cycle entry, while the secondary messenger superoxide has the opposite effect. Bam32 and superoxide may fine tune BCR-induced activation by competing for the same limited resources, namely Rac1 and the plasma membrane phospholipid PI(3,4)P(2). The co-receptor CD22 can inhibit BCR-induced proliferation by binding to novel CD22 ligands. Finally, regulators of B-cell survival and death also play roles in B-cell transit through the cell cycle. Caspase 6 negatively regulates CD40- and TLR-dependent G(1) entry, while acting later in the cell cycle to promote S-phase entry. Caspase 6 deficiency predisposes B cells to differentiate rather than proliferate after stimulation. Bim, a pro-apoptotic Bcl-2 family member, exerts a positive regulatory effect on cell cycle entry, which is opposed by Bcl-2. New insights into what regulates B-cell transit through the cell cycle may lead to thoughtful design of highly selective drugs that target pathogenic B cells.
Collapse
Affiliation(s)
- Sabrina Richards
- Department of Immunology and Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The appropriate activation of B cells is critical for the development and operation of immune responses and is dependent on the extensive coordination of intra- and intercellular communications in response to antigen stimulation. An accurate description of the B cell-activation process requires investigation of these interactions within their correct cellular context both at high resolution and in real time. Here, we discuss a number of recent studies that have offered insight into the early molecular events of B cell activation. We suggest that segregation within the B cell membrane triggers localized cytoskeleton reorganisation and signaling, allowing the formation of B cell receptor (BCR) microclusters. These BCR microclusters are the sites for the coordinated recruitment of the signalosome and are propagated during B cell spreading. We discuss the recent identification of a critical role for CD19 in the B cell response to membrane-bound antigen and suggest a mechanism involving BCR microclusters by which it mediates its stimulatory function. Finally, we consider research that has taken advantage of recent technological advances in multiphoton microscopy that have allowed its application to the investigation of the dynamics of membrane-bound antigen presentation and subsequent B cell activation in lymph nodes in vivo.
Collapse
Affiliation(s)
- Naomi E Harwood
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
37
|
Sommers CL, Gurson JM, Surana R, Barda-Saad M, Lee J, Kishor A, Li W, Gasser AJ, Barr VA, Miyaji M, Love PE, Samelson LE. Bam32: a novel mediator of Erk activation in T cells. Int Immunol 2008; 20:811-8. [PMID: 18448454 PMCID: PMC2680712 DOI: 10.1093/intimm/dxn039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bam32 (B lymphocyte adapter molecule of 32 kDa) is an adapter protein expressed in some hematopoietic cells including B and T lymphocytes. It was previously shown that Bam32-deficient mice have defects in various aspects of B cell activation including B cell receptor (BCR)-induced Erk activation, BCR-induced proliferation and T-independent antibody responses. In this study, we have examined the role of Bam32 in T cell activation using Bam32-deficient mice. By comparing CD4(+) T cells from lymph nodes of wild-type and Bam32-deficient mice, we found that Bam32 was required for optimal TCR-induced Erk activation, cytokine production, proliferation and actin-mediated spreading of CD4(+) T cells. These results indicate a novel pathway to Erk activation in T cells involving the adapter protein Bam32.
Collapse
Affiliation(s)
- Connie L Sommers
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Santos L, Draves KE, Boton M, Grewal PK, Marth JD, Clark EA. Dendritic cell-dependent inhibition of B cell proliferation requires CD22. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4561-9. [PMID: 18354178 PMCID: PMC2728079 DOI: 10.4049/jimmunol.180.7.4561] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that dendritic cells (DCs) regulate B cell functions. In this study, we report that bone marrow (BM)-derived immature DCs, but not mature DCs, can inhibit BCR-induced proliferation of B cells in a contact-dependent manner. This inhibition is overcome by treatment with BAFF and is dependent on the BCR coreceptor CD22; however, it is not dependent on expression of the CD22 glycan ligand(s) produced by ST6Gal-I sialyltransferase. We found that a second CD22 ligand (CD22L) is expressed on CD11c(+) splenic and BM-derived DCs, which does not contain ST6Gal-I-generated sialic acids and which, unlike the B cell-associated CD22L, is resistant to neuraminidase treatment and sodium metaperiodate oxidation. Examination of splenic and BM B cell subsets in CD22 and ST6Gal-I knockout mice revealed that ST6Gal-I-generated B cell CD22L plays a role in splenic B cell development, whereas the maintenance of long-lived mature BM B cells depends only on CD22 and not on alpha2,6-sialic acids produced by ST6Gal-I. We propose that the two distinct CD22L have different functions. The alpha2,6-sialic acid-containing glycoprotein is important for splenic B cell subset development, whereas the DC-associated ST6Gal-I-independent CD22L may be required for the maintenance of long-lived mature B cells in the BM.
Collapse
Affiliation(s)
- Lorna Santos
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
39
|
Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv Immunol 2008; 97:251-81. [PMID: 18501772 DOI: 10.1016/s0065-2776(08)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past two decades our view of the B cell antigen receptor (BCR) has fundamentally changed. Being initially regarded as a mute antibody orphan of the B cell surface, the BCR turned out to be a complex multimolecular machine monitoring almost all stages of B cell development, selection, and activation through a plethora of ubiquitously and cell-type-specific effector proteins. A comprehensive understanding of the many BCR signaling facets is still out but a few common biochemical principles outlined in this review operate at the level of receptor activation and orchestrate specific wiring of intracellular transducer cascades. First, initiation and processing of antigen-induced signal transduction relies on transient conformational changes in the signaling proteins to trigger their physical interaction with downstream elements. Second, this dynamic assembly of signalosomes occurs at distinct subcellular locations, most prominently the plasma membrane, which requires dynamic relocalization of one or more of the engaged molecules. For both, precise complex formation and efficient subcellular targeting, B cell signaling components are equipped with a variety of protein interaction domains. Here we provide an overview on how these simple rules are applied by a limited number of transmembrane and cytosolic proteins to convert BCR ligation into Ca(2+) mobilization and Ras activation in an adjustable manner.
Collapse
|
40
|
Marshall AJ, Zhang T, Al-Alwan M. Regulation of B-lymphocyte activation by the PH domain adaptor protein Bam32/DAPP1. Biochem Soc Trans 2007; 35:181-2. [PMID: 17371232 DOI: 10.1042/bst0350181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PI3Ks (phosphoinositide 3-kinases) play critical roles in BCR (B-cell receptor) signalling via the generation of 3-phosphoinositide second messengers. Recruitment of PH domain (pleckstrin homology domain)-containing signal transduction proteins to the plasma membrane through binding to 3-phosphoinositide second messengers represents a major effector mechanism for PI3Ks. Here, we review data on the PH domain-containing adaptor protein Bam32 (B-cell adaptor molecule of 32 kDa)/DAPP1 (dual adaptor for phosphotyrosine and 3-phosphoinositides 1), focusing on its functions in B-lymphocyte activation. Present results support the view that Bam32/DAPP1 mediates multiple PI3K-dependent responses in B-cells through membrane-proximal mechanisms involving Src kinases, Rac1, F-actin and mitogen-activated protein kinases, resulting in selective effects on BCR-mediated proliferation, antigen presentation and generation of antibody responses.
Collapse
Affiliation(s)
- A J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
41
|
Engelke M, Engels N, Dittmann K, Stork B, Wienands J. Ca(2+) signaling in antigen receptor-activated B lymphocytes. Immunol Rev 2007; 218:235-46. [PMID: 17624956 DOI: 10.1111/j.1600-065x.2007.00539.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
B cells respond to antigen stimulation with mobilization of the Ca(2+) second messenger in two phases operated by two distinct sets of effector proteins. First, an antigen receptor-specific Ca(2+) initiation complex is assembled, activated, and targeted to the plasma membrane to trigger the transient release of Ca(2+) from intracellular stores of the endoplasmic reticulum. Second, more ubiquitously expressed Ca(2+) channels of the plasma membrane are opened to allow for sustained Ca(2+) influx from the extracellular medium. Depending on the developmental stage of the B cell, the kinetics and profile of the two phases are adjusted at multiple levels of positive and negative regulation. A molecular basis for the Ca(2+) signaling plasticity is provided by cytosolic and transmembrane adapter proteins. They act as signal organizers, which control enzyme/substrate interactions by directing the different signaling modules into specific subcellular compartments. These arrangements orchestrate a graduated activation of Ca(2+)-sensitive downstream pathways, which ultimately determine appropriate cellular responses, namely elimination of autoreactive B cells or proliferation and differentiation of immunocompetent B cells into antibody-secreting plasma cells.
Collapse
Affiliation(s)
- Michael Engelke
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Al-Alwan M, Du Q, Hou S, Nashed B, Fan Y, Yang X, Marshall AJ. Follicular Dendritic Cell Secreted Protein (FDC-SP) Regulates Germinal Center and Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:7859-67. [PMID: 17548624 DOI: 10.4049/jimmunol.178.12.7859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously identified follicular dendritic cell secreted protein (FDC-SP), a small secreted protein of unknown function expressed in human tonsillar germinal centers (GC). To assess potential in vivo activities of FDC-SP, transgenic mice were generated to constitutively express FDC-SP in lymphoid tissues. FDC-SP transgenic mice show relatively normal development of immune cell populations, with the exception of a small increase in mature follicular B cells, and normal lymphoid tissue architecture. Upon immunization with a T-dependent Ag, FDC-SP transgenic mice were capable of producing an Ag-specific Ab; however, the titers of Ag-specific IgG2a and IgE were significantly reduced. GC responses after immunization were markedly diminished, with transgenic mice showing decreased numbers and sizes of GCs but normal development of follicular dendritic cell networks and normal positioning of GCs. FDC-SP transgenic mice also showed reduced production of Ag-specific IgG3 Ab after immunization with a type II T-independent Ag, suggesting that the FDC-SP can also regulate the induction of B cell responses outside the GC. Purified FDC-SP transgenic B cells function normally in vitro, with the exception of blunted chemotaxis responses to CXCL12 and CXCL13. FDC-SP can induce the chemotaxis of CD40-stimulated nontransgenic B cells and can significantly enhance B cell migration in combination with chemokines, indicating that FDC-SP may function in part by regulating B cell chemotaxis. These results provide the first evidence for immunomodulatory activities of FDC-SP and implicate this molecule as a regulator of B cell responses.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, 703 William Avenue, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Cheung SMS, Kornelson JC, Al-Alwan M, Marshall AJ. Regulation of phosphoinositide 3-kinase signaling by oxidants: Hydrogen peroxide selectively enhances immunoreceptor-induced recruitment of phosphatidylinositol (3,4) bisphosphate-binding PH domain proteins. Cell Signal 2007; 19:902-12. [PMID: 17215104 DOI: 10.1016/j.cellsig.2006.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 12/29/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate several distinct lipid second messengers including phosphatidylinositol (3,4,5) trisphosphate (PIP3) and phosphatidylinositol (3,4) bisphosphate PI(3,4)P2. PI(3,4)P2 is produced with distinct kinetics and binds to distinct PH domain effector proteins; however, the regulation of this signaling pathway is poorly understood. Superoxides such as hydrogen peroxide are transiently produced after activation through various cell surface receptors and play important roles in immune and inflammatory responses. Here we use quantitative microscopy to examine the effect of peroxide on PI(3,4)P2-mediated mobilization of signaling proteins in B lymphocytes. Peroxide was found to induce dose-dependant membrane recruitment of the PI(3,4)P2-binding PH domain proteins Bam32, TAPP2 and Akt/PKB but not the PIP3-binding PH domain of Btk. Peroxide-induced membrane recruitment was found to be dependant on PI3K activity, with the p110delta isoform contributing much of the activity in the BJAB human B lymphoma model. Strikingly, peroxide co-stimulation enhanced antigen receptor-induced membrane recruitment of Bam32 and TAPP2, with combined stimulation exceeding the maximum achievable with either stimulus alone. Expression of the lipid phosphatase PTEN led to reduction of antigen receptor-induced membrane recruitment of TAPP2; however, peroxide costimulation could overcome the inhibitory effect of PTEN. Inhibition of the NADPH oxidase led to reduction of antigen receptor-induced membrane recruitment of TAPP2. Our results indicate that exogenous and endogenous superoxides can modulate the quality of the PI3K signal in lymphocytes by selectively increasing PI(3,4)P2-dependant signaling.
Collapse
Affiliation(s)
- Samuel M S Cheung
- Department of Immunology, University of Manitoba, 730 William Avenue, Winnipeg, MB Canada R3E 0W3
| | | | | | | |
Collapse
|
44
|
Allam A, Marshall AJ. Role of the adaptor proteins Bam32, TAPP1 and TAPP2 in lymphocyte activation. Immunol Lett 2005; 97:7-17. [PMID: 15626471 DOI: 10.1016/j.imlet.2004.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 01/13/2023]
Abstract
Adaptor proteins play critical roles in lymphocyte activation by mediating intermolecular interactions and assembling signaling complexes at the activated plasma membrane. Bam32/DAPP1 and the related adaptor proteins TAPP1 and TAPP2 were identified by multiple groups about 5 years ago and considerable progress has been made in elucidating the structure, interaction partners and function of these molecules. These cytoplasmic adaptor proteins are recruited to the plasma membrane through interaction of their PH domains with the lipid products of phosphatidylinositol 3-kinases. They share a unique mode of regulation in that they bind with high affinity to phosphatidylinositol-3,4-bisphosphate and their recruitment is enhanced rather than inhibited by the lipid phosphatase SHIP. Two knockout mouse studies and several gain-and-loss of function studies in cell lines have recently been published, demonstrating multiple functions of Bam32 in B cell activation. Bam32 is required for biological responses including B cell antigen receptor (BCR)-induced proliferation and antibody responses to type II T-independent antigens. Bam32 regulates multiple BCR signaling events including activation of the mitogen activated protein kinases ERK and JNK, remodeling of the actin cytoskeleton through the GTPase Rac1 and BCR internalization. Several studies have emerged suggesting that TAPP1 and TAPP2 may play roles in B and T cell activation; however, the biological functions regulated by these molecules remain to be defined. Here we will comprehensively review the available data on the structure and function of Bam32, TAPP1 and TAPP2 and present an integrated working model for Bam32 function in B cell activation and a general model for distinct effector pathways of PI 3-kinases.
Collapse
Affiliation(s)
- Atef Allam
- Department of Immunology, University of Manitoba, 611 Basic Medical Sciences Building, 730 William Avenue, Winnipeg, Man., R3E-0W3, Canada
| | | |
Collapse
|
45
|
Serrano CJ, Graham L, DeBell K, Rawat R, Veri MC, Bonvini E, Rellahan BL, Reischl IG. A New Tyrosine Phosphorylation Site in PLCγ1: The Role of Tyrosine 775 in Immune Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:6233-7. [PMID: 15879121 DOI: 10.4049/jimmunol.174.10.6233] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholipase Cgamma (PLCgamma) is a ubiquitous gatekeeper of calcium mobilization and diacylglycerol-mediated events induced by the activation of Ag and growth factor receptors. The activity of PLCgamma is regulated through its controlled membrane translocation and tyrosine (Y) phosphorylation. Four activation-induced tyrosine phosphorylation sites have been previously described (Y472, Y771, Y783, and Y1254), but their specific roles in Ag receptor-induced PLCgamma1 activation are not fully elucidated. Unexpectedly, we found that the phosphorylation of a PLCgamma1 construct with all four sites mutated to phenylalanine was comparable with that observed with wild-type PLCgamma1, suggesting the existence of an unidentified site(s). Sequence alignment with known phosphorylation sites in PLCgamma2 indicated homology of PLCgamma1 tyrosine residue 775 (Y775) with PLCgamma2 Y753, a characterized phosphorylation site. Tyrosine 775 was characterized as a phosphorylation site using phospho-specific anti-Y775 antiserum, and by mutational analysis. Phosphorylation of Y775 did not depend on the other tyrosines, and point mutation of PLCgamma1 Y775, or the previously described Y783, substantially reduced AgR-induced calcium, NF-AT, and AP-1 activation. Mutation of Y472, Y771, and Y1254 had no effect on overall PLCgamma1 phosphorylation or activation. Although the concomitant mutation of Y775 and Y783 abolished downstream PLCgamma1 signaling, these two tyrosines were sufficient to reconstitute the wild-type response in the absence of functional Y472, Y771, and Y1254. These data establish Y775 as a critical phosphorylation site for PLCgamma1 activation and confirm the functional importance of Y783.
Collapse
Affiliation(s)
- Carmen J Serrano
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, National Institutes of Health Campus, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hogan A, Yakubchyk Y, Chabot J, Obagi C, Daher E, Maekawa K, Gee SH. The Phosphoinositol 3,4-Bisphosphate-binding Protein TAPP1 Interacts with Syntrophins and Regulates Actin Cytoskeletal Organization. J Biol Chem 2004; 279:53717-24. [PMID: 15485858 DOI: 10.1074/jbc.m410654200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntrophins are scaffold proteins of the dystrophin glycoprotein complex (DGC), which target ion channels, receptors, and signaling proteins to specialized subcellular domains. A yeast two-hybrid screen of a human brain cDNA library with the PSD-95, Discs-large, ZO-1 (PDZ) domain of gamma1-syntrophin yielded overlapping clones encoding the C terminus of TAPP1, a pleckstrin homology (PH) domain-containing adapter protein that interacts specifically with phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)). In biochemical assays, the C terminus of TAPP1 bound specifically to the PDZ domains of gamma1-, alpha1-, and beta2-syntrophin and was required for syntrophin binding and for the correct subcellular localization of TAPP1. TAPP1 is recruited to the plasma membrane of cells stimulated with platelet-derived growth factor (PDGF), a motogen that produces PI(3,4)P(2). Cell migration in response to PDGF stimulation is characterized by a rapid reorganization of the actin cytoskeleton, which gives rise to plasma membrane specializations including peripheral and dorsal circular ruffles. Both TAPP1 and syntrophins were localized to PDGF-induced circular membrane ruffles in NIH-3T3 cells. Ectopic expression of TAPP1 potently blocked PDGF-induced formation of dorsal circular ruffles, but did not affect peripheral ruffling. Interestingly, coexpression of alpha1- or gamma1-syntrophin with TAPP1 prevented the blockade of circular ruffling. In addition to syntrophins, several other proteins of the DGC were enriched in circular ruffles. Collectively, our results suggest syntrophins regulate the localization of TAPP1, which may be important for remodeling the actin cytoskeleton in response to growth factor stimulation.
Collapse
Affiliation(s)
- Angela Hogan
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Herrin BR, Groeger AL, Justement LB. The adaptor protein HSH2 attenuates apoptosis in response to ligation of the B cell antigen receptor complex on the B lymphoma cell line, WEHI-231. J Biol Chem 2004; 280:3507-15. [PMID: 15569688 DOI: 10.1074/jbc.m407690200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signals transduced by the B cell antigen receptor (BCR) play a central role in regulating the functional response of the cell to antigen. Depending on the nature of the antigenic signal and the developmental or differentiation state of the B cell, antigen receptor signaling can promote either apoptosis or survival and activation. Understanding the molecular mechanisms underlying BCR-mediated apoptosis constitutes an important area of research because aberrations in programmed cell death can result in the development of autoimmunity or cancer. Expression of the adaptor protein hematopoietic Src homology 2 (HSH2) was found to significantly decrease BCR-mediated apoptosis in the murine WEHI-231 cell line. Analysis of signal transduction pathways activated in response to BCR ligation revealed that HSH2 does not significantly alter total protein tyrosine phosphorylation or Ca2+ mobilization. HSH2 does not potentiate the activation-dependent phosphorylation of AKT either. With respect to MAPK activation, HSH2 was not observed to alter the activation of ERK or p38 in response to BCR ligation, but it does significantly potentiate JNK activation. Analysis of processes directly associated with apoptosis revealed that HSH2 inhibits mitochondrial depolarization to a significant degree, whereas it has only a slight effect on caspase activation and poly ADP-ribose polymerase cleavage. BCR-induced apoptosis of WEHI-231 cells is associated with the loss of endogenous HSH2 expression within 12 h, whereas inhibition of apoptosis in response to CD40-mediated signaling leads to stabilization of HSH2 expression. Thus, endogenous HSH2 expression correlates directly with survival of WEHI-231 cells, which supports the hypothesis that HSH2 modulates the apoptotic response through its ability to directly or indirectly promote mitochondrial stability.
Collapse
Affiliation(s)
- Brantley R Herrin
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
49
|
Niiro H, Allam A, Stoddart A, Brodsky FM, Marshall AJ, Clark EA. The B lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B cell antigen receptor internalization. THE JOURNAL OF IMMUNOLOGY 2004; 173:5601-9. [PMID: 15494510 DOI: 10.4049/jimmunol.173.9.5601] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is an adaptor that plays an indispensable role in BCR signaling. In this study, we found that upon BCR ligation, Bam32 is recruited to the plasma membrane where it associates with BCR complexes and redistributes and internalizes with BCRs. BCR ligation induced colocalization of Bam32 with lipid rafts, clathrin, and actin filaments. An inhibitor of Src family protein tyrosine kinases (PTKs) blocked both BCR-induced tyrosine phosphorylation of Bam32 and BCR internalization. Moreover, BCR internalization is impaired in Bam32-/- and Lyn-/- cells, and expression of Bam32 with a mutation of its tyrosine phosphorylation site (Y139F) inhibited BCR internalization. These data suggest that Bam32 functions downstream of Src family PTKs to regulate BCR internalization. Bam32 deficiency does not affect tyrosine phosphorylation of clathrin or the association of clathrin with lipid rafts upon BCR cross-linking. However, BCR-induced actin polymerization is impaired in Bam32-/- cells. Collectively, these findings indicate a novel role of Bam32 in connecting Src family PTKs to BCR internalization by an actin-dependent mechanism.
Collapse
Affiliation(s)
- Hiroaki Niiro
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
50
|
Allam A, Niiro H, Clark EA, Marshall AJ. The adaptor protein Bam32 regulates Rac1 activation and actin remodeling through a phosphorylation-dependent mechanism. J Biol Chem 2004; 279:39775-82. [PMID: 15247305 DOI: 10.1074/jbc.m403367200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The B cell adaptor molecule of 32 kDa (Bam32) is an adaptor that links the B cell antigen receptor (BCR) to ERK and JNK activation and ultimately to mitogenesis. After BCR cross-linking, Bam32 is recruited to the plasma membrane and accumulates within F-actin-rich membrane ruffles. Bam32 contains one Src homology 2 and one pleckstrin homology domain and is phosphorylated at a single site, tyrosine 139. To define the function of Bam32 in membrane-proximal signaling events, we established human B cell lines overexpressing wild-type or mutant Bam32 proteins. The basal level of F-actin increased in cells expressing wild-type or myristoylated Bam32 but decreased in cells expressing either an Src homology-2 or Tyr-139 Bam32 mutant. Overexpression of wild-type Bam32 also affected BCR-induced actin remodeling, which was visualized as increases in F-actin-rich membrane ruffles. In contrast, Bam32 mutants largely blocked the BCR-induced increase in cellular F-actin. The positive and negative effects of Bam32 variants on F-actin levels were closely mirrored by their effects on the activation of the GTPase Rac1, which is known to regulate actin remodeling in lymphocytes. Bam32-deficient DT40 B cells showed decreased Rac1 activation and a failure of Rac1 to co-localize with the BCR, whereas cells overexpressing Bam32 had increased constitutive Rac1 activation. These results suggest that Bam32 regulates the cytoskeleton through Rac1. Bam32 variants also affected downstream signaling to JNK in a manner similar to that of Rac1, suggesting that the effect of Bam32 on JNK activation may be at least partially mediated through Rac1. Our results demonstrate a novel phosphorylation-dependent function of Bam32 in regulating Rac1 activation and actin remodeling.
Collapse
Affiliation(s)
- Atef Allam
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | |
Collapse
|