1
|
van den Brand M, Rijntjes J, Möbs M, Steinhilber J, van der Klift MY, Heezen KC, Kroeze LI, Reigl T, Porc J, Darzentas N, Luijks JACW, Scheijen B, Davi F, ElDaly H, Liu H, Anagnostopoulos I, Hummel M, Fend F, Langerak AW, Groenen PJTA. Next-Generation Sequencing-Based Clonality Assessment of Ig Gene Rearrangements: A Multicenter Validation Study by EuroClonality-NGS. J Mol Diagn 2021; 23:1105-1115. [PMID: 34186174 DOI: 10.1016/j.jmoldx.2021.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Ig gene (IG) clonality analysis has an important role in the distinction of benign and malignant B-cell lymphoid proliferations and is mostly performed with the conventional EuroClonality/BIOMED-2 multiplex PCR protocol and GeneScan fragment size analysis. Recently, the EuroClonality-NGS Working Group developed a method for next-generation sequencing (NGS)-based IG clonality analysis. Herein, we report the results of an international multicenter biological validation of this novel method compared with the gold standard EuroClonality/BIOMED-2 protocol, based on 209 specimens of reactive and neoplastic lymphoproliferations. NGS-based IG clonality analysis showed a high interlaboratory concordance (99%) and high concordance with conventional clonality analysis (98%) for the molecular conclusion. Detailed analysis of the individual IG heavy chain and kappa light chain targets showed that NGS-based clonality analysis was more often able to detect a clonal rearrangement or yield an interpretable result. NGS-based and conventional clonality analysis detected a clone in 96% and 95% of B-cell neoplasms, respectively, and all but one of the reactive cases were scored polyclonal. We conclude that NGS-based IG clonality analysis performs comparable to conventional clonality analysis. We provide critical parameters for interpretation and discuss a first step toward a quantitative scoring approach for NGS clonality results. Considering the advantages of NGS-based clonality analysis, including its high sensitivity and possibilities for accurate clonal comparison, this supports implementation in diagnostic practice.
Collapse
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markus Möbs
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Michèle Y van der Klift
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kim C Heezen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tomas Reigl
- Molecular Medicine Program, Central European Institute of Technology, Brno, Czech Republic
| | - Jakub Porc
- Molecular Medicine Program, Central European Institute of Technology, Brno, Czech Republic
| | - Nikos Darzentas
- Molecular Medicine Program, Central European Institute of Technology, Brno, Czech Republic; Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jeroen A C W Luijks
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frédéric Davi
- Hematology Department, Hospital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - Hesham ElDaly
- Histopathology Department, Coventry University Hospitals National Health Service Trust, Coventry, United Kingdom; Clinical Pathology Department, Cairo University, Cairo, Egypt
| | - Hongxiang Liu
- Haematopathology and Oncology Diagnostics Service, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | | | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
2
|
He X, Kläsener K, Iype JM, Becker M, Maity PC, Cavallari M, Nielsen PJ, Yang J, Reth M. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells. EMBO J 2018; 37:e97980. [PMID: 29669863 PMCID: PMC5983214 DOI: 10.15252/embj.201797980] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 01/05/2023] Open
Abstract
Expression of the B-cell antigen receptor (BCR) is essential not only for the development but also for the maintenance of mature B cells. Similarly, many B-cell lymphomas, including Burkitt lymphoma (BL), require continuous BCR signaling for their tumor growth. This growth is driven by immunoreceptor tyrosine-based activation motif (ITAM) and PI3 kinase (PI3K) signaling. Here, we employ CRISPR/Cas9 to delete BCR and B-cell co-receptor genes in the human BL cell line Ramos. We find that Ramos B cells require the expression of the BCR signaling component Igβ (CD79b), and the co-receptor CD19, for their fitness and competitive growth in culture. Furthermore, we show that in the absence of any other BCR component, Igβ can be expressed on the B-cell surface, where it is found in close proximity to CD19 and signals in an ITAM-dependent manner. These data suggest that Igβ and CD19 are part of an alternative B-cell signaling module that use continuous ITAM/PI3K signaling to promote the survival of B lymphoma and normal B cells.
Collapse
Affiliation(s)
- Xiaocui He
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Kläsener
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joseena M Iype
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Becker
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Palash C Maity
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jianying Yang
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre For Biological Signaling Studies, Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
3
|
A novel mechanism for the autonomous termination of pre-B cell receptor expression via induction of lysosome-associated protein transmembrane 5. Mol Cell Biol 2012; 32:4462-71. [PMID: 22949502 DOI: 10.1128/mcb.00531-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of the pre-B cell receptor (BCR) is confined to the early stage of B cell development, and its dysregulation is associated with anomalies of B-lineage cells, including leukemogenesis. Previous studies suggested that the pre-BCR signal might trigger the autonomous termination of pre-BCR expression even before the silencing of pre-BCR gene expression to prevent sustained pre-BCR expression. However, the underlying mechanism remains ill defined. Here we demonstrate that the pre-BCR signal induces the expression of lysosome-associated protein transmembrane 5 (LAPTM5), which leads to the prompt downmodulation of the pre-BCR. While LAPTM5 induction had no significant impact on the internalization of cell surface pre-BCR, it elicited the translocation of a large pool of intracellular pre-BCR from the endoplasmic reticulum to the lysosomal compartment concomitantly with a drastic reduction of the level of intracellular pre-BCR proteins. This reduction was inhibited by lysosomal inhibitors, indicating the lysosomal degradation of the pre-BCR. Notably, the LAPTM5 deficiency in pre-B cells led to the augmented expression level of surface pre-BCR. Collectively, the pre-BCR induces the prompt downmodulation of its own expression through the induction of LAPTM5, which promotes the lysosomal transport and degradation of the intracellular pre-BCR pool and, hence, limits the supply of pre-BCR to the cell surface.
Collapse
|
4
|
Kawano Y, Yoshikawa S, Minegishi Y, Karasuyama H. Pre-B cell receptor assesses the quality of IgH chains and tunes the pre-B cell repertoire by delivering differential signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:2242-9. [PMID: 16887984 DOI: 10.4049/jimmunol.177.4.2242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well understood how a variety of Ig H and L chains, components of BCR, are generated in the DNA level during B cell development. However, it has remained largely unknown whether and how each component is monitored for its quality and selected before the assembly into the BCR. Here we show that muH chains produced by pre-B cells display a wide spectrum of ability to form the pre-BCR, which is composed of muH and surrogate light (SL) chains and is crucial for B cell development. The level of surface pre-BCR expression varies among pre-B cells, depending on the ability of their muH chains to pair with SL chains. The higher the level of pre-BCR expression by pre-B cells, the stronger their pre-BCR signaling, and the better they proliferate and differentiate. Thus, the extent of survival, proliferation, and differentiation of individual pre-B cells is primarily determined by the SL-pairing ability of their muH chains. Furthermore, IgH chains with higher potential to assemble with IgL chains appear to be positively selected and amplified through the assessment of their ability to pair with SL chains at the pre-BCR checkpoint before the assembly into the BCR. These results indicate that the pre-BCR assesses the quality of muH chains and tunes the pre-B cell repertoire by driving the preferential expansion and differentiation of cells with the higher quality of muH chains.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
5
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
6
|
Webb AI, Dunstone MA, Williamson NA, Price JD, de Kauwe A, Chen W, Oakley A, Perlmutter P, McCluskey J, Aguilar MI, Rossjohn J, Purcell AW. T Cell Determinants Incorporating β-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:3810-8. [PMID: 16148127 DOI: 10.4049/jimmunol.175.6.3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of beta-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding beta-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with beta-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using beta-amino acids. We conclude that the rational incorporation of beta-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring alpha-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.
Collapse
Affiliation(s)
- Andrew I Webb
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 2005; 5:578-84. [PMID: 15999097 DOI: 10.1038/nri1649] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain - the surrogate light chain and the pre-TCR alpha-chain, respectively - as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.
Collapse
Affiliation(s)
- Fritz Melchers
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Schumannstrasse 21-22, D-10117 Berlin, Germany.
| |
Collapse
|
8
|
Abstract
Lymphocytes are characterised by monoclonal expression of antigen receptors. This is achieved by silencing of one of two homologous antigen receptor alleles, a process known as allelic exclusion. This process is regulated both before and after V(D)J recombination, by a variety of mechanisms. These include nuclear localisation, changes in chromatin structure and histone modifications, non-coding sense and antisense RNA transcription, epigenetic alterations at the DNA level, feedback signalling from expressed alleles, locus contraction and decontraction, recruitment to heterochromatin. This review will focus on recent advances in the immunoglobulin heavy and kappa light chain loci. The current picture is of a complex, temporally ordered sequence of events, in which these loci share many contributory mechanisms, but clear and intriguing differences are emerging.
Collapse
Affiliation(s)
- Anne E Corcoran
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge CB24AT, UK.
| |
Collapse
|
9
|
Hayashi K, Nojima T, Goitsuka R, Kitamura D. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5980-8. [PMID: 15528332 DOI: 10.4049/jimmunol.173.10.5980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/metabolism
- Autoantigens/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Clonal Anergy/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- RNA Editing/genetics
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
10
|
Abstract
Exclusive gene expression, where only one member of a gene or gene cassette family is selected for expression, plays an important role in the establishment of cell identity in several biological systems. Here, we compare four such systems: mating-type switching in fission and budding yeast, where cells choose between expressing one of the two different mating-type cassettes, and immunoglobulin and odorant receptor gene expression in mammals, where the number of gene choices is substantially higher. The underlying mechanisms that establish this selective expression pattern in each system differ in almost every detail. In all four systems, once a successful gene activation event has taken place, a feedback mechanism affects the fate of the cell. In the mammalian systems, feedback is mediated by the expressed cell surface receptor to ensure monoallelic gene expression, whereas in the yeasts, the expressed gene cassette at the mating-type locus affects donor choice during the subsequent switching event.
Collapse
|
11
|
Tretter T, Ross AE, Dordai DI, Desiderio S. Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. ACTA ACUST UNITED AC 2003; 198:1863-73. [PMID: 14662906 PMCID: PMC2194155 DOI: 10.1084/jem.20030729] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During B lymphoid ontogeny, assembly of the pre–B cell receptor (BCR) is a principal developmental checkpoint at which several Src-related kinases may play redundant roles. Here the Src-related kinase Blk is shown to effect functions associated with the pre-BCR. B lymphoid expression of an active Blk mutant caused proliferation of B progenitor cells and enhanced responsiveness of these cells to interleukin 7. In mice lacking a functional pre-BCR, active Blk supported maturation beyond the pro–B cell stage, suppressed VH to DJH rearrangement, relieved selection for productive heavy chain rearrangement, and stimulated κ rearrangement. These alterations were accompanied by tyrosine phosphorylation of immunoglobulin β and Syk, as well as changes in gene expression consistent with developmental maturation. Thus, sustained activation of Blk induces responses normally associated with the pre-BCR.
Collapse
Affiliation(s)
- Theresa Tretter
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
12
|
Oya K, Wang J, Watanabe Y, Koga R, Watanabe T. Appearance of the LAT protein at an early stage of B-cell development and its possible role. Immunology 2003; 109:351-9. [PMID: 12807480 PMCID: PMC1782977 DOI: 10.1046/j.1365-2567.2003.01671.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 04/01/2003] [Accepted: 04/14/2003] [Indexed: 11/20/2022] Open
Abstract
The linker protein LAT is expressed mainly in T and natural killer (NK) cells. LAT-deficient mice have an arrest of intrathymic T-cell development at the CD4+ CD8+ stage and lack mature T cells in the periphery. However, no gross abnormality in development and function of the B and NK cells has been described. Here we report that LAT is expressed in mouse progenitor B (pro-B) and precursor B (pre-B) cells, but not in immature or mature B cells. LAT in pre-B cells becomes tyrosine phosphorylated upon cross-linking of the pre-B-cell receptor (pre-BCR) by anti- micro antibody. Incubation of 1xN/2b (mouse pre-B-cell line) cells or bone marrow cells from microMT/ microMT mice, which lack B cells after the small pre-B-cell stage, with anti-Ig beta antibody resulted in the downregulation of LAT expression. Transgenic mice which expressed LAT protein in B-lineage cells showed an increased proportion of pro- and large pre-B cells in the bone marrow and a remarkable reduction in the numbers of mature B cells in peripheral lymphoid tissues. Collectively, the present results indicate that LAT is expressed in the cells at the early stages of B-lineage development, but is absent in immature and mature B cells. LAT may play a crucial role in the negative regulation of B-cell development at the transition from pre-B to mature B-cell stages, and signal(s) via the pre-BCR may extinguish LAT expression, thus allowing pre-B-cell differentiation towards the mature B-cell stage.
Collapse
Affiliation(s)
- Kazuyuki Oya
- Department of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
13
|
Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M, Adachi T, Patke A, Santana A, Tarakhovsky A. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 2003; 4:274-9. [PMID: 12563261 DOI: 10.1038/ni893] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/13/2003] [Indexed: 02/02/2023]
Abstract
The nature of signals that govern the development of immunoglobulin heavy chain-dependent B cells is largely unknown. Using mice deficient for the B cell-expressed Src-family protein tyrosine kinases (SFKs) Blk, Fyn and Lyn, we show an essential role of these kinases in pre-B cell receptor (pre-BCR)- mediated NF-kappaB activation and B cell development. This signaling defect is SFK specific, as a deficiency in Syk, which controls pre-B cell development, does not affect NF-kappaB induction. Impaired NF-kappaB induction was overcome by the activation of protein kinase C (PKC)-lambda, thus suggesting the involvement of PKC-lambda in pre-BCR-mediated SFK-dependent activation of NF-kappaB. Our data show the existence of a functionally distinct SFK signaling module responsible for pre-BCR-mediated NF-kappaB activation and B cell development.
Collapse
Affiliation(s)
- Kaoru Saijo
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Szabo P, Shen S, Telford W, Weksler ME. Impaired rearrangement of IgH V to DJ segments in bone marrow Pro-B cells from old mice. Cell Immunol 2003; 222:78-87. [PMID: 12798310 DOI: 10.1016/s0008-8749(03)00084-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are fewer bone marrow Pre-B cells in old compared to young mice. We have demonstrated both decreased rearrangement of the V to DJ IgH gene segments and low levels of VH germline transcripts in Pro-B cells, the precursors of Pre-B cells, from old compared to young mice. However, there was no difference in the level of RAG-mRNA in purified Pro-B cells from old and young mice. Consistent with the prior reports that fewer bone marrow emigrants enter the peripheral B cell populations of old than young mice, we identified fewer transitional B cells in the blood, as well as the spleen, of old than young mice. Association of impaired IgH rearrangement with a decreased number of transitional B cells in old mice was supported by finding that the percentage and number of transitional B cells expressing rearranged IgH and IgL transgenes, which do not require rearrangement of their endogenous IgH gene segments, were comparable in old and young mice. In contrast, the percentage and number of transitional B cells in these Ig-transgenic mice, which escaped allelic exclusion and have rearranged endogenous IgH gene segments, showed an age-associated decline similar to that seen in wild type mice. These data are consistent with the view that impaired V to DJ rearrangement contributes to the decreased levels of bone marrow Pre-B cells as well as the decreased levels of transitional B cells in the periphery.
Collapse
Affiliation(s)
- Paul Szabo
- Division of Geriatrics and Gerontology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
15
|
Burrows PD, Stephan RP, Wang YH, Lassoued K, Zhang Z, Cooper MD. The transient expression of pre-B cell receptors governs B cell development. Semin Immunol 2002; 14:343-9. [PMID: 12220935 DOI: 10.1016/s1044-5323(02)00067-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Only a subpopulation of relatively large pre-B cells express pre-B cell receptors (preBCR) that can be seen with very sensitive immunofluorescence methods. Inefficient assembly of the multicomponent preBCR coupled with their ligand-induced endocytosis may account for the remarkably low in vivo levels of preBCR expression. Signaling initiated via the preBCR promotes cellular proliferation and RAG-1 and RAG-2 downregulation to interrupt the immunoglobulin V(D)J gene rearrangement process. Silencing of the surrogate light chain genes, VpreB and lambda5, then terminates preBCR expression to permit cell cycle exit, recombinase gene upregulation, and VJ(L) rearrangement by small pre-B cells destined to become B cells.
Collapse
Affiliation(s)
- Peter D Burrows
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, WTI 378, 1824 6th Avenue South, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Surrogate light chain expression during B lineage differentiation was examined by using indicator fluorochrome-filled liposomes in an enhanced immunofluorescence assay. Pro-B cells bearing surrogate light chain components were found in mice, but not in humans. A limited subpopulation of relatively large pre-B cells in both species expressed pre-B cell receptors. These cells had reduced expression of the recombinase activating genes, RAG-1 and RAG-2. Their receptor-negative pre-B cell progeny were relatively small, expressed RAG-1 and RAG-2, and exhibited selective down-regulation of VpreB and λ5expression. Comparative analysis of the 2 pre-B cell subpopulations indicated that loss of the pre-B cell receptors from surrogate light chain gene silencing was linked with exit from the cell cycle and light chain gene rearrangement to achieve B-cell differentiation.
Collapse
|
17
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
18
|
Fleming HE, Paige CJ. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 2001; 15:521-31. [PMID: 11672535 DOI: 10.1016/s1074-7613(01)00216-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocyte development is regulated at multiple checkpoints, mediated by signals originating both inside and outside the cell. Two signaling pathways known to be essential in this process are interleukin-7 (IL-7) and the pre-B cell receptor (pBCR). We have shown previously that these signaling pathways intersect functionally. Specifically, response to low concentrations of IL-7 requires pBCR expression. In this report, we identify the ERK/MAP kinase pathway as a key regulatory component of this response. We propose a molecular mechanism for the selective expansion of pBCR(+) precursors and for the culling of inappropriately rearranged pro-B cells.
Collapse
Affiliation(s)
- H E Fleming
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Abstract
Antibodies on the surface of B lymphocytes trigger adaptive immune responses and control a series of antigen-independent checkpoints during B cell development. These physiologic processes are regulated by a complex of membrane immunoglobulin and two signal transducing proteins known as Ig alpha and Ig beta. Here we focus on the role of antibodies in governing the maturation of B cells from early antigen-independent through the final antigen-dependent stages.
Collapse
Affiliation(s)
- E Meffre
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|