1
|
Broder KC, Matrosova VY, Tkavc R, Gaidamakova EK, Ho LTVT, Macintyre AN, Soc A, Diallo A, Darnell SC, Bash S, Daly MJ, Jerse AE, Liechti GW. Irradiated whole cell Chlamydia vaccine confers significant protection in a murine genital tract challenge model. NPJ Vaccines 2024; 9:207. [PMID: 39528548 PMCID: PMC11554809 DOI: 10.1038/s41541-024-00968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia trachomatis infections are the most common bacterial STIs globally and can lead to serious morbidity if untreated. Development of a killed, whole-cell vaccine has been stymied by coincident epitope destruction during inactivation. Here, we present a prototype Chlamydia vaccine composed of elementary bodies (EBs) from the related mouse pathogen, Chlamydia muridarum (Cm). EBs inactivated by gamma rays (Ir-Cm) in the presence of the antioxidant Mn2+-Decapeptide (DEHGTAVMLK) Phosphate (MDP) are protected from epitope damage but not DNA damage. Cm EBs gamma-inactivated with MDP retain their structure and provide significant protection in a murine genital tract infection model. Mice vaccinated with Ir-Cm (+MDP) exhibited elevated levels of Cm-specific IgG and IgA antibodies, reduced bacterial burdens, accelerated clearance, and distinctive cytokine responses compared to unvaccinated controls and animals vaccinated with EBs irradiated without MDP. Preserving EB epitopes with MDP during gamma inactivation offers the potential for a polyvalent, whole-cell vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Kieran C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Vera Y Matrosova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rok Tkavc
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elena K Gaidamakova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lam Thuy Vi Tran Ho
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Stephen C Darnell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sarah Bash
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Apoorva E, Jacob R, Rao DN, Kumar S. Helicobacter pylori enhances HLA-C expression in the human gastric adenocarcinoma cells AGS and can protect them from the cytotoxicity of natural killer cells. Helicobacter 2024; 29:e13069. [PMID: 38516860 DOI: 10.1111/hel.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.
Collapse
Affiliation(s)
- Etikala Apoorva
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rini Jacob
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Armitage CW, O'Meara CP, Bryan ER, Kollipara A, Trim LK, Hickey D, Carey AJ, Huston WM, Donnelly G, Yazdani A, Blumberg RS, Beagley KW. IgG exacerbates genital chlamydial pathology in females by enhancing pathogenic CD8 + T cell responses. Scand J Immunol 2024; 99:e13331. [PMID: 38441219 PMCID: PMC10909563 DOI: 10.1111/sji.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 03/07/2024]
Abstract
Chlamydia trachomatis infections are an important sexually transmitted infection that can lead to inflammation, scarring and hydrosalpinx/infertility. However, infections are commonly clinically asymptomatic and do not receive treatment. The underlying cause of asymptomatic immunopathology remains unknown. Here, we demonstrate that IgG produced during male infection enhanced the incidence of immunopathology and infertility in females. Human endocervical cells expressing the neonatal Fc Receptor (FcRn) increased translocation of human IgG-opsonized C. trachomatis. Using total IgG purified from infected male mice, we opsonized C. muridarum and then infected female mice, mimicking sexual transmission. Following infection, IgG-opsonized Chlamydia was found to transcytose the epithelial barrier in the uterus, where it was phagocytosed by antigen-presenting cells (APCs) and trafficked to the draining lymph nodes. APCs then expanded both CD4+ and CD8+ T cell populations and caused significantly more infertility in female mice infected with non-opsonized Chlamydia. Enhanced phagocytosis of IgG-opsonized Chlamydia significantly increased pro-inflammatory signalling and T cell proliferation. As IgG is transcytosed by FcRn, we utilized FcRn-/- mice and observed that shedding kinetics of Chlamydia were only affected in FcRn-/- mice infected with IgG-opsonized Chlamydia. Depletion of CD8+ T cells in FcRn-/- mice lead to a significant reduction in the incidence of infertility. Taken together, these data demonstrate that IgG seroconversion during male infection can amplify female immunopathology, dependent on FcRn transcytosis, APC differentiation and enhanced CD8 T cell responses.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Connor P. O'Meara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Drop Bio Ltd, School of Biotechnology and Biomolecular Sciences (BABS)University of New South WalesSydneyNew South WalesAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Danica Hickey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Wilhelmina M. Huston
- School of Life SciencesUniversity of Technology (UTS) SydneyUltimoNew South WalesAustralia
| | - Gavin Donnelly
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Anusch Yazdani
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of MedicineBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| |
Collapse
|
4
|
YAP1 induces marrow derived suppressor cell recruitment in Chlamydia trachomatis infection. Immunol Lett 2021; 242:8-16. [PMID: 34968530 DOI: 10.1016/j.imlet.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the most commonly diagnosed bacterial sexually transmitted infection (STI) worldwide. Marrow derived suppressor cells (MDSCs) are a heterogeneous population of immature monocytes and granulocytes, which are effective inhibitors for T cell activation. This study explores the role of MDSCs in the immune escape mechanism of C. trachomatis. We established a vaginal infection model of a BALB/c-Chlamydia trachomatis mouse pneumonia strain (MoPn), and compared the percentages of MDSCs, CD4+T, and CD8+T cells in the spleen and cervix of mice before and after infection. The expression levels of arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) in MDSCs, and the expression level of transcriptional co-activator yes-associated protein 1 (YAP1) in the cervix were also compared. The results show that the proportion of MDSCs increases, while the proportion of CD4+T and CD8+T cells decreases after C. trachomatis-infection. The expression of Arg-1 and iNOS in MDSCs and YAP1 in host cells is up-regulated. C. trachomatis growth is inhibited after the inhibition of YAP1 in host cells. The proportion of MDSCs decreases after in vivo pharmacological inhibition of YAP1 in the C. trachomatis-infected mouse model. These results demonstrate, for the first time, the participation of MDSC in the immune escape of C. trachomatis under the action of YAP1.
Collapse
|
5
|
Chen H, Peng B, Yang C, Xie L, Zhong S, Sun Z, Li Z, Wang C, Liu X, Tang X, Zhong G, Lu C. The role of an enzymatically inactive CPAF mutant vaccination in Chlamydia muridarum genital tract infection. Microb Pathog 2021; 160:105137. [PMID: 34390765 DOI: 10.1016/j.micpath.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis urogenital tract infection causes pelvic inflammatory disease and infertility, increases the risk of co-infection with HPV and HIV. Chlamydial vaccination is considered the most promising approach to prevent and control its infection. Among various chlamydial vaccine candidates, chlamydial protease-like activity factor (CPAF) have been reported to provide robust protective immunity against genital chlamydial infection in mice with reduced vaginal shedding and oviduct pathology. However, CPAF is a serine protease which has enzymatical activity to degrade a large number of substrates. In order to increase the safety of CPAF vaccine, in this study, we used a mutant CPAF that is deficient in enzymatical activity to determine whether proteolytic activity of CPAF affect its vaccine efficacy. The wild type or mutant CPAF immunization causes a significant lower chlamydial shedding from the vaginal and resolve the infection as early as day 20, compared to day 28 in adjuvant control mice. More important, reduced upper reproductive tract pathology were also observed in these two groups. The mutant or wild type CPAF immunization induced not only robust splenic IFN-γ and serum IgG2a but also sIgA secretion in the vaginal fluids. Furthermore, neutralization of chlamydia with immune sera did not provide protection against oviduct pathology. However, adoptive transfer of CD4+ splenocytes isolated from the mutant or wild type CPAF immunized mice resulted in a significant and comparable reduced oviduct pathology. Our results indicate mutant CPAF vaccination is as same efficacy as wild type, and the protection relies on CD4+ T cells, which will further promote the development of CPAF as clinical chlamydial vaccine.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bo Peng
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lijuan Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shufang Zhong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xin Tang
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chunxue Lu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Mao R, Liu K, Zhao N, Guo P, Wu Y, Wang Z, Liu Y, Zhang T. Clinical significance and prognostic role of an immune-related gene signature in gastric adenocarcinoma. Aging (Albany NY) 2021; 13:17734-17767. [PMID: 34247148 PMCID: PMC8312416 DOI: 10.18632/aging.203266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Limited progress has been made in the treatment of gastric adenocarcinoma (GAC) in recent years, but the potential of immunotherapy in GAC is worthy of consideration. The purpose of this study was to develop a reliable, personalized signature based on immune genes to predict the prognosis of GAC. Here, we identified two groups of patients with significantly different prognoses by performing unsupervised clustering analysis of The Cancer Genome Atlas (TCGA) database based on 881 immune genes. The immune signature was constructed with a training set composed of 350 GAC samples from the TCGA and subsequently validated with 431 samples from GSE84437, 432 samples from GSE26253, and 145 GAC samples from real-time quantitative reverse transcription polymerase chain reaction data. This classification system can also be used to predict prognosis in different clinical subgroups. Further analysis suggested that high-risk patients were characterized by low immune scores, distinctive immune cell proportions, different immune checkpoint profiles, and a low tumor mutational burden. Ultimately, the signature was identified as an independent prognostic factor. In general, the signature can accurately predict recurrence and overall survival in patients with GAC and may serve as a powerful prognostic tool to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Mao
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Kehao Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Nana Zhao
- Department of Operating Room, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Pengsen Guo
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Yingxin Wu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
7
|
Del Balzo D, Capmany A, Cebrian I, Damiani MT. Chlamydia trachomatis Infection Impairs MHC-I Intracellular Trafficking and Antigen Cross-Presentation by Dendritic Cells. Front Immunol 2021; 12:662096. [PMID: 33936099 PMCID: PMC8082151 DOI: 10.3389/fimmu.2021.662096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
During cross-presentation, exogenous antigens (i.e. intracellular pathogens or tumor cells) are internalized and processed within the endocytic system and also by the proteasome in the cytosol. Then, antigenic peptides are associated with Major Histocompatibility Complex (MHC) class I molecules and these complexes transit to the plasma membrane in order to trigger cytotoxic immune responses through the activation of CD8+ T lymphocytes. Dendritic cells (DCs) are particularly adapted to achieve efficient antigen cross-presentation and their endocytic network displays important roles during this process, including a sophisticated MHC-I transport dependent on recycling compartments. In this study, we show that C. trachomatis, an obligate intracellular pathogen that exhibits multiple strategies to evade the immune system, is able to induce productive infections in the murine DC line JAWS-II. Our results show that when C. trachomatis infects these cells, the bacteria-containing vacuole strongly recruits host cell recycling vesicles, but no other endosomal compartments. Furthermore, we found that chlamydial infection causes significant alterations of MHC-I trafficking in JAWS-II DCs: reduced levels of MHC-I expression at the cell surface, disruption of the perinuclear MHC-I intracellular pool, and impairment of MHC-I endocytic recycling to the plasma membrane. We observed that all these modifications lead to a hampered cross-presentation ability of soluble and particulate antigens by JAWS-II DCs and primary bone marrow-derived DCs. In summary, our findings provide substantial evidence that C. trachomatis hijacks the DC endocytic recycling system, causing detrimental changes on MHC-I intracellular transport, which are relevant for competent antigen cross-presentation.
Collapse
Affiliation(s)
- Diego Del Balzo
- Biochemistry and Immunity Laboratory, School of Medicine, University of Cuyo, IMBECU-CONICET, Centro Universitario, Mendoza, Argentina
| | - Anahí Capmany
- Biochemistry and Immunity Laboratory, School of Medicine, University of Cuyo, IMBECU-CONICET, Centro Universitario, Mendoza, Argentina
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Teresa Damiani
- Biochemistry and Immunity Laboratory, School of Medicine, University of Cuyo, IMBECU-CONICET, Centro Universitario, Mendoza, Argentina
| |
Collapse
|
8
|
Schott BH, Antonia AL, Wang L, Pittman KJ, Sixt BS, Barnes AB, Valdivia RH, Ko DC. Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease. Sci Rep 2020; 10:18269. [PMID: 33106516 PMCID: PMC7588472 DOI: 10.1038/s41598-020-75129-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to infectious diseases is determined by a complex interaction between host and pathogen. For infections with the obligate intracellular bacterium Chlamydia trachomatis, variation in immune activation and disease presentation are regulated by both host genetic diversity and pathogen immune evasion. Previously, we discovered a single nucleotide polymorphism (rs2869462) associated with absolute abundance of CXCL10, a pro-inflammatory T-cell chemokine. Here, we report that levels of CXCL10 change during C. trachomatis infection of cultured cells in a manner dependent on both host and pathogen. Linear modeling of cellular traits associated with CXCL10 levels identified a strong, negative correlation with bacterial burden, suggesting that C. trachomatis actively suppresses CXCL10. We identified the pathogen-encoded factor responsible for this suppression as the chlamydial protease- or proteasome-like activity factor, CPAF. Further, we applied our modeling approach to other host cytokines in response to C. trachomatis and found evidence that RANTES, another T-cell chemoattractant, is actively suppressed by Chlamydia. However, this observed suppression of RANTES is not mediated by CPAF. Overall, our results demonstrate that CPAF suppresses CXCL10 to evade the host cytokine response and that modeling of cellular infection parameters can reveal previously unrecognized facets of host-pathogen interactions.
Collapse
Affiliation(s)
- Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Kelly J Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Barbara S Sixt
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Alyson B Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
McQueen BE, Kiatthanapaiboon A, Fulcher ML, Lam M, Patton K, Powell E, Kollipara A, Madden V, Suchland RJ, Wyrick P, O'Connell CM, Reidel B, Kesimer M, Randell SH, Darville T, Nagarajan UM. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect Immun 2020; 88:e00105-20. [PMID: 32601108 PMCID: PMC7440757 DOI: 10.1128/iai.00105-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.
Collapse
Affiliation(s)
- Bryan E McQueen
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy Kiatthanapaiboon
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - M Leslie Fulcher
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mariam Lam
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kate Patton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily Powell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Victoria Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert J Suchland
- University of Washington, Division of Allergy and Infectious Diseases, Department of Medicine, Seattle, Washington, USA
| | - Priscilla Wyrick
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Chlamydia Lipooligosaccharide Has Varied Direct and Indirect Roles in Evading both Innate and Adaptive Host Immune Responses. Infect Immun 2020; 88:IAI.00198-20. [PMID: 32423914 DOI: 10.1128/iai.00198-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia bacteria are obligate intracellular pathogens which can cause a variety of disease in humans and other vertebrate animals. To successfully complete its life cycle, Chlamydia must evade both intracellular innate immune responses and adaptive cytotoxic T cell responses. Here, we report on the role of the chlamydial lipooligosaccharide (LOS) in evading the immune response. Chlamydia infection is known to block the induction of apoptosis. However, when LOS synthesis was inhibited during Chlamydia trachomatis infection, HeLa cells regained susceptibility to apoptosis induction following staurosporine treatment. Additionally, the delivery of purified LOS to the cytosol of cells increased the levels of the antiapoptotic protein survivin. An increase in survivin levels was also detected following C. trachomatis infection, which was reversed by blocking LOS synthesis. Interestingly, while intracellular delivery of lipopolysaccharide (LPS) derived from Escherichia coli was toxic to cells, LOS from C. trachomatis did not induce any appreciable cell death, suggesting that it does not activate pyroptosis. Chlamydial LOS was also a poor stimulator of maturation of bone marrow-derived dendritic cells compared to E. coli LPS. Previous work from our group indicated that LOS synthesis during infection was necessary to alter host cell antigen presentation. However, direct delivery of LOS to cells in the absence of infection did not alter antigenic peptide presentation. Taken together, these data suggest that chlamydial LOS, which is remarkably conserved across the genus Chlamydia, may act both directly and indirectly to allow the pathogen to evade the innate and adaptive immune responses of the host.
Collapse
|
11
|
Keb G, Fields KA. An Ancient Molecular Arms Race: Chlamydia vs. Membrane Attack Complex/Perforin (MACPF) Domain Proteins. Front Immunol 2020; 11:1490. [PMID: 32760406 PMCID: PMC7371996 DOI: 10.3389/fimmu.2020.01490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Dynamic interactions that govern the balance between host and pathogen determine the outcome of infection and are shaped by evolutionary pressures. Eukaryotic hosts have evolved elaborate and formidable defense mechanisms that provide the basis for innate and adaptive immunity. Proteins containing a membrane attack complex/Perforin (MACPF) domain represent an important class of immune effectors. These pore-forming proteins induce cell killing by targeting microbial or host membranes. Intracellular bacteria can be shielded from MACPF-mediated killing, and Chlamydia spp. represent a successful paradigm of obligate intracellular parasitism. Ancestors of present-day Chlamydia likely originated at evolutionary times that correlated with or preceded many host defense pathways. We discuss the current knowledge regarding how chlamydiae interact with the MACPF proteins Complement C9, Perforin-1, and Perforin-2. Current evidence indicates a degree of resistance by Chlamydia to MACPF effector mechanisms. In fact, chlamydiae have acquired and adapted their own MACPF-domain protein to facilitate infection.
Collapse
Affiliation(s)
- Gabrielle Keb
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kenneth A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
12
|
Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun 2020; 88:IAI.00916-19. [PMID: 32094248 DOI: 10.1128/iai.00916-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.
Collapse
|
13
|
Pathak S, Wilczyński JR, Paradowska E. Factors in Oncogenesis: Viral Infections in Ovarian Cancer. Cancers (Basel) 2020; 12:E561. [PMID: 32121320 PMCID: PMC7139377 DOI: 10.3390/cancers12030561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer death in women, with high-grade serous ovarian cancer (HGSOC) being the most lethal gynecologic malignancy among women. This high fatality rate is the result of diagnosis of a high number of new cases when cancer implants have already spread. The poor prognosis is due to our inadequate understanding of the molecular mechanisms preceding ovarian malignancy. Knowledge about the site of origination has been improved recently by the discovery of tube intraepithelial cancer (TIC), but the potential risk factors are still obscure. Due to high tumoral heterogeneity in OC, the establishment of early stage biomarkers is still underway. Microbial infection may induce or result in chronic inflammatory infection and in the pathogenesis of cancers. Microbiome research has shed light on the relationships between the host and microbiota, as well as the direct roles of host pathogens in cancer development, progression, and drug efficacy. While controversial, the detection of viruses within ovarian malignancies and fallopian tube tissues suggests that these pathogens may play a role in the development of OC. Genomic and proteomic approaches have enhanced the methods for identifying candidates in early screening. This article summarizes the existing knowledge related to the molecular mechanisms that lead to tumorigenesis in the ovary, as well as the viruses detected in OC cases and how they may elevate this process.
Collapse
Affiliation(s)
- Sudipta Pathak
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
14
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
15
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Chlamydia and Its Many Ways of Escaping the Host Immune System. J Pathog 2019; 2019:8604958. [PMID: 31467721 PMCID: PMC6699355 DOI: 10.1155/2019/8604958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing number of new cases of Chlamydia infection worldwide may be attributed to the pathogen's ability to evade various host immune responses. Summarized here are means of evasion utilized by Chlamydia enabling survival in a hostile host environment. The pathogen's persistence involves a myriad of molecular interactions manifested in a variety of ways, e.g., formation of membranous intracytoplasmic inclusions and cytokine-induced amino acid synthesis, paralysis of phagocytic neutrophils, evasion of phagocytosis, inhibition of host cell apoptosis, suppression of antigen presentation, and induced expression of a check point inhibitor of programmed host cell death. Future studies could focus on the targeting of these molecules associated with immune evasion, thus limiting the spread and tissue damage caused by this pathogen.
Collapse
|
17
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ibana JA, Sherchand SP, Fontanilla FL, Nagamatsu T, Schust DJ, Quayle AJ, Aiyar A. Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma. Sci Rep 2018; 8:8476. [PMID: 29855501 PMCID: PMC5981614 DOI: 10.1038/s41598-018-26765-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The intracellular bacterial pathogen, Chlamydia trachomatis, is a tryptophan auxotroph. Therefore, induction of the host tryptophan catabolizing enzyme, indoleamine-2,3-dioxgenase-1 (IDO1), by interferon gamma (IFNγ) is one of the primary protective responses against chlamydial infection. However, despite the presence of a robust IFNγ response, active and replicating C. trachomatis can be detected in cervical secretions of women. We hypothesized that a primary C. trachomatis infection may evade the IFNγ response, and that the protective effect of this cytokine results from its activation of tryptophan catabolism in bystander cells. To test this hypothesis, we developed a novel method to separate a pool of cells exposed to C. trachomatis into pure populations of live infected and bystander cells and applied this technique to distinguish between the effects of IFNγ on infected and bystander cells. Our findings revealed that the protective induction of IDO1 is suppressed specifically within primary infected cells because Chlamydia attenuates the nuclear import of activated STAT1 following IFNγ exposure, without affecting STAT1 levels or phosphorylation. Critically, the IFNγ-mediated induction of IDO1 activity is unhindered in bystander cells. Therefore, the IDO1-mediated tryptophan catabolism is functional in these cells, transforming these bystander cells into inhospitable hosts for a secondary C. trachomatis infection.
Collapse
Affiliation(s)
- Joyce A Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| | - Shardulendra P Sherchand
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Francis L Fontanilla
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty Medicine, University of Tokyo, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 15276, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
19
|
Yang Z, Tang L, Shao L, Zhang Y, Zhang T, Schenken R, Valdivia R, Zhong G. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract. Infect Immun 2016; 84:2697-702. [PMID: 27382018 PMCID: PMC4995919 DOI: 10.1128/iai.00280-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Shao
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yuyang Zhang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tianyuan Zhang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Raphael Valdivia
- Duke Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Yang Z, Tang L, Zhou Z, Zhong G. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF. Microbes Infect 2016; 18:669-674. [PMID: 27436813 DOI: 10.1016/j.micinf.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
Abstract
Ascending infection by sexually transmitted Chlamydia trachomatis is required for chlamydial induction of tubal pathology. To achieve ascension, the C. trachomatis organisms may have to spread from cell to cell, which inevitably exposes the organisms to extracellular mucosal effectors such as complement factors that are known to possess strong antichlamydial activities. Here, we report that the chlamydia-secreted protease CPAF efficiently neutralized complement factor C3-dependent antichlamydial activity. The neutralization was dependent on the proteolytic activity of CPAF and correlated with the CPAF-mediated degradation of complement factor C3 and factor B. As a result, CPAF preferentially inhibited the alternative complement activation pathway. The significance and limitation of these observations were discussed.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Rey-Ladino J, Ross AGP, Cripps AW. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis. Hum Vaccin Immunother 2016; 10:2664-73. [PMID: 25483666 PMCID: PMC4977452 DOI: 10.4161/hv.29683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described.
Collapse
Affiliation(s)
- Jose Rey-Ladino
- a Department of Microbiology and Immunology; School of Medicine ; Alfaisal University ; Riyadh , Saudi Arabia
| | | | | |
Collapse
|
22
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
23
|
Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection. Infect Immun 2015; 84:480-90. [PMID: 26597986 DOI: 10.1128/iai.01254-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.
Collapse
|
24
|
Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect Immun 2015; 83:2234-41. [PMID: 25776755 DOI: 10.1128/iai.00275-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
CPAF (chlamydial protease-like activity factor), a Chlamydia serine protease, is activated via proximity-induced intermolecular dimerization that triggers processing and removal of an inhibitory peptide occupying the CPAF substrate-binding groove. An active CPAF is a homodimer of two identical intramolecular heterodimers, each consisting of 29-kDa N-terminal and 35-kDa C-terminal fragments. However, critical residues for CPAF intermolecular dimerization, catalytic activity, and processing were defined in cell-free systems. Complementation of a CPAF-deficient chlamydial organism with a plasmid-encoded CPAF has enabled us to characterize CPAF during infection. The transformants expressing CPAF mutated at intermolecular dimerization, catalytic, or cleavage residues still produced active CPAF, although at a lower efficiency, indicating that CPAF can tolerate more mutations inside Chlamydia-infected cells than in cell-free systems. Only by simultaneously mutating both intermolecular dimerization and catalytic residues was CPAF activation completely blocked during infection, both indicating the importance of the critical residues identified in the cell-free systems and exploring the limit of CPAF's tolerance for mutations in the intracellular environment. We further found that active CPAF was always detected in the host cell cytoplasm while nonactive CPAF was restricted to within the chlamydial inclusions, regardless of how the infected cell samples were treated. Thus, CPAF translocation into the host cell cytoplasm correlates with CPAF enzymatic activity and is not altered by sample treatment conditions. These observations have provided new evidence for CPAF activation and translocation, which should encourage continued investigation of CPAF in chlamydial pathogenesis.
Collapse
|
25
|
Tang L, Chen J, Zhou Z, Yu P, Yang Z, Zhong G. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes Infect 2015; 17:402-8. [PMID: 25752416 DOI: 10.1016/j.micinf.2015.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/15/2022]
Abstract
Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.
Collapse
Affiliation(s)
- Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
26
|
Johnson KA, Lee JK, Chen AL, Tan M, Sütterlin C. Induction and inhibition of CPAF activity during analysis of Chlamydia-infected cells. Pathog Dis 2015; 73:1-8. [PMID: 25663342 DOI: 10.1093/femspd/ftv007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies of the chlamydial protease CPAF have been complicated by difficulties in distinguishing bona fide intracellular proteolysis from in vitro proteolysis. This confounding issue has been attributed to CPAF activity in lysates from Chlamydia-infected cells. We compared three methods that have been used to inhibit in vitro CPAF-mediated proteolysis: (1) pre-treatment of infected cells with the inhibitor clasto-lactacystin, (2) direct cell lysis in 8 M urea and (3) direct lysis in hot 1% SDS buffer. We identified a number of experimental conditions that reduce the effectiveness of each method in preventing CPAF activity during lysate preparation. The amount of in vitro proteolysis in a lysate was variable and depended on factors such as the specific substrate and the time in the intracellular infection. Additionally, we demonstrated for the first time that artifactual CPAF activity is induced before cell lysis by standard cell detachment methods, including trypsinization. Protein analysis of Chlamydia-infected cells therefore requires precautions to inhibit CPAF activity during both cell detachment and lysate preparation, followed by verification that the cell lysates do not contain residual CPAF activity. These concerns about artifactual proteolysis extend beyond studies of CPAF function because they have the potential to affect the analyses of host and chlamydial proteins from Chlamydia-infected cells.
Collapse
Affiliation(s)
- Kirsten A Johnson
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jennifer K Lee
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Allan L Chen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA School of Medicine, UC Irvine, Irvine CA 92697-3950, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
27
|
|
28
|
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol 2014; 5:534. [PMID: 25386180 PMCID: PMC4209867 DOI: 10.3389/fimmu.2014.00534] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection in the world, with more than 100 million cases reported annually. While there have been extensive studies into the adverse effects that CT infection has on the female genital tract, and on the subsequent ability of these women to conceive, studies into the consequences on male fertility have been limited and controversial. This is in part due to the asymptomatic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to show any symptoms. It is accepted, however, that acute and/or persistent CT infection is the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and potentially prostatitis. As with most infections, the immune system plays a fundamental role in the body’s attempts to eradicate the infection. The first and most important immune response to Chlamydia infection is a local one, whereby immune cells such as leukocytes are recruited to the site of infections, and subsequently secrete pro-inflammatory cytokines and chemokines such as interferon gamma. Immune cells also work to initiate and potentiate chronic inflammation through the production of reactive oxygen species (ROS), and the release of molecules with degradative properties including defensins, elastase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as being linked to the onset of autoimmune responses in genetically disposed individuals. This review will focus on the ability of the immune system to recognize and clear acute and persistent chlamydial infections in the male genital tract, and on the paradoxical damage that chronic inflammation resulting from the infection can cause on the reproductive health of the individual.
Collapse
Affiliation(s)
- Kate A Redgrove
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| | - Eileen A McLaughlin
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| |
Collapse
|
29
|
Tan M, Sütterlin C. The Chlamydia protease CPAF: caution, precautions and function. Pathog Dis 2014; 72:7-9. [PMID: 25146758 DOI: 10.1111/2049-632x.12213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ming Tan
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, CA, USA; Department of Medicine, UC Irvine, Irvine, CA, USA.
| | | |
Collapse
|
30
|
Abu-Lubad M, Meyer TF, Al-Zeer MA. Chlamydia trachomatis inhibits inducible NO synthase in human mesenchymal stem cells by stimulating polyamine synthesis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2941-51. [PMID: 25114102 DOI: 10.4049/jimmunol.1400377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chlamydia trachomatis is considered the most common agent of sexually transmitted disease worldwide. As an obligate intracellular bacterium, it relies on the host for survival. Production of NO is an effective antimicrobial defense mechanism of the innate immune system. However, whether NO is able to arrest chlamydial growth remains unclear. Similarly, little is known about the mechanisms underlying subversion of cellular innate immunity by C. trachomatis. By analyzing protein and mRNA expression in infected human mesenchymal stem cells, combined with RNA interference and biochemical assays, we observed that infection with C. trachomatis led to downregulated expression of inducible NO synthase (iNOS) in human mesenchymal stem cells in vitro. Furthermore, infection upregulated the expression of the rate-limiting enzyme in the polyamine biosynthetic pathway, ornithine decarboxylase, diverting the iNOS substrate l-arginine toward the synthesis of polyamines. Inhibition of ornithine decarboxylase activity using small interfering RNA or the competitive inhibitor difluoromethylornithine restored iNOS protein expression and activity in infected cells and inhibited chlamydial growth. This inhibition was mediated through tyrosine nitration of chlamydial protein by peroxynitrite, an NO metabolite. Thus, Chlamydia evades innate immunity by inhibiting NO production through induction of the alternative polyamine pathway.
Collapse
Affiliation(s)
- Mohammad Abu-Lubad
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
31
|
Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 2014; 71:336-51. [PMID: 24838663 DOI: 10.1111/2049-632x.12179] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation. Here, we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858) and a third strain containing a mutation in type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S(-) or CPAF(-) C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein lamin-associated protein-1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.
Collapse
Affiliation(s)
- Emily A Snavely
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The chlamydial protease CPAF: important or not, important for what? Microbes Infect 2014; 16:367-70. [PMID: 24607702 DOI: 10.1016/j.micinf.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
The protease CPAF is only found in Chlamydiales and in at least most bacteria that share with Chlamydia the biphasic life-style in a cytosolic inclusion. CPAF is intriguing: it appears to be secreted from the inclusion across the inclusion membrane into the cytosol. A bacterial protease ravaging in the cytosol of a human cell may cause a plethora of effects. Curiously, very few are known. The current discussion is bogged down by a focus on experimental artifact, while proposed functions of CPAF remain speculative. I here make the attempt to summarize what we know about CPAF.
Collapse
|
33
|
Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, Mabey DCW, Bailey RL, Burton MJ, Holland MJ. Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3. PLoS Negl Trop Dis 2014; 8:e2744. [PMID: 24651768 PMCID: PMC3961204 DOI: 10.1371/journal.pntd.0002744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is globally the predominant infectious cause of blindness and one of the most common bacterial causes of sexually transmitted infection. Infections of the conjunctiva cause the blinding disease trachoma, an immuno-pathological disease that is characterised by chronic conjunctival inflammation and fibrosis. The polymorphic Killer-cell Immunoglobulin-like Receptors (KIR) are found on Natural Killer cells and have co-evolved with the Human Leucocyte Antigen (HLA) class I system. Certain genetic constellations of KIR and HLA class I polymorphisms are associated with a number of diseases in which modulation of the innate responses to viral and intracellular bacterial pathogens is central. METHODOLOGY A sample of 134 Gambian pedigrees selected to contain at least one individual with conjunctival scarring in the F1 generation was used. Individuals (n = 830) were genotyped for HLA class I and KIR gene families. Family Based Association Tests and Case Pseudo-control tests were used to extend tests for transmission disequilibrium to take full advantage of the family design, genetic model and phenotype. PRINCIPLE FINDINGS We found that the odds of trachomatous scarring increased with the number of genome copies of HLA-C2 (C1/C2 OR = 2.29 BHP-value = 0.006; C2/C2 OR = 3.97 BHP-value = 0.0004) and further increased when both KIR2DL2 and KIR2DL3 (C2/C2 OR = 5.95 BHP-value = 0.006) were present. CONCLUSIONS To explain the observations in the context of chlamydial infection and trachoma we propose a two-stage model of response and disease that balances the cytolytic response of KIR expressing NK cells with the ability to secrete interferon gamma, a combination that may cause pathology. The data presented indicate that HLA-C genotypes are important determinants of conjunctival scarring in trachoma and that KIR2DL2/KIR2DL3 heterozygosity further increases risk of conjunctival scarring in individuals carrying HLA-C2.
Collapse
Affiliation(s)
- Chrissy h. Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Molina
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pateh Makalo
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Hassan Joof
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Emma M. Harding-Esch
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah E. Burr
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - David C. W. Mabey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin J. Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
34
|
Chlamydia trachomatis-infected epithelial cells and fibroblasts retain the ability to express surface-presented major histocompatibility complex class I molecules. Infect Immun 2013; 82:993-1006. [PMID: 24343651 DOI: 10.1128/iai.01473-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is the causative agent of a variety of infectious diseases such as trachoma and sexually transmitted diseases. In infected target cells, C. trachomatis replicates within parasitophorous vacuoles and expresses the protease-like activity factor CPAF. Previous studies have suggested that CPAF degrades the host transcription factors RFX5 and NF-κB p65, which are involved in the regulation of constitutive and inducible expression of major histocompatibility complex class I (MHC I). It was speculated that Chlamydia suppresses the surface presentation of MHC I in order to evade an effective immune response. Nevertheless, a recent study suggested that RFX5 and NF-κB p65 may not serve as target substrates for CPAF-mediated degradation, raising concerns about the proposed MHC I subversion by Chlamydia. Hence, we investigated the direct influence of Chlamydia on MHC I expression and surface presentation in infected host cells. By using nine different human cells and cell lines infected with C. trachomatis (serovar D or LGV2), we demonstrate that chlamydial infection does not interfere with expression, maturation, transport, and surface presentation of MHC I, suggesting functional antigen processing in bacterium-infected cells. Our findings provide novel insights into the interaction of chlamydiae with their host cells and should be taken into consideration for the design of future therapies and vaccines.
Collapse
|
35
|
Hafner LM, Wilson DP, Timms P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine 2013; 32:1563-71. [PMID: 23973245 DOI: 10.1016/j.vaccine.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/04/2013] [Accepted: 08/11/2013] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C. trachomatis vaccine is starting to look more likely.
Collapse
Affiliation(s)
- Louise M Hafner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David P Wilson
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
36
|
Alvarez-Navarro C, Cragnolini JJ, Dos Santos HG, Barnea E, Admon A, Morreale A, López de Castro JA. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis. J Biol Chem 2013; 288:25810-25825. [PMID: 23867464 DOI: 10.1074/jbc.m113.493247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.
Collapse
Affiliation(s)
- Carlos Alvarez-Navarro
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain and
| | - Juan J Cragnolini
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain and
| | - Helena G Dos Santos
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain and
| | - Eilon Barnea
- the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Antonio Morreale
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain and
| | - José A López de Castro
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain and.
| |
Collapse
|
37
|
Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine 2013; 63:151-65. [PMID: 23673287 DOI: 10.1016/j.cyto.2013.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 01/19/2023]
Abstract
The endocervical epithelium is a major reservoir for Chlamydia trachomatis in women, and genital infections are extended in their duration. Epithelial cells act as mucosal sentinels by secreting cytokines and chemokines in response to pathogen challenge and infection. We therefore determined the signature cytokine and chemokine response of primary-like endocervix-derived epithelial cells in response to a common genital serovar (D) of C. trachomatis. For these studies, we used a recently-established polarized, immortalized, endocervical epithelial cell model (polA2EN) that maintains, in vitro, the architectural and functional characteristics of endocervical epithelial cells in vivo including the production of pro-inflammatory cytokines. PolA2EN cells were susceptible to C. trachomatis infection, and chlamydiae in these cells underwent a normal developmental cycle as determined by a one-step growth curve. IL1α protein levels were increased in both apical and basolateral secretions of C. trachomatis infected polA2EN cells, but this response did not occur until 72h after infection. Furthermore, protein levels of the pro-inflammatory cytokines and chemokines IL6, TNFα and CXCL8 were not significantly different between C. trachomatis infected polA2EN cells and mock infected cells at any time during the chlamydial developmental cycle up to 120h post-infection. Intriguingly, C. trachomatis infection resulted in a significant decrease in the constitutive secretion of T cell chemokines IP10 and RANTES, and this required a productive C. trachomatis infection. Examination of anti-inflammatory cytokines revealed a high constitutive apical secretion of IL1ra from polA2EN cells that was not significantly modulated by C. trachomatis infection. IL-11 was induced by C. trachomatis, although only from the basolateral membrane. These results suggest that C. trachomatis can use evasion strategies to circumvent a robust pro-inflammatory cytokine and chemokine response. These evasion strategies, together with the inherent immune repertoire of endocervical epithelial cells, may aid chlamydiae in establishing, and possibly sustaining, an intracellular niche in microenvironments of the endocervix in vivo.
Collapse
|
38
|
Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013; 3:a010256. [PMID: 23637308 DOI: 10.1101/cshperspect.a010256] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
39
|
Markkula E, Hulkkonen J, Penttilä T, Puolakkainen M. Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae. Microb Pathog 2013; 54:46-53. [DOI: 10.1016/j.micpath.2012.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023]
|
40
|
Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF. J Bacteriol 2012; 195:951-7. [PMID: 23222729 DOI: 10.1128/jb.02087-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that the Chlamydia trachomatis outer membrane complex protein B (OmcB) was partially processed in Chlamydia-infected cells. We have now confirmed that the OmcB processing occurred inside live cells during chlamydial infection and was not due to proteolysis during sample harvesting. OmcB processing was preceded by the generation of active CPAF, a serine protease known to be able to cross the inner membrane via a Sec-dependent pathway, suggesting that active CPAF is available for processing OmcB in the periplasm. In a cell-free system, CPAF activity is both necessary and sufficient for processing OmcB. Both depletion of CPAF from Chlamydia-infected cell lysates with a CPAF-specific antibody and blocking CPAF activity with a CPAF-specific inhibitory peptide removed the OmcB processing ability of the lysates. A highly purified wild-type CPAF but not a catalytic residue-substituted mutant CPAF was sufficient for processing OmcB. Most importantly, in chlamydial culture, inhibition of CPAF with a specific inhibitory peptide blocked OmcB processing and reduced the recovery of infectious organisms. Thus, we have identified OmcB as a novel authentic target for the putative chlamydial virulence factor CPAF, which should facilitate our understanding of the roles of CPAF in chlamydial biology and pathogenesis.
Collapse
|
41
|
Alibek K, Karatayeva N, Bekniyazov I. The role of infectious agents in urogenital cancers. Infect Agent Cancer 2012; 7:35. [PMID: 23198689 PMCID: PMC3626724 DOI: 10.1186/1750-9378-7-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/20/2012] [Indexed: 02/07/2023] Open
Abstract
Since the late 1990s, infectious agents have been thought to play a role in the pathogenesis of approximately 15% of cancers. It is now widely accepted that infection of stomach tissue with the bacteria Helicobacter pylori is an important cause of stomach adenocarcinoma. In addition, oncogenic viruses, such as papilloma viruses, herpes viruses, and hepadnaviruses are strongly associated with increased risk of cervical cancer, lymphomas, liver cancer, amongst others. However, in the scientific community the percentage of cancers caused by pathogens is believed to be far higher than 15%. A significant volume of data collected to date show an association between infectious agents and urogenital cancers. These agents include Chlamydia trachomatis, Neisseria gonorrhoea, Mycoplasma genitalium and certain viruses that have been implicated in ovarian cancer. Other pathogens include the hepatitis C and Epstein-Barr viruses, which are potentially involved in kidney cancer. In addition, infections with Schistosoma haematobium, the human papillomavirus, and human polyomaviruses are strongly associated with an increased risk of urinary bladder cancer. This article reviews publications available to date on the role of infectious agents in urogenital cancers. A greater understanding of the role of such agents could aid the identification of novel methods of urogenital cancer treatment.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
- Republican Scientific Center for Emergency Care, 3 Kerey and Zhanibek Khan Street, Astana 010000, Kazakhstan
| | - Nargis Karatayeva
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Ildar Bekniyazov
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
42
|
Chen AL, Johnson KA, Lee JK, Sütterlin C, Tan M. CPAF: a Chlamydial protease in search of an authentic substrate. PLoS Pathog 2012; 8:e1002842. [PMID: 22876181 PMCID: PMC3410858 DOI: 10.1371/journal.ppat.1002842] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/22/2012] [Indexed: 01/13/2023] Open
Abstract
Bacteria in the genus Chlamydia are major human pathogens that cause an intracellular infection. A chlamydial protease, CPAF, has been proposed as an important virulence factor that cleaves or degrades at least 16 host proteins, thereby altering multiple cellular processes. We examined 11 published CPAF substrates and found that there was no detectable proteolysis when CPAF activity was inhibited during cell processing. We show that the reported proteolysis of these putative CPAF substrates was due to enzymatic activity in cell lysates rather than in intact cells. Nevertheless, Chlamydia-infected cells displayed Chlamydia-host interactions, such as Golgi reorganization, apoptosis resistance, and host cytoskeletal remodeling, that have been attributed to CPAF-dependent proteolysis of host proteins. Our findings suggest that other mechanisms may be responsible for these Chlamydia-host interactions, and raise concerns about all published CPAF substrates and the proposed roles of CPAF in chlamydial pathogenesis. Chlamydia are bacteria that invade eukaryotic host cells and live within a membrane-bound compartment called the chlamydial inclusion. Growth and survival of these important human and animal pathogens depends on extensive interactions with the host cell, which allow chlamydiae to acquire critical nutrients and to avoid host anti-microbial defenses. Chlamydiae are proposed to cause many of these host-pathogen interactions through the cleavage or degradation of host proteins by the chlamydial protease CPAF, which is secreted into the host cytoplasm. Here, we raise questions about the proposed roles of this virulence factor during infection, as well as its published substrates. We found that there was no detectable cleavage or degradation of 11 previously reported CPAF substrates in Chlamydia-infected cells and that CPAF-mediated proteolysis of these host proteins occurs during cell harvest and lysis. However, we still observed host-pathogen interactions previously attributed to CPAF proteolysis of these proteins, suggesting that Chlamydia is likely to cause these effects on the host cell through other mechanisms. Our findings call for a re-evaluation of all published CPAF substrates as well as the proposed roles of this protease in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Allan L. Chen
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Jennifer K. Lee
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, United States of America
- Department of Medicine, University of California at Irvine, Irvine, California, United States of America
- * E-mail: (CS); (MT)
| |
Collapse
|
43
|
Ibana JA, Aiyar A, Quayle AJ, Schust DJ. Modulation of MICA on the surface of Chlamydia trachomatis-infected endocervical epithelial cells promotes NK cell-mediated killing. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 65:32-42. [PMID: 22251247 PMCID: PMC5029121 DOI: 10.1111/j.1574-695x.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis serovars D-K are obligate intracellular bacteria that have tropism for the columnar epithelial cells of the genital tract. Chlamydia trachomatis infection has been reported to induce modifications in immune cell ligand expression on epithelial host cells. In this study, we used an in vitro infection model that resulted in a partial infection of C. trachomatis-exposed primary-like immortalized endocervical epithelial cells (A2EN). Using this model, we demonstrated that expression of the natural killer (NK) cell activating ligand, MHC class I-related protein A (MICA), was upregulated on C. trachomatis-infected, but not on noninfected bystander cells. MICA upregulation was concomitant with MHC class I downregulation and impacted the susceptibility of C. trachomatis-infected cells to NK cell activity. The specificity of MICA upregulation was reflected by a higher cytolytic activity of an NK cell line (NK92MI) against C. trachomatis-infected cells compared with uninfected control cells. Significantly, data also indicated that NK cells exerted a partial, but incomplete sterilizing effect on C. trachomatis as shown by the reduction in recoverable inclusion forming units (IFU) when cocultured with C. trachomatis-infected cells. Taken together, our data suggest that NK cells may play a significant role in the ability of the host to counter C. trachomatis infection.
Collapse
Affiliation(s)
- Joyce Altamarino Ibana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Alison Jane Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Danny Joseph Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
44
|
Lu C, Holland MJ, Gong S, Peng B, Bailey RL, Mabey DW, Wu Y, Zhong G. Genome-wide identification of Chlamydia trachomatis antigens associated with trachomatous trichiasis. Invest Ophthalmol Vis Sci 2012; 53:2551-9. [PMID: 22427578 DOI: 10.1167/iovs.11-9212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Chlamydia trachomatis is the leading infectious cause of blindness. The goal of the current study was to search for biomarkers associated with C. trachomatis-induced ocular pathologies. METHODS We used a whole genome scale proteome array to systematically profile antigen specificities of antibody responses to C. trachomatis infection in individuals from trachoma-endemic communities with or without end-stage trachoma (trichiasis) in The Gambia. RESULTS When 61 trichiasis patients were compared with their control counterparts for overall antibody reactivity with organisms of different chlamydial species, no statistically significant difference was found. Both groups developed significantly higher titers of antibodies against C. trachomatis ocular serovars A and B than ocular serovar C, genital serovar D, or Chlamydia psittaci, whereas the titers of anti-Chlamydia pneumoniae antibodies were the highest. When antisera from 33 trichiasis and 26 control patients (with relatively high titers of antibodies to C. trachomatis ocular serovars) were reacted with 908 C. trachomatis proteins, 447 antigens were recognized by at least 1 of the 59 antisera, and 10 antigens by 50% or more antisera, the latter being designated as immunodominant antigens. More importantly, four antigens were preferentially recognized by the trichiasis group, with antigens CT414, CT667, and CT706 collectively reacting with 30% of trichiasis antisera but none from the normal group, and antigen CT695 reacting with 61% of trichiasis but only 31% of normal antisera. On the other hand, eight antigens were preferentially recognized by the control group, with antigens CT019, CT117, CT301, CT553, CT556, CT571, and CT709 together reacting with 46% of normal antisera and none from the trichiasis group, whereas antigen CT442 reacted with 35% of normal and 19% of trichiasis antisera respectively. CONCLUSIONS The current study, by mapping immunodominant C. trachomatis antigens and identifying antigens associated with both ocular pathology and protection, has provided important information for further understanding chlamydial pathogenesis and the development of subunit vaccines.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 2011; 10:21-32. [PMID: 21767809 DOI: 10.1016/j.chom.2011.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/02/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis injects numerous effector proteins into the epithelial cell cytoplasm to manipulate host functions important for bacterial survival. In addition, the bacterium secretes a serine protease, chlamydial protease-like activity factor (CPAF). Although several CPAF targets are reported, the significance of CPAF-mediated proteolysis is unclear due to the lack of specific CPAF inhibitors and the diversity of host targets. We report that CPAF also targets chlamydial effectors secreted early during the establishment of the pathogen-containing vacuole ("inclusion"). We designed a cell-permeable CPAF-specific inhibitory peptide and used it to determine that CPAF prevents superinfection by degrading early Chlamydia effectors translocated during entry into a preinfected cell. Prolonged CPAF inhibition leads to loss of inclusion integrity and caspase-1-dependent death of infected epithelial cells. Thus, CPAF functions in niche protection, inclusion integrity and pathogen survival, making the development of CPAF-specific protease inhibitors an attractive antichlamydial therapeutic strategy.
Collapse
|
46
|
Chlamydia trachomatis infection control programs: lessons learned and implications for vaccine development. Infect Dis Obstet Gynecol 2011; 2011:754060. [PMID: 22144851 PMCID: PMC3227443 DOI: 10.1155/2011/754060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis control efforts that enhance detection and treatment of infected women may paradoxically increase susceptibility of the population to infection. Conversely, these surveillance programs lower incidences of adverse sequelae elicited by genital tract infection (e.g., pelvic inflammatory disease and ectopic pregnancy), suggesting enhanced identification and eradication of C. trachomatis simultaneously reduces pathogen-induced upper genital tract damage and abrogates formation of protective immune responses. In this paper, we detail findings from C. trachomatis infection control programs that increase our understanding of chlamydial immunoepidemiology and discuss their implications for prophylactic vaccine design.
Collapse
|
47
|
Antichlamydial antibodies, human fertility, and pregnancy wastage. Infect Dis Obstet Gynecol 2011; 2011:525182. [PMID: 21949601 PMCID: PMC3178110 DOI: 10.1155/2011/525182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022] Open
Abstract
Genital infections with Chlamydia trachomatis (C. trachomatis) continue to be a worldwide epidemic. Immune response to chlamydia is important to both clearance of the disease and disease pathogenesis. Interindividual responses and current chlamydial control programs will have enormous effects on this disease and its control strategies. Humoral immune response to C. trachomatis occurs in humans and persistent antibody levels appear to be most directly correlated with more severe and longstanding disease and with reinfection. There is a close correlation between the presence of antichlamydial antibodies in females and tubal factor infertility; the closest associations have been found for antibodies against chlamydial heat shock proteins. The latter antibodies have also been shown to be useful among infertile patients with prior ectopic pregnancy, and their presence has been correlated with poor IVF outcomes, including early pregnancy loss. We review the existing literature on chlamydial antibody testing in infertile patients and present an algorithm for such testing in the infertile couple.
Collapse
|
48
|
Bednar MM, Jorgensen I, Valdivia RH, McCafferty DG. Chlamydia protease-like activity factor (CPAF): characterization of proteolysis activity in vitro and development of a nanomolar affinity CPAF zymogen-derived inhibitor. Biochemistry 2011; 50:7441-3. [PMID: 21830778 DOI: 10.1021/bi201098r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During infection of epithelial cells, the obligate intracellular pathogen Chlamydia trachomatis secretes the serine protease Chlamydia protease-like activity factor (CPAF) into the host cytosol to regulate a range of host cellular processes through targeted proteolysis. Here we report the development of an in vitro assay for the enzyme and the discovery of a cell-permeable CPAF zymogen-based peptide inhibitor with nanomolar inhibitory affinity. Treating C. trachomatis-infected HeLa cells with this inhibitor prevented CPAF cleavage of the intermediate filament vimentin and led to the loss of vimentin cage surrounding the intracellular vacuole. Because Chlamydia is a genetically intractable organism, this inhibitor may serve as a tool for understanding the role of CPAF in pathogenesis.
Collapse
Affiliation(s)
- Maria M Bednar
- Department of Chemistry, Duke University, Duke University Medical Center, Durham, North Carolina 27708, United States
| | | | | | | |
Collapse
|
49
|
Srivastava P, Vardhan H, Bhengraj AR, Jha R, Singh LC, Salhan S, Mittal A. Azithromycin Treatment Modulates the Extracellular Signal-Regulated Kinase Mediated Pathway and Inhibits Inflammatory Cytokines and Chemokines in Epithelial Cells from Infertile Women with RecurrentChlamydia trachomatisInfection. DNA Cell Biol 2011; 30:545-54. [DOI: 10.1089/dna.2010.1167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pragya Srivastava
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Harsh Vardhan
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | | | - Rajneesh Jha
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | | | - Sudha Salhan
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, India
| | - Aruna Mittal
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
50
|
Wang J, Frohlich KM, Buckner L, Quayle AJ, Luo M, Feng X, Beatty W, Hua Z, Rao X, Lewis ME, Sorrells K, Santiago K, Zhong G, Shen L. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. MICROBIOLOGY-SGM 2011; 157:2759-2771. [PMID: 21737500 DOI: 10.1099/mic.0.044917-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Lyndsey Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaogeng Feng
- Department of Molecular Biology and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ziyu Hua
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiancai Rao
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Maria E Lewis
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kelly Sorrells
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kerri Santiago
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|