1
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Fortier GE, Piazuelo MB, Reyzer ML, Judd AM, Tsui T, McDonald WH, McClain MS, Schey KL, Algood HM, Cover TL. Helicobacter pylori CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations. Infect Immun 2025; 93:e0059524. [PMID: 40047510 PMCID: PMC11977315 DOI: 10.1128/iai.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Colonization of the human stomach with cag pathogenicity island (PAI)-positive Helicobacter pylori strains is associated with increased gastric cancer risk compared to colonization with cag PAI-negative strains. To evaluate the contributions of the Cag type IV secretion system (T4SS) and CagA (a secreted bacterial oncoprotein) to gastric molecular alterations relevant for carcinogenesis, we infected Mongolian gerbils with a Cag T4SS-positive wild-type (WT) H. pylori strain, one of two Cag T4SS mutant strains (∆cagT or ∆cagY), or a ∆cagA mutant for 12 weeks. Histologic staining revealed a biphasic distribution of gastric inflammation severity in WT-infected animals and minimal inflammation in animals infected with mutant strains. Atrophic gastritis (a premalignant condition), dysplasia, and gastric adenocarcinoma were only detected in WT-infected animals with high inflammation scores. Transcriptional profiling, liquid chromatography-tandem mass spectrometry analysis of micro-extracted tryptic peptides, and imaging mass spectrometry revealed more than a thousand molecular alterations in gastric tissues from WT-infected animals with high inflammation scores compared to uninfected tissues and few alterations in tissues from other groups of infected animals. Proteins with altered abundance in animals with severe Cag T4SS-induced inflammation mapped to multiple pathways, including the complement/coagulation cascade and proteasome pathway. Proteins exhibiting markedly increased abundance in tissues from H. pylori-infected animals with severe inflammation included calprotectin components, proteins involved in proteasome activation, polymeric immunoglobulin receptor (PIGR), interferon-inducible guanylate-binding protein (GBP2), lactoferrin, lysozyme, superoxide dismutase, and eosinophil peroxidase. These results demonstrate key roles for CagA and Cag T4SS activity in promoting gastric mucosal inflammation, transcriptional alterations, and proteomic alterations relevant to gastric carcinogenesis.IMPORTANCEHelicobacter pylori colonizes the stomachs of about half of humans worldwide, and its presence is the primary risk factor for the development of stomach cancer. H. pylori strains isolated from humans can be broadly classified into two groups based on whether they contain a chromosomal cag pathogenicity island, which encodes a secreted effector protein (CagA) and components of a type IV secretion system (T4SS). In experiments using a Mongolian gerbil model, we found that severe gastric inflammation and gastric transcriptional and proteomic alterations related to gastric cancer development were detected only in animals infected with a wild-type H. pylori strain containing CagA and an intact Cag T4SS. Mutant strains lacking CagA or Cag T4SS activity successfully colonized the stomach without inducing detectable pathologic host responses. These findings illustrate two different patterns of H. pylori-host interaction.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle E. Fortier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Whitmire JM, Windham IH, Makobongo MO, Westland MD, Tran SC, Piñol J, Hui Y, Raheem Alkarkoushi R, Pich OQ, McGee DJ, Piazuelo MB, Melton-Celsa A, Testerman TL, Cover TL, Merrell DS. A unique Helicobacter pylori strain to study gastric cancer development. Microbiol Spectr 2025; 13:e0216324. [PMID: 39641575 PMCID: PMC11705839 DOI: 10.1128/spectrum.02163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori colonizes a majority of the human population worldwide and can trigger development of a variety of gastric diseases. Since the bacterium is classified as a carcinogen, elucidation of the characteristics of H. pylori that influence gastric carcinogenesis is a high priority. To this end, the Mongolian gerbil infection model has proven to be an important tool to study gastric cancer progression. However, only a small number of H. pylori strains have been evaluated in the gerbil model. Thus, to identify additional strains able to colonize and induce disease in this model, several H. pylori strains were used to infect Mongolian gerbils, and stomachs were harvested at multiple timepoints to assess colonization and gastric pathology. The USU101 strain reproducibly colonized Mongolian gerbils and induced gastric inflammation in the majority of the animals 1 month after infection. Adenocarcinoma or dysplasia was observed in the majority of gerbils by 2 months post-infection. To define the contribution of key virulence factors to this process, isogenic strains lacking cagA or vacA, along with restorant strains containing a wild-type (WT) copy of the genes, were studied. The ΔcagA USU101 strain colonized gerbils at levels similar to WT, but did not induce comparable levels of inflammation or disease. In contrast, the ΔvacA USU101 strain did not colonize gerbils, and the stomach pathology resembled that of the mock-infected animals. The restorant USU101 strains expressed the CagA and VacA proteins in vitro, and in vivo experiments with Mongolian gerbils showed a restoration of colonization levels and inflammation scores comparable to those observed in WT USU101. Our studies indicate that the USU101 strain is a valuable tool to study H. pylori-induced disease.IMPORTANCEGastric cancer is the fifth leading cause of cancer-related death globally; the majority of gastric cancers are associated with Helicobacter pylori infection. Infection of Mongolian gerbils with H. pylori has been shown to result in induction of gastric cancer, but few H. pylori strains have been studied in this model; this limits our ability to fully understand gastric cancer pathogenesis in humans because H. pylori strains are notoriously heterogenous. Our studies reveal that USU101 represents a unique H. pylori strain that can be added to our repertoire of strains to study gastric cancer development in the Mongolian gerbil model.
Collapse
Affiliation(s)
| | - Ian H. Windham
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Morris O. Makobongo
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | - Oscar Q. Pich
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - David J. McGee
- Department of Microbiology and Immunology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | | | - Angela Melton-Celsa
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Traci L. Testerman
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Timothy L. Cover
- Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - D. Scott Merrell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Kouhsari E, Roshandel G, Hosseinzadeh S, Besharat S, Khori V, Amiriani T. Molecular Characterization of Antimicrobial Resistance and Virulence Genotyping among Helicobacter pylori-Positive Dyspeptic Patients in North Iran. Infect Disord Drug Targets 2025; 25:e090724231788. [PMID: 38984569 DOI: 10.2174/0118715265294927240617201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Iran has a relatively high prevalence of H. pylori, which correlates with high-risk areas for gastric cancer worldwide. METHODS Our study aimed to investigate the underlying genetic mechanisms associated with resistance to metronidazole (frxA, rdxA), clarithromycin (23S rRNA), tetracycline (16S rRNA), and fluoroquinolone (gyrA) in H. pylori-positive dyspeptic patients using PCR and sequencing. We further examined the potential correlation between resistance profiles and various virulence genotypes. RESULTS The rates of genetic mutations associated with resistance to metronidazole, fluoroquinolone, clarithromycin, and tetracycline were found to be 68%, 32.1%, 28.4%, and 11.1%, respectively. Well-documented multiple antibiotic resistance mutations were detected, such as rdxA and frxA (with missense and frameshift alterations), gyrA (Asp91, Asn87), 23S rRNA (A2142G, A2143G), and 16S rRNA (triple-base-pair substitutions AGA926-928→TTC). The cagA+ and vacA s1/m1 types were the predominant genotypes in our study. With the exception of metronidazole and tetracycline, no significant correlation was observed between the cagA+ and cagL+ genotypes and resistance-associated mutations. CONCLUSION The prevalence of antibiotic resistance-associated mutations in H. pylori was remarkably high in this region, particularly to metronidazole, ciprofloxacin, and clarithromycin. By conducting a simultaneous screening of virulence and resistance genotypes, clinicians can make informed decisions regarding the appropriate therapeutic regimen to prevent the escalation of antibiotic resistance against H. pylori infection in this specific geographical location.
Collapse
Affiliation(s)
- Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Hasanzadeh Haghighi F, Menbari S, Mohammadzadeh R, Pishdadian A, Farsiani H. Developing a potent vaccine against Helicobacter pylori: critical considerations and challenges. Expert Rev Mol Med 2024; 27:e12. [PMID: 39584502 PMCID: PMC11964096 DOI: 10.1017/erm.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 08/07/2024] [Indexed: 11/26/2024]
Abstract
Helicobacter pylori (H. pylori) is closely associated with gastric cancer and peptic ulcers. The effectiveness of antibiotic treatment against H. pylori is diminished by the emergence of drug-resistant strains, side effects, high cost and reinfections. Given the circumstances, it is imperative to develop a potent vaccination targeting H. pylori. Understanding H. pylori's pathogenicity and the host's immune response is essential to developing a vaccine. Furthermore, vaccine evaluation necessitates the careful selection of design formulation. This review article aims to provide a concise overview of the considerations involved in selecting the optimal antigen, adjuvant, vaccine delivery system and laboratory animal model for vaccine formulation. Furthermore, we will discuss some significant obstacles in the realm of developing a potent vaccination against H. pylori.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaho Menbari
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mohammadzadeh
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
7
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
9
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
10
|
Comparative Genomic Analysis of Statistically Significant Genomic Islands of Helicobacter pylori strains for better understanding the disease prognosis. Biosci Rep 2022; 42:230988. [PMID: 35258077 PMCID: PMC8935386 DOI: 10.1042/bsr20212084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer, peptic ulcer, duodenal ulcer etc. A novel similarity score-based comparative analysis with GIs of fifty H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin-antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like CagA, and VacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and VacA virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori induced disease prognosis.
Collapse
|
11
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
12
|
Abstract
Helicobacter pylori colonization of the stomach is a strong risk factor for the development of stomach cancer and peptic ulcer disease. In this study, we tested the hypothesis that H. pylori infection triggers alterations in gastric lipid composition. Mongolian gerbils were experimentally infected with H. pylori for 3 months. Conventional histologic staining revealed mucosal inflammation in stomachs from the H. pylori-infected animals but not in stomachs from uninfected control animals. Atrophic gastritis (a premalignant condition characterized by loss of corpus-specific parietal and chief cells), gastric mucosal hyperplasia, dysplasia, and/or gastric cancer were detected in stomachs from several infected animals. We then used imaging mass spectrometry to analyze the relative abundance and spatial distribution of gastric lipids. We detected ions corresponding to 36 distinct lipids that were differentially abundant when comparing gastric tissues from H. pylori-infected animals with tissues from uninfected animals. Liquid chromatography-tandem mass spectrometry analysis of lipid extracts from homogenized gastric tissues provided additional supportive evidence for the identification of several differentially abundant lipids. Sixteen of the differentially abundant lipids were localized mainly to the gastric corpus in stomachs from uninfected animals and were markedly reduced in abundance in stomachs from H. pylori-infected animals with severe disease (atrophic gastritis and dysplasia or gastric cancer). These findings indicate that H. pylori infection can lead to alterations in gastric lipid composition and constitute a new approach for identifying biomarkers of gastric atrophy and premalignant changes. IMPORTANCE H. pylori colonization of the stomach triggers a cascade of gastric alterations that can potentially culminate in stomach cancer. The molecular alterations that occur in gastric tissue prior to development of stomach cancer are not well understood. We demonstrate here that H. pylori-induced premalignant changes in the stomach are accompanied by extensive alterations in gastric lipid composition. These alterations are predicted to have important functional consequences relevant to H. pylori-host interactions and the pathogenesis of gastric cancer.
Collapse
|
13
|
El Khadir M, Boukhris SA, Zahir SO, Benajah DA, Ibrahimi SA, Chbani L, El Abkari M, Bennani B. CagE, cagA and cagA 3' region polymorphism of Helicobacter pylori and their association with the intra-gastric diseases in Moroccan population. Diagn Microbiol Infect Dis 2021; 100:115372. [PMID: 33813354 DOI: 10.1016/j.diagmicrobio.2021.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Helicobacter pylori infection is the most important etiological factor in gastroduodenal diseases development. Its evolution is influenced by several factors, including bacterial virulence genes such as cagA and cagE. This work aimed to evaluate the predictive value of cagE alone and in combination with cagA and CagA-EPIYA-C motifs number as a marker of the infection evolution. A total of 823 H. pylori DNA extracted from biopsies of consenting patients suffering from gastritis, peptic ulcer, or gastric cancer. The cagE, cagA status and cagA 3' region polymorphism were determined by PCR. The analysis shows that the risk of duodenal ulcer is 1.97-fold higher (CI = 1.18-3.30) in patients infected by strains cagA+/cagE+. And the risk of gastric cancer is 5.19-fold higher (CI = 1.18-22.70) in patients harboring strains cagE+/2EPIYA-C. The results suggest that cagE in combination with cagA-EPIYA-C motifs number can be used as predictive biomarker of H. pylori infection evolution.
Collapse
Affiliation(s)
- Mounia El Khadir
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Laboratoire de microbiologie et de Biologie Moléculaire, FMPF, USMBA
| | - Samia Alaoui Boukhris
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Laboratoire de microbiologie et de Biologie Moléculaire, FMPF, USMBA
| | - Souad Oirdi Zahir
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Laboratoire de microbiologie et de Biologie Moléculaire, FMPF, USMBA
| | - Dafr-Allah Benajah
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Service d'Hépato gastro-entérologie CHU Hassan II, Fès, Maroc
| | - Sidi Adil Ibrahimi
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Service d'Hépato gastro-entérologie CHU Hassan II, Fès, Maroc
| | - Laila Chbani
- Service d'Anatomie pathologique CHU Hassan II, Fès, Maroc
| | - Mohamed El Abkari
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Service d'Hépato gastro-entérologie CHU Hassan II, Fès, Maroc
| | - Bahia Bennani
- Laboratoire de Pathologie Humaine Biomédecine et Environnement, Equipe micro-organismes génomique et facteurs oncogènes, Faculté de médecine et de Pharmacie de Fès (FMPF), Université Sidi Mohammed Ben Abdellah (USMBA), Fès, Maroc.; Laboratoire de microbiologie et de Biologie Moléculaire, FMPF, USMBA.
| |
Collapse
|
14
|
Dysregulated Immune Responses by ASK1 Deficiency Alter Epithelial Progenitor Cell Fate and Accelerate Metaplasia Development during H. pylori Infection. Microorganisms 2020; 8:microorganisms8121995. [PMID: 33542169 PMCID: PMC7765114 DOI: 10.3390/microorganisms8121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The mechanism of H. pylori-induced atrophy and metaplasia has not been fully understood. Here, we demonstrate the novel role of Apoptosis signal-regulating kinase 1 (ASK1) and downstream MAPKs as a regulator of host immune responses and epithelial maintenance against H. pylori infection. ASK1 gene deficiency resulted in enhanced inflammation with numerous inflammatory cells including Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs) recruited into the infected stomach. Increase of IL-1β release from apoptotic macrophages and enhancement of TH1-polarized immune responses caused STAT1 and NF-κB activation in epithelial cells in ASK1 knockout mice. Dysregulated immune and epithelial activation in ASK1 knockout mice led to dramatic expansion of gastric progenitor cells and massive metaplasia development. Bone marrow transplantation experiments revealed that ASK1 in inflammatory cells is critical for inducing immune disorder and metaplastic changes in epithelium, while ASK1 in epithelial cells regulates cell proliferation in stem/progenitor zone without changes in inflammation and differentiation. These results suggest that H. pylori-induced immune cells may regulate epithelial homeostasis and cell fate as an inflammatory niche via ASK1 signaling.
Collapse
|
15
|
Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. mBio 2020; 11:mBio.01296-20. [PMID: 32605987 PMCID: PMC7327173 DOI: 10.1128/mbio.01296-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.
Collapse
|
16
|
The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682-695. [PMID: 32451226 DOI: 10.1016/j.tim.2020.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.
Collapse
|
17
|
Tabata N, Sueta D, Arima Y, Okamoto K, Shono T, Hanatani S, Takashio S, Oniki K, Saruwatari J, Sakamoto K, Kaikita K, Sinning JM, Werner N, Nickenig G, Sasaki Y, Fukui T, Tsujita K. Cytotoxin-associated gene-A-seropositivity and Interleukin-1 polymorphisms influence adverse cardiovascular events. IJC HEART & VASCULATURE 2020; 27:100498. [PMID: 32181324 PMCID: PMC7062927 DOI: 10.1016/j.ijcha.2020.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Aims Although the bacterial virulent factor of cytotoxin-associated gene-A (CagA)-seropositivity and the host genetic factors of interleukin (IL)-1 polymorphisms have been suggested to influence Helicobacter pylori (HP) -related diseases, the underlying mechanisms of the association between HP infection and acute coronary syndrome (ACS) remain unknown. Methods and results Among 341 consecutive ACS patients, the clinical outcomes after ACS included composite cardiovascular events within the 2-year follow-up period. A significantly higher probability of primary outcomes was observed in HP positive patients than in HP negative patients. There were no significant differences in the rate of cardiovascular events between HP positive and HP negative patients in the absence of an IL-polymorphism, while there were significant differences in the presence of an IL-polymorphism. There were significant differences in the rate of cardiovascular events among CagA positive, CagA negative/ HP positive and CagA negative/HP negative patients. Moreover, via immunohistochemical staining, aortic CagA positive cells were confirmed in the vasa vasorum in CagA positive patients, whereas they could not be identified in CagA negative patients. Conclusions The bacterial virulence factor CagA and host genetic IL-1 polymorphisms influence the incidence of adverse cardiovascular events, possibly through infection of atherosclerotic lesions. Registration: University Hospital Medical Information Network (UMIN)-CTR (http://www.umin.ac.jp/ctr/). Identifier: UMIN000035696.
Collapse
Affiliation(s)
- Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan.,Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Ken Okamoto
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Takashi Shono
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jan-Malte Sinning
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Nikos Werner
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Toshihiro Fukui
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|
18
|
Suzuki R, Satou K, Shiroma A, Shimoji M, Teruya K, Matsumoto T, Akada J, Hirano T, Yamaoka Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog 2019; 11:45. [PMID: 31558915 PMCID: PMC6754630 DOI: 10.1186/s13099-019-0326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases in the human stomach. H. pylori is well adapted to the human stomach but does not easily infect other animals. As a model animal, Mongolian gerbils are often used, however, the genome of the inoculated H. pylori may accumulate mutations to adapt to the new host. To investigate mutations occurring in H. pylori after infection in Mongolian gerbils, we compared the whole genome sequence of TN2 wild type strain (TN2wt) and next generation sequencing data of retrieved strains from the animals after different lengths of infection. Results We identified mutations in 21 loci of 17 genes of the post-inoculation strains. Of the 17 genes, five were outer membrane proteins that potentially influence on the colonization and inflammation. Missense and nonsense mutations were observed in 15 and 6 loci, respectively. Multiple mutations were observed in three genes. Mutated genes included babA, tlpB, and gltS, which are known to be associated with adaptation to murine. Other mutations were involved with chemoreceptor, pH regulator, and outer membrane proteins, which also have potential to influence on the adaptation to the new host. Conclusions We confirmed mutations in genes previously reported to be associated with adaptation to Mongolian gerbils. We also listed up genes that mutated during the infection to the gerbils, though it needs experiments to prove the influence on adaptation.
Collapse
Affiliation(s)
- Rumiko Suzuki
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Takashi Matsumoto
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Yoshio Yamaoka
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan.,3Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030 USA.,Global Oita Medical Advanced Research Center for Health, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
19
|
Mishra KK, Srivastava S, Aayyagari A, Ghosh K. Development of an animal model of Helicobacter pylori (Indian strain) infection. Indian J Gastroenterol 2019; 38:167-172. [PMID: 30911993 DOI: 10.1007/s12664-018-0905-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/23/2018] [Indexed: 02/04/2023]
Abstract
To develop an animal model for Indian strain Helicobacter pylori (H. pylori) infection. This model will allow one to study many facts of H. pylori infection in a more controlled manner. Mongolian gerbils were orogastric inoculated with two different Indian strains of H. pylori at different time points. Animals were sacrificed and looked for the presence of infection up to 52 weeks post-inoculation using a variety of techniques. Simultaneously, serums from these animals were also tested for antibody, and changes in the histopathology of stomach on H&E (hematoxylin and eosin) stains were also noted. Experimental sets of Mongolian gerbils were orally fed two strains of H. pylori obtained from human case by culture of different cagA and vacA strains three times daily on days 0, 2, and 4. H. pylori ATCC26695 strain was used for antisera preparation; three animals from each group were sacrificed at different time periods 2, 4, 8, 12, 26, 38 and 52 weeks after infection along with one control animal. Infections with H. pylori were confirmed in all the animals from 4 weeks onwards up to 52 weeks with histopathological changes in conformity with H. pylori gastritis. Wild Mongolian gerbils can be infected with Indian strains of H. pylori, and the infection persists at least 1 year. However, intensity of gastritis was milder than that seen in human case.
Collapse
Affiliation(s)
- Kanchan K Mishra
- Surat Raktadan Kendra and Research Centre, 1st Floor, Khatodara Health Centre, Near ChosathJoganiya Mata Mandir, Udhana Magdalla Road, Khatodara, Surat, 394 210, India
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Dallas, TX, USA
| | - Archana Aayyagari
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Kanjaksha Ghosh
- Surat Raktadan Kendra and Research Centre, 1st Floor, Khatodara Health Centre, Near ChosathJoganiya Mata Mandir, Udhana Magdalla Road, Khatodara, Surat, 394 210, India.
| |
Collapse
|
20
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Saberi S, Pournasr B, Farzaneh Z, Esmaeili M, Hosseini ME, Baharvand H, Mohammadi M. A simple and cost-efficient adherent culture platform for human gastric primary cells, as an in vitro model for Helicobacter pylori infection. Helicobacter 2018; 23:e12489. [PMID: 29774633 DOI: 10.1111/hel.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most two- dimensional in vitro models for studying host- H. pylori interactions rely on tumor-derived cell lines, which harbor malignant alterations. The recent development of human gastric organoids has overcome this limitation and provides a highly sophisticated, yet costly, short-term model for H. pylori infection, with restricted use in low-budget centers. METHOD Tissue specimens from upper, middle, and lower stomachs of H. pylori-negative volunteers were collectively dispersed and cultured on mouse embryonic fibroblast (MEF) or collagen-coated plates. Gastric primary cells (GPCs) were evaluated by light microscopy, immunostaining, qRT-PCR and ELISA analysis of cellular secretions, before and after H. pylori infection. RESULTS The formation and long-term (up to 1 year) maintenance of GPCs was highly dependent on adherent inactivated MEF cells, cultured in enriched media. These cells were multipassageable and able to undergo stable freezer storage and subsequent revival. The cellular composition of GPCs included the combination of cytokeratin 18 (CK18) and E-cadherin (E-cad)-positive epithelial cells, MUC5AC-positive gastric cells, and leucine-rich repeat containing G protein-coupled receptor 5 (LGR5)-positive progenitor cells. These cells produced significant amounts of gastric pepsinogens I and II. GPCs also allowed for extended (up to 96 hours) H. pylori infection, during which they underwent morphological alterations (cellular vacuolation and elongation) and hyperproduction of gastric pepsinogens and inflammatory cytokines (IL-8 and TNF-α). CONCLUSION We, hereby, present a simple, consistent, and cost-efficient gastric cell culture system, which provides a suitable model for extended in vitro infection of H. pylori. This platform can be employed for a variety of gastric-related research.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmoud Eshagh Hosseini
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Zhao H, Xu L, Rong Q, Xu Z, Ding Y, Zhang Y, Wu Y, Li B, Ji X. Application of methylation in improving plasmid transformation into Helicobacter pylori. J Microbiol Methods 2018; 150:18-23. [DOI: 10.1016/j.mimet.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023]
|
23
|
Beckett AC, Loh JT, Chopra A, Leary S, Lin AS, McDonnell WJ, Dixon BREA, Noto JM, Israel DA, Peek RM, Mallal S, Algood HMS, Cover TL. Helicobacter pylori genetic diversification in the Mongolian gerbil model. PeerJ 2018; 6:e4803. [PMID: 29796347 PMCID: PMC5961626 DOI: 10.7717/peerj.4803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Collapse
Affiliation(s)
- Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Beverly R E A Dixon
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jennifer M Noto
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dawn A Israel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Richard M Peek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Holly M Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| |
Collapse
|
24
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
25
|
Isaeva G, Valieva R. Biological characteristics and virulence of Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2018. [DOI: 10.36488/cmac.2018.1.14-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This review summarizes the most recent data on the biological characteristics of Helicobacter pylori (morphological, cultural, biochemical). H. pylori pathogenicity factors promoting colonization, adhesion, biofilm formation, aggression, and cytotoxicity, their contribution to the pathogenesis of diseases as well as the possible relationships with various clinical outcomes are described in detail. The genetic heterogeneity of H. pylori strains which can determine different clinical manifestations and have significance for conducting epidemiological studies is also considered.
Collapse
Affiliation(s)
- G.Sh. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University (Kazan, Russia)
| | - R.I. Valieva
- Kazan Research Institute of Epidemiology and Microbiology; KazanState Medical University (Kazan, Russia)
| |
Collapse
|
26
|
Noto JM, Romero-Gallo J, Piazuelo MB, Peek RM. The Mongolian Gerbil: A Robust Model of Helicobacter pylori-Induced Gastric Inflammation and Cancer. Methods Mol Biol 2017; 1422:263-80. [PMID: 27246040 DOI: 10.1007/978-1-4939-3603-8_24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Mongolian gerbil is an efficient, robust, and cost-effective rodent model that recapitulates many features of H. pylori-induced gastric inflammation and carcinogenesis in humans, allowing for targeted investigation of the bacterial determinants and environmental factors and, to a lesser degree, host constituents that govern H. pylori-mediated disease. This chapter discusses means through which the Mongolian gerbil model has been used to define mechanisms of H. pylori-inflammation and cancer as well as the current materials and methods for utilizing this model of microbially induced disease.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN, 37232-0252, USA
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN, 37232-0252, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN, 37232-0252, USA
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN, 37232-0252, USA.
| |
Collapse
|
27
|
Lan KH, Lee WP, Wang YS, Liao SX, Lan KH. Helicobacter pylori CagA protein activates Akt and attenuates chemotherapeutics-induced apoptosis in gastric cancer cells. Oncotarget 2017; 8:113460-113471. [PMID: 29371922 PMCID: PMC5768339 DOI: 10.18632/oncotarget.23050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Infection with cagA-positive Helicobacter pylori is associated with a higher risk of gastric cancer. The cagA gene product, CagA, is translocated into gastric epithelial cells and perturbs host cellular biological functions. Etoposide, a topoisomerase II inhibitor widely used to couple DNA damage to apoptosis, is a common cytotoxic agent used for advanced gastric cancer. We investigate the effect of CagA on etoposide-induced apoptosis in gastric cancer cells to elucidate whether CagA play a role in gastric carcinogenesis via impairing DNA damage-dependent apoptosis. AGS cell lines stably expressing CagA isolated from H. pylori 26695 strain were established. In the presence of etoposide, viability of parental AGS cells was decreased in a time-and dose-dependent manner, whereas CagA-expressing AGS cells were less susceptible to etoposide induced cell-killing effect. Suppression of etoposide-induced apoptosis was shown in CagA-expressing but not in parental AGS cells by DNA fragmentation, cell cycle, and annexin-V assays. This inhibitory effect of etoposide-induced apoptosis conferred by CagA was also demonstrated in SCM1 and MKN45 gastric cancer cell lines, with two additional chemotherapeutics, 5-FU and cisplatin. The effect of Akt activation on inhibition of etoposide-induced cytotoxicity by CagA was also evaluated. CagA expression and etoposide administration activate Akt in a dose-dependent manner. Enhancement of etoposide cytotoxicity by a PI-3-kinase inhibitor, LY294002, was evident in parental but was attenuated in CagA-expressing AGS cells. CagA may activate Akt, either in the absence or presence of etoposide, potentially contributing to gastric carcinogenesis associated with H. pylori infection and therapeutic resistance by impairing DNA damage-dependent apoptosis.
Collapse
Affiliation(s)
- Keng-Hsueh Lan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital National Taiwan University Cancer Center, Taipei, Taiwan
| | - Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department and Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shan Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Burkitt MD, Duckworth CA, Williams JM, Pritchard DM. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 2017; 10:89-104. [PMID: 28151409 PMCID: PMC5312008 DOI: 10.1242/dmm.027649] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric colonization with Helicobacter pylori induces diverse human pathological conditions, including superficial gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma and its precursors. The treatment of these conditions often relies on the eradication of H. pylori, an intervention that is increasingly difficult to achieve and that does not prevent disease progression in some contexts. There is, therefore, a pressing need to develop new experimental models of H. pylori-associated gastric pathology to support novel drug development in this field. Here, we review the current status of in vivo and ex vivo models of gastric H. pylori colonization, and of Helicobacter-induced gastric pathology, focusing on models of gastric pathology induced by H. pylori, Helicobacter felis and Helicobacter suis in rodents and large animals. We also discuss the more recent development of gastric organoid cultures from murine and human gastric tissue, as well as from human pluripotent stem cells, and the outcomes of H. pylori infection in these systems.
Collapse
Affiliation(s)
- Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M Williams
- Pathology and Pathogen Biology, Royal Veterinary College, North Mymms AL9 7TA, UK
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
29
|
McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 2017; 9:toxins9100316. [PMID: 29023421 PMCID: PMC5666363 DOI: 10.3390/toxins9100316] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
30
|
Kinoshita H, Hayakawa Y, Koike K. Metaplasia in the Stomach-Precursor of Gastric Cancer? Int J Mol Sci 2017; 18:ijms18102063. [PMID: 28953255 PMCID: PMC5666745 DOI: 10.3390/ijms18102063] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite a significant decrease in the incidence of gastric cancer in Western countries over the past century, gastric cancer is still one of the leading causes of cancer-related deaths worldwide. Most human gastric cancers develop after long-term Helicobacter pylori infection via the Correa pathway: the progression is from gastritis, atrophy, intestinal metaplasia, dysplasia, to cancer. However, it remains unclear whether metaplasia is a direct precursor of gastric cancer or merely a marker of high cancer risk. Here, we review human studies on the relationship between metaplasia and cancer in the stomach, data from mouse models of metaplasia regarding the mechanism of metaplasia development, and the cellular responses induced by H. pylori infection.
Collapse
Affiliation(s)
- Hiroto Kinoshita
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
31
|
Functional Cytotoxin Associated Gene A in Helicobacter pylori Strains and Its Association with Integrity of Cag-pathogenicity Island and Histopathological Changes of Gastric Tissue. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2017. [DOI: 10.5812/archcid.62955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Tran LS, Chonwerawong M, Ferrero RL. Regulation and functions of inflammasome-mediated cytokines in Helicobacter pylori infection. Microbes Infect 2017; 19:449-458. [PMID: 28690082 DOI: 10.1016/j.micinf.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023]
Abstract
Persistent stomach infection with Helicobacter pylori causes chronic mucosal inflammation (gastritis), which is widely recognized as an essential precursor to gastric cancer. The IL-1 interleukin family cytokines IL-1β and IL-18 have emerged as central mediators of mucosal inflammation. Here, we review the regulation and functions of these cytokines in H. pylori-induced inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, Australia.
| |
Collapse
|
33
|
Miftahussurur M, Yamaoka Y, Graham DY. Helicobacter pylori vacuolating cytotoxin and gastric cancer risk: reconsidered. Transl Cancer Res 2017. [PMID: 28649559 DOI: 10.21037/tcr.2016.09.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Miftahussurur
- Department of Medicine, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA.,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Medicine, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA.,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
Johansson A, Claesson R, Höglund Åberg C, Haubek D, Oscarsson J. ThecagEgene sequence as a diagnostic marker to identify JP2 and non-JP2 highly leukotoxicAggregatibacter actinomycetemcomitansserotype b strains. J Periodontal Res 2017; 52:903-912. [DOI: 10.1111/jre.12462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- A. Johansson
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - R. Claesson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| | - C. Höglund Åberg
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - D. Haubek
- Section for Pediatric Dentistry; Department of Dentistry and Oral Health; Aarhus University; Aarhus Denmark
| | - J. Oscarsson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| |
Collapse
|
35
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
36
|
Suarez G, Romero-Gallo J, Sierra JC, Piazuelo MB, Krishna US, Gomez MA, Wilson KT, Peek RM. Genetic Manipulation of Helicobacter pylori Virulence Function by Host Carcinogenic Phenotypes. Cancer Res 2017; 77:2401-2412. [PMID: 28209611 DOI: 10.1158/0008-5472.can-16-2922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma, yet only a minority of infected persons ever develop this malignancy. One cancer-linked locus is the cag type 4 secretion system (cagT4SS), which translocates an oncoprotein into host cells. A structural component of the cagT4SS is CagY, which becomes rapidly altered during in vivo adaptation in mice and rhesus monkeys, rendering the cagT4SS nonfunctional; however, these models rarely develop gastric cancer. We previously demonstrated that the H. pylori cag+ strain 7.13 rapidly induces gastric cancer in Mongolian gerbils. We now use this model, in conjunction with samples from patients with premalignant lesions, to define the effects of a carcinogenic host environment on the virulence phenotype of H. pylori to understand how only a subset of infected individuals develop cancer. H. pylori cagY sequence differences and cagT4SS function were directly related to the severity of inflammation in human gastric mucosa in either a synchronous or metachronous manner. Serial infections of Mongolian gerbils with H. pylori strain 7.13 identified an oscillating pattern of cagT4SS function. The development of dysplasia or cancer selected for attenuated virulence phenotypes, but robust cagT4SS function could be restored upon infection of new hosts. Changes in the genetic composition of cagY mirrored cagT4SS function, although the mechanisms of cagY alterations differed in human isolates (mutations) versus gerbil isolates (addition/deletion of motifs). These results indicate that host carcinogenic phenotypes modify cagT4SS function via altering cagY, allowing the bacteria to persist and induce carcinogenic consequences in the gastric niche. Cancer Res; 77(9); 2401-12. ©2017 AACR.
Collapse
Affiliation(s)
- Giovanni Suarez
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judith Romero-Gallo
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Johanna C Sierra
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Uma S Krishna
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Martin A Gomez
- Department of Medicine, National University of Colombia, Bogota, Colombia.,Hospital El Tunal Unit of Gastroenterology, Bogota, Colombia
| | - Keith T Wilson
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Departments of Cancer Biology, Pathology, Microbiology, and Immunology, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
37
|
Helicobacter pylori, Cancer, and the Gastric Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 908:393-408. [PMID: 27573782 DOI: 10.1007/978-3-319-41388-4_19] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric adenocarcinoma is one of the leading causes of cancer-related death worldwide and Helicobacter pylori infection is the strongest known risk factor for this disease. Although the stomach was once thought to be a sterile environment, it is now known to house many bacterial species leading to a complex interplay between H. pylori and other residents of the gastric microbiota. In addition to the role of H. pylori virulence factors, host genetic polymorphisms, and diet, it is now becoming clear that components of the gastrointestinal microbiota may also influence H. pylori-induced pathogenesis. In this chapter, we discuss emerging data regarding the gastric microbiota in humans and animal models and alterations that occur to the composition of the gastric microbiota in the presence of H. pylori infection that may augment the risk of developing gastric cancer.
Collapse
|
38
|
Dietary Composition Influences Incidence of Helicobacter pylori-Induced Iron Deficiency Anemia and Gastric Ulceration. Infect Immun 2016; 84:3338-3349. [PMID: 27620719 DOI: 10.1128/iai.00479-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have provided conflicting data regarding an association between Helicobacter pylori infection and iron deficiency anemia (IDA) in humans. Here, a Mongolian gerbil model was used to investigate a potential role of H. pylori infection, as well as a possible role of diet, in H. pylori-associated IDA. Mongolian gerbils (either H. pylori infected or uninfected) received a normal diet or one of three diets associated with increased H. pylori virulence: high-salt, low-iron, or a combination of a high-salt and low-iron diet. In an analysis of all infected animals compared to uninfected animals (independent of diet), H. pylori-infected gerbils had significantly lower hemoglobin values than their uninfected counterparts at 16 weeks postinfection (P < 0.0001). The mean corpuscular volume (MCV) and serum ferritin values were significantly lower in H. pylori-infected gerbils than in uninfected gerbils, consistent with IDA. Leukocytosis and thrombocytosis were also detected in infected gerbils, indicating the presence of a systemic inflammatory response. In comparison to uninfected gerbils, H. pylori-infected gerbils had a higher gastric pH, a higher incidence of gastric ulcers, and a higher incidence of fecal occult blood loss. Anemia was associated with the presence of gastric ulceration but not gastric cancer. Infected gerbils consuming diets with a high salt content developed gastric ulcers significantly more frequently than gerbils consuming a normal-salt diet, and the lowest hemoglobin levels were in infected gerbils consuming a high-salt/low-iron diet. These data indicate that H. pylori infection can cause IDA and that the composition of the diet influences the incidence and severity of H. pylori-induced IDA.
Collapse
|
39
|
Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv 2016; 6:741-62. [PMID: 26149788 DOI: 10.4155/tde.15.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach.
Collapse
|
40
|
Wiedemann T, Hofbaur S, Loell E, Rieder G. A C-Terminal Coiled-Coil Region of CagL is Responsible for Helicobacter Pylori-Induced Il-8 Expression. Eur J Microbiol Immunol (Bp) 2016; 6:186-196. [PMID: 27766167 PMCID: PMC5063011 DOI: 10.1556/1886.2016.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin-8 (IL-8) is a potent neutrophil-activating chemokine which triggers the infiltration and migration of neutrophils into areas of bacterial infection. Helicobacter pylori-infected patient studies as well as animal models have revealed that H. pylori type I strains carrying an intact cytotoxin-associated gene pathogenicity island (cag-PAI) with a functional type IV secretion system (T4SS) induce IL-8 expression and secretion in gastric mucosa. This gastric mucosal IL-8 expression correlates with severe histological changes due to H. pylori infection. In the present study, we explored a new recognition pattern on the bacterial adhesion protein CagL inducing IL-8 expression in H. pylori-infected host cells. To analyze the secreted IL-8 concentration, we performed IL-8 enzyme-linked immunosorbent assay (ELISA). To investigate the H. pylori-induced IL-8 expression on the transcriptional level, we transiently transfected gastric epithelial cells (AGS) with a human IL-8 luciferase reporter construct. The results of this study demonstrate that specifically the C-terminal coiled-coil region of the H. pylori CagL protein, a protein described to be located on the tip of the T4SS-pilus, is responsible for several in vitro observations: 1) H. pylori-induced IL-8 secretion via the transforming growth factor (TGF)-α activated epidermal growth factor-receptor (EGF-R) signaling pathway; 2) H. pylori-induced elongation of the cells, a typical CagA-induced phenotype; and 3) the bridging of the T4SS to its human target cells. This novel bacterial-host recognition sequence allows a new insight into how H. pylori induces the inflammatory response in gastric epithelial cells and facilitates the development of precancerous conditions.
Collapse
Affiliation(s)
- Tobias Wiedemann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Cancer , Neuherberg, Germany
| | - Stefan Hofbaur
- Max-von-Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University , Munich, Germany
| | - Eva Loell
- Max-von-Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University , Munich, Germany
| | - Gabriele Rieder
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2 , D-85764 Oberschleissheim, Germany
| |
Collapse
|
41
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
42
|
Tohidpour A. CagA-mediated pathogenesis of Helicobacter pylori. Microb Pathog 2016; 93:44-55. [DOI: 10.1016/j.micpath.2016.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
|
43
|
Figura N, Marano L, Moretti E, Ponzetto A. Helicobacter pylori infection and gastric carcinoma: Not all the strains and patients are alike. World J Gastrointest Oncol 2016; 8:40-54. [PMID: 26798436 PMCID: PMC4714145 DOI: 10.4251/wjgo.v8.i1.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/06/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric carcinoma (GC) develops in only 1%-3% of Helicobacter pylori (H. pylori) infected people. The role in GC formation of the bacterial genotypes, gene polymorphisms and host's factors may therefore be important. The risk of GC is enhanced when individuals are infected by strains expressing the oncoprotein CagA, in particular if CagA has a high number of repeats containing the EPIYA sequence in its C'-terminal variable region or particular amino acid sequences flank the EPIYA motifs. H. pylori infection triggers an inflammatory response characterised by an increased secretion of some chemokines by immunocytes and colonised gastric epithelial cells; these molecules are especially constituted by proteins composing the interleukin-1beta (IL-1β) group and tumour necrosis factor-alpha (TNF-α). Polymorphisms in the promoter regions of genes encoding these molecules, could account for high concentrations of IL-1β and TNF-α in the gastric mucosa, which may cause hypochlorhydria and eventually GC. Inconsistent results have been attained with other haplotypes of inflammatory and anti-inflammatory cytokines. Genomic mechanisms of GC development are mainly based on chromosomal or microsatellite instability (MSI) and deregulation of signalling transduction pathways. H. pylori infection may induce DNA instability and breaks of double-strand DNA in gastric mucocytes. Different H. pylori strains seem to differently increase the risk of cancer development run by the host. Certain H. pylori genotypes (such as the cagA positive) induce high degrees of chronic inflammation and determine an increase of mutagenesis rate, oxidative-stress, mismatch repair mechanisms, down-regulation of base excision and genetic instability, as well as generation of reactive oxygen species that modulate apoptosis; these phenomena may end to trigger or concur to GC development.
Collapse
|
44
|
Solnick JV, Eaton KA, Peek RM. Animal Models of Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:273-297. [DOI: 10.1007/978-4-431-55936-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
45
|
Cover TL, Holland RL, Blanke SR. Helicobacter pylori Vacuolating Toxin. HELICOBACTER PYLORI RESEARCH 2016:113-141. [DOI: 10.1007/978-4-431-55936-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
46
|
Chang H, Kim N, Park JH, Nam RH, Choi YJ, Park SM, Choi YJ, Yoon H, Shin CM, Lee DH. Helicobacter pylori Might Induce TGF-β1-Mediated EMT by Means of cagE. Helicobacter 2015; 20:438-48. [PMID: 25735663 DOI: 10.1111/hel.12220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT), in which polarized epithelial cells have mesenchymal cell phenotypes, is thought to be a key process of invasion and metastasis of cancer. Transforming growth factor beta-1 (TGF-β1) is known to be carcinogenic and Helicobacter pylori is a predominant carcinogen of gastric cancer. Our study aimed to determine whether TGF-β1 or H. pylori infection enhances EMT process and cytotoxin-associated gene E (CagE) is associated with EMT. MATERIALS AND METHODS Human gastric cancer cell AGS and MKN45 were treated with recombinant TGF-β1 or H. pylori including cagE-negative (ΔcagE) mutant. Besides the assessment of EMT-related markers expression levels by means of RT-qPCR, Western blot, and immunofluorescence assay, the induction of in vitro EMT on gastric cancer cells (AGS and MKN cell lines) was confirmed by wound-healing assay and invasion assay. RESULTS When gastric cancer cells were treated with TGF-β1 or various strains of cagE-positive H. pylori, EMT-related marker altered significantly. However, the ΔcagE mutant did not. Wound-healing assay and invasion assay showed enhanced migration ability of the cells treated with cagE-positive H. pylori but not in ΔcagE mutant. CONCLUSIONS EMT induction in gastric cancer cells by TGF-β1 was confirmed. Only infection with cagE-positive H. pylori upregulated the TGF-β1-mediated EMT pathway and consequently promotes EMT. Therefore, H. pylori might induce TGF-β1-mediated EMT associated with the cagE.
Collapse
Affiliation(s)
- Hyun Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, South Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Zaidi SF, Refaat A, Zhou Y, Sualeh Muhammad J, Shin MS, Saiki I, Sakurai H, Sugiyama T. Helicobacter pylori Induces Serine Phosphorylation of EGFR via Novel TAK1-p38 Activation Pathway in an HB-EGF-Independent Manner. Helicobacter 2015; 20:381-9. [PMID: 25704183 DOI: 10.1111/hel.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The interaction of Helicobacter pylori with gastric epithelial cells can result in the activation of transcription factor NF-κB via TGF-β-activated kinase 1 (TAK1). In this study, we have demonstrated the role of H. pylori in the activation of EGFR via TAK1-mediated phosphorylation of p38. MATERIALS AND METHODS Gastric epithelial AGS or MKN-45 cells were co-cultured with wild-type or cagA(-) H. pylori strains. H. pylori was added to the cells, and the activation of EGFR, p65 (NF-κB) subunit, p38, ERK, and TAK1 was examined by Western blotting. Infected cells were pretreated with or without ligands, chemical inhibitors, anti-HB-EGF antibody, and siRNAs to evaluate the effects on phosphorylation of various EGFR residues. Fluorescence microscopy and flow cytometry were performed to detect the internalization of EGFR. RESULTS Incubating cells with wild-type and CagA(-) H. pylori strains resulted in the rapid and transient phosphorylation of serine residues of EGFR. RNAi experiments using siRNA against TAK1 and p38 pathways blocked the phosphorylation of serine residue. Immunofluorescence and flow cytometry revealed that EGFR was internalized in H. pylori-infected cells after EGFR phosphorylation in a p38-dependent manner. In contrast, pretreatment with gefitinib and anti-HB-EGF antibody did not block both the phosphorylation and internalization of EGFR. CONCLUSION Helicobacter pylori induces internalization of EGFR via novel TAK1-p38-serine activation pathway which is independent of HB-EGF. The interaction between TAK1 and EGFR in H. pylori-infected cells might open new dimensions in understanding H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Syed Faisal Zaidi
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Jeddah, Saudi Arabia.,Department of Biological and Biomedical Sciences, Faculty of Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Alaa Refaat
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Jibran Sualeh Muhammad
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Myoung-Sook Shin
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Toshiro Sugiyama
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M. CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol 2015; 17:1670-82. [PMID: 26041307 DOI: 10.1111/cmi.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/22/2022]
Abstract
CagA is a multifunctional toxin of Helicobacter pylori that is secreted into host epithelial cells by a type IV secretion system. Following host cell translocation, CagA interferes with various host-cell signalling pathways. Most notably this toxin is involved in the disruption of apical-basolateral cell polarity and cell adhesion, as well as in the induction of cell proliferation, migration and cell morphological changes. These are processes that also play an important role in epithelial-to-mesenchymal transition and cancer cell invasion. In fact, CagA is considered as the only known bacterial oncoprotein. The cellular effects are triggered by a variety of CagA activities including the inhibition of serine-threonine kinase Par1b/MARK2 and the activation of tyrosine phosphatase SHP-2. Additionally, CagA was described to affect the activity of Src family kinases and C-terminal Src kinase (Csk) suggesting that interference with multiple cellular kinase- and phosphatase-associated signalling pathways is a major function of CagA. Here, we describe the effect of CagA on protein kinase C-related kinase 2 (PRK2), which acts downstream of Rho GTPases and is known to affect cytoskeletal rearrangements and cell polarity. CagA interacts with PRK2 and inhibits its kinase activity. Because PRK2 has been linked to cytoskeletal rearrangements and establishment of cell polarity, we suggest that CagA may hijack PRK2 to further manipulate cancer-related signalling pathways.
Collapse
Affiliation(s)
- Jyoti Prasad Mishra
- Department of Health Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - David Cohen
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Dragana Nesic
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY, USA
| | - Anne Muesch
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Markus Stein
- Department of Health Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
49
|
Vaziri F, Peerayeh SN, Alebouyeh M, Maghsoudi N, Azimzadeh P, Siadat SD, Zali MR. Novel effects of Helicobacter pylori CagA on key genes of gastric cancer signal transduction: a comparative transfection study. Pathog Dis 2015; 73:ftu021. [PMID: 25743471 DOI: 10.1093/femspd/ftu021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is now recognized as a worldwide problem. Helicobacter pylori CagA is the first bacterial oncoprotein to be identified in relation to human cancer. Helicobacter pylori CagA is noted for structural diversity in its C-terminal region (contains EPIYA motifs), with which CagA interacts with numerous host cell proteins. Deregulation of host signaling by translocated bacterial proteins provides a new aspect of microbial-host cell interaction. The aim of this study is to compare the cellular effects of two different CagA EPIYA motifs on identified signaling pathways involve in gastric carcinogenesis. To investigate the effects of CagA protein carboxyl region variations on the transcription of genes involved in gastric epithelial carcinogenesis pathways, the eukaryotic vector carrying the cagA gene (ABC and ABCCC types) was transfected into gastric cancer cell line. The 42 identified key genes of signal transduction involved in gastric cancer were analyzed at the transcription level by real-time PCR. The results of real-time PCR provide us important clue that the ABCCC oncoprotein variant can change the fate of the cell completely different from ABC type. In fact, these result proposed that the ABCCC type can induce the intestinal metaplasia, IL-8, perturbation of Crk adaptor proteins, anti-apoptotic effect and carcinogenic effect more significantly than ABC type. These data support our hypothesis of a complex interaction of host cell and these two different H. pylori effector variants that determines host cellular fate.
Collapse
Affiliation(s)
- Farzam Vaziri
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran Department of Bacteriology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Shahin N Peerayeh
- Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Masoud Alebouyeh
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center (NRC) and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Pedram Azimzadeh
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| | - Seyed D Siadat
- Department of Bacteriology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Mohammad R Zali
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| |
Collapse
|
50
|
|