1
|
Yang S, Yu J, Dong X, Zeng J, Tan L, Zhang H, Sun R, Tuo Y, Yang J, Wan C, Bai H. CCR2 signaling regulates anti-chlamydia T cell immune responses in the airway. PLoS Pathog 2025; 21:e1012912. [PMID: 39903705 PMCID: PMC11793788 DOI: 10.1371/journal.ppat.1012912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
CCR2, a member of the G protein-coupled receptor (GPCR) superfamily, is widely expressed on monocytes, macrophages, activated T cells, and other cell types, and plays a critical role in coordinating the immune response to various infections. Here we demonstrate that CCR2 expression is significantly elevated during Chlamydia muridarum (C. muridarum) respiratory infection, and its absence leads to exacerbated susceptibility, as evidenced by significant weight loss, higher bacterial loads, severe lung pathology, and elevated levels of inflammatory cytokines (il-1β, tnfα, and il-6). The absence of ccr2 impairs both myeloid cell infiltration and T cell responses, which are crucial for effective immune defense. Specifically, ccr2 deficiency disrupts the differentiation and response of Th1 cells, which are the primary effector lineage responsible for clearing chlamydia through secretion of interferon-gamma (IFN-γ). As a result, there is a significant decrease in CD3+CD4+IFN-γ+ T cells in the lung and spleen, accompanied by reduced levels of IFN-γ protein and mRNA, as well as downregulated mRNA expression of Th1-promoting cytokines (il-12p35, il-12p40) and transcription factors (stat4, T-bet), which play crucial roles in Th1 differentiation. Moreover, ccr2 deficiency greatly diminishes STAT1 phosphorylation, a key regulator of IFN-γ secretion by Th1 cells. Meanwhile, we also observed a significant reduction in IFN-γ secretion by CD8+ T cells following ccr2 deficiency. Conversely, ccr2-/- mice exhibit an exaggerated Th2-type immune response, with elevated levels of Th2-promoting cytokines (IL-4), transcription factors (STAT6 and gata3), and il-5, which together lead to more severe lung tissue damage and increased susceptibility to infection. Furthermore, these mice show higher levels of IL-17 along with an enhanced Th17-type immune response, characterized by increased Th17-promoting cytokines TGFB, transcription factors stat3 and RORγt, and il-21, suggesting a compensatory mechanism that drives neutrophil infiltration to exacerbate lung inflammation. These findings underscore the pivotal role of CCR2, a chemokine receptor, in orchestrating the immune response to Chlamydia infection by facilitating Th1 cells differentiation while restraining Th2-type and Th17-type immune responses, thereby alleviating pulmonary inflammation.
Collapse
Affiliation(s)
- Shuaini Yang
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Jinxi Yu
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Physical and Rehabilitation Medicine, Tianjin medical University General Hospital, Tianjin, China
| | - Jiajia Zeng
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Lu Tan
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Hong Zhang
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Ruoyuan Sun
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Yuqing Tuo
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Jing Yang
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin medical University General Hospital, Tianjin, China
| | - Hong Bai
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Martins VD, Vaz L, Barbosa SC, Paixão PHDM, Torres L, de Oliveira MFA, Oliveira MDA, Vieira LQ, de Faria AMC, Maioli TU. Obesity alters the macrophages' response to Leishmania major in C57BL/6 mice. J Leukoc Biol 2024; 116:1372-1384. [PMID: 39213305 DOI: 10.1093/jleuko/qiae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is a global pandemic associated with several comorbidities, such as cardiovascular diseases and type 2 diabetes. It is also a predisposing factor for infectious diseases, increasing mortality rates. Moreover, diet-induced obesity can cause metabolic fluctuations that affect macrophage differentiation in various organs. In this sense, we investigated how bone marrow-derived macrophages and tissue-resident macrophages in the skin, which have been differentiated in a host with metabolic syndrome and with previous inflammatory burden, respond to Leishmania major infection. Our findings suggest that bone marrow-derived macrophages from obese C57BL/6 mice, even when cultivated in vitro with inflammatory stimuli, are more susceptible to L. major. These macrophages produce less tumor necrosing factor (TNF) and nitric oxide (NO) and show higher arginase activity. Furthermore, obese mice infected with an intermediate dose of L. major in the skin had more severe lesions when analyzed for ulceration, diameter, thickness, and parasite burden. The increase in lesion severity in obese mice was associated with a higher frequency of tissue-resident macrophages, which are less efficient in killing parasites. We also used CCR2-/- mice, which predominantly have tissue-resident macrophages, and found that lesion resolution was delayed in association with CCR2 deficiency. Additionally, obesity potentiated tissue damage, resulting in higher frequency of tissue-resident macrophages. Our results demonstrate that obesity can alter macrophage responses to infection, leading to increased susceptibility to L. major and more severe cutaneous leishmaniasis. These findings may have important implications for managing obesity-related infections and the development of new therapies for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Vinicius Dantas Martins
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Leonardo Vaz
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Pierre Henrique de Menezes Paixão
- Postgraduate Program in Pathology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Licia Torres
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
- Postgraduate Program in Nutrition and Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, CEP 30130-100, Belo Horizonte, Brazil
| | - Marcos Felipe Andrade de Oliveira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Mariana de Almeida Oliveira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Leda Quercia Vieira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
- Postgraduate Program in Nutrition and Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, CEP 30130-100, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Avishek K, Beg MA, Vats K, Singh AK, Dey R, Singh KP, Singh RK, Gannavaram S, Ramesh V, Mulla MSA, Bhatnagar U, Singh S, Nakhasi HL, Salotra P, Selvapandiyan A. Manufacturing and preclinical toxicity of GLP grade gene deleted attenuated Leishmania donovani parasite vaccine. Sci Rep 2024; 14:14636. [PMID: 38918456 PMCID: PMC11199483 DOI: 10.1038/s41598-024-64592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.
Collapse
Affiliation(s)
- Kumar Avishek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kamaleshwar P Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Rajesh Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - V Ramesh
- Department of Dermatology and STD, ESIC Medical College, Faridabad, Haryana, 121001, India
| | | | - Upendra Bhatnagar
- Vimta Laboratories, Cherlapally, Hyderabad, Telangana, 500051, India
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | |
Collapse
|
4
|
Miyake K, Ito J, Takahashi K, Nakabayashi J, Brombacher F, Shichino S, Yoshikawa S, Miyake S, Karasuyama H. Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model. Nat Commun 2024; 15:1666. [PMID: 38396021 PMCID: PMC10891131 DOI: 10.1038/s41467-024-46148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Both monocytes and macrophages are heterogeneous populations. It was traditionally understood that Ly6Chi classical (inflammatory) monocytes differentiate into pro-inflammatory Ly6Chi macrophages. Accumulating evidence has suggested that Ly6Chi classical monocytes can also differentiate into Ly6Clo pro-resolving macrophages under certain conditions, while their differentiation trajectory remains to be fully elucidated. The present study with scRNA-seq and flow cytometric analyses reveals that Ly6ChiPD-L2lo classical monocytes recruited to the allergic skin lesion sequentially differentiate into Ly6CloPD-L2hi pro-resolving macrophages, via intermediate Ly6ChiPD-L2hi macrophages but not Ly6Clo non-classical monocytes, in an IL-4 receptor-dependent manner. Along the differentiation, classical monocyte-derived macrophages display anti-inflammatory signatures followed by metabolic rewiring concordant with their ability to phagocytose apoptotic neutrophils and allergens, therefore contributing to the resolution of inflammation. The failure in the generation of these pro-resolving macrophages drives the IL-1α-mediated cycle of inflammation with abscess-like accumulation of necrotic neutrophils. Thus, we clarify the stepwise differentiation trajectory from Ly6Chi classical monocytes toward Ly6Clo pro-resolving macrophages that restrain neutrophilic aggravation of skin allergic inflammation.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Junya Ito
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazufusa Takahashi
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Nakabayashi
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Center for Genetic and Biotechnology Cape Town Component & University of Cape Town, Cape Town, South Africa
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Pacheco-Fernandez T, Markle H, Verma C, Huston R, Gannavaram S, Nakhasi HL, Satoskar AR. Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res Rep Trop Med 2023; 14:61-85. [PMID: 37492219 PMCID: PMC10364832 DOI: 10.2147/rrtm.s392606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hannah Markle
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Ryan Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| |
Collapse
|
6
|
Goto Y, Mizobuchi H. Pathological roles of macrophages in Leishmania infections. Parasitol Int 2023; 94:102738. [PMID: 36738983 DOI: 10.1016/j.parint.2023.102738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophages are the major host cells for Leishmania parasites, and determine the fate of infection by either limiting or allowing growth of the parasites, resulting in development or control of leishmaniasis, respectively. They also play important roles in causing pathological outcomes during Leishmania infection. The pathophysiology is complex and include a wide variety of molecular and cellular responses including enhancement of inflammatory responses by releasing cytokines, causing damages to surrounding cells by reactive oxygen species, or disordered phagocytosis of other cells. It is of note that disease severity in leishmaniasis sometimes does not correlate with parasite burdens, indicating that pathological roles of macrophages are not necessarily linked to their parasite-killing activities that are often defined by M1/M2 status. Here, we review the roles of macrophages in leishmaniasis with a focus on their pathological mechanisms in disease development.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Haruka Mizobuchi
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Novita BD, Tjahjono Y, Wijaya S, Theodora I, Erwin F, Halim SW, Hendrawan B, Jaya DK, Tahalele PL. Characterization of chemokine and cytokine expression pattern in tuberculous lymphadenitis patient. Front Immunol 2022; 13:983269. [PMID: 36439164 PMCID: PMC9692123 DOI: 10.3389/fimmu.2022.983269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION C-C chemokine receptor-2 (CCR-2) and C-C chemokine ligand-5 (CCL-5) play an important role in the migration of monocytes, macrophages, dendritic cells, and activated T cells against Mycobacterium tuberculosis (M.tb). Meanwhile, signal transducer and activator of transcription 3 (STAT-3) and suppressor of cytokine signaling 3 (SOCS-3), activated by interleukin (IL)-6 and IL-10 in tuberculosis (TB) infection, play an important role in phagocytosis, inflammation, and granulomatous-forming processes that may lead to TB treatment success or failure. However, there are no data about the expression of those markers in tuberculous lymphadenitis. The characterization of those markers is very critical to put a fundamental basis to understand the homing mechanism of tuberculous lymphadenitis. AIM OF STUDY The specific objective of this study is to characterize the expression pattern of CCR-2-CCL-5, IL-6, IL-10, STAT-3, and SOCS-3 in tuberculous lymphadenitis. METHODS The study was performed on 27 cases of tuberculous lymphadenitis node biopsies. The diagnosis of tuberculous lymphadenitis was based on the clinical criteria and the presence of the histological feature characteristic of TB granulomas. Afterward, immunohistochemistry was stained with CCR-2, CCL-5, IL-6, IL-10, STAT-3, and SOCS-3. A semiquantitative analysis of IHC images was performed to examine protein expression in stained preparations. The expression was also manually counted. RESULTS Compared with the normal area, both lymphocytes and macrophages expressed strongly CCR-2-, CCL-5, and IL-6, while IL-10, STAT-3-, and SOCS-3- were expressed lowly. There was a strong positive correlation between CCR-2 with IL-6 (p = 0,83) and IL-10 (p = 0,83). CONCLUSION The chronic infection process of tuberculous lymphadenitis was characterized by the expression of IL-10low, STAT-3low, SOCS-3low, CCR-2high, CCL-5high, and IL-6high. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, identifier NCT05202548.
Collapse
Affiliation(s)
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Sumi Wijaya
- Faculty of Pharmacy, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Imelda Theodora
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Ferdinand Erwin
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Stefan Wilson Halim
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Bobby Hendrawan
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - David Karunia Jaya
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Paul L. Tahalele
- Faculty of Medicine, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| |
Collapse
|
8
|
Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, Lin S, Jing Y, Jiang P, Chen Q, Luo L, Liu J, Chang J, Li Z, Wang Y, Dai X, Miller H, Westerberg LS, Park C, Kubo M, Gong Q, Dong L, Liu C. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med 2022; 12:e887. [PMID: 35875970 PMCID: PMC9309749 DOI: 10.1002/ctm2.887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CCR2 is involved in maintaining immune homeostasis and regulating immune function. This study aims to elucidate the mechanism by which CCR2 regulates B-cell signalling. METHODS In Ccr2-knockout mice, the development and differentiation of B cells, BCR proximal signals, actin movement and B-cell immune response were determined. Besides, the level of CCR2 in PBMC of SLE patients was analysed by bioinformatics. RESULTS CCR2 deficiency reduces the proportion and number of follicular B cells, upregulates BCR proximal signalling and enhances the oxidative phosphorylation of B cells. Meanwhile, increased actin filaments aggregation and its associated early-activation events of B cells are also induced by CCR2 deficiency. The MST1/mTORC1/STAT1 axis in B cells is responsible for the regulation of actin remodelling, metabolic activities and transcriptional signalling, specific MST1, mTORC1 or STAT1 inhibitor can rescue the upregulated BCR signalling. Glomerular IgG deposition is obvious in CCR2-deficient mice, accompanied by increased anti-dsDNA IgG level. Additionally, the CCR2 expression in peripheral B cells of SLE patients is decreased than that of healthy controls. CONCLUSIONS CCR2 can utilise MST1/mTORC1/STAT1 axis to regulate BCR signalling. The interaction between CCR2 and BCR may contribute to exploring the mechanism of autoimmune diseases.
Collapse
Affiliation(s)
- Yingzi Zhu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Na Li
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Qiuyue Chen
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengyan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qianglin Chen
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Li Luo
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenzhen Li
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heather Miller
- Department of Research and DevelopmentBD BiosciencesSan JoseCaliforniaUnited States
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Chan‐Sik Park
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐guSeoulKorea
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS)RIKEN Yokohama InstituteKanagawaJapan
| | - Quan Gong
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Desel C, Murray PJ, Lehmann CHK, Heger L, Christensen D, Andersen P, Mack M, Dudziak D, Lang R. Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Front Immunol 2022; 13:880474. [PMID: 35585969 PMCID: PMC9108773 DOI: 10.3389/fimmu.2022.880474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Successful subunit vaccination with recombinant proteins requires adjuvants. The glycolipid trehalose-dibehenate (TDB), a synthetic analog of the mycobacterial cord factor, potently induces Th1 and Th17 immune responses and is a candidate adjuvant for human immunization. TDB binds to the C-type lectin receptor Mincle and triggers Syk-Card9-dependent APC activation. In addition, interleukin (IL)-1 receptor/MyD88-dependent signaling is required for TDB adjuvanticity. The role of different innate immune cell types in adjuvant-stimulated Th1/Th17 responses is not well characterized. We investigated cell recruitment to the site of injection (SOI) and to the draining lymph nodes (dLNs) after immunization with the TDB containing adjuvant CAF01 in a protein-based vaccine. Recruitment of monocytes and neutrophils to the SOI and the dramatic increase in lymph node cellularity was partially dependent on both Mincle and MyD88. Despite their large numbers at the SOI, neutrophils were dispensable for the induction of Th1/Th17 responses. In contrast, CCR2-dependent monocyte recruitment was essential for the induction of Th1/Th17 cells. Transport of adjuvant to the dLN did not require Mincle, MyD88, or CCR2. Together, adjuvanticity conferred by monocytes can be separated at the cellular level from potential tissue damage by neutrophils.
Collapse
Affiliation(s)
- Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| | - Peter J. Murray
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christian H. K. Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christiane Desel, ; Roland Lang,
| |
Collapse
|
10
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
11
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani, is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depend on the involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4, and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokine receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi (UP), India
| | - Madhav Bhatia
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
12
|
Chemokines in Leishmaniasis: Map of cell movements highlights the landscape of infection and pathogenesis. Cytokine 2021; 147:155339. [DOI: 10.1016/j.cyto.2020.155339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
|
13
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Ren H, Zhang T, Wang Y, Yao Q, Wang Z, Zhang L, Wang L. Tumor-Derived Autophagosomes (DRibbles) Activate Human B Cells to Induce Efficient Antigen-Specific Human Memory T-Cell Responses. Front Immunol 2021; 12:675822. [PMID: 34122437 PMCID: PMC8187759 DOI: 10.3389/fimmu.2021.675822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
We have reported that tumor-derived autophagosomes (DRibbles) were efficient carriers of tumor antigens and DRibbles antigens could be present by DRibbles-activated B cells to stimulate effect and naïve T cells in mice. However, the effect of DRibbles on human B cells remains unclear. Herein, we found that DRibbles can also efficiently induce proliferation and activation of human B cells and lead to the production of chemokines, cytokines and hematopoietic growth factors. We further demonstrated human B cells can effectively phagocytose DRibbles directly and cross-present DRibbles antigens to stimulate antigen-specific memory T cells. Furthermore, we found that membrane-bound high-mobility group B1 (HMGB1) on DRibbles was crucial for inducing human B cells activation. Therefore, these findings provide further evidence to promote the clinical application of B-DRibbles vaccines.
Collapse
Affiliation(s)
- Hongyan Ren
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyu Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yongren Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Wang
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyao Zhang
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixin Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
15
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
16
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
17
|
Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana: the host-parasite relationship. Pathog Dis 2020; 78:5917983. [PMID: 33016312 DOI: 10.1093/femspd/ftaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022] Open
Abstract
Leishmaniosis is currently considered a serious public health problem and it is listed as a neglected tropical disease by World Health Organization (WHO). Despite the efforts of the scientific community, it has not been possible to develop an effective vaccine. Current treatment consists of antimonials that is expensive and can cause adverse effects. It is essential to fully understand the immunopathogenesis of the disease to develop new strategies to prevent, treat and eradicate the disease. Studies on animal models have shown a new paradigm in the resolution or establishment of infection by Leishmania mexicana where a wide range of cytokines, antibodies and cells are involved. In recent years, the possibility of a new therapy with monoclonal antibodies has been considered, where isotype, specificity and concentration are critical for effective therapy. Would be better to create/generate a vaccine to induce host protection or produce passive immunization with engineering monoclonal antibodies to a defined antigen? This review provides an overview that includes the current known information on the immune response that are involved in the complex host-parasite relationship infection caused by L. mexicana.
Collapse
Affiliation(s)
- Mayra A Rodríguez-Serrato
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Mario C Salinas-Carmona
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Alberto Yairh Limón-Flores
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| |
Collapse
|
18
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
19
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
20
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
21
|
Carneiro MB, Lopes ME, Hohman LS, Romano A, David BA, Kratofil R, Kubes P, Workentine ML, Campos AC, Vieira LQ, Peters NC. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe 2020; 27:752-768.e7. [PMID: 32298657 DOI: 10.1016/j.chom.2020.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.
Collapse
Affiliation(s)
- Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mateus Eustáquio Lopes
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leah S Hohman
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rachel Kratofil
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Matthew L Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexandre C Campos
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
22
|
David BA, Kubes P. Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics. Immunol Rev 2020; 289:9-30. [PMID: 30977202 DOI: 10.1111/imr.12757] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Chemotaxis is fundamental for leukocyte migration in immunity and inflammation and contributes to the pathogenesis of many human diseases. Although chemokines and various other chemoattractants were initially appreciated as important mediators of acute inflammation, in the past years they have emerged as critical mediators of cell migration during immune surveillance, organ development, and cancer progression. Such advances in our knowledge in chemokine biology have paved the way for the development of specific pharmacological targets with great therapeutic potential. Chemoattractants may belong to different classes, including a complex chemokine system of approximately 50 endogenous molecules that bind to G protein-coupled receptors, which are expressed by a wide variety of cell types. Also, an unknown number of other chemoattractants may be generated by pathogens and damaged/dead cells. Therefore, blocking chemotaxis without causing side effects is an extremely challenging task. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the whole organ level in homeostasis, inflammation, and infection.
Collapse
Affiliation(s)
- Bruna A David
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
NLRP3 gain-of-function in CD4 + T lymphocytes ameliorates experimental autoimmune encephalomyelitis. Clin Sci (Lond) 2019; 133:1901-1916. [PMID: 31471462 DOI: 10.1042/cs20190506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022]
Abstract
NLRP3 inflammasome [NLR (nucleotide-binding domain, leucine-rich repeat containing protein) Pyrin-domain-containing 3 ] functions as an innate sensor of several PAMPs and DAMPs (pathogen- and damage-associated molecular patterns). It has been also reported as a transcription factor related to Th2 pattern, although its role in the adaptive immunity has been controversial, mainly because the studies were performed using gene deletion approaches. In the present study, we have investigated the NLRP3 gain-of-function in the context of encephalomyelitis autoimmune disease (EAE), considered to be a Th1- and Th17-mediated disease. We took advantage of an animal model with NLRP3 gain-of-function exclusively to T CD4+ lymphocytes (CD4CreNLRP3fl/fl). These mice presented reduced clinical score, accompanied by less infiltrating T CD4+ cells expressing both IFN-γ and IL-17 at the central nervous system (CNS) during the peak of the disease. However, besides NLRP3 gain-of-function in lymphocytes, these mice lack NLRP3 expression in non-T CD4+ cells. Therefore, in order to circumvent this deficiency, we transferred naive CD4+ T cells from WT, NLRP3-/- or CD4CreNLRP3fl/fl into Rag-1-/- mice and immunized them with MOG35-55 Likewise, the animals repopulated with CD4CreNLRP3fl/fl T CD4+ cells presented reduced clinical score and decreased IFN-γ production at the peak of the disease. Additionally, primary effector CD4+ T cells derived from these mice presented reduced glycolytic profile, a metabolic profile compatible with Th2 cells. Finally, naive CD4+ T cells from CD4CreNLRP3fl/fl mice under a Th2-related cytokine milieu cocktail exhibited in vitro an increased IL-4 and IL-13 production. Conversely, naive CD4+ T cells from CD4CreNLRP3fl/fl mice under Th1 differentiation produced less IFN-γ and T-bet. Altogether, our data evidence that the NLRP3 gain-of-function promotes a Th2-related response, a pathway that could be better explored in the treatment of multiple sclerosis.
Collapse
|
24
|
Wang X, Iyer A, Lyons AB, Körner H, Wei W. Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Front Immunol 2019; 10:2031. [PMID: 31507616 PMCID: PMC6718513 DOI: 10.3389/fimmu.2019.02031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages have emerged as a key component of the innate immune system that emigrates to peripheral tissues during gestation and in the adult organism. Their complex pathway to maturity, their unique plasticity and their various roles as effector and regulatory cells during an immune response have been the focus of intense research. A class of surface molecules, the G-Protein coupled receptors (GPCRs) play important roles in many immune processes. They have drawn attention in regard to these functions and the potential for therapeutic targets that can modulate the response of immune cells in pathologies such as diabetes, atherosclerosis, and chronic inflammatory diseases. Of the more than 800 GPCRs identified, ~100 are currently targeted with drugs which have had their activity investigated in vivo. Macrophages express a number of GPCRs which have central roles during cell differentiation and in the regulation of their functions. While some macrophage GPCRs such as chemokine receptors have been studied in great detail, the roles of other receptors of this large family are still not well understood. This review summarizes new insights into macrophage biology, differences of human, and mouse macrophages and gives details of some of the GPCRs expressed by this cell type.
Collapse
Affiliation(s)
- Xinming Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China.,Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Abishek Iyer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Tibúrcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front Immunol 2019; 10:227. [PMID: 30873156 PMCID: PMC6401646 DOI: 10.3389/fimmu.2019.00227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are a diverse group of leukocytes responsible for bridging innate and adaptive immunity. Despite their functional versatility, DCs exist primarily in two basic functional states: immature and mature. A large body of evidence suggests that upon interactions with pathogens, DCs undergo intricate cellular processes that culminate in their activation, which is paramount to the orchestration of effective immune responses against Leishmania parasites. Herein we offer a concise review of the emerging hallmarks of DCs activation in leishmaniasis as well as a comprehensive discussion of the following underlying molecular events: DC-Leishmania interaction, antigen uptake, costimulatory molecule expression, parasite ability to affect DC migration, antigen presentation, metabolic reprogramming, and epigenetic alterations.
Collapse
Affiliation(s)
- Rafael Tibúrcio
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Ivanéia Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Reinan Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Natalia Machado Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
27
|
Schwager S, Renner S, Hemmerle T, Karaman S, Proulx ST, Fetz R, Golding-Ochsenbein AM, Probst P, Halin C, Neri D, Detmar M. Antibody-mediated delivery of VEGF-C potently reduces chronic skin inflammation. JCI Insight 2018; 3:124850. [PMID: 30518687 DOI: 10.1172/jci.insight.124850] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
VEGF-C is an important mediator of lymphangiogenesis and has been shown to alleviate chronic inflammation in a variety of disease models. In this study, we investigated whether targeted delivery of VEGF-C to sites of inflammation and site-specific activation of lymphatic vessels would represent a clinically feasible strategy for treating chronic skin inflammation. To this end, we generated a fusion protein consisting of human VEGF-C fused to the F8 antibody (F8-VEGF-C), which is specific for the alternatively spliced, angiogenesis-marking extradomain A (EDA) of fibronectin. In two mouse models of psoriasis-like skin inflammation, mediated by transgenic VEGF-A overexpression or repeated application of imiquimod, intravenous treatment with F8-VEGF-C but not with untargeted VEGF-C significantly reduced ear skin edema and was as effective as the clinically used TNF-α receptor-Fc fusion protein (TNFR-Fc). Treatment with F8-VEGF-C led to a marked expansion of lymphatic vessels in the inflamed skin and significantly improved lymphatic drainage function. At the same time, treatment with F8-VEGF-C significantly reduced leukocyte numbers, including CD4+ and γδ T cells. In sum, our results reveal that targeted delivery of VEGF-C and site-specific induction of lymphatic vessels represent a potentially new and promising approach for the treatment of chronic inflammatory diseases.
Collapse
|
28
|
Lopez MJ, Seyed-Razavi Y, Jamali A, Harris DL, Hamrah P. The Chemokine Receptor CXCR4 Mediates Recruitment of CD11c+ Conventional Dendritic Cells Into the Inflamed Murine Cornea. Invest Ophthalmol Vis Sci 2018; 59:5671-5681. [PMID: 30489627 PMCID: PMC6266730 DOI: 10.1167/iovs.18-25084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose The cornea contains distinct populations of antigen-presenting cells (APCs), including conventional dendritic cells (cDCs). Little is known about the molecular mechanisms involved in cDCs homing and recruitment into the naïve and inflamed cornea. The purpose of this study was to investigate the presence of CXCR4 and its ligand CXCL12 in the murine cornea and its role in cDC migration during corneal inflammation. Methods The expression of CXCR4 and CXCL12 in naïve and suture-inflamed murine corneas was assessed by whole-mount staining, flow cytometry, and quantitative PCR. The role of CXCR4 in recruitment into inflamed corneas was investigated using adoptive transfer of cDCs blocked with neutralizing antibody against CXCR4. Results We show the chemokine receptor CXCR4 to be expressed on 51.7% and 64.8% of total corneal CD11c+ cDCs, equating to 98.6 ± 12.5 cells/mm2 in the peripheral and 64.7 ± 10.6 cells/mm2 in the central naïve cornea, respectively. Along with a 4.5-fold increase in CXCL12 expression during inflammation (P < 0.05), infiltrating cDCs also expressed CXCR4 in both the peripheral (222.6 ± 33.3 cells/mm2; P < 0.001) and central cornea (161.9 ± 23.8 cells/mm2; P = 0.001), representing a decrease to 31.0% and 37.3% in the cornea, respectively. Further, ex vivo blockade (390.1 ± 40.1 vs. 612.1 ± 78.3; P = 0.008) and local blockade (263.5 ± 27.1 vs. 807.5 ± 179.5, P < 0.001) with anti-CXCR4 neutralizing antibody resulted in a decrease in cDCs homing into the cornea compared with cells pretreated with isotype controls. Conclusions Our results demonstrate that corneal CXCL12 plays a direct role in CXCR4+ cDC recruitment into the cornea. The CXCR4/CXCL12 axis is therefore a potential target to modulate corneal inflammatory responses.
Collapse
Affiliation(s)
- Maria J. Lopez
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Arsia Jamali
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
29
|
Hovav AH. Mucosal and Skin Langerhans Cells – Nurture Calls. Trends Immunol 2018; 39:788-800. [DOI: 10.1016/j.it.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
30
|
Pfeffer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J, Dove RE, Sandstrom T, Mudway IS, Hawrylowicz CM. Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology 2018; 153:502-512. [PMID: 29044495 PMCID: PMC5838419 DOI: 10.1111/imm.12852] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have consistently shown associations between elevated concentrations of urban particulate matter (UPM) air pollution and exacerbations of asthma and chronic obstructive pulmonary disease, which are both associated with viral respiratory infections. The effects of UPM on dendritic cell (DC) -stimulated CD4 T lymphocytes have been investigated previously, but little work has focused on CD8 T-lymphocyte responses despite their importance in anti-viral immunity. To address this, we examined the effects of UPM on DC-stimulated naive CD8 T-cell responses. Expression of the maturation/activation markers CD83, CCR7, CD40 and MHC class I on human myeloid DCs (mDCs) was characterized by flow cytometry after stimulation with UPMin vitro in the presence/absence of granulocyte-macrophage colony-stimulating factor (GM-CSF). The capacity of these mDCs to stimulate naive CD8 T-lymphocyte responses in allogeneic co-culture was then assessed by measuring T-cell cytokine secretion using cytometric bead array, and proliferation and frequency of interferon-γ (IFN-γ)-producing T lymphocytes by flow cytometry. Treatment of mDCs with UPM increased expression of CD83 and CCR7, but not MHC class I. In allogeneic co-cultures, UPM treatment of mDCs enhanced CD8 T-cell proliferation and the frequency of IFN-γ+ cells. The secretion of tumour necrosis factor-α, interleukin-13, Granzyme A and Granzyme B were also increased. GM-CSF alone, and in concert with UPM, enhanced many of these T-cell functions. The PM-induced increase in Granzyme A was confirmed in a human experimental diesel exposure study. These data demonstrate that UPM treatment of mDCs enhances priming of naive CD8 T lymphocytes and increases production of pro-inflammatory cytokines. Such UPM-induced stimulation of CD8 cells may potentiate T-lymphocyte cytotoxic responses upon concurrent airway infection, increasing bystander damage to the airways.
Collapse
Affiliation(s)
- Paul E. Pfeffer
- MRC and Asthma UK Centre for Allergic Mechanisms of AsthmaKing's College LondonGuy's HospitalLondonUK
- Present address:
William Harvey Research InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Tzer R. Ho
- MRC and Asthma UK Centre for Allergic Mechanisms of AsthmaKing's College LondonGuy's HospitalLondonUK
| | - Elizabeth H. Mann
- MRC and Asthma UK Centre for Allergic Mechanisms of AsthmaKing's College LondonGuy's HospitalLondonUK
| | - Frank J. Kelly
- MRC and Asthma UK Centre for Allergic Mechanisms of AsthmaKing's College LondonGuy's HospitalLondonUK
- Environmental Research GroupMRC‐PHE Centre for Environment and HealthKing's College LondonLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental HazardsFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Maria Sehlstedt
- Division of MedicineDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Jamshid Pourazar
- Division of MedicineDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Rosamund E. Dove
- Environmental Research GroupMRC‐PHE Centre for Environment and HealthKing's College LondonLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental HazardsFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Thomas Sandstrom
- Division of MedicineDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Ian S. Mudway
- Environmental Research GroupMRC‐PHE Centre for Environment and HealthKing's College LondonLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental HazardsFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Catherine M. Hawrylowicz
- MRC and Asthma UK Centre for Allergic Mechanisms of AsthmaKing's College LondonGuy's HospitalLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental HazardsFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
31
|
Ibarra-Meneses AV, Sanchez C, Alvar J, Moreno J, Carrillo E. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum. Front Immunol 2017; 8:1208. [PMID: 29033933 PMCID: PMC5626820 DOI: 10.3389/fimmu.2017.01208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023] Open
Abstract
New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1) was examined in plasma from soluble Leishmania antigen (SLA)-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL), unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools.
Collapse
Affiliation(s)
- Ana V Ibarra-Meneses
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Sanchez
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Alvar
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Kholodnyuk I, Rudevica Z, Leonciks A, Ehlin-Henriksson B, Kashuba E. Expression of the chemokine receptors CCR1 and CCR2B is up-regulated in peripheral blood B cells upon EBV infection and in established lymphoblastoid cell lines. Virology 2017; 512:1-7. [PMID: 28892735 DOI: 10.1016/j.virol.2017.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
In immunocompetent individuals, EBV establishes in B cells an asymptomatic lifelong latent infection controlled by the immune system. Chemokine receptors regulate immune system function. CCR1 and CCR2 share protein sequence similarity and exert responses to multiple chemokines. The role of these receptors in B cells is largely unknown. We show that the mRNA and functional protein expression of CCR1 and CCR2 is induced in ex vivo B cells upon EBV infection and in established lymphoblastoid cell lines (LCLs). The CCR1 and CCR2B ORF transcripts were determined in LCLs. In contrast, in both the EBV-negative and EBV-positive Burkitt lymphoma cell lines, neither the CCR1, CCR2A, and CCR2B ORF transcripts nor their corresponding proteins were detected. Our data suggest that CCR1/CCR2B could be involved in clearing EBV-infected latency III B cells in immunocompetent individuals via directing the migration of these cells and attracting the chemokines-expressing immune cells.
Collapse
Affiliation(s)
- Irina Kholodnyuk
- A. Kirchenstein Institute of Microbiology and Virology, Riga Stradins University (RSU), 5 Ratsupites str, 1067 Riga, Latvia; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden.
| | - Zanna Rudevica
- Latvian Biomedical Research and Study Center, 1-1k Ratsupites str, 1067 Riga, Latvia
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Center, 1-1k Ratsupites str, 1067 Riga, Latvia.
| | - Barbro Ehlin-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden; R. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology of NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| |
Collapse
|
33
|
Nguyen MA, Karunakaran D, Geoffrion M, Cheng HS, Tandoc K, Perisic Matic L, Hedin U, Maegdefessel L, Fish JE, Rayner KJ. Extracellular Vesicles Secreted by Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration. Arterioscler Thromb Vasc Biol 2017; 38:49-63. [PMID: 28882869 DOI: 10.1161/atvbaha.117.309795] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE During inflammation, macrophages secrete vesicles carrying RNA, protein, and lipids as a form of extracellular communication. In the vessel wall, extracellular vesicles (EVs) have been shown to be transferred between vascular cells during atherosclerosis; however, the role of macrophage-derived EVs in atherogenesis is not known. Here, we hypothesize that atherogenic macrophages secrete microRNAs (miRNAs) in EVs to mediate cell-cell communication and promote proinflammatory and proatherogenic phenotypes in recipient cells. APPROACH AND RESULTS We isolated EVs from mouse and human macrophages treated with an atherogenic stimulus (oxidized low-density lipoprotein) and characterized the EV miRNA expression profile. We confirmed the enrichment of miR-146a, miR-128, miR-185, miR-365, and miR-503 in atherogenic EVs compared with controls and demonstrate that these EVs are taken up and transfer exogenous miRNA to naive recipient macrophages. Bioinformatic pathway analysis suggests that atherogenic EV miRNAs are predicted to target genes involved in cell migration and adhesion pathways, and indeed delivery of EVs to naive macrophages reduced macrophage migration both in vitro and in vivo. Inhibition of miR-146a, the most enriched miRNA in atherogenic EVs, reduced the inhibitory effect of EVs on macrophage migratory capacity. EV-mediated delivery of miR-146a repressed the expression of target genes IGF2BP1 (insulin-like growth factor 2 mRNA-binding protein 1) and HuR (human antigen R or ELAV-like RNA-binding protein 1) in recipient cells, and knockdown of IGF2BP1 and HuR using short interfering RNA greatly reduced macrophage migration, highlighting the importance of these EV-miRNA targets in regulating macrophage motility. CONCLUSIONS EV-derived miRNAs from atherogenic macrophages, in particular miR-146a, may accelerate the development of atherosclerosis by decreasing cell migration and promoting macrophage entrapment in the vessel wall.
Collapse
Affiliation(s)
- My-Anh Nguyen
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Denuja Karunakaran
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Michèle Geoffrion
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Henry S Cheng
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Kristofferson Tandoc
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Ljubica Perisic Matic
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Ulf Hedin
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Lars Maegdefessel
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Jason E Fish
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Katey J Rayner
- From the University of Ottawa Heart Institute, Ontario, Canada (M.-A.N., D.K., M.G., K.T., K.J.R.); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.); Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C., J.E.F.); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.P.M., U.H.); and Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.).
| |
Collapse
|
34
|
Romano A, Carneiro MBH, Doria NA, Roma EH, Ribeiro-Gomes FL, Inbar E, Lee SH, Mendez J, Paun A, Sacks DL, Peters NC. Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathog 2017; 13:e1006479. [PMID: 28666021 PMCID: PMC5509374 DOI: 10.1371/journal.ppat.1006479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/13/2017] [Accepted: 06/18/2017] [Indexed: 01/13/2023] Open
Abstract
Inflammatory monocytes can be manipulated by environmental cues to perform multiple functions. To define the role of monocytes during primary or secondary infection with an intra-phagosomal pathogen we employed Leishmania major-red fluorescent protein (RFP) parasites and multi-color flow cytometry to define and enumerate infected and uninfected inflammatory cells in the skin. During primary infection, infected monocytes had altered maturation and were the initial mononuclear host cell for parasite replication. In contrast, at a distal site of secondary infection in mice with a healed but persistent primary infection, this same population rapidly produced inducible nitric oxide synthase (iNOS) in an IFN-γ dependent manner and was critical for parasite killing. Maturation to a dendritic cell-like phenotype was not required for monocyte iNOS-production, and enhanced monocyte recruitment correlated with IFN-γ dependent cxcl10 expression. In contrast, neutrophils appeared to be a safe haven for parasites in both primary and secondary sites. Thus, inflammatory monocytes play divergent roles during primary versus secondary infection with an intra-phagosomal pathogen. Many infectious diseases are initiated in the context of inflammation. This inflammatory response may be initiated by the pathogen itself or by damage to barrier sites associated with the infectious process. In the case of the vector-transmitted intra-phagosomal pathogen Leishmania, the parasite must contend with the robust inflammatory response initiated by the bite of an infected sand fly. Traditionally, rapid infection of macrophages in the skin and manipulation of these cells was seen as the mechanism by which the parasite avoided elimination by inflammatory cells. In the present study, we find that this is not the case following primary infection. After transient residence in neutrophils, Leishmania parasites transitioned into immature inflammatory monocytes, where they underwent proliferation and suppressed the maturation of these cells. In stark contrast, in a setting of pre-existing immunity, inoculation of parasites at a secondary site of infection resulted in parasite killing by monocytes in an IFN-γ dependent manner. Therefore, the role of monocytes is dependent upon the primary or secondary nature of the infection site into which they are recruited, emphasizing both the plasticity of this cell population and the central role these cells play during Leishmaniasis.
Collapse
Affiliation(s)
- Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Matheus B. H. Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole A. Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Eric H. Roma
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Flavia L. Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehud Inbar
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Jonatan Mendez
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- * E-mail:
| |
Collapse
|
35
|
Gurses KM, Ozmen F, Kocyigit D, Yersal N, Bilgic E, Kaya E, Kopru CZ, Soyal T, Doganci S, Tokgozoglu L, Korkusuz P. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. J Cardiol 2017; 69:851-858. [DOI: 10.1016/j.jjcc.2016.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
|
36
|
Nandi A, Bishayi B. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response. Innate Immun 2017; 23:345-372. [PMID: 28409543 DOI: 10.1177/1753425917697806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| |
Collapse
|
37
|
Sun X, Zhang M, El-Zataari M, Huffnagle GB, Kao JY. CCR2 mediates Helicobacter pylori-induced immune tolerance and contributes to mucosal homeostasis. Helicobacter 2017; 22:10.1111/hel.12366. [PMID: 27933701 PMCID: PMC5352485 DOI: 10.1111/hel.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously demonstrated that H. pylori infection leads to increased induction of regulatory T cells in local and systemic immune compartments. Here, we investigate the role of CCR2 in the tolerogenic programing of dendritic cells in a mouse model of H. pylori infection. MATERIALS AND METHODS CCR2 deficient (CCR2KO) mice and wild-type (Wt) mice infected with H. pylori SS1 strain were analyzed by qPCR and FACS analysis. In vitro, bone marrow-derived DC on day 6 from CCR2KO and Wt mice cocultured with or without H. pylori were examined to determine the impact of CCR2 signaling on dendritic cells function by qPCR, ELISA, and FACS analyses. RESULTS Acute H. pylori infection was associated with a threefold increase in CCR2 mRNA expression in the gastric mucosa. H. pylori-infected CCR2KO mice exhibited a higher degree of mucosal inflammation, that is, increased gastritis scores and pro-inflammatory cytokine mRNA levels, but lower degree of H. pylori gastric colonization compared to infected Wt mice. Peripheral H. pylori-specific immune response measured in the CCR2KO spleen was characterized by a higher Th17 response and a lower Treg response. In vitro, CCR2KO bone marrow-derived DC was less mature and shown a lower Treg/Th17 ratio. Moreover, blockade of CCR2 signaling by MCP-1 neutralizing antibody inhibited H. pylori-stimulated bone marrow-derived DC maturation. CONCLUSIONS Our results indicate that CCR2 plays an essential role in H. pylori-induced immune tolerance and shed light on a novel mechanism of CCR2-dependent DC Treg induction, which appears to be important in maintaining mucosal homeostasis during H. pylori infection.
Collapse
Affiliation(s)
- Xia Sun
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - Min Zhang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - Mohamad El-Zataari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - Gray B. Huffnagle
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - John Y. Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
38
|
Verma AH, Bueter CL, Rothenberg ME, Deepe GS. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2 -/- mice. Mucosal Immunol 2017; 10:194-204. [PMID: 27049063 PMCID: PMC5053824 DOI: 10.1038/mi.2016.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2-/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2-/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.
Collapse
Affiliation(s)
- Akash H. Verma
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Chelsea L. Bueter
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - George S. Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
- Veterans Affairs Hospital, Cincinnati, Ohio 45220, USA
| |
Collapse
|
39
|
Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection. Immunol Res 2016; 64:213-32. [PMID: 26616292 DOI: 10.1007/s12026-015-8739-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.
Collapse
|
40
|
Abstract
SUMMARYProtists are a diverse collection of eukaryotic organisms that account for a significant global infection burden. Often, the immune responses mounted against these parasites cause excessive inflammation and therefore pathology in the host. Elucidating the mechanisms of both protective and harmful immune responses is complex, and often relies of the use of animal models. In any immune response, leucocyte trafficking to the site of infection, or inflammation, is paramount, and this involves the production of chemokines, small chemotactic cytokines of approximately 8–10 kDa in size, which bind to specific chemokine receptors to induce leucocyte movement. Herein, the scientific literature investigating the role of chemokines in the propagation of immune responses against key protist infections will be reviewed, focussing onPlasmodiumspecies,Toxoplasma gondii, Leishmaniaspecies andCryptosporidiumspecies. Interestingly, many studies find that chemokines can in fact, promote parasite survival in the host, by drawing in leucocytes for spread and further replication. Recent developments in drug targeting against chemokine receptors highlights the need for further understanding of the role played by these proteins and their receptors in many different diseases.
Collapse
|
41
|
Abstract
Cutaneous leishmaniasis is a major public health problem and causes a range of diseases from self-healing infections to chronic disfiguring disease. Currently, there is no vaccine for leishmaniasis, and drug therapy is often ineffective. Since the discovery of CD4(+) T helper 1 (TH1) cells and TH2 cells 30 years ago, studies of cutaneous leishmaniasis in mice have answered basic immunological questions concerning the development and maintenance of CD4(+) T cell subsets. However, new strategies for controlling the human disease have not been forthcoming. Nevertheless, advances in our knowledge of the cells that participate in protection against Leishmania infection and the cells that mediate increased pathology have highlighted new approaches for vaccine development and immunotherapy. In this Review, we discuss the early events associated with infection, the CD4(+) T cells that mediate protective immunity and the pathological role that CD8(+) T cells can have in cutaneous leishmaniasis.
Collapse
|
42
|
Costa DL, Lima-Júnior DS, Nascimento MS, Sacramento LA, Almeida RP, Carregaro V, Silva JS. CCR2 signaling contributes to the differentiation of protective inflammatory dendritic cells in Leishmania braziliensis infection. J Leukoc Biol 2016; 100:423-32. [PMID: 26884611 DOI: 10.1189/jlb.4a0715-288r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
In vertebrate hosts, Leishmania braziliensis parasites infect mainly mononuclear phagocytic system cells, which when activated by T helper cell type 1 cytokines produce nitric oxide and kill the pathogens. Chemokine (C-C motif) receptor 2 is a chemokine receptor that binds primarily chemokine (C-C motif) ligand 2 and has an important role in the recruitment of monocytic phagocytes. Although it has been reported that Leishmania braziliensis infection induces CCR2 expression in the lesions, the role of CCR2 during Leishmania braziliensis infection remains unknown. Here, we showed that CCR2 has a role in mediating protection against Leishmania braziliensis infection in mice. The absence of CCR2 resulted in increased susceptibility to infection and was associated with low amounts of Ly6C(+) inflammatory dendritic cells in the lesions, which we found to be the major sources of tumor necrosis factor production and induced nitric oxide synthase expression in C57BL/6 mice lesions. Consequently, CCR2(-/-) mice showed decreased tumor necrosis factor production and induced nitric oxide synthase expression, resulting in impaired parasite elimination. We also demonstrated that CCR2 has a role in directly mediating the differentiation of monocytes into inflammatory dendritic cells at the infection sites, contributing to the accumulation of inflammatory dendritic cells in Leishmania braziliensis lesions and subsequent control of parasite replication. Therefore, these data provide new information on the role of chemokines during the immune response to infections and identify a potential target for therapeutic interventions in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Diego L Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Djalma S Lima-Júnior
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Manuela S Nascimento
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Laís A Sacramento
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Roque P Almeida
- Department of Internal Medicine and Pathology, Center for Biological and Health Sciences, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| |
Collapse
|
43
|
Blocking junctional adhesion molecule C enhances dendritic cell migration and boosts the immune responses against Leishmania major. PLoS Pathog 2014; 10:e1004550. [PMID: 25474593 PMCID: PMC4256467 DOI: 10.1371/journal.ppat.1004550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response. Leishmaniasis is a parasitic disease transmitted to humans through sand fly bites. Clinical symptoms vary from self-healing cutaneous lesions to death. Cutaneous leishmaniasis is particularly studied in mice inoculated with Leishmania major. In this model, some strains (e.g. C57BL/6) are resistant due to a Th1 immune response promoting parasite killing. Conversely, other strains (e.g. BALB/c) are susceptible due to a nonprotective Th2 response. DCs are professional antigen-presenting cells that educate antigen-specific T cells. Improving the migration of DCs from the site of infection to the lymph nodes, where T cells reside, may improve the T cell response. JAM-C is a vascular adhesion molecule implicated in leukocyte migration in different inflammatory models. We found that JAM-C blockade with antibodies increases vascular permeability and consequently improves the migration of DCs to sites of infection and draining lymph nodes. This increased leukocyte migration boosted the induction of the Th1 response in resistant mice, while in susceptible mice the Th2 response was augmented. This led to disease improvement or exacerbation, respectively. Our results illustrate the key role of a vascular adhesion molecule in controlling leukocyte migration and the subsequent immune events in response to pathogen infections.
Collapse
|
44
|
Yin Z, Xu J, Zhou B, Wu D, Xu Y, Zhang J, Luo D. Topical pimecrolimus inhibits high-dose UVB irradiation-induced epidermal Langerhans cell migration, via regulation of TNF-α and E-cadherin. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1817-25. [PMID: 25336924 PMCID: PMC4199986 DOI: 10.2147/dddt.s70790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Topical pimecrolimus has been shown to reverse epidermal CD1a+ Langerhans cell reduction induced by high-dose ultraviolet (UV)B irradiation, but the mechanism is still unclear. This study aimed to investigate the possible mechanism of the effect of pimecrolimus on high-dose UVB-irradiated epidermal Langerhans cells. Methods Forty human foreskin tissues were divided into four groups: control; pimecrolimus-only; UVB-only; and UVB + pimecrolimus. All tissues were cultured, and each tissue was cut into four pieces, corresponding to four time points (0 hours, 18 hours, 24 hours, and 48 hours). We collected the tissues and culture medium at each time point. The percentage of CD1a+ cells in medium was detected by flow cytometry. The tissues were detected for messenger (m)RNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and E-cadherin, by reverse-transcription polymerase chain reaction (PCR) and Western blot. Results At 18 hours, 24 hours, and 48 hours, the CD1a+ cells in the culture medium of the UVB-only group and the UVB + pimecrolimus group were significantly more than in the control group, while the CD1a+ cells of the UVB + pimecrolimus group was less than of the UVB-only group. For both the UVB-only group and UVB + pimecrolimus group, TNF-α expression (by both reverse-transcription PCR and Western blot) of the tissues was clearly higher and E-cadherin expression was significantly lower compared with the control group, at 18 hours, 24 hours, and 48 hours. For the UVB + pimecrolimus group, TNF-α was clearly lower and E-cadherin was significantly higher compared with the UVB-only group. Conclusion Topical pimecrolimus inhibited epidermal Langerhans cell migration induced by high-dose UVB irradiation, via regulation of TNF-α and E-cadherin.
Collapse
Affiliation(s)
- ZhiQiang Yin
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - JiaLi Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - BingRong Zhou
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Di Wu
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Yang Xu
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - JiaAn Zhang
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Dan Luo
- Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
46
|
Innate immunity to Leishmania infection: within phagocytes. Mediators Inflamm 2014; 2014:754965. [PMID: 25110400 PMCID: PMC4119695 DOI: 10.1155/2014/754965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022] Open
Abstract
Infection by Leishmania takes place in the context of inflammation and tissue repair. Besides tissue resident macrophages, inflammatory macrophages and neutrophils are recruited to the infection site and serve both as host cells and as effectors against infection. Recent studies suggest additional important roles for monocytes and dendritic cells. This paper addresses recent experimental findings regarding the regulation of Leishmania major infection by these major phagocyte populations. In addition, the role of IL-4 on dendritic cells and monocytes is discussed.
Collapse
|
47
|
Ford LB, Cerovic V, Milling SWF, Graham GJ, Hansell CAH, Nibbs RJB. Characterization of conventional and atypical receptors for the chemokine CCL2 on mouse leukocytes. THE JOURNAL OF IMMUNOLOGY 2014; 193:400-11. [PMID: 24890717 DOI: 10.4049/jimmunol.1303236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemokine-directed leukocyte migration is crucial for effective immune and inflammatory responses. Conventional chemokine receptors (cCKRs) directly control cell movement; atypical chemokine receptors (ACKRs) regulate coexpressed cCKRs; and both cCKRs and ACKRs internalize chemokines to limit their abundance in vivo, a process referred to as scavenging. A leukocyte's migratory and chemokine-scavenging potential is determined by which cCKRs and ACKRs it expresses, and by the ligand specificity, signaling properties, and chemokine internalization capacity of these receptors. Most chemokines can bind at least one cCKR and one ACKR. CCL2 can bind to CCR2 (a cCKR) and two ACKRs (ACKR1 and ACKR2). In this study, by using fluorescent CCL2 uptake to label cells bearing functional CCL2 receptors, we have defined the expression profile, scavenging activity, and ligand specificity of CCL2 receptors on mouse leukocytes. We show that qualitative and quantitative differences in the expression of CCR2 and ACKR2 endow individual leukocyte subsets with distinctive CCL2 receptor profiles and CCL2-scavenging capacities. We reveal that some cells, including plasmacytoid dendritic cells, can express both CCR2 and ACKR2; that Ly6C(high) monocytes have particularly strong CCL2-scavenging potential in vitro and in vivo; and that CCR2 is a much more effective CCL2 scavenger than ACKR2. We confirm the unique, overlapping, ligand specificities of CCR2 and ACKR2 and, unexpectedly, find that cell context influences the interaction of CCL7 and CCL12 with CCR2. Fluorescent chemokine uptake assays were instrumental in providing these novel insights into CCL2 receptor biology, and the sensitivity, specificity, and versatility of these assays are discussed.
Collapse
Affiliation(s)
- Laura B Ford
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Vuk Cerovic
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W F Milling
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Gerard J Graham
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Chris A H Hansell
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Robert J B Nibbs
- Centre for Immunobiology, Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
48
|
Koutsoni O, Barhoumi M, Guizani I, Dotsika E. Leishmania eukaryotic initiation factor (LeIF) inhibits parasite growth in murine macrophages. PLoS One 2014; 9:e97319. [PMID: 24830439 PMCID: PMC4022710 DOI: 10.1371/journal.pone.0097319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/16/2014] [Indexed: 01/28/2023] Open
Abstract
The leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF), an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LieIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment), and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LieIF/IFN-γ after L. donovani infection (post-infection treatment), and resistance to infection was also observed at both time points tested (19 h and 72 h) after infection. To elucidate the LieIF/IFN-γ-induced mechanism(s) that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO) and reactive oxygen species (ROS), within infected macrophages. Furthermore, macrophages pre-treated with LieIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α) as well as tumor necrosis factor alpha (TNF-α) expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LieIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LieIF after infection are probably different. Overall, these results indicate that LieIF is a good candidate for use as an anti-leishmanial molecule.
Collapse
Affiliation(s)
- Olga Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece; Department of Microbiology, Medical School of Athens, National and Kapodistrian University, Athens, Greece
| | - Mourad Barhoumi
- Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée aux Maladies Infectieuses/LR11IPT04, Institut Pasteur de Tunis- Université Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Ikram Guizani
- Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée aux Maladies Infectieuses/LR11IPT04, Institut Pasteur de Tunis- Université Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
49
|
Deficiency of lymph node-resident dendritic cells (DCs) and dysregulation of DC chemoattractants in a malnourished mouse model of Leishmania donovani infection. Infect Immun 2014; 82:3098-112. [PMID: 24818662 DOI: 10.1128/iai.01778-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.
Collapse
|
50
|
CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol 2014; 88:6862-72. [PMID: 24696480 DOI: 10.1128/jvi.03364-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a member of a globally distributed group of arthritogenic alphaviruses that cause weeks to months of debilitating polyarthritis/arthralgia, which is often poorly managed with current treatments. Arthritic disease is usually characterized by high levels of the chemokine CCL2 and a prodigious monocyte/macrophage infiltrate. Several inhibitors of CCL2 and its receptor CCR2 are in development and may find application for treatment of certain inflammatory conditions, including autoimmune and viral arthritides. Here we used CCR2(-/-) mice to determine the effect of CCR2 deficiency on CHIKV infection and arthritis. Although there were no significant changes in viral load or RNA persistence and only marginal changes in antiviral immunity, arthritic disease was substantially increased and prolonged in CCR2(-/-) mice compared to wild-type mice. The monocyte/macrophage infiltrate was replaced in CCR2(-/-) mice by a severe neutrophil (followed by an eosinophil) infiltrate and was associated with changes in the expression levels of multiple inflammatory mediators (including CXCL1, CXCL2, granulocyte colony-stimulating factor [G-CSF], interleukin-1β [IL-1β], and IL-10). The loss of anti-inflammatory macrophages and their activities (e.g., efferocytosis) was also implicated in exacerbated inflammation. Clear evidence of cartilage damage was also seen in CHIKV-infected CCR2(-/-) mice, a feature not normally associated with alphaviral arthritides. Although recruitment of CCR2(+) monocytes/macrophages can contribute to inflammation, it also appears to be critical for preventing excessive pathology and resolving inflammation following alphavirus infection. Caution might thus be warranted when considering therapeutic targeting of CCR2/CCL2 for the treatment of alphaviral arthritides. IMPORTANCE Here we describe the first analysis of viral arthritis in mice deficient for the chemokine receptor CCR2. CCR2 is thought to be central to the monocyte/macrophage-dominated inflammatory arthritic infiltrates seen after infection with arthritogenic alphaviruses such as chikungunya virus. Surprisingly, the viral arthritis caused by chikungunya virus in CCR2-deficient mice was more severe, prolonged, and erosive and was neutrophil dominated, with viral replication and persistence not being significantly affected. Monocytes/macrophages recruited by CCL2 thus also appear to be important for both preventing even worse pathology mediated by neutrophils and promoting resolution of inflammation. Caution might thus be warranted when considering the use of therapeutic agents that target CCR2/CCL2 or inflammatory monocytes/macrophages for the treatment of alphaviral (and perhaps other viral) arthritides. Individuals with diminished CCR2 responses (due to drug treatment or other reasons) may also be at risk of exacerbated arthritic disease following alphaviral infection.
Collapse
|