1
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
2
|
Balducci E, Steimlé T, Smith C, Villarese P, Feroul M, Payet-Bornet D, Kaltenbach S, Couronné L, Lhermitte L, Touzart A, Dourthe ME, Simonin M, Baruchel A, Dombret H, Ifrah N, Boissel N, Nadel B, Macintyre E, Cieslak A, Asnafi V. TREC mediated oncogenesis in human immature T lymphoid malignancies preferentially involves ZFP36L2. Mol Cancer 2023; 22:108. [PMID: 37430263 DOI: 10.1186/s12943-023-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.
Collapse
Affiliation(s)
- Estelle Balducci
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Thomas Steimlé
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
- TAGC, UMR 1090, Aix-Marseille University, INSERM, Marseille, France
| | - Charlotte Smith
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Patrick Villarese
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Mélanie Feroul
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | | | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Lucile Couronné
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Marie-Emilie Dourthe
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Mathieu Simonin
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, University Hospital Robert Debré, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Institut Universitaire d'Hématologie, EA-3518, University Hospital Saint-Louis, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service Des Maladies du Sang, INSERM U 892, 49933, Angers, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010, Paris, France
| | - Bertrand Nadel
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Agata Cieslak
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France.
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
3
|
Sousa-Pimenta M, Estevinho MM, Sousa Dias M, Martins Â, Estevinho LM. Oxidative Stress and Inflammation in B-Cell Lymphomas. Antioxidants (Basel) 2023; 12:antiox12040936. [PMID: 37107311 PMCID: PMC10135850 DOI: 10.3390/antiox12040936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mature lymphoid neoplasms arise de novo or by the transformation of more indolent lymphomas in a process that relies on the stepwise accumulation of genomic and transcriptomic alterations. The microenvironment and neoplastic precursor cells are heavily influenced by pro-inflammatory signaling, regulated in part by oxidative stress and inflammation. Reactive oxygen species (ROSs) are by-products of cellular metabolism able to modulate cell signaling and fate. Moreover, they play a crucial role in the phagocyte system, which is responsible for antigen presentation and the selection of mature B and T cells under normal conditions. Imbalances in pro-oxidant and antioxidant signaling can lead to physiological dysfunction and disease development by disrupting metabolic processes and cell signaling. This narrative review aims to analyze the impact of reactive oxygen species on lymphomagenesis, specifically examining the regulation of microenvironmental players, as well as the response to therapy for B-cell-derived non-Hodgkin lymphomas. Further research is needed to investigate the involvement of ROS and inflammation in the development of lymphomas, which may unravel disease mechanisms and identify innovative therapeutic targets.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Miguel Sousa Dias
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
| | - Ângelo Martins
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Letícia M Estevinho
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
| |
Collapse
|
4
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
5
|
Ioniţă E, Marcu A, Temelie M, Savu D, Şerbănescu M, Ciubotaru M. Radiofrequency EMF irradiation effects on pre-B lymphocytes undergoing somatic recombination. Sci Rep 2021; 11:12651. [PMID: 34135382 PMCID: PMC8208969 DOI: 10.1038/s41598-021-91790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage. Recombining pre-B cells, were exposed for 48 h to low intensity EMFs (maximal radiative power density flux S of 9.5 µW/cm2 and electric field intensity 3 V/m) from waves of frequencies ranging from 720 to 1224 MHz. Irradiated pre-B cells show decreased levels of recombination, reduction which is dependent upon the power dose and most remarkably upon the frequency of the applied EMF. Although 50% recombination reduction cannot be obtained even for an S of 9.5 µW/cm2 in cells irradiated at 720 MHz, such an effect is reached in cells exposed to only 0.45 µW/cm2 power with 950 and 1000 MHz waves. A maximal four-fold recombination reduction was measured in cells exposed to 1000 MHz waves with S from 0.2 to 4.5 µW/cm2 displaying normal levels of γH2AX phosphorylated histone. Our findings show that developing B cells exposure to low intensity EMFs can affect the levels of production and diversity of their antibodies repertoire.
Collapse
Affiliation(s)
- Elena Ioniţă
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania.,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania
| | - Aurelian Marcu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihaela Temelie
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Diana Savu
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Mihai Şerbănescu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihai Ciubotaru
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania. .,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania.
| |
Collapse
|
6
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
7
|
Abstract
The search for oncogenic mutations in haematological malignancies has largely focused on coding sequence variants. These variants have been critical in understanding these complex cancers in greater detail, ultimately leading to better disease monitoring, subtyping and prognostication. In contrast, the search for oncogenic variants in the noncoding genome has proven to be challenging given the vastness of the search space, the intrinsic difficulty in assessing the impact of variants that do not code for functional proteins, and our still primitive understanding of the function harboured by large parts of the noncoding genome. Recent studies have broken ground on this quest, identifying somatically acquired and recurrent mutations in the noncoding genome that activate the expression of proto-oncogenes. In this Review, we explore some of the best-characterised examples of noncoding mutations in haematological malignancies, and highlight how a significant majority of these variants impinge on gene regulation through the formation of aberrant enhancers and promoters. We delve into the challenges faced by those that embark on a search for noncoding driver mutations, and provide a framework distilled from studies that have successfully identified such variants to overcome some of the most salient hurdles. Finally, we discuss the current therapeutic strategies being explored to target the oncogenic mechanism supported by recurrent noncoding variants. We postulate that the continued discovery and functional characterisation of somatic variants in the noncoding genome will not only advance our understanding of haematological malignancies, but offer novel therapeutic avenues and provide important insights into transcriptional regulation on a broader scale. Summary: This Review highlights the challenging but rewarding search for somatic mutations in the noncoding genome, and how such variants nucleate aberrant enhancers and promoters that drive the expression of proto-oncogenes.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
8
|
Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Mol Cell 2019; 74:584-597.e9. [PMID: 30905508 PMCID: PMC6509286 DOI: 10.1016/j.molcel.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction “cut-and-run” and suggest that it could be a significant cause of lymphocyte genome instability. A complex between the recombination by-product and RAGs triggers multiple DNA breaks The breaks co-localize with chromosome breakpoints in acute lymphoblastic leukemias The breaks occur at many frequently mutated genes in acute lymphoblastic leukemia Cut-and-run may underpin the most common types of lymphocyte chromosome instabilities
Collapse
|
9
|
Lin CY, Shukla A, Grady JP, Fink JL, Dray E, Duijf PHG. Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers (Basel) 2018; 10:cancers10010013. [PMID: 29316705 PMCID: PMC5789363 DOI: 10.3390/cancers10010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chromosomal translocations drive the development of many hematological and some solid cancers. Several factors have been identified to explain the non-random occurrence of translocation breakpoints in the genome. These include chromatin density, gene density and CCCTC-binding factor (CTCF)/cohesin binding site density. However, such factors are at least partially interdependent. Using 13,844 and 1563 karyotypes from human blood and solid cancers, respectively, our multiple regression analysis only identified chromatin density as the primary statistically significant predictor. Specifically, translocation breakpoints preferentially occur in open chromatin. Also, blood and solid tumors show markedly distinct translocation signatures. Strikingly, translocation breakpoints occur significantly more frequently in acrocentric chromosomes than in non-acrocentric chromosomes. Thus, translocations are probably often generated around nucleoli in the inner nucleoplasm, away from the nuclear envelope. Importantly, our findings remain true both in multivariate analyses and after removal of highly recurrent translocations. Finally, we applied pairwise probabilistic co-occurrence modeling. In addition to well-known highly prevalent translocations, such as those resulting in BCR-ABL1 (BCR-ABL) and RUNX1-RUNX1T1 (AML1-ETO) fusion genes, we identified significantly underrepresented translocations with putative fusion genes, which are probably subject to strong negative selection during tumor evolution. Taken together, our findings provide novel insights into the generation and selection of translocations during cancer development.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Ankit Shukla
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - John P Grady
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - J Lynn Fink
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
10
|
Abstract
OPINION STATEMENT Cutaneous T cell lymphomas (CTCLs) are non-Hodgkin lymphomas of skin homing T cells. Although early-stage disease may be limited to the skin, tumor cells in later stage disease can populate the blood, the lymph nodes, and the visceral organs. Unfortunately, there are few molecular biomarkers to guide diagnosis, staging, or treatment of CTCL. Diagnosis of CTCL can be challenging and requires the synthesis of clinical findings, histopathology, and T cell clonality studies; however, none of these tests are entirely sensitive or specific for CTCL. Treatment of CTCL is often empiric and is not typically based on specific molecular alterations, as is common in other cancers. In part, limitations in diagnosis and treatment selection reflect the limited insight into the genetic basis of CTCL. Recent next-generation sequencing has revolutionized our understanding of the mutational landscape in this disease. These analyses have uncovered ultraviolet radiation and recombination activating gene (RAG) endonucleases as important mutagens. Furthermore, these studies have revealed potentially targetable oncogenic mutations in the T cell receptor complex, NF-κB, and JAK-STAT signaling pathways. Collectively, these somatic mutations drive lymphomagenesis via cancer-promoting changes in proliferation, apoptosis, and T cell effector function. We expect that these genetic findings will launch a new era of precision medicine in CTCL.
Collapse
|
11
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
12
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
13
|
Passagem-Santos D, Bonnet M, Sobral D, Trancoso I, Silva JG, Barreto VM, Athanasiadis A, Demengeot J, Pereira-Leal JB. RAG Recombinase as a Selective Pressure for Genome Evolution. Genome Biol Evol 2016; 8:3364-3376. [PMID: 27979968 PMCID: PMC5203794 DOI: 10.1093/gbe/evw261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RAG recombinase is a domesticated transposable element co-opted in jawed vertebrates to drive the process of the so-called V(D)J recombination, which is the hallmark of the adaptive immune system to produce antigen receptors. RAG targets, namely, the Recombination Signal Sequences (RSS), are rather long and degenerated sequences, which highlights the ability of the recombinase to interact with a wide range of target sequences, including outside of antigen receptor loci. The recognition of such cryptic targets by the recombinase threatens genome integrity by promoting aberrant DNA recombination, as observed in lymphoid malignancies. Genomes evolution resulting from RAG acquisition is an ongoing discussion, in particular regarding the counter-selection of sequences resembling the RSS and the modifications of epigenetic regulation at these potential cryptic sites. Here, we describe a new bioinformatics tool to map potential RAG targets in all jawed vertebrates. We show that our REcombination Classifier (REC) outperforms the currently available tool and is suitable for full genomes scans from species other than human and mouse. Using the REC, we document a reduction in density of potential RAG targets at the transcription start sites of genes co-expressed with the rag genes and marked with high levels of the trimethylation of the lysine 4 of the histone 3 (H3K4me3), which correlates with the retention of functional RAG activity after the horizontal transfer.
Collapse
Affiliation(s)
| | - M Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - I Trancoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J G Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - V M Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - J Demengeot
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
14
|
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) are clonal proliferations of mature T-cells manifesting as lymphoproliferative disorders in which the neoplastic cells show a strong propensity for skin-homing. While the predominant site of presentation in MF is the skin, the peripheral blood carries a significant tumor burden in Sézary Syndrome such that it resembles a "leukemic" disease. While the genetic basis of these diseases has been studied using different approaches in the previous years, recent genome-wide studies employing massively parallel sequencing techniques now offer new insights into the molecular pathogenesis of these diseases. In this chapter, we discuss the recent findings elucidating the genomic landscape of MF and SS. The pathways targeted by mutational alterations are discussed and a model for understanding the pathogenesis of these diseases is proposed. It is anticipated that prognostic stratification and therapeutic targeting based on mutational signatures will be achieved in the near future based on the improved understanding of the molecular pathogenesis of these diseases.
Collapse
Affiliation(s)
- Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 609 Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| | - Ryan Wilcox
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Delbridge ARD, Pang SHM, Vandenberg CJ, Grabow S, Aubrey BJ, Tai L, Herold MJ, Strasser A. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice. J Exp Med 2016; 213:2039-48. [PMID: 27621418 PMCID: PMC5030795 DOI: 10.1084/jem.20150477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/08/2016] [Indexed: 01/29/2023] Open
Abstract
Delbridge, Strasser, and collaborators show that potentially oncogenic RAG1/2-dependent DNA lesions trigger apoptosis through the induction of BIM, which functions as an efficient tumor suppressor. Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers.
Collapse
Affiliation(s)
- Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, the Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Abstract
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model.
Collapse
|
17
|
Bolland DJ, Koohy H, Wood AL, Matheson LS, Krueger F, Stubbington MJT, Baizan-Edge A, Chovanec P, Stubbs BA, Tabbada K, Andrews SR, Spivakov M, Corcoran AE. Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination. Cell Rep 2016; 15:2475-87. [PMID: 27264181 PMCID: PMC4914699 DOI: 10.1016/j.celrep.2016.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 05/02/2016] [Indexed: 12/02/2022] Open
Abstract
Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency. VDJ-seq enables precise quantification of antibody V(D)J recombination products Two distinct cis-regulatory designs characterize actively recombining V genes Putative recombination regulatory elements map downstream of mouse Igh V genes Recombination regulatory architecture reflects the V genes’ evolutionary history
Collapse
Affiliation(s)
- Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Hashem Koohy
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew L Wood
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Chovanec
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon R Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
18
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
19
|
Raveendran D, Raghavan SC. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position. Sci Rep 2016; 6:19091. [PMID: 26742581 PMCID: PMC4705477 DOI: 10.1038/srep19091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Collapse
Affiliation(s)
- Deepthi Raveendran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
20
|
HROMAS ROBERT, WILLIAMSON ELIZABETH, LEE SUKHEE, NICKOLOFF JAC. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:176-195. [PMID: 28066052 PMCID: PMC5216476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.
Collapse
Affiliation(s)
- ROBERT HROMAS
- Correspondence and reprint requests: Robert Hromas, MD, FACP,
Department of Medicine, University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32610352-265-0655352-265-1107
| | | | | | | |
Collapse
|
21
|
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015; 162:751-65. [PMID: 26234156 PMCID: PMC4537821 DOI: 10.1016/j.cell.2015.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Abstract
The RAG1 endonuclease, together with its cofactor RAG2, is essential for V(D)J recombination but is a potent threat to genome stability. The sources of RAG1 mis-targeting and the mechanisms that have evolved to suppress it are poorly understood. Here, we report that RAG1 associates with chromatin at thousands of active promoters and enhancers in the genome of developing lymphocytes. The mouse and human genomes appear to have responded by reducing the abundance of "cryptic" recombination signals near RAG1 binding sites. This depletion operates specifically on the RSS heptamer, whereas nonamers are enriched at RAG1 binding sites. Reversing this RAG-driven depletion of cleavage sites by insertion of strong recombination signals creates an ectopic hub of RAG-mediated V(D)J recombination and chromosomal translocations. Our findings delineate rules governing RAG binding in the genome, identify areas at risk of RAG-mediated damage, and highlight the evolutionary struggle to accommodate programmed DNA damage in developing lymphocytes.
Collapse
Affiliation(s)
- Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Wolfgang Resch
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min Kim
- Division of Biomedical Informatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Box 9066, Dallas, TX 75390-9066, USA
| | - Arito Yamane
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Qian
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Yanhong Ji
- Department of Immunology and Microbiology, College of Medicine, Xi'an Jiao Tong University, 76 Yan Ta West Road, Box 37, Xian, Shaanxi 710061, PRC
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Lindsay G Cowell
- Division of Biomedical Informatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Box 9066, Dallas, TX 75390-9066, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA; Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
22
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
23
|
Krem MM, Press OW, Horwitz MS, Tidwell T. Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br J Haematol 2015; 171:13-28. [PMID: 26018193 DOI: 10.1111/bjh.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lymphocytes are unique among cells in that they undergo programmed DNA breaks and translocations, but that special property predisposes them to chromosomal instability (CIN), a cardinal feature of neoplastic lymphoid cells that manifests as whole chromosome- or translocation-based aneuploidy. In several lymphoid malignancies translocations may be the defining or diagnostic markers of the diseases. CIN is a cornerstone of the mutational architecture supporting lymphoid neoplasia, though it is perhaps one of the least understood components of malignant transformation in terms of its molecular mechanisms. CIN is associated with prognosis and response to treatment, making it a key area for impacting treatment outcomes and predicting prognoses. Here we will review the types and mechanisms of CIN found in Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma and the lymphoid leukaemias, with emphasis placed on pathogenic mutations affecting DNA recombination, replication and repair; telomere function; and mitotic regulation of spindle attachment, centrosome function, and chromosomal segregation. We will discuss the means by which chromosome-level genetic aberrations may give rise to multiple pathogenic mutations required for carcinogenesis and conclude with a discussion of the clinical applications of CIN and aneuploidy to diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Maxwell M Krem
- Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Oliver W Press
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marshall S Horwitz
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Timothy Tidwell
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
24
|
Weitmann K, Hirt C, Schwarz S, Rabkin C, Dölken G, Hoffmann W. Influence of reproductive history and exogenous hormone use on prevalence and frequency of circulating t(14;18)-positive cells in a population-based cross-sectional study. Cancer Causes Control 2015; 26:455-65. [PMID: 25634026 PMCID: PMC4331597 DOI: 10.1007/s10552-015-0525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/10/2015] [Indexed: 11/28/2022]
Abstract
Purpose The t(14;18) translocation might represent an intermediate step in the pathogenesis of follicular lymphoma (FL), one of the most common subtypes of non-Hodgkin lymphoma. Circulating t(14;18)-positive cells can also be detected in 30–60 % of healthy individuals at low frequencies. Some studies found a negative association between reproductive factors or use of menopausal hormone therapy (MHT) with FL. The objective of this study was to evaluate whether there is an association between number of frequencies, oral contraceptive (OC) use, menopausal status and MHT, and t(14;18) prevalence and frequency in a representative population analysis based on an epidemiologic study in the northeastern part of Germany. Methods The analysis is based on results of buffy coat samples from 1,981 women of the Study of Health in Pomerania (SHIP-0) and data obtained in standardized face-to-face interviews. For prevalence, odds ratios (OR) and 95 % confidence intervals (CI) were calculated using unconditional logistic regression. Frequency data were analyzed using negative binomial regression. The multivariable models included age, number of pregnancies, menopausal status (premenopausal, natural, medical/surgical menopause), OC use and MHT as a measure for exogenous hormone exposure use. Results We found no association between reproductive history and combined exogenous hormone use on the prevalence of circulating t(14;18)-positive cells. Modeling MHT and OC use separately in a sensitivity analysis, the MHT parameter yielded statistical significance [OR 1.37 (95 % CI 1.04;1.81)]. t(14;18) frequency was associated with use of OC [incidence rate ratio (IRR) for ever use 3.18 (95 % CI 1.54;6.54)], current use [IRR 3.86 (1.56;9.54)], >10 years use [IRR 3.93 (1.67;9.23)] and MHT [restricted to postmenopausal women; IRR 2.63 (95 % CI 1.01;6.85)] in bivariate age-adjusted analyses. In the multivariable model, medical/surgical menopause [IRR 2.46 (1.11;5.44)] and the category ever use of OC and MHT were statistically significant [IRR 2.41 (1.09;5.33)]. Conclusions Exogenous hormone use might be a risk factor for t(14;18) frequency rather than for t(14;18) prevalence. Further research on healthy individuals carrying a t(14;18) translocation and possible risk factors for malignant lymphoma is necessary to determine the additional molecular or immunological events that have to occur to develop FL. Electronic supplementary material The online version of this article (doi:10.1007/s10552-015-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Weitmann
- Department Epidemiology of Health Care and Community Health, Institute for Community Medicine, University Medicine Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany,
| | | | | | | | | | | |
Collapse
|
25
|
Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun 2015; 6:6094. [PMID: 25615415 PMCID: PMC4317503 DOI: 10.1038/ncomms7094] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.
Collapse
|
26
|
Larmonie NSD, Dik WA, Meijerink JPP, Homminga I, van Dongen JJM, Langerak AW. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 2014; 98:1173-84. [PMID: 23904235 DOI: 10.3324/haematol.2012.082156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nicole S D Larmonie
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 2014; 124:567-78. [PMID: 24904117 DOI: 10.1182/blood-2014-03-562751] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression.
Collapse
|
28
|
Byrne M, Wray J, Reinert B, Wu Y, Nickoloff J, Lee SH, Hromas R, Williamson E. Mechanisms of oncogenic chromosomal translocations. Ann N Y Acad Sci 2014; 1310:89-97. [PMID: 24528169 DOI: 10.1111/nyas.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome translocations are caused by inappropriate religation of two DNA double-strand breaks (DSBs) in heterologous chromosomes. These DSBs can be generated by endogenous or exogenous sources. Endogenous sources of DSBs leading to translocations include inappropriate recombination activating gene (RAG) or activation-induced deaminase (AID) activity during immune receptor maturation. Endogenous DSBs can also occur at noncanonical DNA structures or at collapsed replication forks. Exogenous sources of DSBs leading to translocations include ionizing radiation (IR) and cancer chemotherapy. Spatial proximity of the heterologous chromosomes is also important for translocations. While three distinct pathways for DNA DSB repair exist, mounting evidence supports alternative nonhomologous end joining (aNHEJ) as the predominant pathway through which the majority of translocations occur. Initiated by poly (ADP-ribose) polymerase 1 (PARP1), aNHEJ is utilized less frequently in DNA DSB repair than other forms of DSB repair. We recently found that PARP1 is essential for chromosomal translocations to occur and that small molecule PARP1 inhibitors, already in clinical use, can inhibit translocations generated by IR or topoisomerase II inhibition. These data confirm the central role of PARP1 in aNHEJ-mediated chromosomal translocations and raise the possibility of using clinically available PARP1 inhibitors in patients who are at high risk for secondary oncogenic chromosomal translocations.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Genomic aberrations affecting genes in B cell differentiation are hallmarks of B-precursor acute lymphoblastic leukemia (ALL). A new whole-genome sequencing study of ETV6-RUNX1-positive ALL has now identified RAG-mediated recombination, which specifically targets genes and regulatory elements active during B cell differentiation, as the underlying mechanism.
Collapse
|
30
|
Loosveld M, Bonnet M, Gon S, Montpellier B, Quilichini B, Navarro JM, Crouzet T, Goujart MA, Chasson L, Morgado E, Picard C, Hernandez L, Fossat C, Gabert J, Michel G, Nadel B, Payet-Bornet D. MYC fails to efficiently shape malignant transformation in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2014; 53:52-66. [DOI: 10.1002/gcc.22117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Marie Loosveld
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Mélanie Bonnet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Stéphanie Gon
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Bertrand Montpellier
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | | | - Jean-Marc Navarro
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Thomas Crouzet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Marie-Amélie Goujart
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Ester Morgado
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Christophe Picard
- UMR 7268; Anthropologie Bio-culturelle; Droit, Ethique et Santé - ADES
| | - Lucie Hernandez
- Hematology Laboratory; AP-HP, Hôpital Saint-Louis 75010 Paris France
| | - Chantal Fossat
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Jean Gabert
- Université de la Méditerranée IFR 11; Marseille France
- Biochemistry and molecular Biology Laboratory; AP-HM Hopital Nord; Marseille France
| | - Gérard Michel
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| |
Collapse
|
31
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
32
|
Roukos V, Burman B, Misteli T. The cellular etiology of chromosome translocations. Curr Opin Cell Biol 2013; 25:357-64. [PMID: 23498663 DOI: 10.1016/j.ceb.2013.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/26/2023]
Abstract
Chromosome translocations are the most severe form of genome defect. Translocations represent the end product of a series of cellular mistakes and they form after cells suffer multiple DNA double strand breaks (DSBs), which evade the surveillance mechanisms that usually eliminate them. Rather than being accurately repaired, translocating DSBs are misjoined to form aberrant fusion chromosomes. Although translocations have been extensively characterized using cytological methods and their pathological relevance in cancer and numerous other diseases is well established, how translocations form in the context of the intact cell nucleus is poorly understood. A combination of imaging approaches and biochemical methods to probe genome architecture and chromatin structure suggest that the spatial organization of the genome and features of chromatin, including sequence properties, higher order chromatin structure and histone modifications, are key determinants of translocation formation.
Collapse
|
33
|
Nishana M, Raghavan SC. Role of recombination activating genes in the generation of antigen receptor diversity and beyond. Immunology 2013; 137:271-81. [PMID: 23039142 DOI: 10.1111/imm.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 01/18/2023] Open
Abstract
V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability.
Collapse
|
34
|
A non-B DNA can replace heptamer of V(D)J recombination when present along with a nonamer: implications in chromosomal translocations and cancer. Biochem J 2013; 448:115-25. [PMID: 22891626 DOI: 10.1042/bj20121031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The RAG (recombination-activating gene) complex is responsible for the generation of antigen receptor diversity by acting as a sequence-specific nuclease. Recent studies have shown that it also acts as a structure-specific nuclease. However, little is known about the factors regulating this activity at the genomic level. We show in the present study that the proximity of a V(D)J nonamer to heteroduplex DNA significantly increases RAG cleavage and binding efficiencies at physiological concentrations of MgCl(2). The position of the nonamer with respect to heteroduplex DNA was important, but not orientation. A spacer length of 18 bp between the nonamer and mismatch was optimal for RAG-mediated DNA cleavage. Mutations to the sequence of the nonamer and deletion of the nonamer-binding domain of RAG1 reinforced the role of the nonamer in the enhancement in RAG cleavage. Interestingly, partial mutation of the nonamer did not significantly reduce RAG cleavage on heteroduplex DNA, suggesting that even cryptic nonamers were sufficient to enhance RAG cleavage. More importantly, we show that the fragile region involved in chromosomal translocations associated with BCL2 (B-cell lymphoma 2) can be cleaved by RAGs following a nonamer-dependent mechanism. Hence our results from the present study suggest that a non-B DNA can replace the heptamer of RSS (recombination signal sequence) when present adjacent to nonamers, explaining the generation of certain chromosomal translocations in lymphoid malignancies.
Collapse
|
35
|
Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:107-43. [PMID: 23271302 PMCID: PMC3564133 DOI: 10.3390/ijerph10010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.
Collapse
|
36
|
Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 2012; 120:3298-309. [DOI: 10.1182/blood-2012-04-425488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Chromosomal translocations involving the TCR loci represent one of the most recurrent oncogenic hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) and are generally believed to result from illegitimate V(D)J recombination events. However, molecular characterization and evaluation of the extent of recombinase involvement at the TCR-oncogene junction has not been fully evaluated. In the present study, screening for TCRβ and TCRα/δ translocations by FISH and ligation-mediated PCR in 280 T-ALLs allowed the identification of 4 previously unreported TCR-translocated oncogene partners: GNAG, LEF1, NKX2-4, and IL2RB. Molecular mapping of genomic junctions from TCR translocations showed that the majority of oncogenic partner breakpoints are not recombinase mediated and that the regulatory elements predominantly used to drive oncogene expression differ markedly in TCRβ (which are exclusively enhancer driven) and TCRα/δ (which use an enhancer-independent cryptic internal promoter) translocations. Our data also imply that oncogene activation takes place at a very immature stage of thymic development, when Dδ2-Dδ3/Dδ3-Jδ1 and Dβ-Jβ rearrangements occur, whereas the bulk leukemic maturation arrest occurs at a much later (cortical) stage. These observations have implications for T-ALL therapy, because the preleukemic early thymic clonogenic population needs to be eradicated and its disappearance monitored.
Collapse
|
37
|
Gopalakrishnan V, Raghavan SC. Sequence and structural basis for chromosomal fragility during translocations in cancer. Future Oncol 2012; 8:1121-34. [DOI: 10.2217/fon.12.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromosomal aberration is considered to be one of the major characteristic features in many cancers. Chromosomal translocation, one type of genomic abnormality, can lead to deregulation of critical genes involved in regulating important physiological functions such as cell proliferation and DNA repair. Although chromosomal translocations were thought to be random events, recent findings suggest that certain regions in the human genome are more susceptible to breakage than others. The possibility of deviation from the usual B-DNA conformation in such fragile regions has been an active area of investigation. This review summarizes the factors that contribute towards the fragility of these regions in the chromosomes, such as DNA sequences and the role of different forms of DNA structures. Proteins responsible for chromosomal fragility, and their mechanism of action are also discussed. The effect of positioning of chromosomes within the nucleus favoring chromosomal translocations and the role of repair mechanisms are also addressed.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
38
|
Wang JH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med 2012; 6:263-74. [PMID: 22865120 DOI: 10.1007/s11684-012-0215-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades, tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations. This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
39
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
40
|
Katapadi VK, Nambiar M, Raghavan SC. Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics 2012; 100:72-80. [PMID: 22659239 DOI: 10.1016/j.ygeno.2012.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/13/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.
Collapse
Affiliation(s)
- Vijeth K Katapadi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | |
Collapse
|
41
|
The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet 2012; 8:e1002675. [PMID: 22570620 PMCID: PMC3343088 DOI: 10.1371/journal.pgen.1002675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/13/2012] [Indexed: 01/09/2023] Open
Abstract
Class-switch recombination (CSR), induced by activation-induced cytidine deaminase (AID), can be divided into two phases: DNA cleavage of the switch (S) regions and the joining of the cleaved ends of the different S regions. Here, we show that the DSIF complex (Spt4 and Spt5), a transcription elongation factor, is required for CSR in a switch-proficient B cell line CH12F3-2A cells, and Spt4 and Spt5 carry out independent functions in CSR. While neither Spt4 nor Spt5 is required for transcription of S regions and AID, expression array analysis suggests that Spt4 and Spt5 regulate a distinct subset of transcripts in CH12F3-2A cells. Curiously, Spt4 is critically important in suppressing cryptic transcription initiating from the intronic Sμ region. Depletion of Spt5 reduced the H3K4me3 level and DNA cleavage at the Sα region, whereas Spt4 knockdown did not perturb the H3K4me3 status and S region cleavage. H3K4me3 modification level thus correlated well with the DNA breakage efficiency. Therefore we conclude that Spt5 plays a role similar to the histone chaperone FACT complex that regulates H3K4me3 modification and DNA cleavage in CSR. Since Spt4 is not involved in the DNA cleavage step, we suspected that Spt4 might be required for DNA repair in CSR. We examined whether Spt4 or Spt5 is essential in non-homologous end joining (NHEJ) and homologous recombination (HR) as CSR utilizes general repair pathways. Both Spt4 and Spt5 are required for NHEJ and HR as determined by assay systems using synthetic repair substrates that are actively transcribed even in the absence of Spt4 and Spt5. Taken together, Spt4 and Spt5 can function independently in multiple transcription-coupled steps of CSR. Class switch recombination (CSR) in B cells is required for interaction with different effector molecules while retaining the affinity for the same antigens. CSR mechanism involves the orchestrated steps of transcription, DNA break, and repair of the target loci. Within the cells, these processes occur at the chromatin level—involving DNA, histones, and their associated post-translational modifications (PTMs). Transcription factors associated with RNA Polymerase II complex often have regulatory roles in chromatin maintenance, which in turn might regulate the process of DNA cleavage and repair. Here we report that the transcription factor DSIF complex (Spt4 and Spt5) is critically required for CSR. The absence of either Spt4 or Spt5 blocked CSR. Interestingly, Spt4 and Spt5, although previously thought to work as a complex, can function independently of each other at several nodes of CSR, namely transcription regulation, DNA break formation, and histone PTM maintenance, exemplified by H3K4me3. The importance of H3K4me3 unifies three programmed recombinations—CSR, VDJ, and meiotic—in their reliance on this modification for their respective DNA cleavage formations. Moreover, Spt4 and Spt5 are required for DNA repair, another critical aspect of CSR, suggesting that the DNA repair steps of CSR may be coupled with transcription.
Collapse
|
42
|
Waanders E, Scheijen B, van der Meer LT, van Reijmersdal SV, van Emst L, Kroeze Y, Sonneveld E, Hoogerbrugge PM, van Kessel AG, van Leeuwen FN, Kuiper RP. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet 2012; 8:e1002533. [PMID: 22359517 PMCID: PMC3280973 DOI: 10.1371/journal.pgen.1002533] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as “drivers” of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL. Recent studies have alluded to the existence of a complex clonal cellular architecture in acute lymphoblastic leukemia (ALL), where multiple subclones contribute to leukemogenesis. Here, we show that in pediatric B-cell precursor ALL (BCP-ALL) monoallelic deletions in the tumor suppressor BTG1 locus, which were found to occur in 9% of the patients studied, result in truncations of the gene rather than in complete allelic losses. Using both genetic and epigenetic approaches, we show that these deletions most likely originate from illegitimate RAG recombination. Sensitive backtracking using deletion-spanning PCRs revealed that these BTG1 deletions occur in specific BCP-ALL subtypes, with frequencies higher than previously anticipated, often in one minor subclone or in multiple independent subclones within individual patients. Subclones that carry a BTG1 deletion at diagnosis can evolve into the major clone at relapse. These findings link a mechanism of tumor suppressor gene deletion to the multiclonal evolution of ALL.
Collapse
Affiliation(s)
- Esmé Waanders
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nambiar M, Raghavan SC. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation. J Biol Chem 2012; 287:8688-701. [PMID: 22275374 DOI: 10.1074/jbc.m111.307363] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
44
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
45
|
Numata M, Nagata K. Synergistic requirement of orphan nonamer-like elements and DNA bending enhanced by HMGB1 for RAG-mediated nicking at cryptic 12-RSS but not authentic 12-RSS. Genes Cells 2011; 16:879-95. [PMID: 21740486 DOI: 10.1111/j.1365-2443.2011.01534.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
V(D)J recombination is initiated by the specific binding of the recombination activating gene (RAG) complex to the heptamer and nonamer elements within recombination signal sequence (RSS). The break points associated with some chromosomal translocations contain cryptic RSSs, and mistargeting of RAG proteins to these less conserved elements could contribute to an aberrant V(D)J recombination. Recently, we found RAG-dependent recombination in the hotspots of TEL-AML1 t(12;21)(p13;q22) chromosomal translocation by an extrachromosomal recombination assay. Here, we describe using in vitro cleavage assays that RAG proteins directly bind to and introduce nicks into TEL and AML1 translocation regions, which contain several heptamer-like sequences. The cryptic nicking site within the TEL fragment was cleaved by RAG proteins essentially depending on a 12-RSS framework, and the nicking activity was enhanced synergistically by both HMGB1 and orphan nonamer-like (NL) sequences, which do not possess counterpart heptamers. In addition, we found that DNA bending stimulated by HMGB1 is indispensable for the HMGB1- and orphan NL element-dependent enhancement of RAG-mediated nicking at the cryptic 12-RSS. Collectively, we would propose the mechanism of HMGB1-dependent enhancement of RAG-mediated nicking at a cryptic RSS through enhanced DNA bending.
Collapse
Affiliation(s)
- Masashi Numata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | |
Collapse
|
46
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
47
|
Gostissa M, Alt FW, Chiarle R. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol 2011; 29:319-50. [PMID: 21219174 DOI: 10.1146/annurev-immunol-031210-101329] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recurrent chromosomal translocations are characteristic features of many types of cancers, especially lymphomas and leukemias. Several basic mechanistic factors are required for the generation of most translocations. First, DNA double-strand breaks (DSBs) must be present simultaneously at the two participating loci. Second, the two broken loci must either be in proximity or be moved into proximity to be joined. Finally, cellular DNA repair pathways must be available to join the two broken loci to complete the translocation. These mechanistic factors can vary in different normal and mutant cells and, as a result, substantially influence the frequency at which particular translocations are generated in a given cell type. Ultimately, however, appearance of recurrent oncogenic translocations in tumors is, in most cases, strongly influenced by selection for the translocated oncogene during the tumorigenesis process. In this review, we discuss in depth the factors and pathways that contribute to the generation of translocations in lymphocytes and other cell types. We also discuss recent findings regarding mechanisms that underlie the appearance of recurrent translocations in tumors.
Collapse
Affiliation(s)
- Monica Gostissa
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Brassesco MS, Valera ET, Bonilha TA, Scrideli CA, Carvalho de Oliveira J, Pezuk JA, Barros Silva GE, Costa RS, Tone LG. Secondary PSF/TFE3-associated renal cell carcinoma in a child treated for genitourinary rhabdomyosarcoma. Cancer Genet 2011; 204:108-10. [DOI: 10.1016/j.cancergencyto.2010.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/18/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
49
|
Numata M, Saito S, Nagata K. RAG-dependent recombination at cryptic RSSs within TEL–AML1 t(12;21)(p13;q22) chromosomal translocation region. Biochem Biophys Res Commun 2010; 402:718-24. [DOI: 10.1016/j.bbrc.2010.10.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
50
|
Novel rhodanine derivatives induce growth inhibition followed by apoptosis. Bioorg Med Chem Lett 2010; 20:6297-301. [DOI: 10.1016/j.bmcl.2010.08.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 11/17/2022]
|