1
|
Moustafa MAM, Schlachter S, Parveen N. Innovative Strategies to Study the Pathogenesis of Elusive Spirochetes and Difficulties Managing the Chronic Infections They Cause. Annu Rev Microbiol 2024; 78:337-360. [PMID: 39107040 DOI: 10.1146/annurev-micro-100423-030847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The major human spirochetal pathogens (Leptospira, Borrelia, and Treponema) are difficult to diagnose and lack vaccines to prevent infections. Infection by these spirochetes does not generate general protective immunity, allowing reinfection by different strains to occur. These stealth pathogens have uncommon physiology, pathogenesis, and clinical presentations and possess unique immune evasion mechanisms to facilitate their host adaptation and persistence. Collectively, host-spirochete interactions orchestrate systemic infections in a manner distinct from organ- and tissue-specific diseases caused by many bacterial pathogens. Difficulties in growing and genetic manipulation of infectious spirochetes have hindered the full understanding of their virulence factors despite decades to centuries of research. This article highlights the current understanding of the intricacies of spirochetal pathogenesis and diseases. Our comprehensive review of the progress versus gaps in knowledge lays a foundation for researchers to direct their studies toward the development of effective diagnostics and vaccines to protect patients from serious, chronic spirochetal diseases.
Collapse
Affiliation(s)
| | - Samantha Schlachter
- Department of Biology, Saint Elizabeth University, Morristown, New Jersey, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA;
| |
Collapse
|
2
|
Castro-Padovani TN, Saylor TC, Husted OT, Krusenstjerna AC, Jusufovic N, Stevenson B. Gac Is a Transcriptional Repressor of the Lyme Disease Spirochete's OspC Virulence-Associated Surface Protein. J Bacteriol 2023; 205:e0044022. [PMID: 36920207 PMCID: PMC10127594 DOI: 10.1128/jb.00440-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The OspC outer-surface lipoprotein is essential for the Lyme disease spirochete's initial phase of vertebrate infection. Bacteria within the midguts of unfed ticks do not express OspC but produce high levels when ticks begin to ingest blood. Lyme disease spirochetes cease production of OspC within 1 to 2 weeks of vertebrate infection, and bacteria that fail to downregulate OspC are cleared by host antibodies. Thus, tight regulation of OspC levels is critical for survival of Lyme borreliae and, therefore, an attractive target for development of novel treatment strategies. Previous studies determined that a DNA region 5' of the ospC promoter, the ospC operator, is required for control of OspC production. Hypothesizing that the ospC operator may bind a regulatory factor, DNA affinity pulldown was performed and identified binding by the Gac protein. Gac is encoded by the C-terminal domain of the gyrA open reading frame from an internal promoter, ribosome-binding site, and initiation codon. Our analyses determined that Gac exhibits a greater affinity for ospC operator and promoter DNAs than for other tested borrelial sequences. In vitro and in vivo analyses demonstrated that Gac is a transcriptional repressor of ospC. These results constitute a substantial advance to our understanding of the mechanisms by which the Lyme disease spirochete controls production of OspC. IMPORTANCE Borrelia burgdorferi sensu lato requires its surface-exposed OspC protein in order to establish infection in humans and other vertebrate hosts. Bacteria that either do not produce OspC during transmission or fail to repress OspC after infection is established are rapidly cleared by the host. Herein, we identified a borrelial protein, Gac, that exhibits preferential affinity to the ospC promoter and 5' adjacent DNA. A combination of biochemical analyses and investigations of genetically manipulated bacteria demonstrated that Gac is a transcriptional repressor of ospC. This is a substantial advance toward understanding how the Lyme disease spirochete controls production of the essential OspC virulence factor and identifies a novel target for preventative and curative therapies.
Collapse
Affiliation(s)
- Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Olivia T. Husted
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky College of Agriculture, Food, and Ecology, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Pfeifle A, Thulasi Raman SN, Lansdell C, Zhang W, Tamming L, Cecillon J, Laryea E, Patel D, Wu J, Gravel C, Frahm G, Gao J, Chen W, Chaconas G, Sauve S, Rosu-Myles M, Wang L, Johnston MJW, Li X. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol 2023; 14:1020134. [PMID: 37006299 PMCID: PMC10060826 DOI: 10.3389/fimmu.2023.1020134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. Borrelia burgdorferi sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull’s-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments. Currently, no vaccine is available for the prevention of LD in humans.MethodsIn this study, we developed a lipid nanoparticle (LNP)-encapsulated DNA vaccine encoding outer surface protein C type A (OspC-type A) of B. burgdorferi.ResultsVaccination of C3H/HeN mice with two doses of the candidate vaccine induced significant OspC-type A-specific antibody titres and borreliacidal activity. Analysis of the bacterial burden following needle challenge with B. burgdorferi (OspC-type A) revealed that the candidate vaccine afforded effective protection against homologous infection across a range of susceptible tissues. Notably, vaccinated mice were protected against carditis and lymphadenopathy associated with Lyme borreliosis.DiscussionOverall, the results of this study provide support for the use of a DNA-LNP platform for the development of LD vaccines.
Collapse
Affiliation(s)
- Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jonathon Cecillon
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Emmanuel Laryea
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Devina Patel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jun Gao
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Centre for Vaccines, Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology and Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Michael J. W. Johnston, ; Xuguang Li,
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Michael J. W. Johnston, ; Xuguang Li,
| |
Collapse
|
4
|
Perveen N, Muhammad K, Muzaffar SB, Zaheer T, Munawar N, Gajic B, Sparagano OA, Kishore U, Willingham AL. Host-pathogen interaction in arthropod vectors: Lessons from viral infections. Front Immunol 2023; 14:1061899. [PMID: 36817439 PMCID: PMC9929866 DOI: 10.3389/fimmu.2023.1061899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Haematophagous arthropods can harbor various pathogens including viruses, bacteria, protozoa, and nematodes. Insects possess an innate immune system comprising of both cellular and humoral components to fight against various infections. Haemocytes, the cellular components of haemolymph, are central to the insect immune system as their primary functions include phagocytosis, encapsulation, coagulation, detoxification, and storage and distribution of nutritive materials. Plasmatocytes and granulocytes are also involved in cellular defense responses. Blood-feeding arthropods, such as mosquitoes and ticks, can harbour a variety of viral pathogens that can cause infectious diseases in both human and animal hosts. Therefore, it is imperative to study the virus-vector-host relationships since arthropod vectors are important constituents of the ecosystem. Regardless of the complex immune response of these arthropod vectors, the viruses usually manage to survive and are transmitted to the eventual host. A multidisciplinary approach utilizing novel and strategic interventions is required to control ectoparasite infestations and block vector-borne transmission of viral pathogens to humans and animals. In this review, we discuss the arthropod immune response to viral infections with a primary focus on the innate immune responses of ticks and mosquitoes. We aim to summarize critically the vector immune system and their infection transmission strategies to mammalian hosts to foster debate that could help in developing new therapeutic strategies to protect human and animal hosts against arthropod-borne viral infections.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sabir Bin Muzaffar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bojan Gajic
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Rana VS, Kitsou C, Dumler JS, Pal U. Immune evasion strategies of major tick-transmitted bacterial pathogens. Trends Microbiol 2023; 31:62-75. [PMID: 36055896 PMCID: PMC9772108 DOI: 10.1016/j.tim.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022]
Abstract
Tick-transmitted bacterial pathogens thrive in enzootic infection cycles, colonizing disparate vertebrate and arthropod tissues, often establishing persistent infections. Therefore, the evolution of robust immune evasion strategies is central to their successful persistence or transmission between hosts. To survive in nature, these pathogens must counteract a broad range of microbicidal host responses that can be localized, tissue-specific, or systemic, including a mix of these responses at the host-vector interface. Herein, we review microbial immune evasion strategies focusing on Lyme disease spirochetes and rickettsial or tularemia agents as models for extracellular and intracellular tick-borne pathogens, respectively. A better understanding of these adaptive strategies could enrich our knowledge of the infection biology of relevant tick-borne diseases, contributing to the development of future preventions.
Collapse
Affiliation(s)
- Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
6
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
7
|
The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Rep 2021; 30:3663-3670.e5. [PMID: 32187539 PMCID: PMC7162589 DOI: 10.1016/j.celrep.2020.02.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 11/21/2022] Open
Abstract
Arp is an immunogenic protein of the Lyme disease spirochete Borrelia burgdorferi and contributes to joint inflammation during infection. Despite Arp eliciting a strong humoral response, antibodies fail to clear the infection. Given previous evidence of immune avoidance mediated by the antigenically variable lipoprotein of B. burgdorferi, VlsE, we use passive immunization assays to examine whether VlsE protects the pathogen from anti-Arp antibodies. The results show that spirochetes are only able to successfully infect passively immunized mice when VlsE is expressed. Subsequent immunofluorescence assays reveal that VlsE prevents binding of Arp-specific antibodies, thereby providing an explanation for the failure of Arp antisera to clear the infection. The results also show that the shielding effect of VlsE is not universal for all B. burgdorferi cell-surface antigens. The findings reported here represent a direct demonstration of VlsE-mediated protection of a specific B. burgdorferi surface antigen through a possible epitope-shielding mechanism. Lone and Bankhead report that the antigenically variable VlsE protein of the Lyme disease agent Borrelia burgdorferi can prevent antibody binding to a surface antigen of the pathogen. They show that protection is likely via an epitope-shielding mechanism, thus expanding the current role of VlsE in immune evasion.
Collapse
|
8
|
Athanasiou LV, Spanou VM, Katsogiannou EG, Katsoulos PD. Hematological Features in Sheep with IgG and IgM Antibodies against Borrelia burgdorferi sensu lato. Pathogens 2021; 10:pathogens10020164. [PMID: 33557024 PMCID: PMC7913760 DOI: 10.3390/pathogens10020164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure of sheep to Borreliaburgdorferi sensulato (s.I.) complex, the causative agent of Lyme borreliosis (LB), has been reported in tick-abundant areas worldwide, while no data have been reported in Greece. The aim of the study was to identify the hematological alterations in sheep with seropositivity against Borrelia burgdorferi (s.I.). Blood samples were obtained from 318 tick infested sheep for blood analysis and serological determination of IgG and IgM antibodies against B. burgdorferi by indirect immunofluorescence antibody (IFA) assay after exclusion of endo-ectoparasites and other tick-borne infections. A total number of 162 sheep met the inclusion criteria, allocated in four groups based on the presence or absence of IgG and/or IgM; sheep found negative for IgM and IgG (Group A), positive for IgM (Group B), positive for both IgM and IgG (Group C) and positive for IgG (Group D). Anemia, thrombocytopenia and normal or decreased leukocyte count, mainly due to lymphopenia were the main hematological features observed in seropositive sheep. The presence of these features raises the suspicion of Borrelia infection in tick infested sheep. The seropositivity of 23.58% in sheep raises concerns of Borrelia circulation, especially in rural areas and potential risk of transmission to humans.
Collapse
Affiliation(s)
- Labrini V. Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
- Correspondence: ; Tel.: +30-2441066009; Fax: +30-2441066053
| | - Victoria M. Spanou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
| | - Eleni G. Katsogiannou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
| | - Panagiotis D. Katsoulos
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| |
Collapse
|
9
|
Abstract
Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Collapse
Affiliation(s)
- Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
- Departments of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- Departments of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NY Department of Health, Albany NY, 12208, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
11
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Zhang Y, Chen T, Raghunandanan S, Xiang X, Yang J, Liu Q, Edmondson DG, Norris SJ, Yang XF, Lou Y. YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008953. [PMID: 33048986 PMCID: PMC7584230 DOI: 10.1371/journal.ppat.1008953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/23/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen causes persistent infection by evading the host immune response. Differential expression of the surface-exposed lipoprotein VlsE that undergoes antigenic variation is a key immune evasion strategy employed by B. burgdorferi. Most studies focused on the mechanism of VlsE antigen variation, but little is known about VlsE regulation and factor(s) that regulates differential vlsE expression. In this study, we investigated BB0025, a putative YebC family transcriptional regulator (and hence designated BB0025 as YebC of B. burgdorferi herein). We constructed yebC mutant and complemented strain in an infectious strain of B. burgdorferi. The yebC mutant could infect immunocompromised SCID mice but not immunocompetent mice, suggesting that YebC plays an important role in evading host adaptive immunity. RNA-seq analyses identified vlsE as one of the genes whose expression was most affected by YebC. Quantitative RT-PCR and Western blot analyses confirmed that vlsE expression was dependent on YebC. In vitro, YebC and VlsE were co-regulated in response to growth temperature. In mice, both yebC and vlsE were inversely expressed with ospC in response to the host adaptive immune response. Furthermore, EMSA proved that YebC directly binds to the vlsE promoter, suggesting a direct transcriptional control. These data demonstrate that YebC is a new regulator that modulates expression of vlsE and other genes important for spirochetal infection and immune evasion in the mammalian host.
Collapse
Affiliation(s)
- Yan Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tong Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, United States of America
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qiang Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol 2020; 36:634-645. [PMID: 32456964 DOI: 10.1016/j.pt.2020.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/31/2023]
Abstract
Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To survive in vertebrate hosts, Lyme borreliae require the ability to escape from host defense mechanisms, in particular complement. To facilitate the evasion of complement, Lyme borreliae produce diverse proteins at different stages of infection, allowing them to persistently survive without being recognized by hosts and potentially resulting in host-specific infection. This review discusses the current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host associations driven by complement evasion.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, NY, USA.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany.
| |
Collapse
|
14
|
Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8:antibiotics8040269. [PMID: 31888310 PMCID: PMC6963229 DOI: 10.3390/antibiotics8040269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronic Lyme disease has been a poorly defined term and often dismissed as a fictitious entity. In this paper, the International Lyme and Associated Diseases Society (ILADS) provides its evidence-based definition of chronic Lyme disease. Definition: ILADS defines chronic Lyme disease (CLD) as a multisystem illness with a wide range of symptoms and/or signs that are either continuously or intermittently present for a minimum of six months. The illness is the result of an active and ongoing infection by any of several pathogenic members of the Borrelia burgdorferi sensu lato complex (Bbsl). The infection has variable latency periods and signs and symptoms may wax, wane and migrate. CLD has two subcategories, CLD, untreated (CLD-U) and CLD, previously treated (CLD-PT). The latter requires that CLD manifestations persist or recur following treatment and are present continuously or in a relapsing/remitting pattern for a duration of six months or more. Methods: Systematic review of over 250 peer reviewed papers in the international literature to characterize the clinical spectrum of CLD-U and CLD-PT. Conclusion: This evidence-based definition of chronic Lyme disease clarifies the term's meaning and the literature review validates that chronic and ongoing Bbsl infections can result in chronic disease. Use of this CLD definition will promote a better understanding of the infection and facilitate future research of this infection.
Collapse
|
15
|
Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart CG, Marconi RT, Bockenstedt LK, Blevins JS, Radolf JD. The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Front Microbiol 2019; 10:1923. [PMID: 31507550 PMCID: PMC6719511 DOI: 10.3389/fmicb.2019.01923] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 11/28/2022] Open
Abstract
Maintenance of Borrelia burgdorferi within its enzootic cycle requires a complex regulatory pathway involving the alternative σ factors RpoN and RpoS and two ancillary trans-acting factors, BosR and Rrp2. Activation of this pathway occurs within ticks during the nymphal blood meal when RpoS, the effector σ factor, transcribes genes required for tick transmission and mammalian infection. RpoS also exerts a 'gatekeeper' function by repressing σ70-dependent tick phase genes (e.g., ospA, lp6.6). Herein, we undertook a broad examination of RpoS functionality throughout the enzootic cycle, beginning with modeling to confirm that this alternative σ factor is a 'genuine' RpoS homolog. Using a novel dual color reporter system, we established at the single spirochete level that ospA is expressed in nymphal midguts throughout transmission and is not downregulated until spirochetes have been transmitted to a naïve host. Although it is well established that rpoS/RpoS is expressed throughout infection, its requirement for persistent infection has not been demonstrated. Plasmid retention studies using a trans-complemented ΔrpoS mutant demonstrated that (i) RpoS is required for maximal fitness throughout the mammalian phase and (ii) RpoS represses tick phase genes until spirochetes are acquired by a naïve vector. By transposon mutant screening, we established that bba34/oppA5, the only OppA oligopeptide-binding protein controlled by RpoS, is a bona fide persistence gene. Lastly, comparison of the strain 297 and B31 RpoS DMC regulons identified two cohorts of RpoS-regulated genes. The first consists of highly conserved syntenic genes that are similarly regulated by RpoS in both strains and likely required for maintenance of B. burgdorferi sensu stricto strains in the wild. The second includes RpoS-regulated plasmid-encoded variable surface lipoproteins ospC, dbpA and members of the ospE/ospF/elp, mlp, revA, and Pfam54 paralogous gene families, all of which have evolved via inter- and intra-strain recombination. Thus, while the RpoN/RpoS pathway regulates a 'core' group of orthologous genes, diversity within RpoS regulons of different strains could be an important determinant of reservoir host range as well as spirochete virulence.
Collapse
Affiliation(s)
- Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,*Correspondence: Melissa J. Caimano,
| | | | - Alexia Belperron
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jialing Mao
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, CT, United States,Division of Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford, CT, United States
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Danielle E. Graham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher G. Earnhart
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,Department of Genetics and Genome Science, UConn Health, Farmington, CT, United States,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
16
|
Delineating Surface Epitopes of Lyme Disease Pathogen Targeted by Highly Protective Antibodies of New Zealand White Rabbits. Infect Immun 2019; 87:IAI.00246-19. [PMID: 31085705 DOI: 10.1128/iai.00246-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD), the most prevalent vector-borne illness in the United States and Europe, is caused by Borreliella burgdorferi No vaccine is available for humans. Dogmatically, B. burgdorferi can establish a persistent infection in the mammalian host (e.g., mice) due to a surface antigen, VlsE. This antigenically variable protein allows the spirochete to continually evade borreliacidal antibodies. However, our recent study has shown that the B. burgdorferi spirochete is effectively cleared by anti-B. burgdorferi antibodies of New Zealand White rabbits, despite the surface expression of VlsE. Besides homologous protection, the rabbit antibodies also cross-protect against heterologous B. burgdorferi spirochetes and significantly reduce the pathology of LD arthritis in persistently infected mice. Thus, this finding that NZW rabbits develop a unique repertoire of very potent antibodies targeting the protective surface epitopes, despite abundant VlsE, prompted us to identify the specificities of the protective rabbit antibodies and their respective targets. By applying subtractive reverse vaccinology, which involved the use of random peptide phage display libraries coupled with next-generation sequencing and our computational algorithms, repertoires of nonprotective (early) and protective (late) rabbit antibodies were identified and directly compared. Consequently, putative surface epitopes that are unique to the protective rabbit sera were mapped. Importantly, the relevance of newly identified protection-associated epitopes for their surface exposure has been strongly supported by prior empirical studies. This study is significant because it now allows us to systematically test the putative epitopes for their protective efficacy with an ultimate goal of selecting the most efficacious targets for development of a long-awaited LD vaccine.
Collapse
|
17
|
Weiss T, Zhu P, White H, Posner M, Wickiser JK, Washington MA, Barnhill J. Latent Lyme Disease Resulting in Chronic Arthritis and Early Career Termination in a United States Army Officer. Mil Med 2019; 184:e368-e370. [PMID: 30839071 DOI: 10.1093/milmed/usz026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 11/12/2022] Open
Abstract
Lyme disease is a continuing threat to military personnel operating in arboriferous and mountainous environments. Here we present the case of a 24-year-old Second Lieutenant, a recent graduate from the United States Military Academy, with a history of Lyme disease who developed recurrent knee effusions following surgery to correct a hip impingement. Although gonococcal arthritis was initially suspected from preliminary laboratory results, a comprehensive evaluation contradicted this diagnosis. Despite antibiotic therapy, aspiration of the effusions, and steroid treatment to control inflammation, the condition of the patient deteriorated to the point where he was found to be unfit for duty and subsequently discharged from active military service. This case illustrates the profound effect that latent Lyme disease can have on the quality of life and the career of an active duty military member. It highlights the need for increased surveillance for Borrelia burgdorferi (B. burgdorferi) in military training areas and for the early and aggressive diagnosis and treatment of military personnel who present with the symptoms of acute Lyme disease.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Peter Zhu
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Hannah White
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Matthew Posner
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - J Kenneth Wickiser
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Michael A Washington
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| | - Jason Barnhill
- Department of Chemistry and Life Science, Bartlett Hall, 753 Cullum Road, West Point, NY
| |
Collapse
|
18
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
19
|
Federizon J, Lin YP, Lovell JF. Antigen Engineering Approaches for Lyme Disease Vaccines. Bioconjug Chem 2019; 30:1259-1272. [PMID: 30987418 DOI: 10.1021/acs.bioconjchem.9b00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing rates of Lyme disease necessitate preventive measures such as immunization to mitigate the risk of contracting the disease. At present, there is no human Lyme disease vaccine available on the market. Since the withdrawal of the first and only licensed Lyme disease vaccine based on lipidated recombinant OspA, vaccine and antigen research has aimed to overcome its risks and shortcomings. Replacement of the putative cross-reactive T-cell epitope in OspA via mutation or chimerism addresses the potential risk of autoimmunity. Multivalent approaches in Lyme disease vaccines have been pursued to address sequence heterogeneity of Lyme borreliae antigens and to induce a repertoire of functional antibodies necessary for efficient heterologous protection. This Review summarizes recent antigen engineering strategies that have paved the way for the development of next generation vaccines against Lyme disease, some of which have reached clinical testing. Bioconjugation methods that incorporate antigens to self-assembling nanoparticles for immune response potentiation are also discussed.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health , Albany , New York 12208 , United States.,Department of Biomedical Sciences , State University of New York at Albany , Albany , New York 12222 , United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
20
|
Casselli T, Crowley MA, Highland MA, Tourand Y, Bankhead T. A small intergenic region of lp17 is required for evasion of adaptive immunity and induction of pathology by the Lyme disease spirochete. Cell Microbiol 2019; 21:e13029. [PMID: 30945408 DOI: 10.1111/cmi.13029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/30/2019] [Indexed: 01/15/2023]
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, harbours a single linear chromosome and upwards of 23 linear and circular plasmids. Only a minority of these plasmids, including linear plasmid 17, are maintained with near-absolute fidelity during extended in vitro passage, and characterisation of any putative virulence determinants they encode has only recently begun. In this work, a mutant lacking a ~4.7 kb fragment of lp17 was studied. Colonisation of murine tissues by this lp17 mutant was significantly impaired, as was the ability to induce carditis and arthritis. The deficiency in tissue colonisation was alleviated in severe combined immunodeficient (SCID) mice, implicating a role for this plasmid region in adaptive immune evasion. Through genetic complementation, the mutant phenotype could be fully attributed to a 317 bp intergenic region that corresponds to the discontinued bbd07 ORF and upstream sequence. The intergenic region was found to be transcriptionally active, and mutant spirochetes lacking this region exhibited an overall difference in the antigenic profile during infection of an immunocompetent murine host. Overall, this study is the first to provide evidence for the involvement of lp17 in colonisation of joint and heart tissues, along with the associated pathologies caused by the Lyme disease spirochete.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Margaret A Highland
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA.,Animal Disease Research Unit, USDA Agricultural Research Service, Pullman, Washington, USA
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
21
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
22
|
Li X, Li P, Zhang T, Zhang P, Ren X, Li G. A Serological Survey of Borrelia burgdorferi Infection in Sheep in Northeast China Regions Through Outer Surface Protein C-Based Enzyme-Linked Immunosorbent Assay. Vector Borne Zoonotic Dis 2018; 19:16-21. [PMID: 30260739 DOI: 10.1089/vbz.2018.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi as a causative agent of Lyme disease is transmitted by Ixodes spp. ticks to humans and animals. Sheep is considered a natural reservoir for B. burgdorferi and plays a pivotal role in disease transmission and the expansion of natural foci. An epidemiological investigation of B. burgdorferi in sheep is essential for prevention and control of Lyme disease. In this study, we developed a recombinant outer surface protein C (OspC)-based ELISA for serological study of B. burgdorferi in sheep with a specificity and sensitivity of 84.4% and 86.2%, respectively. A total of 972 collected serum samples from the Northeast China regions in 2015 and 2016 were determined with positive rates of 5.8% and 12.2%, respectively. Thus, specific pathogen-free sheep were infected with B. burgdorferi SZ strain to study on the secretion of specificity antibody against OspC. It revealed that specific antibody was detected on day 5 postinoculation and sustained in a high level for ∼28 days, the peak occurred at ∼13 days. Taken together, the result indicated that the established ELISA is capable for clinical diagnosis and epidemiological study on B. burgdorferi in sheep at the early stage of infection and detecting the specific antibody during the secretion period.
Collapse
Affiliation(s)
- Xunliang Li
- 1 College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pengchong Li
- 2 Fushun Committee of Agriculture, Fushun, China
| | | | - Pengkun Zhang
- 3 Fushun Animal Disease Control Center, Fushun, China
| | - Xiaofeng Ren
- 1 College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- 1 College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes. Infect Immun 2018; 86:IAI.00182-18. [PMID: 29866906 DOI: 10.1128/iai.00182-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
The tick-borne pathogen Borrelia burgdorferi is responsible for approximately 300,000 Lyme disease (LD) cases per year in the United States. Recent increases in the number of LD cases, in addition to the spread of the tick vector and a lack of a vaccine, highlight an urgent need for designing and developing an efficacious LD vaccine. Identification of protective epitopes that could be used to develop a second-generation (subunit) vaccine is therefore imperative. Despite the antigenicity of several lipoproteins and integral outer membrane proteins (OMPs) on the B. burgdorferi surface, the spirochetes successfully evade antibodies primarily due to the VlsE-mediated antigenic variation. VlsE is thought to sterically block antibody access to protective epitopes of B. burgdorferi However, it is highly unlikely that VlsE shields the entire surface epitome. Thus, identification of subdominant epitope targets that induce protection when they are made dominant is necessary to generate an efficacious vaccine. Toward the identification, we repeatedly immunized immunocompetent mice with live-attenuated VlsE-deleted B. burgdorferi and then challenged the animals with the VlsE-expressing (host-adapted) wild type. Passive immunization and Western blotting data suggested that the protection of 50% of repeatedly immunized animals against the highly immune-evasive B. burgdorferi was antibody mediated. Comparison of serum antibody repertoires identified in protected and nonprotected animals permitted the identification of several putative epitopes significantly associated with the protection. Most linear putative epitopes were conserved between the main pathogenic Borrelia genospecies and found within known subdominant regions of OMPs. Currently, we are performing immunization studies to test whether the identified protection-associated epitopes are protective for mice.
Collapse
|
24
|
|
25
|
Singh P, Verma D, Backstedt BT, Kaur S, Kumar M, Smith AA, Sharma K, Yang X, Azevedo JF, Gomes-Solecki M, Buyuktanir O, Pal U. Borrelia burgdorferi BBI39 Paralogs, Targets of Protective Immunity, Reduce Pathogen Persistence Either in Hosts or in the Vector. J Infect Dis 2017; 215:1000-1009. [PMID: 28453837 DOI: 10.1093/infdis/jix036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi genome harbors several paralogous gene families (pgf) that can encode immunogenic proteins of unknown function. Protein-protein interaction assays using a transmission-blocking vaccine candidate, BBA52, as bait identified an interacting partner in spirochetes-a member of pgf 54, annotated as BBI39. We show that BBI39 is a surface-exposed membrane antigen that is immunogenic during spirochete infection, despite the gene being primarily transcribed in the vector with a transient expression in the host only at tick-bite sites. Immunization of rodents with BBI39, or a diverse paralog, BBI36, or their combination impaired pathogen acquisition by the vector, transmission from ticks to hosts, or induction of disease. High-titer BBI39 immunoglobulin G antibodies, which have borreliacidal properties, could be generated through routine subcutaneous or oral immunization, further highlighting use of BBI39 proteins as novel Lyme disease vaccines that can target pathogens in the host or in ticks.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Deepshikha Verma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Brian T Backstedt
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Simarjot Kaur
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | | | - Maria Gomes-Solecki
- Immuno Technologies Inc., Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ozlem Buyuktanir
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
26
|
Tracy KE, Baumgarth N. Borrelia burgdorferi Manipulates Innate and Adaptive Immunity to Establish Persistence in Rodent Reservoir Hosts. Front Immunol 2017; 8:116. [PMID: 28265270 PMCID: PMC5316537 DOI: 10.3389/fimmu.2017.00116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 01/17/2023] Open
Abstract
Borrelia burgdorferi sensu lato species complex is capable of establishing persistent infections in a wide variety of species, particularly rodents. Infection is asymptomatic or mild in most reservoir host species, indicating successful co-evolution of the pathogen with its natural hosts. However, infected humans and other incidental hosts can develop Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces both innate and adaptive immune responses, they are ultimately ineffective in clearing the infection from reservoir hosts, leading to bacterial persistence. Here, we review some mechanisms by which B. burgdorferi evades the immune system of the rodent host, focusing in particular on the effects of innate immune mechanisms and recent findings suggesting that T-dependent B cell responses are subverted during infection. A better understanding of the mechanisms causing persistence in rodents may help to increase our understanding of the pathogenesis of Lyme disease and ultimately aid in the development of therapies that support effective clearance of the bacterial infection by the host’s immune system.
Collapse
Affiliation(s)
- Karen E Tracy
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA; Center for Comparative Medicine, University of California Davis, Davis, CA, USA; Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
27
|
Stone BL, Brissette CA. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi. Front Immunol 2017; 8:12. [PMID: 28154563 PMCID: PMC5243832 DOI: 10.3389/fimmu.2017.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| |
Collapse
|
28
|
Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun 2016; 85:IAI.00890-16. [PMID: 27799330 DOI: 10.1128/iai.00890-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires.
Collapse
|
29
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
30
|
Magunda PRH, Bankhead T. Investigating the potential role of non-vls genes on linear plasmid 28-1 in virulence and persistence by Borrelia burgdorferi. BMC Microbiol 2016; 16:180. [PMID: 27502325 PMCID: PMC4977671 DOI: 10.1186/s12866-016-0806-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/04/2016] [Indexed: 12/03/2022] Open
Abstract
Background The lp28-1 plasmid is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. Mutational studies on this plasmid have shown that the vls locus is important for antigenic variation of the VlsE lipoprotein that leads to immune evasion and persistence. However, it is still unknown whether the vls system is the only genetic locus on this plasmid necessary for long-term infection, and thus the potential role of non-vls genes on lp28-1 in virulence and persistence is yet to be fully determined. Despite extensive mutational analyses, two lp28-1 regions containing the ORFs bbf19 - bbf22 and bbf27 – bbf30 have not yet been mutated in their entirety. Results In this study, we set out to establish if these unstudied regions of lp28-1 play a role in spirochete persistence. Results show that the generated mutants were fully infectious in immunocompetent mice, and were able to persist for 91 days following infection. Following this finding, ospC expression by these mutants was determined, as it has been reported that spirochetes lacking lp28-1 fail to downregulate expression of this lipoprotein leading to immune clearance. Data presented here failed to show a definitive difference in ospC expression levels during host infection when the mutants were compared to the wild type. Conclusions Overall, the results strongly suggest that non-vls genes residing on lp28-1 do not play a role in spirochete persistence during infection of the mammalian host, and that the regions under study are likely not involved in the regulation of ospC expression. In conjunction with previous studies involving mutation of non-vls loci on lp28-1, these findings suggest that the vls locus is likely the sole genetic element on this plasmid responsible for immune evasion and persistence exhibited by the Lyme disease pathogen.
Collapse
Affiliation(s)
- Petronella R Hove Magunda
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
31
|
Tilly K, Bestor A, Rosa PA. Functional Equivalence of OspA and OspB, but Not OspC, in Tick Colonization by Borrelia burgdorferi. Infect Immun 2016; 84:1565-1573. [PMID: 26953324 PMCID: PMC4862709 DOI: 10.1128/iai.00063-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| |
Collapse
|
32
|
Samuels DS, Samuels LRN. Gene Regulation During the Enzootic Cycle of the Lyme Disease Spirochete. ACTA ACUST UNITED AC 2016; 7:205-212. [PMID: 29876141 DOI: 10.1615/forumimmundisther.2017019469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, exists in an enzootic cycle, alternating between a tick vector and a vertebrate host. To adapt to and survive the environmental changes associated with its enzootic cycle, including nutrient availability, B. burgdorferi uses three different systems to regulate the expression of genes: RpoN-RpoS, histidine kinase (Hk)1/response regulator 1 (Rrp1), and RelBbu. The RpoN-RpoS alternative sigma factor cascade activates genes required for transmission from the tick to the vertebrate, maintenance of the vertebrate infection, and persistence in the tick. RelBbu controls the levels of the alarmones guanosine pentaphosphate and guanosine tetraphosphate, which are necessary for surviving the nutrient-deficient conditions in the midgut of the tick following absorption of the blood meal and the subsequent molt. The Hk1/Rrp1 two-component system produces cyclic dimeric guanosine monophosphate that regulates the genes required for the transitions between the tick and vertebrate as well as protective responses to the blood meal.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824
| | - Leah R N Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824
| |
Collapse
|
33
|
Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 2015; 13:346. [PMID: 26537892 PMCID: PMC4634744 DOI: 10.1186/s12967-015-0701-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. METHOD We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. RESULTS OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10(-6)). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein. CONCLUSIONS OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.
Collapse
|
34
|
Casselli T, Bankhead T. Use of in vivo Expression Technology for the Identification of Putative Host Adaptation Factors of the Lyme Disease Spirochete. J Mol Microbiol Biotechnol 2015; 25:349-61. [PMID: 26488479 DOI: 10.1159/000439305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, is an obligate parasite that requires either a tick vector or a mammalian host for survival. Identification of the bacterial genes that are specifically expressed during infection of the mammalian host could provide targets for novel therapeutics and vaccines. In vivo expression technology (IVET) is a reporter-based promoter trap system that utilizes selectable markers to identify promoters of bacterial host-specific genes. Using previously characterized genes for in vivo and in vitro selection, this study utilized an IVET system that allows for selection of B. burgdorferi sequences that act as active promoters only during murine infection. This promoter trap system was able to successfully distinguish active promoter sequences both in vivo and in vitro from control sequences and a library of cloned B. burgdorferi genomic fragments. However, a bottleneck effect during the experimental mouse infection limited the utility for genome-wide promoter screening. Overall, IVET was demonstrated as a tool for the identification of in vivo-induced promoter elements of B. burgdorferi, and the observed infection bottleneck apparent using a polyclonal infection pool provides insight into the dynamics of experimental infection with B. burgdorferi.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Wash., USA
| | | |
Collapse
|
35
|
Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun 2015; 83:4848-60. [PMID: 26438793 DOI: 10.1128/iai.01215-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
Abstract
Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγ(null) mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis.
Collapse
|
36
|
Rogovskyy AS, Casselli T, Tourand Y, Jones CR, Owen JP, Mason KL, Scoles GA, Bankhead T. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi. PLoS One 2015; 10:e0124268. [PMID: 25893989 PMCID: PMC4404307 DOI: 10.1371/journal.pone.0124268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Timothy Casselli
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Yvonne Tourand
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Cami R. Jones
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Jeb P. Owen
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Kathleen L. Mason
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Glen A. Scoles
- Animal Disease Research Unit, USDA-ARS, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
37
|
Cameron DJ, Johnson LB, Maloney EL. Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert Rev Anti Infect Ther 2014; 12:1103-35. [PMID: 25077519 PMCID: PMC4196523 DOI: 10.1586/14787210.2014.940900] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evidence-based guidelines for the management of patients with Lyme disease were developed by the International Lyme and Associated Diseases Society (ILADS). The guidelines address three clinical questions - the usefulness of antibiotic prophylaxis for known tick bites, the effectiveness of erythema migrans treatment and the role of antibiotic retreatment in patients with persistent manifestations of Lyme disease. Healthcare providers who evaluate and manage patients with Lyme disease are the intended users of the new ILADS guidelines, which replace those issued in 2004 (Exp Rev Anti-infect Ther 2004;2:S1-13). These clinical practice guidelines are intended to assist clinicians by presenting evidence-based treatment recommendations, which follow the Grading of Recommendations Assessment, Development and Evaluation system. ILADS guidelines are not intended to be the sole source of guidance in managing Lyme disease and they should not be viewed as a substitute for clinical judgment nor used to establish treatment protocols.
Collapse
Affiliation(s)
- Daniel J Cameron
- International Lyme and Associated Diseases Society,PO Box 341461, Bethesda MD, 20827-1461,USA
| | | | | |
Collapse
|
38
|
Abstract
The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms involved in this process are not well understood. By determining how B. burgdorferi cycles between two very different environments, we can potentially establish novel ways to interfere with transmission and limit infection of this vector-borne pathogen. We are studying a regulatory protein called BBD18 that we recently described. We found that too much BBD18 interferes with the spirochete’s ability to establish infection in mice, whereas too little BBD18 appears to prevent colonization in ticks. Our study provides new insight into key elements of the infectious cycle of the Lyme disease spirochete.
Collapse
|
39
|
Abstract
Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ∆ospA, ∆ospB, and ∆ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism’s adaptation to changing environments. Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in lipid rafts, little is known about their structural contribution to these domains. Borrelia burgdorferi, the agent of Lyme disease, has lipid rafts, which are novel structures in bacteria. Here, we have shown that the raft-associated lipoproteins OspA and OspB selectively contribute to lipid rafts. A similar but non-raft-associated lipoprotein, OspC, cannot substitute for the role of OspA and OspB. In this study, we have demonstrated that lipoprotein association with lipid rafts is selective, further suggesting a functional adaptation to different stages of the spirochete life cycle. The results of this study are of broader importance and can serve as a model for other bacteria that also possess cholesterol in their membranes and, therefore, may share lipid raft traits with Borrelia.
Collapse
|
40
|
Abstract
Lyme disease represents a growing public health threat. The controversial science and politics of Lyme disease have created barriers to reliable diagnosis and effective treatment of this protean illness. Two major clinical hurdles are the absence of a therapeutic end point in treating Borrelia burgdorferi, the spirochetal agent of Lyme disease, and the presence of tickborne coinfections with organisms such as Babesia, Anaplasma, Ehrlichia and Bartonella that may complicate the course of the disease. From a pathophysiologic standpoint, the affinity of Borrelia burgdorferi for multiple cell types and the presence of nonreplicating forms of the Lyme disease spirochete have contributed to persistent infection and failure of simple antibiotic regimens. Newer approaches to the treatment of Lyme disease should take into account its clinical complexity in coinfected patients and the possible need for prolonged combination therapy in patients with persistent symptoms of this potentially debilitating illness. The optimal antibiotic regimen for chronic Lyme disease remains to be determined.
Collapse
Affiliation(s)
- Raphael B Stricker
- California Pacific Medical Center , 450 Sutter Street, Suite 1504, San Francisco, CA 94108, USA.
| | | | | |
Collapse
|
41
|
Troxell B, Yang XF. Metal-dependent gene regulation in the causative agent of Lyme disease. Front Cell Infect Microbiol 2013; 3:79. [PMID: 24298449 PMCID: PMC3828560 DOI: 10.3389/fcimb.2013.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe2+) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu2+), and a manganese (Mn2+) transport protein, Borrelia metal transporter A (BmtA); both proteins are required for colonization of the tick vector, but BmtA is also required for the murine host. This demonstrates that Bb's metal homeostasis is a critical facet of the complex enzootic life cycle between the arthropod and murine hosts. Although metals are known to influence the expression of virulence determinants during infection, it is unknown how or if metals regulate virulence in Bb. Recent evidence demonstrates that Bb modulates the intracellular Mn2+ and zinc (Zn2+) content and, in turn, these metals regulate gene expression through influencing the Ferric Uptake Regulator (Fur) homolog Borrelia Oxidative Stress Regulator (BosR). This mini-review focuses on the burgeoning study of metal-dependent gene regulation within Bb.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
42
|
Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 2013; 9:e1003567. [PMID: 24009501 PMCID: PMC3757035 DOI: 10.1371/journal.ppat.1003567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022] Open
Abstract
Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.
Collapse
Affiliation(s)
- Tisha Choudhury Ellis
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sunny Jain
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Angelika K. Linowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kelli Rike
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Micah Halpern
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Stephanie Kurhanewicz
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
43
|
Hodzic E, Feng S, Barthold SW. Assessment of transcriptional activity of Borrelia burgdorferi and host cytokine genes during early and late infection in a mouse model. Vector Borne Zoonotic Dis 2013; 13:694-711. [PMID: 23930938 DOI: 10.1089/vbz.2012.1189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential gene expression by Borrelia burgdorferi spirochetes during mammalian infection facilitates their dissemination as well as immune evasion. Modulation of gene transcription in response to host immunity has been documented with the outer surface protein C, but the influence of transcription of other genes is largely unknown. A low-density array (LDA) was developed to study transcriptional activity of 43 B. burgdorferi genes and 19 host genes that may be involved in various host-agent interactions. Gene transcription in heart, joint, and muscle tissue was compared in immunocompetent C3H and immunodeficient C3H-scid mice during early (3 weeks) and late (2 months) B. burgdorferi infection. Among all tissue types, levels of relative transcription of over 80% of B. burgdorferi genes tested were one- to nine-fold less in C3H mice compared to C3H-scid mice. At the later time point, all genes were transcribed in C3H-scid mice, whereas transcription of 16 genes out of 43 tested was not detected in analyzed tissues of C3H mice. Our data suggest that during infection of immunocompetent mice, a majority of B. burgdorferi genes tested are downregulated in response to acquired host immunity. LDA revealed variable patterns of host gene expression in different tissues and at different intervals in infected mice. Higher levels of relative expression for IL-10 during both early and late infection were detected in heart base, and it was unchanged in the tibiotarsal joint. Comparative analysis of B. burgdorferi and host genes transcriptional activity revealed that increased flaB mRNA during early infection was followed by increases of CCL7, CCL8, interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in all assessed tissue types. LDA represents a valuable approach for sensitive and quantitative gene transcription profiling and for understanding Lyme borreliosis.
Collapse
Affiliation(s)
- Emir Hodzic
- 1 Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California at Davis , Davis, California
| | | | | |
Collapse
|
44
|
Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection. J Transl Med 2013; 93:900-10. [PMID: 23797360 PMCID: PMC4139070 DOI: 10.1038/labinvest.2013.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
The etiologic agent of Lyme disease, Borrelia burgdorferi, localizes preferentially in the extracellular matrix during persistence. In chronically infected laboratory mice, there is a direct association between B. burgdorferi and the proteoglycan decorin, which suggests that decorin has a role in defining protective niches for persistent spirochetes. In this study, the tissue colocalization of B. burgdorferi with decorin and the dynamics of borrelial decorin tropism were evaluated during chronic infection. Spirochetes were found to colocalize absolutely with decorin, but not collagen I in chronically infected immunocompetent C3H mice. Passive immunization of infected C3H-scid mice with B. burgdorferi-specific immune serum resulted in the localization of spirochetes in decorin-rich microenvironments, with clearance of spirochetes from decorin-poor microenvironments. In passively immunized C3H-scid mice, tissue spirochete burdens were initially reduced, but increased over time as the B. burgdorferi-specific antibody levels waned. Concurrent repopulation of the previously cleared decorin-poor microenvironments was observed with the rising tissue spirochete burden and declining antibody titer. These findings indicate that the specificity of B. burgdorferi tissue localization during chronic infection is determined by decorin, driven by the borrelia-specific antibody response, and fluctuates with the antibody response.
Collapse
|
45
|
Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 2013; 89:216-27. [PMID: 23692497 PMCID: PMC3713631 DOI: 10.1111/mmi.12271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 12/21/2022]
Abstract
Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
46
|
Imai D, Holden K, Velazquez EM, Feng S, Hodzic E, Barthold SW. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31. BMC Microbiol 2013; 13:100. [PMID: 23651628 PMCID: PMC3701516 DOI: 10.1186/1471-2180-13-100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lyme borreliosis, caused by tick-borne Borrelia burgdorferi, is a multi-phasic, multi-system disease in humans. Similar to humans, C3H mice develop arthritis and carditis, with resolution and periodic bouts of recurrence over the course of persistent infection. Borrelia burgdorferi arthritis-related protein (Arp/BBF01), a highly conserved protein among B. burgdorferi s.s. isolates, has been shown to be antigenic in humans with Lyme borreliosis, and a target for antibody-mediated disease resolution in the mouse model. Results A mutant strain of B. burgdorferi s.s. deficient of the arp gene and a complemented version of that mutant were created and examined for phenotypic effects in mice compared to wild-type B. burgdorferi. Deletion of arp did not abolish infectivity, but did result in a higher infectious dose compared to wild-type B. burgdorferi, which was restored by complementation. Spirochete burdens in tissues of C3H-scid mice were lower when infected with the arp mutant, compared to wild-type, but arthritis was equally severe. Spirochete burdens were also lower in C3H mice infected with the arp mutant, but disease was markedly reduced. Ticks that fed upon infected C3H mice were able to acquire infection with both wild-type and arp mutant spirochetes. Arp mutant spirochetes were marginally able to be transmitted to naïve hosts by infected ticks. Conclusion These results indicated that deletion of BBF01/arp did not abrogate, but diminished infectivity and limited spirochete burdens in tissues of both immunocompetent and immunodeficient hosts, and attenuated, but did not abolish the ability of ticks to acquire or transmit infection.
Collapse
Affiliation(s)
- Denise Imai
- Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
47
|
Rogovskyy AS, Bankhead T. Variable VlsE is critical for host reinfection by the Lyme disease spirochete. PLoS One 2013; 8:e61226. [PMID: 23593438 PMCID: PMC3620393 DOI: 10.1371/journal.pone.0061226] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Despite the presence of a substantial number of additional proteins residing on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may utilize a VlsE-mediated system for immune avoidance of its surface antigens. To address this, the requirement of VlsE for host reinfection by the Lyme disease pathogen was investigated. Host-adapted wild type and VlsE mutant spirochetes were used to reinfect immunocompetent mice that had naturally cleared an infection with a VlsE-deficient clone. Our results demonstrate that variable VlsE is necessary for reinfection by B. burgdorferi, and this ability is directly related to evasion of the host antibody response. Moreover, the data presented here raise the possibility that VlsE prevents recognition of B. burgdorferi surface antigens from host antibodies. Overall, our findings represent a significant advance in our knowledge of immune evasion by B. burgdorferi, and provide insight to the possible mechanisms involved in VlsE-mediated immune avoidance.
Collapse
Affiliation(s)
- Artem S. Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Andersson M, Scherman K, Råberg L. Multiple-strain infections of Borrelia afzelii: a role for within-host interactions in the maintenance of antigenic diversity? Am Nat 2013; 181:545-54. [PMID: 23535618 DOI: 10.1086/669905] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetically diverse infections are common but little is known about what effects coinfecting strains have on each other in natural host-parasite systems. To explore the nature and consequences of interactions in the wild, we studied the tick-transmitted bacterium Borrelia afzelii in one of its main reservoir hosts, the bank vole Myodes glareolus. We measured overall infection intensity with quantitative polymerase chain reaction (PCR) and resolved the composition of multiple infections using strain-specific PCR assays targeting the ospC gene (which encodes an immunodominant surface protein). We found seven different strains, as defined by ospC genotype. There was little evidence for interactions affecting infection intensities, but strains were highly aggregated (i.e., there were more multiple infections than expected from random co-occurrence). Moreover, there was a positive correlation between the difference at the amino acid level between two OspC types and their degree of association. Overall, the observed patterns suggest that facilitation is more important than competition in this system and that more diverse infections have an advantage in establishing and/or maintaining infection. We propose that this advantage is one of the factors that favors antigenic diversity.
Collapse
Affiliation(s)
- Martin Andersson
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
49
|
Müller KE. Damage of collagen and elastic fibres by borrelia burgdorferi - known and new clinical and histopathological aspects. Open Neurol J 2012; 6:179-86. [PMID: 23986790 PMCID: PMC3751012 DOI: 10.2174/1874205x01206010179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/29/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
Lyme Borreliosis, or Lyme's disease, manifests itself in numerous skin conditions. Therapeutic intervention should be initiated as soon as a clinical diagnosis of erythema migrans is made. The histopathology of some of the skin conditions associated with Lyme Borreliosis is characterised by structural changes to collagen, and sometimes also elastic fibres. These conditions include morphea, lichen sclerosus et atrophicus and acrodermatitis chronica atrophicans. More recently, further skin conditions have been identified by the new microscopic investigation technique of focus floating microscopy: granuloma annulare, necrobiosis lipoidica, necrobiotic xanthogranuloma, erythema annulare centrifugum, interstitial granulomatous dermatitis, cutaneous sarcoidosis and lymphocytic infiltration; these conditions also sometimes cause changes in the connective tissue. In the case of ligaments and tendons, collagen and elastic fibres predominate structurally. They are also the structures that are targeted by Borrelia. The resultant functional disorders have previously only rarely been associated with Borreliosis in clinical practice. Ligamentopathies and tendinopathies, spontaneous ruptures of tendons after slight strain, dislocation of vertebrae and an accumulation of prolapsed intervertebral discs as well as ossification of tendon insertions can be viewed in this light.
Collapse
Affiliation(s)
- Kurt E Müller
- Medical Practice for Dermatology, Venerology, Occupational Dermatology and Environmental Medicine, Kempten, Bavaria, Germany
| |
Collapse
|
50
|
Ear presentation of Lyme borreliosis in a child. The Journal of Laryngology & Otology 2012; 126:1176-8. [PMID: 22906364 DOI: 10.1017/s0022215112001582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This case report aims to raise awareness amongst clinicians of ear presentation of cutaneous borrelia. CASE REPORT We report a recent case of borrelia lymphocytoma cutis benigna in a child presenting with unilateral earlobe swelling, who was otherwise well. A review of the English language literature, including management of the disease, is also presented. CONCLUSION This case highlights the fact that borrelia lymphocytoma should be included in the differential diagnosis of a persistent, unilateral, inflamed, swollen earlobe in an otherwise healthy child.
Collapse
|