1
|
Peltier D, Anh Do-Thi V, Devos T, Blazar BR, Toubai T. Cellular therapies for the prevention and treatment of acute graft-versus-host disease. Stem Cells 2025; 43:sxaf009. [PMID: 40117296 PMCID: PMC12111709 DOI: 10.1093/stmcls/sxaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/14/2024] [Indexed: 03/23/2025]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT) that is caused by donor immune cells attacking and damaging host tissues. Immune suppressive small molecule and protein-based therapeutics targeting donor anti-host immune cells are currently used for GVHD prophylaxis and treatment. Even with these therapies, aGVHD progresses to life-threatening steroid-refractory aGVHD (SR-aGVHD) in up to 50% of cases and is a risk factor for the subsequent development of debilitating chronic GVHD. To improve aGVHD-related outcomes, donor graft engineering techniques and adoptive transfer of immune modulatory cells have been explored. Highly rigorous donor graft T-cell depletion approaches have revealed that mitigation of aGVHD can be accompanied by slow immune recovery post-allo-HCT and reduction in anti-microbial and anti-leukemia responses resulting in increased relapse and infection rates, respectively. Recent T-cell separation techniques allowing for precision graft engineering by selectively eliminating aGVHD-causing T-cells (eg, naïve T-cells) without loss of T-cells with beneficial functions and retaining and/or enriching immune regulatory populations (eg, regulatory T-cells (Tregs) or myeloid-derived suppressor cells) have been tested and will continue to improve. Clinical cell-based regulatory therapies have been employed for targeting SR-aGVHD, particularly mesenchymal stem cells (MSCs) and more recently, Tregs. In this review, we summarize aGVHD pathophysiology, highlight newly discovered aGVHD mechanisms, and discuss current and emerging cellular and graft manipulation approaches for aGVHD prevention and treatment.
Collapse
Affiliation(s)
- Daniel Peltier
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Herman B. Wells Center for Pediatric Research, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Van Anh Do-Thi
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Herman B. Wells Center for Pediatric Research, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven and Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven 3000, Belgium
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
- Clinical Research and Trial Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo City, Tokyo 113-8677, Japan
| |
Collapse
|
2
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Najaf Khosravi H, Razi S, Rezaei N. The role of interleukin-2 in graft-versus-host disease pathogenesis, prevention and therapy. Cytokine 2024; 183:156723. [PMID: 39173281 DOI: 10.1016/j.cyto.2024.156723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Graft-versus-host disease (GVHD) is a significant complication following allogeneic hematopoietic cell transplantation (allo-HCT), posing substantial risks to patient survival. In the late follow-up phase of transplanted patients, GVHD is also a major cause of morbidity and disability, mostly due to low response to first-line steroids and the lack of effective standard therapies in the second line. This review provides a description of GVHD pathogenesis, with a focus on the central role of Interleukin-2 (IL-2). IL-2 is one of the critical mediators in the complex pathogenesis of GVHD, contributing to the intricate balance between regulatory T cells (Tregs) and effector T cells (Teffs). Due to this pivotal role, several studies investigate the potential of IL-2 as a therapeutic option for GVHD management. We discuss the outcomes of low-dose IL-2 therapies and their impact on Treg proliferation and steroid dependency reduction. Additionally, the effects of combining IL-2 with other treatments, such as extracorporeal photopheresis (ECP) and Treg-enriched lymphocyte infusions, are highlighted. Novel approaches, including modified IL-2 complexes and IL-2 receptor blockade, are explored for their potential in selectively enhancing Treg function and limiting Teff activation. The evolving understanding of IL-2's pivotal role in immune regulation presents promising prospects for applying treatment and prevention strategies for GVHD.
Collapse
Affiliation(s)
- Hila Najaf Khosravi
- Royan Institute for Stem Cell Biology and Technology, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
4
|
Kielsen K, Møller DL, Pedersen AE, Nielsen CH, Ifversen M, Ryder LP, Müller K. Cytomegalovirus infection is associated with thymic dysfunction and chronic graft-versus-host disease after pediatric hematopoietic stem cell transplantation. Clin Immunol 2024; 265:110302. [PMID: 38942161 DOI: 10.1016/j.clim.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Pediatric hematopoietic stem cell transplantation (HSCT) is challenged by chronic graft-versus-host disease (cGvHD) significantly affecting survival and long-term morbidity, but underlying mechanisms including the impact of post-HSCT CMV infection are sparsely studied. We first investigated the impact of CMV infection for development of cGvHD in 322 children undergoing standard myeloablative HSCT between 2000 and 2018. Clinically significant CMV infection (n = 61) was an independent risk factor for chronic GvHD in a multivariable Cox regression analysis (HR = 2.17, 95% CI = 1.18-3.97, P = 0.013). We next explored the underlying mechanisms in a subcohort of 39 children. CMV infection was followed by reduced concentration of recent thymic emigrants (17.5 vs. 51.9 × 106/L, P = 0.048) and naïve CD4+ and CD8+ T cells at 6 months post-HSCT (all P < 0.05). Furthermore, CD25highFOXP3+ Tregs tended to be lower in patients with CMV infection (2.9 vs. 9.6 × 106/L, P = 0.055), including Tregs expressing the naivety markers CD45RA and Helios. CD8+ T-cell numbers rose after CMV infection and was dominated by exhausted PD1-expressing cells (66% vs. 39%, P = 0.023). These findings indicate that post-HSCT CMV infection is a main risk factor for development of chronic GvHD after pediatric HSCT and suggest that this effect is caused by reduced thymic function with a persistently impaired production of naïve and regulatory T cells in combination with increased peripheral T-cell exhaustion.
Collapse
Affiliation(s)
- Katrine Kielsen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Dina Leth Møller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Ifversen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Peter Ryder
- Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Ekwe AP, Au R, Zhang P, McEnroe BA, Tan ML, Saldan A, Henden AS, Hutchins CJ, Henderson A, Mudie K, Kerr K, Fuery M, Kennedy GA, Hill GR, Tey SK. Clinical grade multiparametric cell sorting and gene-marking of regulatory T cells. Cytotherapy 2024; 26:719-728. [PMID: 38530690 DOI: 10.1016/j.jcyt.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
Collapse
Affiliation(s)
- Adaeze Precious Ekwe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Raymond Au
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Benjamin A McEnroe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mei Ling Tan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alda Saldan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S Henden
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Cheryl J Hutchins
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ashleigh Henderson
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kari Mudie
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Keri Kerr
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Madonna Fuery
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Glen A Kennedy
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Siok-Keen Tey
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
6
|
Oya Y, Tanaka Y, Nakazawa T, Matsumura R, Glass DD, Nakajima H, Shevach EM. Polyclonally Derived Alloantigen-Specific T Regulatory Cells Exhibit Target-Specific Suppression and Capture MHC Class II from Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1891-1903. [PMID: 38683146 DOI: 10.4049/jimmunol.2300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Foxp3+ T regulatory (Treg) cells prevent allograft rejection and graft-versus-host disease. Although polyclonal Tregs have been used both in animal models and in humans, the fine specificity of their suppressive function is poorly defined. We have generated mouse recipient-derived alloantigen-specific Tregs in vitro and explored the fine specificity of their suppressive function and their mechanism of action in vitro and in vivo. In vitro, when alloantigen and peptide Ag were both presented on the same dendritic cell, both responses were suppressed by iTregs specific either for the alloantigen or for the peptide Ag. In vivo, iTreg suppression was limited to the cognate Ag, and no bystander suppression was observed when both allo-antigen and peptide Ag were present on the same dendritic cell. In vitro, alloantigen-specific Tregs captured cognate MHC but failed to capture noncognate MHC. Our results demonstrate that a polyclonal population of iTregs generated from naive T cells can mediate highly specific function in vivo and support the view that Treg therapy, even with unselected polyclonal populations, is likely to be target antigen-specific and that bystander responses to self-antigens or to infectious agents are unlikely.
Collapse
Affiliation(s)
- Yoshihiro Oya
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Yasuyo Tanaka
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Takuya Nakazawa
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University Hospital, Chiba City, Chiba, Japan
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Bonnin E, Rodrigo Riestra M, Marziali F, Mena Osuna R, Denizeau J, Maurin M, Saez JJ, Jouve M, Bonté PE, Richer W, Nevo F, Lemoine S, Girard N, Lefevre M, Borcoman E, Vincent-Salomon A, Baulande S, Moreau HD, Sedlik C, Hivroz C, Lennon-Duménil AM, Tosello Boari J, Piaggio E. CD74 supports accumulation and function of regulatory T cells in tumors. Nat Commun 2024; 15:3749. [PMID: 38702311 PMCID: PMC11068745 DOI: 10.1038/s41467-024-47981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Humans
- Female
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Elisa Bonnin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Maria Rodrigo Riestra
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Federico Marziali
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Rafael Mena Osuna
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jordan Denizeau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Mathieu Maurin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Juan Jose Saez
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Mabel Jouve
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Pierre-Emmanuel Bonté
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Nicolas Girard
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Paris Saclay University, UVSQ, Versailles, France
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| | - Marine Lefevre
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Anne Vincent-Salomon
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Helene D Moreau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Claire Hivroz
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | | | - Jimena Tosello Boari
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Eliane Piaggio
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
- Egle Therapeutics, Paris, France.
| |
Collapse
|
8
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
9
|
Kuroiwa K, Sato M, Narita H, Okamura R, Uesugi Y, Sasaki Y, Shimada S, Watanuki M, Fujiwara S, Kawaguchi Y, Arai N, Yanagisawa K, Iezumi K, Hattori N. Influence of FOXP3 single-nucleotide polymorphism after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:583-591. [PMID: 38418747 DOI: 10.1007/s12185-024-03726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The impact of FOXP3 single-nucleotide polymorphisms (SNP) on clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains poorly understood. We investigated the relationship between a FOXP3 SNP (rs3761548) and clinical outcomes in 91 patients with hematological malignancies after allo-HSCT. Multivariate analysis showed that risk of severe chronic graft-versus-host disease (cGVHD) was significantly higher in patients with the FOXP3-3279C/A or FOXP3-3279A/A genotype than those with the FOXP3-3279C/C genotype [hazard ratio (HR), 2.69; 95% confidence interval (CI) 1.14-6.31; p = 0.023]. Therefore, FOXP3 at SNP rs3761548 can be a useful marker for predicting the occurrence of severe cGVHD.
Collapse
Affiliation(s)
- Kai Kuroiwa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Misuzu Sato
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hinako Narita
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Reiko Okamura
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuka Uesugi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keiichi Iezumi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
10
|
Dittmar DJ, Pielmeier F, Strieder N, Fischer A, Herbst M, Stanewsky H, Wenzl N, Röseler E, Eder R, Gebhard C, Schwarzfischer-Pfeilschifter L, Albrecht C, Herr W, Edinger M, Hoffmann P, Rehli M. Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease. Nat Commun 2024; 15:3224. [PMID: 38622133 PMCID: PMC11018811 DOI: 10.1038/s41467-024-47575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.
Collapse
Affiliation(s)
- David J Dittmar
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- BioNTech SE, 82061, Neuried, Germany
| | - Franziska Pielmeier
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Michael Herbst
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- Institute of Experimental Immunology, Research Unit Tumorimmunology, University of Zurich, Zurich, Switzerland
| | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Niklas Wenzl
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Eveline Röseler
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | | | - Christin Albrecht
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| |
Collapse
|
11
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
12
|
Thiolat A, Pilon C, Caudana P, Moatti A, To NH, Sedlik C, Leclerc M, Maury S, Piaggio E, Cohen JL. Treg-targeted IL-2/anti-IL-2 complex controls graft- versus-host disease and supports anti-tumor effect in allogeneic hematopoietic stem cell transplantation. Haematologica 2024; 109:129-142. [PMID: 37706355 PMCID: PMC10772500 DOI: 10.3324/haematol.2022.282653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Modulating an immune response in opposite directions represents the holy grail in allogeneic hematopoietic stem cell transplantation (allo-HSCT) to avoid insufficient reactivity of donor T cells and hematologic malignancy relapse while controlling the potential development of graft-versus-host disease (GVHD), in which donor T cells attack the recipient's tissues. IL-2/anti-IL-2 complexes (IL-2Cx) represent a therapeutic option to selectively accentuate or dampen the immune response. In dedicated experimental models of allo-HSCT, including also human cells injected in immunodeficient NSG mice, we evaluated side-by-side the therapeutic effect of two IL-2Cx designed either to boost regulatory T cells (Treg) or alternatively to activate effector T cells (Teff), on GVHD occurrence and tumor relapse. We also evaluated the effect of the complexes on the phenotype and function of immune cells in vivo. Unexpectedly, both pro-Treg and pro-Teff IL-2Cx prevented GVHD development. They both induced Treg expansion and reduced CD8+ T-cell numbers, compared to untreated mice. However, only mice treated with the pro-Treg IL-2Cx, showed a dramatic reduction of exhausted CD8+ T cells, consistent with a potent anti-tumor effect. When evaluated on human cells, pro-Treg IL-2Cx also preferentially induced Treg expansion in vitro and in vivo, while allowing the development of a potent anti-tumor effect in NSG mice. Our results demonstrate the clinical relevance of using a pro-Treg, but not a pro-Teff IL2Cx to modulate alloreactivity after HSCT, while promoting a graft-versus-leukemia effect.
Collapse
Affiliation(s)
- Allan Thiolat
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Caroline Pilon
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil
| | - Pamela Caudana
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Audrey Moatti
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Nhu Hanh To
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Christine Sedlik
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Mathieu Leclerc
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Sébastien Maury
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Eliane Piaggio
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - José L Cohen
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil.
| |
Collapse
|
13
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
14
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
15
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
16
|
Yu J, Cui J, Zhang X, Xu H, Chen Z, Li Y, Niu Y, Wang S, Ran S, Zou Y, Ye W, Zhang D, Zhou C, Xia J, Wu J. The OX40-TRAF6 axis promotes CTLA-4 degradation to augment antitumor CD8 + T-cell immunity. Cell Mol Immunol 2023; 20:1445-1456. [PMID: 37932534 PMCID: PMC10687085 DOI: 10.1038/s41423-023-01093-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
Immune checkpoint blockade (ICB), including anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4), benefits only a limited number of patients with cancer. Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy. Here, we identified that TNF receptor-associated factor 6 (TRAF6) mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4. Moreover, by using TRAF6-deficient mice and retroviral overexpression experiments, we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner, which is dependent on the RING domain of TRAF6. This intrinsic regulatory mechanism contributes to CD8+ T-cell-mediated antitumor immunity in vivo. Additionally, by using an OX40 agonist, we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation, thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer. Overall, our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Chiad Z, Chojecki A. Graft versus Leukemia in 2023. Best Pract Res Clin Haematol 2023; 36:101476. [PMID: 37611995 DOI: 10.1016/j.beha.2023.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is commonly utilized in the management of leukemia across multiple subtypes. Graft versus leukemia (GVL) is a critical component of successful transplantation and involves donor cells eradicating residual leukemia within the recipient. Graft versus host disease (GVHD) by contrast is a common complication of the transplantation process in which donor cells identify the recipient's various organ systems as foreign, thereby leading to a multitude of organ toxicities that can be described as autoimmune in nature. As both GVL and GVHD are mediated by a similar mechanism, these processes are felt to occur in tandem with one another. Here, we review the allogeneic HCT process in the context of GVL.
Collapse
Affiliation(s)
- Zane Chiad
- 1021 Morehead Medical Drive, Building 2, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
18
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Gedaly R, Orozco G, Ancheta AP, Donoho M, Desai SN, Chapelin F, Khurana A, Lewis LJ, Zhang C, Marti F. Metabolic Disruption Induced by mTOR Signaling Pathway Inhibition in Regulatory T-Cell Expansion for Clinical Application. Cells 2023; 12:2066. [PMID: 37626877 PMCID: PMC10453008 DOI: 10.3390/cells12162066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is considered an alternative approach to induce tolerance in transplantation. If successful, this therapy may have implications on immunosuppression minimization/withdrawal to reduce drug-induced toxicity in patients. The aim of this study was to assess the efficacy of the mTORC1/C2 inhibitor, AZD8055, in the manufacturing of clinically competent Treg cells and compare the effects with those induced by rapamycin (RAPA), another mTOR inhibitor commonly used in Treg expansion protocols. METHODS Primary human Treg cells were isolated from leukapheresis product. Cell viability, expansion rates, suppressive function, autophagy, mitochondrial unfolded protein response (mitoUPR), and cell metabolic profile were assessed. RESULTS We observed a stronger inhibition of the mTORC2 signaling pathway and downstream events triggered by Interleukin 2 (IL2)-receptor in AZD8055-treated cells compared with those treated with RAPA. AZD8055 induced progressive metabolic changes in mitochondrial respiration and glycolytic pathways that disrupted the long-term expansion and suppressive function of Tregs. Unlike RAPA, AZD8055 treatment impaired autophagy and enhanced the mitoUPR cell stress response pathway. CONCLUSIONS A distinct pattern of mTOR inhibition by AZD, compared with RAPA, induced mitochondrial stress response and dysfunction, impaired autophagy, and disrupted cellular bioenergetics, resulting in the loss of proliferative potential and suppressive function of Treg cells.
Collapse
Affiliation(s)
- Roberto Gedaly
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Division of Transplantation, Section for Quality and Biostatistics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Gabriel Orozco
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Alexandre P. Ancheta
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mackenzie Donoho
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Siddharth N. Desai
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Fanny Chapelin
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Biomedical Engineering, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Aman Khurana
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lillie J. Lewis
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Cuiping Zhang
- Flow Cytometry & Immune Monitoring Core Facility, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Francesc Marti
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Division of Transplantation, Section for Quality and Biostatistics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Mammadli M, Suo L, Sen JM, Karimi M. TCF-1 negatively regulates the suppressive ability of canonical and noncanonical Tregs. J Leukoc Biol 2023; 113:489-503. [PMID: 36806938 PMCID: PMC11651127 DOI: 10.1093/jleuko/qiad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Regulatory T cells are suppressive immune cells used in various clinical and therapeutic applications. Canonical regulatory T cells express CD4, FOXP3, and CD25, which are considered definitive markers of their regulatory T-cell status when expressed together. However, a subset of noncanonical regulatory T cells expressing only CD4 and FOXP3 have recently been described in some infection contexts. Using a unique mouse model for the first time demonstrated that the TCF-1 regulation of regulatory T-cell suppressive function is not limited to the thymus during development. Our data showed that TCF-1 also regulated regulatory T cells' suppressive ability in secondary organs and graft-vs-host disease target organs as well as upregulating noncanonical regulatory T cells. Our data demonstrated that TCF-1 regulates the suppressive function of regulatory T cells through critical molecules like GITR and PD-1, specifically by means of noncanonical regulatory T cells. Our in vitro approaches show that TCF-1 regulates the regulatory T-cell effector-phenotype and the molecules critical for regulatory T-cell migration to the site of inflammation. Using in vivo models, we show that both canonical and noncanonical regulatory T cells from TCF-1 cKO mice have a superior suppressive function, as shown by their ability to control conventional T-cell proliferation, avert acute graft-vs-host disease, and limit tissue damage. Thus, for the first time, we provide evidence that TCF-1 negatively regulates the suppressive ability of canonical and noncanonical regulatory T cells. These findings provide evidence that TCF-1 is a novel target for developing strategies to treat alloimmune disorders.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2141, Syracuse, NY 13210, USA
| | - Jyoti Misra Sen
- National Institute on Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
- Center of Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, 2024 E, Monument Street Suite 2-700, Baltimore, MD 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Fiyouzi T, Pelaez-Prestel HF, Reyes-Manzanas R, Lafuente EM, Reche PA. Enhancing Regulatory T Cells to Treat Inflammatory and Autoimmune Diseases. Int J Mol Sci 2023; 24:ijms24097797. [PMID: 37175505 PMCID: PMC10177847 DOI: 10.3390/ijms24097797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents. Thereby, there is a great interest in developing medical interventions against these diseases based on enhancing Treg cell function and numbers. Here, we give an overview of Treg cell ontogeny and function, paying particular attention to mucosal Tregs. We review some notable approaches to enhance immunomodulation by Tregs with therapeutic purposes including adoptive Treg cell transfer therapy and discuss relevant clinical trials for inflammatory bowel disease. We next introduce ways to expand mucosal Tregs in vivo using microbiota and dietary products that have been the focus of clinical trials in various autoimmune and chronic-inflammatory diseases.
Collapse
Affiliation(s)
- Tara Fiyouzi
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Hector F Pelaez-Prestel
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Raquel Reyes-Manzanas
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Esther M Lafuente
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Pedro A Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
22
|
Rodríguez-Gil A, Pérez-Simón JA, Ritz J, Lacerda JF, Soares MVD. Editorial: Regulatory T cells in graft versus host disease. Front Immunol 2023; 13:1085220. [PMID: 36890846 PMCID: PMC9986615 DOI: 10.3389/fimmu.2022.1085220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 02/22/2023] Open
Affiliation(s)
- Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Centro Superior de Investigaciones Científicas (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
| | - José A. Pérez-Simón
- Instituto de Biomedicina de Sevilla, Centro Superior de Investigaciones Científicas (IBIS/CSIC), Universidad de Sevilla, Seville, Spain
- Departamento de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - João F. Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria VD. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Tripathi G, Khanolkar RA, Faridi RM, Kalra A, Dharmani-Khan P, Shabani-Rad MT, Berka N, Daly A, Storek J, Khan FM. Donor Genetic Predisposition to High Interleukin-10 Production Appears Protective against Acute Graft-Versus-Host Disease. Int J Mol Sci 2022; 23:ijms232415888. [PMID: 36555525 PMCID: PMC9779827 DOI: 10.3390/ijms232415888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The persistence of graft-versus-host disease (GVHD) as the principal complication of allogeneic hematopoietic cell transplantation (HCT) demonstrates that HLA matching alone is insufficient to prevent alloreactivity. We performed molecular and functional characterization of 22 candidate cytokine genes for their potential to improve matching in 315 myeloablative, 10/10 HLA-matched donor−recipient pairs. Recipients of a graft carrying the -1082GG IL10 gene promoter region variant had a three-fold lower incidence of grade II−IV acute GVHD compared to IL10-1082AA graft recipients (SHR = 0.25, p = 0.005). This was most evident in matched unrelated donor (MUD) transplants, where the greatest alloreactivity is expected. IL10-1082GG transplants did not experience an increased incidence of relapse, and, consequently, overall survival was two-fold higher in IL10-1082GG MUD transplants (HR = 0.17, p = 0.023). Longitudinal post-transplant measurements demonstrated that -1082GG is a high-IL10-producing and -expressing genotype with attenuated CD8+ T-cell reconstitution. High post-transplant donor chimerism in T- and myeloid-cells (>95%) confirmed a predominant donor, rather than recipient, genotype effect on immune function and aGVHD. To date, this is the first study to report corroborating genome-to-cellular evidence for a non-HLA donor immunogenetic variant that appears to be protective against GVHD. The incorporation of IL10 variants in donor selection criteria and clinical-management decisions has the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Gaurav Tripathi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Rutvij A. Khanolkar
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rehan M. Faridi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Amit Kalra
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
| | - Poonam Dharmani-Khan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Meer-Taher Shabani-Rad
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Noureddine Berka
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Andrew Daly
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Health Services, Calgary, AB T2N 4L7, Canada
| | - Jan Storek
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Health Services, Calgary, AB T2N 4L7, Canada
| | - Faisal M. Khan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
- Correspondence: ; Tel.: +1-403-220-7671; Fax: +1-403-210-8176
| |
Collapse
|
24
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
25
|
McGovern J, Holler A, Thomas S, Stauss HJ. Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J Autoimmun 2022; 132:102888. [PMID: 36049437 PMCID: PMC10570926 DOI: 10.1016/j.jaut.2022.102888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Regulatory T cells (Treg) are potent inhibitors of autoreactive T cells. The intracellular transcription factor FoxP3 controls the expression levels of a diverse set of genes and plays a critical role in programming functional Tregs. Although, antigen-specific Tregs are more potent than polyclonal Tregs in treating ongoing autoimmunity, phenotype plasticity associated with loss of FoxP3 expression in Tregs can lead to the conversion into antigen-specific effector T cells which might exacerbate autoimmune pathology. In this study, we designed a retroviral vector driving the expression of FoxP3 and a human HLA-DR-restricted TCR from the same promoter. Transduction of purified human Tregs revealed that all TCR-positive cells had elevated levels of FoxP3 expression, increased CD25 and CTLA4 expression and potent suppressive function. Elevated FoxP3 expression did not impair the in vitro expansion of engineered Tregs. Adoptive transfer into HLA-DR transgenic mice revealed that FoxP3+TCR engineered Tregs showed long-term persistence with stable FoxP3 and TCR expression. In contrast, adoptive transfer of Tregs engineered with TCR only resulted in the accumulation of TCR-positive, FoxP3-negative T cells which displayed antigen-specific effector function when stimulated with the TCR-recognised peptides. Our data indicate that forced expression of FoxP3 can prevent accumulation of antigen-specific effector T cells without impairing the engraftment and persistence of engineered Tregs.
Collapse
Affiliation(s)
- Jenny McGovern
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, UK; Quell Therapeutics, 84 Wood Lane, London, UK
| | - Angelika Holler
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, UK
| | - Sharyn Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, UK.
| |
Collapse
|
26
|
Bolivar-Wagers S, Loschi ML, Jin S, Thangavelu G, Larson JH, McDonald-Hyman CS, Aguilar EG, Saha A, Koehn BH, Hefazi M, Osborn MJ, Jensen MC, Wagner JE, Pennell CA, Blazar BR. Murine CAR19 Tregs suppress acute graft-versus-host disease and maintain graft-versus-tumor responses. JCI Insight 2022; 7:e160674. [PMID: 35917188 PMCID: PMC9536261 DOI: 10.1172/jci.insight.160674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) efficacy is complicated by graft-versus-host disease (GVHD), a leading cause of morbidity and mortality. Regulatory T cells (Tregs) have shown efficacy in preventing GVHD. However, high Treg doses are often required, necessitating substantial ex vivo or in vivo expansion that may diminish suppressor function. To enhance in vivo suppressor function, murine Tregs were transduced to express an anti-human CD19 chimeric antigen receptor (hCAR19) and infused into lethally irradiated, hCD19-transgenic recipients for allo-HSCT. Compared with recipients receiving control transduced Tregs, those receiving hCAR19 Tregs had a marked decrease in acute GVHD lethality. Recipient hCD19 B cells and murine hCD19 TBL12-luciferase (TBL12luc) lymphoma cells were both cleared by allogeneic hCAR19 Tregs, which was indicative of graft-versus-tumor (GVT) maintenance and potentiation. Mechanistically, hCAR19 Tregs killed syngeneic hCD19+ but not hCD19- murine TBL12luc cells in vitro in a perforin-dependent, granzyme B-independent manner. Importantly, cyclophosphamide-treated, hCD19-transgenic mice given hCAR19 cytotoxic T lymphocytes without allo-HSCT experienced rapid lethality due to systemic toxicity that has been associated with proinflammatory cytokine release; in contrast, hCAR19 Treg suppressor function enabled avoidance of this severe complication. In conclusion, hCAR19 Tregs are a potentially novel and effective strategy to suppress GVHD without loss of GVT responses.
Collapse
Affiliation(s)
- Sara Bolivar-Wagers
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Michael L. Loschi
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Sujeong Jin
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Jemma H. Larson
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Cameron S. McDonald-Hyman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ethan G. Aguilar
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Asim Saha
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Brent H. Koehn
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Mehrdad Hefazi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark J. Osborn
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Michael C. Jensen
- Department of Pediatrics, Division of Hematology and Oncology, University of Washington, Seattle, Washington, USA
| | - John E. Wagner
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| | - Christopher A. Pennell
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, and
| |
Collapse
|
27
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
28
|
Moatti A, Debesset A, Pilon C, Beldi-Ferchiou A, Leclerc M, Redjoul R, Charlotte F, To NH, Bak A, Belkacemi Y, Salomon BL, Issa F, Michonneau D, Maury S, Cohen JL, Thiolat A. TNFR2 blockade of regulatory T cells unleashes an antitumor immune response after hematopoietic stem-cell transplantation. J Immunother Cancer 2022; 10:jitc-2021-003508. [PMID: 35387779 PMCID: PMC8987798 DOI: 10.1136/jitc-2021-003508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background Targeting immune checkpoints that inhibit antitumor immune responses has emerged as a powerful new approach to treat cancer. We recently showed that blocking the tumor necrosis factor receptor-type 2 (TNFR2) pathway induces the complete loss of the protective function of regulatory T cells (Tregs) in a model of graft-versus-host disease (GVHD) prevention that relies on Treg-based cell therapy. Here, we tested the possibility of amplifying the antitumor response by targeting TNFR2 in a model of tumor relapse following hematopoietic stem-cell transplantation, a clinical situation for which the need for efficient therapeutic options is still unmet. Method We developed appropriate experimental conditions that mimic patients that relapsed from their initial hematological malignancy after hematopoietic stem-cell transplantation. This consisted of defining in allogeneic bone marrow transplantation models developed in mice, the maximum number of required tumor cells and T cells to infuse into recipient mice to develop a model of tumor relapse without inducing GVHD. We next evaluated whether anti-TNFR2 treatment could trigger alloreactivity and consequently antitumor immune response. In parallel, we also studied the differential expression of TNFR2 on T cells including Treg from patients in post-transplant leukemia relapse and in patients developing GVHD. Results Using experimental conditions in which neither donor T cells nor TNFR2-blocking antibody per se have any effect on tumor relapse, we observed that the coadministration of a suboptimal number of T cells and an anti-TNFR2 treatment can trigger alloreactivity and subsequently induce a significant antitumor effect. This was associated with a reduced percentage of activated CD4+ and CD8+ Tregs. Importantly, human Tregs over-expressed TNFR2 relative to conventional T cells in healthy donors and in patients experiencing leukemia relapse or cortico-resistant GVHD after hematopoietic stem cell transplantation. Conclusions These results highlight TNFR2 as a new target molecule for the development of immunotherapies to treat blood malignancy relapse, used either directly in grafted patients or to enhance donor lymphocyte infusion strategies. More widely, they open the door for new perspectives to amplify antitumor responses against solid cancers by directly targeting Tregs through their TNFR2 expression.
Collapse
Affiliation(s)
- Audrey Moatti
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,CIC Biotherapy, GHU Chenevier Mondor, Créteil, France
| | - Anais Debesset
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | | | - Mathieu Leclerc
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - Rabah Redjoul
- Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - Frederic Charlotte
- Service d'anatomopathologie, University Hospital Pitié Salpêtrière, Paris, France
| | - Nhu Hanh To
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Adeline Bak
- Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Yazid Belkacemi
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'oncologie-radiothérapie, GHU Chenevier Mondor, Créteil, France
| | - Benoît Laurent Salomon
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Paris, France
| | - Fadi Issa
- Transplantation Research Immunology Group, University of Oxford Nuffield Department of Surgical Sciences, Oxford, UK
| | | | - Sebastien Maury
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France.,Service d'hématologie Clinique, GHU Chenevier Mondor, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France .,CIC Biotherapy, GHU Chenevier Mondor, Créteil, France
| | - Allan Thiolat
- INSERM, IMRB, Université Paris-Est Créteil Val de Marne, Créteil, France
| |
Collapse
|
29
|
Dou M, Ding C, Zheng B, Deng G, Zhu K, Xu C, Xue W, Ding X, Zheng J, Tian P. Immune-Related Genes for Predicting Future Kidney Graft Loss: A Study Based on GEO Database. Front Immunol 2022; 13:859693. [PMID: 35281025 PMCID: PMC8913884 DOI: 10.3389/fimmu.2022.859693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objective We aimed to identify feature immune-related genes that correlated with graft rejection and to develop a prognostic model based on immune-related genes in kidney transplantation. Methods Gene expression profiles were obtained from the GEO database. The GSE36059 dataset was used as a discovery cohort. Then, differential expression analysis and a machine learning method were performed to select feature immune-related genes. After that, univariate and multivariate Cox regression analyses were used to identify prognosis-related genes. A novel Riskscore model was built based on the results of multivariate regression. The levels of these feature genes were also confirmed in an independent single-cell dataset and other GEO datasets. Results 15 immune-related genes were expressed differently between non-rejection and rejection kidney allografts. Those differentially expressed immune-related genes (DE-IRGs) were mainly associated with immune-related biological processes and pathways. Subsequently, a 5-immune-gene signature was constructed and showed favorable predictive results in the GSE21374 dataset. Recipients were divided into the high-risk and low-risk groups according to the median value of RiskScore. The GO and KEGG analysis indicated that the differentially expressed genes (DEGs) between high-risk and low-risk groups were mainly involved in inflammatory pathways, chemokine-related pathways, and rejection-related pathways. Immune infiltration analysis demonstrated that RiskScore was potentially related to immune infiltration. Kaplan-Meier survival analysis suggested that recipients in the high-risk group had poor graft survival. AUC values of 1- and 3-year graft survival were 0.804 and 0.793, respectively. Conclusion Our data suggest that this immune-related prognostic model had good sensitivity and specificity in predicting the 1- and 3-year kidney graft survival and might act as a useful tool for predicting kidney graft loss.
Collapse
Affiliation(s)
- Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ge Deng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cuixiang Xu
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wujun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puxun Tian,
| |
Collapse
|
30
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Mammadli M, Harris R, Suo L, May A, Gentile T, Waickman AT, Bah A, August A, Nurmemmedov E, Karimi M. Interleukin-2-inducible T-cell kinase (Itk) signaling regulates potent noncanonical regulatory T cells. Clin Transl Med 2021; 11:e625. [PMID: 34919342 PMCID: PMC8679839 DOI: 10.1002/ctm2.625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling autoimmunity and limiting tissue damage and inflammation. IL2-inducible T cell kinase (Itk) is part of the Tec family of tyrosine kinases and is a critical component of T cell receptor mediated signaling. Here, we showed that either genetic ablation of Itk signaling or inhibition of Itk signaling pathways resulted in increased frequency of "noncanonical" CD4+ CD25- FOXP3+ Tregs (ncTregs), as well as of "canonical" CD4+ CD25+ FOXP3+ Tregs (canTregs). Using in vivo models, we showed that ncTregs can avert the formation of acute graft-versus-host disease (GVHD), in part by reducing conventional T cell proliferation, proinflammatory cytokine production, and tissue damage. This reduction in GVHD occurred without disruption of graft-versus-leukaemia (GVL) effects. RNA sequencing revealed that a number of effector, cell adhesion, and migration molecules were upregulated in Itk-/- ncTregs. Furthermore, disrupting the SLP76: ITK interaction using a specific peptide inhibitor led to enhanced Treg development in both mouse and primary human cells. This peptide inhibitor also significantly reduced inflammatory cytokine production in primary GVHD patient samples and mouse T cells without causing cell death or apoptosis. We provide evidence that specifically targeting Itk signaling could be a therapeutic strategy to treat autoimmune disorders.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Teresa Gentile
- Department of Hematology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Adam T Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Elmar Nurmemmedov
- Department of Translational Neurosciences Saint John's Cancer Institute, Santa Monica, California, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
32
|
Wagner JC, Leicht S, Hofmann M, Seifert F, Gahn S, Germer CT, Beyersdorf N, Otto C, Klein I. CD28 Superagonist D665-mediated activation of mouse regulatory T cells maintains their phenotype without loss of suppressive quality. Immunobiology 2021; 226:152144. [PMID: 34624625 DOI: 10.1016/j.imbio.2021.152144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune homeostasis by regulating the activation of other immune cells. Preclinical studies show that the infusion of Tregs can promote immunological tolerance to allografts and prevent or cure multiple autoimmune diseases. However, Treg therapy is limited by high numbers of cells required to induce tolerance. In this study, we aimed at improving the in vitro expansion of sort purified mouse Tregs using the CD28 Superagonist (CD28-SA) D665 and comparing it to the conventional expansion using anti-CD3/anti-CD28 Dynabeads®. CD28-SA-stimulated Tregs expanded more than Dynabead®-stimulated Tregs while maintaining their phenotype by expressing the same level of CD4, CD25 and Foxp3. CD28-SA-expanded Tregs produced comparable amounts of IL-10 and TGFβ while showing a slightly superior suppressive capacity compared to Dynabead®-stimulated Tregs. Thus, stimulating murine Tregs with the CD28-SA is a promising alternative since it maintains their suppressive capacity without altering their phenotype and yields a higher fold expansion within 14 days.
Collapse
Affiliation(s)
- Johanna C Wagner
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Department of Surgery, Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA.
| | - Svenja Leicht
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Manuela Hofmann
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Franziska Seifert
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Sabine Gahn
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Christoph Otto
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| |
Collapse
|
33
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
34
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Bode D, Cull AH, Rubio-Lara JA, Kent DG. Exploiting Single-Cell Tools in Gene and Cell Therapy. Front Immunol 2021; 12:702636. [PMID: 34322133 PMCID: PMC8312222 DOI: 10.3389/fimmu.2021.702636] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.
Collapse
Affiliation(s)
- Daniel Bode
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H. Cull
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Juan A. Rubio-Lara
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - David G. Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
36
|
Guo WW, Su XH, Wang MY, Han MZ, Feng XM, Jiang EL. Regulatory T Cells in GVHD Therapy. Front Immunol 2021; 12:697854. [PMID: 34220860 PMCID: PMC8250864 DOI: 10.3389/fimmu.2021.697854] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Graft versus host disease (GVHD) is a common complication and the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Pharmacological immunosuppression used in GVHD prophylaxis and treatment lacks specificity and can increase the likelihood of infection and relapse. Regulatory T lymphocytes (Tregs) play a vital role in restraining excessive immune responses and inducing peripheral immune tolerance. In particular, clinical trials have demonstrated that Tregs can prevent and treat GVHD, without increasing the risk of relapse and infection. Hence, adoptive transfer of Tregs to control GVHD using their immunosuppressive properties represents a promising therapeutic approach. To optimally apply Tregs for control of GVHD, a thorough understanding of their biology is necessary. In this review, we describe the biological characteristics of Tregs, including how the stability of FOXP3 expression can be maintained. We will also discuss the mechanisms underlying Tregs-mediated modulation of GVHD and approaches to effectively increase Tregs’ numbers. Finally, we will examine the developing trends in the use of Tregs for clinical therapy.
Collapse
Affiliation(s)
- Wen-Wen Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiu-Hua Su
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Yang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming-Zhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao-Ming Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Er-Lie Jiang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
37
|
Ritacco C, Ehx G, Grégoire C, Daulne C, Willems E, Servais S, Beguin Y, Baron F. High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2021; 56:1828-1841. [PMID: 33664462 DOI: 10.1038/s41409-021-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
It is now well-established that regulatory T cells (Treg) represent a heterogeneous group of CD4+ T cells. Previous studies have demonstrated that Treg homeostasis was impacted by allogeneic hematopoietic cell transplantation (allo-HCT) and particularly so in patients with chronic graft-versus-host disease (GVHD). Here, we first assessed the ability of various Treg subsets to phosphorylate STAT5 in response to IL-2 or IL-7 stimulation in vitro. We then compared the frequencies of different Treg subtypes in healthy controls as well as in allo-HCT patients with or without chronic GVHD. The highest phosphorylated STAT5 (pSTAT5) signal in response to IL-2 was observed in the CD45RO+CD26-CD39+HLA-DR+ Treg fraction. In contrast, naive Treg were mostly less susceptible to IL-2 stimulation in vitro. Following IL-7 stimulation, most Treg subpopulations upregulated pSTAT5 expression but to a lesser extent than conventional T cells. Compared to healthy controls, allo-HCT patients had lower frequencies of the naive CD45RAbrightCD26+ Treg subpopulation but higher frequencies of the most differentiated memory CD45RO+CD26-CD39+ Treg subpopulations. Further, unbiased analysis revealed that six Treg clusters characterized by high expression of CD25, HLA-DR, and ICOS were significantly more frequent in patients with no or with limited chronic GVHD than in those with moderate/severe chronic GVHD.
Collapse
Affiliation(s)
- Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Céline Grégoire
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Coline Daulne
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Sophie Servais
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium. .,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium.
| |
Collapse
|
38
|
D’Aveni M, Notarantonio AB, Agbogan VA, Bertrand A, Fouquet G, Gastineau P, Garfa-Traoré M, De Carvalho M, Hermine O, Rubio MT, Zavala F. Mobilized Multipotent Hematopoietic Progenitors Promote Expansion and Survival of Allogeneic Tregs and Protect Against Graft Versus Host Disease. Front Immunol 2021; 11:607180. [PMID: 33643294 PMCID: PMC7907505 DOI: 10.3389/fimmu.2020.607180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (Allo-HSCT) is routinely performed with peripheral blood stem cells (PBSCs) mobilized by injection of G-CSF, a growth factor which not only modulates normal hematopoiesis but also induces diverse immature regulatory cells. Based on our previous evidence that G-CSF-mobilized multipotent hematopoietic progenitors (MPP) can increase survival and proliferation of natural regulatory T cells (Tregs) in autoimmune disorders, we addressed the question how these cells come into play in mice and humans in an alloimmune setting. Using a C57BL/6 mouse model, we demonstrate that mobilized MPP enhance the immunosuppressant effect exerted by Tregs, against alloreactive T lymphocytes, both in vitro and in vivo. They do so by migrating to sites of allopriming, interacting with donor Tregs and increasing their numbers, thus reducing the lethality of graft-versus-host disease (GVHD). Protection correlates likewise with increased allospecific Treg counts. Furthermore, we provide evidence for a phenotypically similar MPP population in humans, where it shares the capacity to promote selective Treg expansion in vitro. We postulate that G-CSF-mobilized MPPs might become a valuable cellular therapy to expand donor Tregs in vivo and prevent GVHD, thereby making allo-HSCT safer for the treatment of leukemia patients.
Collapse
Affiliation(s)
- Maud D’Aveni
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Anne-Béatrice Notarantonio
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Viviane A. Agbogan
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Allan Bertrand
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Guillemette Fouquet
- Université de Paris, INSERM UMR 1163, Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Pauline Gastineau
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| | - Meriem Garfa-Traoré
- Université de Paris, SFR Necker-UMS 3633/US24-Structure Fédérative de Recherche Necker, Plateforme d’Imagerie Cellulaire, Paris, France
| | - Marcelo De Carvalho
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
- Université de Lorraine, CHRU Nancy, Immunology Department, Nancy, France
| | - Olivier Hermine
- Université de Paris, INSERM UMR 1163, Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Marie-Thérèse Rubio
- Université de Lorraine, CHRU Nancy, Hematology Department, Nancy, France
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Flora Zavala
- Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
39
|
Sofi MH, Wu Y, Ticer T, Schutt S, Bastian D, Choi HJ, Tian L, Mealer C, Liu C, Westwater C, Armeson KE, Alekseyenko AV, Yu XZ. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight 2021; 6:136841. [PMID: 33554953 PMCID: PMC7934839 DOI: 10.1172/jci.insight.136841] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Bastian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linlu Tian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Caroline Westwater
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kent E Armeson
- Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
40
|
Matos TR, Hirakawa M, Alho AC, Neleman L, Graca L, Ritz J. Maturation and Phenotypic Heterogeneity of Human CD4+ Regulatory T Cells From Birth to Adulthood and After Allogeneic Stem Cell Transplantation. Front Immunol 2021; 11:570550. [PMID: 33537026 PMCID: PMC7848157 DOI: 10.3389/fimmu.2020.570550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023] Open
Abstract
CD4+ Regulatory T cells (Treg) play a critical role in maintaining immune homeostasis. Various Treg subsets have been identified, however the heterogeneity of Treg subpopulations during development remains uncharacterized. Using mass cytometry we obtained single cell data on expression of 35 functional markers to examine the heterogeneity of Treg cells at birth and in adults. Unsupervised clustering algorithms FlowSOM and ACCENSE were used to quantify Treg heterogeneity. As expected, Treg in umbilical cord blood were predominately naïve while Treg in adult blood were predominately central memory and effector memory cells. Although umbilical cord blood Treg are mostly naïve cells, we observed multiple phenotypic Treg subsets in cord blood. Nevertheless, peripheral blood in adults contained higher percentages of Treg and the heterogeneity of Treg was significantly increased in adults. We also studied Treg heterogeneity throughout a 2-year period after allogeneic hematopoietic stem cell transplantation (alloHSCT) and in patients with chronic graft-versus-host disease (cGVHD). Treg heterogeneity recovered rapidly after alloHSCT and gradually increased in the first two years post-transplant. However, patients with cGVHD had significantly fewer distinct Treg subpopulations, proposing a correlation between a disrupted Treg heterogeneity and cGVHD. Our study is the first to compare human Treg heterogeneity at birth, in healthy adults and in patients after alloHSCT with and without cGVHD. This approach to characterize Treg heterogeneity based on expression of a large panel of functional markers may enable future studies to identify specific Treg defects that contribute to immune dysfunction.
Collapse
Affiliation(s)
- Tiago R. Matos
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Amsterdam University Medical Centers, Department of Dermatology, University of Amsterdam, Amsterdam, Netherlands
| | - Masahiro Hirakawa
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ana C. Alho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lars Neleman
- Amsterdam University Medical Centers, Department of Dermatology, University of Amsterdam, Amsterdam, Netherlands
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Naserian S, Leclerc M, Shamdani S, Uzan G. Current Preventions and Treatments of aGVHD: From Pharmacological Prophylaxis to Innovative Therapies. Front Immunol 2020; 11:607030. [PMID: 33391276 PMCID: PMC7773902 DOI: 10.3389/fimmu.2020.607030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GVHD) is one of the main causes of mortality and the reason for up to 50% of morbidity after hematopoietic stem cell transplantations (HSCT) which is the treatment of choice for many blood malignancies. Thanks to years of research and exploration, we have acquired a profound understanding of the pathophysiology and immunopathology of these disorders. This led to the proposition and development of many therapeutic approaches during the last decades, some of them with very promising results. In this review, we have focused on the recent GVHD treatments from classical chemical and pharmacological prophylaxis to more innovative treatments including gene therapy and cell therapy, most commonly based on the application of a variety of immunomodulatory cells. Furthermore, we have discussed the advantages and potentials of cell-free therapy as a newly emerging approach to treat GVHD. Among them, we have particularly focused on the implication of the TNFα-TNFR2 axis as a new immune checkpoint signaling pathway controlling different aspects of many immunoregulatory cells.
Collapse
Affiliation(s)
- Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Mathieu Leclerc
- Service d’Hématologie Clinique et de Thérapie Cellulaire, Hôpital Henri Mondor, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
- Faculté de Médecine de Créteil, Université Paris-Est, Créteil, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
43
|
Alhaj Hussen K, Michonneau D, Biajoux V, Keita S, Dubouchet L, Nelson E, Setterblad N, Le Buanec H, Bouaziz JD, Guimiot F, Socié G, Canque B. CD4 +CD8 + T-Lymphocytes in Xenogeneic and Human Graft-versus-Host Disease. Front Immunol 2020; 11:579776. [PMID: 33329550 PMCID: PMC7732609 DOI: 10.3389/fimmu.2020.579776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mechanisms driving acute graft-versus-host disease (aGVHD) onset in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) are still poorly understood. To provide a detailed characterization of tissue-infiltrating T lymphocytes (TL) and search for eventual site-specific specificities, we developed a xenogeneic model of aGVHD in immunodeficient mice. Phenotypic characterization of xenoreactive T lymphocytes (TL) in diseased mice disclosed a massive infiltration of GVHD target organs by an original CD4+CD8+ TL subset. Immunophenotypic and transcriptional profiling shows that CD4+CD8+ TL comprise a major PD1+CD62L−/+ transitional memory subset (>60%) characterized by low level expression of cytotoxicity-related transcripts. CD4+CD8+ TL produce high IL-10 and IL-13 levels, and low IL-2 and IFN-γ, suggestive of regulatory function. In vivo tracking of genetically labeled CD4+ or CD8+ TL subsequently found that CD4+CD8+ TL mainly originate from chronically activated cytotoxic TL (CTL). On the other hand, phenotypic profiling of CD3+ TL from blood, duodenum or rectal mucosa in a cohort of allo-HSCT patients failed to disclose abnormal expansion of CD4+CD8+ TL independent of aGVHD development. Collectively, our results show that acquisition of surface CD4 by xenoreactive CD8+ CTL is associated with functional diversion toward a regulatory phenotype, but rule out a central role of this subset in the pathogenesis of aGVHD in allo-HSCT patients.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.,Service d'Hématologie Biologique, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| | - David Michonneau
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Vincent Biajoux
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Laetitia Dubouchet
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Niclas Setterblad
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Helene Le Buanec
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Jean-David Bouaziz
- INSERM U976, Dermatology Department, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Gérard Socié
- INSERM U976, Université de Paris; Service d'hématologie-greffe, AP-HP, Hôpital Saint-Louis, Institut de Recherche Saint Louis, Paris, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
44
|
Hua J, Chen Y, Fu B, Chen X, Xu XJ, Yang SH, Chen C, Xu YJ. Downregulation of p53 by Insufficient CTCF in CD4 + T Cells Is an Important Factor Inducing Acute Graft-Versus-Host Disease. Front Immunol 2020; 11:568637. [PMID: 33133081 PMCID: PMC7550539 DOI: 10.3389/fimmu.2020.568637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
Recent evidence indicates that p53 plays a protective role against various systemic autoimmune diseases by suppressing pro-inflammatory cytokine production and reducing the number of pathogenic T cells. However, whether abnormal p53 expression participates in the development of acute graft-versus-host disease (aGVHD) remains unclear. In this study, we demonstrated that p53 was downregulated in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. Furthermore, we confirmed that low expression of CCCTC-binding factor (CTCF) in CD4+ T cells from aGVHD cases is an important factor affecting histone H3K9/K14 hypoacetylation in the p53 promoter and p53 downregulation. Restoring CTCF expression in CD4+ T cells from aGVHD patients increased p53 amounts and corrected the imbalance of Th17 cells/Tregs. Taken together, these results provide novel insights into p53 downregulation in CD4+ T cells from aGVHD patients.
Collapse
Affiliation(s)
- Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Jun Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang-Hui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Li A, Abraham C, Wang Y, Zhang Y. New insights into the basic biology of acute graft-versus-host-disease. Haematologica 2020; 105:2540-2549. [PMID: 33131244 PMCID: PMC7604569 DOI: 10.3324/haematol.2019.240291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/03/2022] Open
Abstract
Although allogeneic hematopoietic stem cell transplantation is an important therapy for many hematological and non-hematological diseases, acute graft-versus-host-disease (aGVHD) is a major obstacle to its success. The pathogenesis of aGVHD is divided into three distinct phases which occur largely as the result of interactions between infused donor T cells and numerous cell types of both hematopoietic and non-hematopoietic origin. In light of the disease's immensely complex biology, epigenetics has emerged as a framework with which to examine aGVHD. This review focuses on new findings that clarify the roles specific epigenetic regulators play in T cell-mediated aGVHD development and discusses how their modulation could disrupt that process to beneficial effects. DNA methyltransferases, histone methyltransferases and histone deacetylases are the most closely studied regulators across aGVHD priming, induction and effector phases and have been manipulated using drugs and other methods in both murine models and clinical trials to varying degrees of success. Antigen-presenting cells, effector T cells and memory T cells, among others, are targeted and affected by these regulators in different ways. Finally, our review highlights new directions for study and potential novel targets for modulation to abrogate aGVHD.
Collapse
Affiliation(s)
- Alicia Li
- Fels Institute for Cancer Research & Molecular Biology
| | - Ciril Abraham
- Fels Institute for Cancer Research & Molecular Biology
| | - Ying Wang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yi Zhang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Vandenhove B, Canti L, Schoemans H, Beguin Y, Baron F, Graux C, Kerre T, Servais S. How to Make an Immune System and a Foreign Host Quickly Cohabit in Peace? The Challenge of Acute Graft- Versus-Host Disease Prevention After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2020; 11:583564. [PMID: 33193397 PMCID: PMC7609863 DOI: 10.3389/fimmu.2020.583564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.
Collapse
Affiliation(s)
- Benoît Vandenhove
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Hélène Schoemans
- Department of Clinical Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, CHU UCL Namur (Godinne), Université Catholique de Louvain, Yvoir, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Servais
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Ulbar F, Villanova I, Giancola R, Baldoni S, Guardalupi F, Fabi B, Olioso P, Capone A, Sola R, Ciardelli S, Del Papa B, Brattelli A, Ricciardi I, Taricani S, Sabbatinelli G, Iuliani O, Passeri C, Sportoletti P, Santarone S, Pierini A, Calabrese G, Falzetti F, Bonfini T, Accorsi P, Ruggeri L, Martelli MF, Velardi A, Di Ianni M. Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biol Blood Marrow Transplant 2020; 26:2204-2210. [PMID: 32961369 DOI: 10.1016/j.bbmt.2020.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In the setting of T cell-depleted, full-haplotype mismatched transplantation, adoptive immunotherapy with regulatory T cells (Tregs) and conventional T cells (Tcons) can prevent graft-versus-host disease (GVHD) and improve post-transplantation immunologic reconstitution and is associated with a powerful graft-versus-leukemia effect. To improve the purity and the quantity of the infused Tregs, good manufacturing practices (GMP)-compatible expansion protocols are needed. Here we expanded Tregs using an automated, clinical-grade protocol. Cells were extensively characterized in vitro, and their efficiency was tested in vivo in a mouse model. Tregs were selected by CliniMacs (CD4+CD25+, 94.5 ± 6.3%; FoxP3+, 63.7 ± 11.5%; CD127+, 20 ± 3%; suppressive activity, 60 ± 7%), and an aliquot of 100 × 106 was expanded for 14 days using the CliniMACS Prodigy System, obtaining 684 ± 279 × 106 cells (CD4+CD25+, 99.6 ± 0.2%; FoxP3+, 82 ± 8%; CD127+, 1.1 ± 0.8%; suppressive activity, 75 ± 12%). CD39 and CTLA4 expression levels increased from 22.4 ± 12% to 58.1 ± 13.3% (P < .05) and from 20.4 ± 6.7% to 85.4 ± 9.8% (P < .01), respectively. TIM3 levels increased from .4 ± .05% to 29 ± 16% (P < .05). Memory Tregs were the prevalent population, whereas naive Tregs almost disappeared at the end of the culture. mRNA analysis displayed significant increases in CD39, IL-10, granzyme B, and IL-35 levels at the end of culture period (P < .05). Conversely, IFNγ expression decreased significantly by day +14. Expanded Tregs were sorted according to TIM3, CD39, and CD62L expression levels (purity >95%). When sorted populations were analyzed, TIM3+ cells showed significant increases in IL-10 and granzyme B (P < .01) .When expanded Tregs were infused in an NSG murine model, mice that received Tcons only died of GVHD, whereas mice that received both Tcons and Tregs survived without GVHD. GMP grade expanded cells that display phenotypic and functional Treg characteristics can be obtained using a fully automated system. Treg suppression is mediated by multiple overlapping mechanisms (eg, CTLA-4, CD39, IL-10, IL-35, TGF-β, granzyme B). TIM3+ cells emerge as a potentially highly suppressive population. © 2020 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Francesca Ulbar
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ida Villanova
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | | | - Stefano Baldoni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Bianca Fabi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Paola Olioso
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Anita Capone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Rosaria Sola
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Sara Ciardelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Ilda Ricciardi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Stefano Taricani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Giulia Sabbatinelli
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Ornella Iuliani
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Cecilia Passeri
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Paolo Sportoletti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Stella Santarone
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Antonio Pierini
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Giuseppe Calabrese
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Franca Falzetti
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Tiziana Bonfini
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Patrizia Accorsi
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Loredana Ruggeri
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Department of Medicine, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Pescara, Italy; Department of Oncology Hematology, Pescara Hospital, Pescara, Italy.
| |
Collapse
|
48
|
Abstract
Immune regulation is critically important in health and disease. These immune effects have direct relevance in the setting of allogeneic hematopoietic cell transplantation (HCT), principally for the control of aberrant immune reactions, such as graft-versus-host disease (GVHD). Murine models have been critically important to evaluate the potential of two of the most potent immune regulatory cells CD4+CD25+FoxP+ regulatory T cells (Treg) and invariant natural killer T cells (iNKT cells). These cells have been shown to be remarkably effective in murine models to control GVHD and allow for the maintenance of graft-versus-tumor (GVT) effects. Interestingly, there are critical interactions between these different cell populations. Future studies are aimed at exploring the biology of these important regulatory cells and to translate these concepts to the clinic that holds promise for controlling some of the major challenges of allogeneic HCT.
Collapse
|
49
|
Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020; 356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
50
|
Atwany NZ, Hashemi SK, Jayakumar MN, Nagarkatti M, Nagarkatti P, Hassuneh MR. Induction of CD4 +CD25 + Regulatory T Cells from In Vitro Grown Human Mononuclear Cells by Sparteine Sulfate and Harpagoside. BIOLOGY 2020; 9:E211. [PMID: 32781652 PMCID: PMC7464273 DOI: 10.3390/biology9080211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are key players in the regulation of inflammatory responses. In this study, two natural molecules, namely, sparteine sulfate (SS) and harpagoside (Harp), were investigated for their ability to induce Tregs in human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy volunteers and grown in the presence or absence of ConA, with TGF-beta, SS or Harp. Expression of the mRNA of FoxP3, TGF-beta, IL-10 and GAPDH was assessed via q-PCR. The expression of Treg markers including CD4, CD25, CD127 and FoxP3 was measured via flow cytometry. The secretion of IL-10 and TGF-beta by cultured cells was assessed by ELISA. Furthermore, the suppressive role of SS and Harp on PBMCs in vitro was tested via allogeneic mixed lymphocyte reaction (MLR). Data obtained show that both compounds increased the expression of FoxP3, TGF-beta and IL-10 mRNA in resting PBMCs but to a lesser extent in activated cells. Moreover, they significantly increased the percent of CD4+CD25+FoxP3+CD127- Tregs in activated and naïve PBMCs. Functionally, both compounds caused a significant reduction in the stimulation index in allogeneic MLR. Together, our data demonstrate for the first time that SS and Harp can induce human Tregs in vitro and therefore have great potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Nour Z. Atwany
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 61467, UAE; (N.Z.A.); (S.-K.H.)
| | - Seyedeh-Khadijeh Hashemi
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 61467, UAE; (N.Z.A.); (S.-K.H.)
| | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA; (M.N.); (P.N.)
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA; (M.N.); (P.N.)
| | - Mona Rushdi Hassuneh
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 61467, UAE; (N.Z.A.); (S.-K.H.)
| |
Collapse
|