1
|
Liu H, Zhang C, Zhang L, Shen J, He K, Huang B. Selenomethionine suppresses lung tumor growth without hepatorenal toxicity in mice via the induction of apoptosis-ferroptosis and angiogenesis inhibition. Tissue Cell 2025; 96:102956. [PMID: 40382949 DOI: 10.1016/j.tice.2025.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
The high global mortality rate of lung cancer underscores the urgent need for novel therapeutic strategies. Selenium (Se), an essential trace element, exhibits tumor-suppressive properties across malignancies. This study systematically evaluated the antitumor efficacy of selenomethionine (SeMet) compared with that of selenocysteine (SeCys) in Lewis lung carcinoma (LLC) cells in vitro and in tumor-bearing mice in vivo. Compared with SeCys (IC50 = 45.89 μM), SeMet demonstrated superior cytotoxicity against LLC cells (IC50 = 30.19 μM) and significantly inhibited proliferation and migration by inducing apoptosis and ferroptosis. In vivo, SeMet treatment inhibited tumour growth by 50.87 % through the suppression of angiogenesis, outperforming SeCys (27.3 %). Transcriptomic analysis revealed the downregulation of proangiogenic chemokines (Cxcl1, Cxcl2, Cxcl3, Cxcl5) and the upregulation of antitumor chemokines (Cxcl9, Cxcl16) in SeMet-treated tumors. Additionally, SeMet enhanced the activity of antioxidant enzymes (T-SOD and GSH-PX) and reduced the levels of proinflammatory cytokines (IL-6 and TNF-α) without hepatorenal toxicity. These findings establish SeMet as a multifaceted therapeutic candidate for lung cancer through dual induction of apoptosis-ferroptosis and angiogenesis inhibition.
Collapse
Affiliation(s)
- Houru Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Caiyun Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Lei Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Jie Shen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Cai JL, Zhang Y, Gao H, Wang Q, Huang W, Cai YJ, Jia WX, Wang JJ, Chen X, Sun HY. Molecular characterization, expression pattern and the function of TRAF2 from blood parrot Amphilophus citrinellus ×Vieja melanura response to LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110362. [PMID: 40280260 DOI: 10.1016/j.fsi.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) family is a critical signal transduction protein, and plays important roles in cell growth, apoptosis, and immune response, etc. In this study, molecular characteristics, expression patterns, and the role of TRAF2 in blood parrot Vieja synspila ♀ × Amphilophus citrinellus ♂, an important ornamental fish, were explored response to lipopolysaccharide (LPS) challenge. The full length of blood parrot TRAF2 was 2725 bp, with an open reading frame (ORF) of 1551 bp encoding 516 amino acids, and a molecular weight of 58.58 kDa. Blood parrot TRAF2 contained four conserved domains: RING, TRAF-type zinc finger, TRAF_BIRC3_bd, and MATH (Meprin and TRAF-C homology). Analysis of phylogenetic relationships showed that TRAF2 were conserved in different species, indicating that its role might be similar. Blood parrot TRAF2 mRNA could be detected in all of the tissues examined, and was distributed in both the cytoplasm and nucleus. The expression of blood parrot TRAF2 was up-regulated during LPS challenge. Overexpression of TRAF2 could significantly inhibit the activities of nuclear factor κB (NF-κB) and activated protein 1 (AP-1), and reduce the ratio of Bax/Bcl-2. This study indicated that the TRAF2 might play important roles in organisms during pathogen infection.
Collapse
Affiliation(s)
- Jie-Li Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Jie Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Xin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun-Jie Wang
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China.
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Tang Y, Aleithan F, Madahar SS, Mirzaesmaeili A, Saran S, Tang J, Zangiabadi S, Inman R, Sweeney G, Abdul-Sater AA. Selective disruption of Traf1/cIAP2 interaction attenuates inflammatory responses and rheumatoid arthritis. J Autoimmun 2025; 152:103377. [PMID: 39913998 DOI: 10.1016/j.jaut.2025.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Tumor necrosis factor receptor-associated factor 1 (TRAF1) is an immune signaling adapter protein linked to increased susceptibility to rheumatoid arthritis (RA). TRAF1 has dual roles in regulating NF-κB and MAPK signaling: it promotes signaling through its association with cellular inhibitor of apoptosis 2 (cIAP2) downstream of certain tumor necrosis factor receptor (TNFR) family members but inhibits Toll-like receptor (TLR) signaling by limiting linear ubiquitination of key signaling proteins. In this study, we investigated whether selectively targeting TRAF1/cIAP2 interaction would lower inflammation and reduce severity of RA. METHODS We employed CRISPR/Cas9-mediated mediated gene editing to modify TRAF1 and specifically abrogate its interaction with cIAP2 in human macrophage cell lines and in mice. Biochemical studies were then employed to assess inflammatory signaling and cytokine production in gene edited macrophages. The collagen antibody-induced arthritis (CAIA) model of RA was used to trigger joint inflammation in mice. RESULTS We identify a critical mutation in TRAF1 (V203A in humans, V196A in mice) that disrupts its interaction with cIAP2, leading to a significant reduction in TLR signaling and downstream inflammation in human and murine macrophages. We demonstrate that TRAF1 is recruited to the TLR4 complex and is indispensable for the recruitment of cIAP2, facilitating TAK1 phosphorylation and the activation of NF-κB and MAPK signaling pathways. Remarkably, mice harboring the TRAF1 V196A mutation are protected from LPS-induced septic shock and exhibit markedly reduced joint inflammation and disease severity in the CAIA model of RA. CONCLUSION These findings reveal a previously unrecognized and crucial role for the TRAF1/cIAP2 axis in promoting inflammation and offer a promising foundation for the development of novel therapeutic strategies for inflammatory conditions, such as RA.
Collapse
Affiliation(s)
- Yitian Tang
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Fatemah Aleithan
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sahib Singh Madahar
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada; Department of Biology, York University, Toronto, ON, Canada
| | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sunpreet Saran
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Robert Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada; Department of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Zhang L, Tang R, Liang D, Wang W, Min K, Luo T, Li X. Uncovering the Interaction between TRAF1 and MAVS in the RIG-I Pathway to Enhance the Upregulation of IRF1/ISG15 during Classical Swine Fever Virus Infection. Cells 2024; 13:1165. [PMID: 38995016 PMCID: PMC11240745 DOI: 10.3390/cells13131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Rongze Tang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Wenfeng Wang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Kaijun Min
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
6
|
Wang Q, Martínez-Bonet M, Kim T, Sparks JA, Ishigaki K, Chen X, Sudman M, Aguiar V, Sim S, Hernandez MC, Chiu DJ, Wactor A, Wauford B, Marion MC, Gutierrez-Arcelus M, Bowes J, Eyre S, Nordal E, Prahalad S, Rygg M, Videm V, Raychaudhuri S, Weirauch MT, Langefeld CD, Thompson SD, Nigrovic PA. Identification of a regulatory pathway governing TRAF1 via an arthritis-associated non-coding variant. CELL GENOMICS 2023; 3:100420. [PMID: 38020975 PMCID: PMC10667332 DOI: 10.1016/j.xgen.2023.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Taehyeung Kim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marc Sudman
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vitor Aguiar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sangwan Sim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Darren J. Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Wactor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Wauford
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda C. Marion
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ellen Nordal
- University Hospital of North Norway and UIT The Arctic University of Norway, Tromsø, Norway
| | - Sampath Prahalad
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav’s University Hospital, Trondheim, Norway
| | - Vibeke Videm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Data Science, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susan D. Thompson
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, Thiemann M, Honeychurch J, Illidge T, Sykora J. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol 2023; 14:1160116. [PMID: 37304285 PMCID: PMC10251205 DOI: 10.3389/fimmu.2023.1160116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.
Collapse
Affiliation(s)
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
9
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
10
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
12
|
Edilova MI, Law JC, Zangiabadi S, Ting K, Mbanwi AN, Arruda A, Uehling D, Isaac M, Prakesch M, Al-Awar R, Minden MD, Abdul-Sater AA, Watts TH. The PKN1- TRAF1 signaling axis as a potential new target for chronic lymphocytic leukemia. Oncoimmunology 2021; 10:1943234. [PMID: 34589290 PMCID: PMC8475556 DOI: 10.1080/2162402x.2021.1943234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Kenneth Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Achire N Mbanwi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
14
|
Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis 2021; 12:608. [PMID: 34117217 PMCID: PMC8196033 DOI: 10.1038/s41419-021-03887-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
Collapse
Affiliation(s)
- Pengshan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yinkun Fu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Man Mohan
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Ziman B, Barghouth PG, Maciel EI, Oviedo NJ. TRAF-like Proteins Regulate Cellular Survival in the Planarian Schmidtea mediterranea. iScience 2020; 23:101665. [PMID: 33134895 PMCID: PMC7586133 DOI: 10.1016/j.isci.2020.101665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis relies on the timely renewal of cells that have been damaged or have surpassed their biological age. Nonetheless, the underlying molecular mechanism coordinating tissue renewal is unknown. The planarian Schmidtea mediterranea harbors a large population of stem cells that continuously divide to support the restoration of tissues throughout the body. Here, we identify that TNF Receptor Associated Factors (TRAFs) play critical roles in cellular survival during tissue repair in S. mediterranea. Disruption with RNA-interference of TRAF signaling results in rapid morphological defects and lethality within 2 weeks. The TRAF phenotype is accompanied by an increased number of mitoses and cell death. Our results also reveal TRAF signaling is required for proper regeneration of the nervous system. Taken together, we find functional conservation of TRAF-like proteins in S. mediterranea as they act as crucial regulators of cellular survival during tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Benjamin Ziman
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul G. Barghouth
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Eli Isael Maciel
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Néstor J. Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
16
|
Daub S, Lutgens E, Münzel T, Daiber A. CD40/CD40L and Related Signaling Pathways in Cardiovascular Health and Disease-The Pros and Cons for Cardioprotection. Int J Mol Sci 2020; 21:E8533. [PMID: 33198327 PMCID: PMC7697597 DOI: 10.3390/ijms21228533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
The CD40-CD40 ligand (CD40L) dyad represents a scientific and clinical field that has raised many controversies in the past and cannot be clearly defined as being an either beneficial or harmful pathway. Being crucially involved in physiological immunological processes as well as pathological inflammatory reactions, the signaling pathway has been recognized as a key player in the development of both autoimmune and cardiovascular disease. Even though the possibilities of a therapeutic approach to the dyad were recognized decades ago, due to unfortunate events, detailed in this review, pharmacological treatment targeting the dyad, especially in patients suffering from atherosclerosis, is not available. Despite the recent advances in the treatment of classical cardiovascular risk factors, such as arterial hypertension and diabetes mellitus, the treatment of the associated low-grade inflammation that accounts for the progression of atherosclerosis is still challenging. Low-grade inflammation can be detected in a significant portion of patients that suffer from cardiovascular disease and it is therefore imperative to develop new therapeutic strategies in order to combat this driver of atherosclerosis. Of note, established cardiovascular drugs such as angiotensin-converting enzyme inhibitors or statins have proven beneficial cardiovascular effects that are also related to their pleiotropic immunomodulatory properties. In this review, we will discuss the setbacks encountered as well as new avenues discovered on the path to a different, inflammation-centered approach for the treatment of cardiovascular disease with the CD40-CD40L axis as a central therapeutic target.
Collapse
Affiliation(s)
- Steffen Daub
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, 80336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany and Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
17
|
Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on hepatitis C viral persistence and natural history. World J Hepatol 2020; 12:754-765. [PMID: 33200014 PMCID: PMC7643212 DOI: 10.4254/wjh.v12.i10.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for understanding the mechanisms developed by non-cytopathic viruses and tumors to evade the adaptative immune response. The antigen-specific cytotoxic T cell response is essential for keeping HCV under control, but during persistent infection, these cells become exhausted or even deleted. The exhaustion process is progressive and depends on the infection duration and level of antigenemia. During high antigenic load and long duration of infection, T cells become extremely exhausted and ultimately disappear due to apoptosis. The development of exhaustion involves the impairment of positive co-stimulation induced by regulatory cytokines, such as transforming growth factor beta 1. This cytokine downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR superfamily member 9 (known as 4-1BB). This impairment correlates with the low reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in vitro restores TRAF1 expression and rescues T cell effector function. The process of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe disease progression. In conclusion, TRAF1 dynamics on T cells define a new pathogenic model that describes some aspects of the natural history of HCV, and sheds light on novel immunotherapy strategies for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Systems Biology, Guadalajara University Hospital. University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Juan Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| |
Collapse
|
18
|
Hu BS, Tang T, Jia JL, Xie BC, Wu TL, Sheng YY, Xue YZ, Tang HM. CD137 agonist induces gastric cancer cell apoptosis by enhancing the functions of CD8 + T cells via NF-κB signaling. Cancer Cell Int 2020; 20:513. [PMID: 33093811 PMCID: PMC7576737 DOI: 10.1186/s12935-020-01605-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.
Collapse
Affiliation(s)
- Ben-Shun Hu
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tian Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Jun-Li Jia
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Bi-Chen Xie
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tie-Long Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Ying-Yue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Yu-Zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Hua-Min Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| |
Collapse
|
19
|
Ibraheem K, Yhmed AMA, Qayyum T, Bryan NP, Georgopoulos NT. CD40 induces renal cell carcinoma-specific differential regulation of TRAF proteins, ASK1 activation and JNK/p38-mediated, ROS-dependent mitochondrial apoptosis. Cell Death Discov 2019; 5:148. [PMID: 31815003 PMCID: PMC6892818 DOI: 10.1038/s41420-019-0229-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
A unique feature of CD40 among the TNF receptor (TNFR) superfamily is its exquisitely contextual effects, as originally demonstrated in normal and malignant B-lymphocytes. We studied renal cell carcinoma (RCC) in comparison to normal (human renal proximal tubule) cells, as a model to better understand the role of CD40 in epithelial cells. CD40 ligation by membrane-presented CD40 ligand (mCD40L), but not soluble CD40 agonist, induced extensive apoptosis in RCC cells; by contrast, normal cells were totally refractory to mCD40L. These findings underline the importance of CD40 'signal-quality' on cell fate and explain the lack of pro-apoptotic effects in RCC cells previously, while confirming the tumour specificity of CD40 in epithelial cells. mCD40L differentially regulated TRAF expression, causing sustained TRAF2/TRAF3 induction in RCC cells, yet downregulation of TRAF2 and no TRAF3 induction in normal cells, observations strikingly reminiscent of TRAF modulation in B-lymphocytes. mCD40L triggered reactive oxygen species (ROS) production, critical in apoptosis, and NADPH oxidase (Nox)-subunit p40phox phosphorylation, with Nox blockade abrogating apoptosis thus implying Nox-dependent initial ROS release. mCD40L mediated downregulation of Thioredoxin-1 (Trx-1), ASK1 phosphorylation, and JNK and p38 activation. Although both JNK/p38 were essential in apoptosis, p38 activation was JNK-dependent, which is the first report of such temporally defined JNK-p38 interplay during an apoptotic programme. CD40-killing entrained Bak/Bax induction, controlled by JNK/p38, and caspase-9-dependent mitochondrial apoptosis, accompanied by pro-inflammatory cytokine secretion, the repertoire of which also depended on CD40 signal quality. Previous reports suggested that, despite the ability of soluble CD40 agonist to reduce RCC tumour size in vivo via immunocyte activation, RCC could be targeted more effectively by combining CD40-mediated immune activation with direct tumour CD40 signalling. Since mCD40L represents a potent tumour cell-specific killing signal, our work not only offers insights into CD40's biology in normal and malignant epithelial cells, but also provides an avenue for a 'double-hit' approach for inflammatory, tumour cell-specific CD40-based therapy.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Present Address: Department of Medical Laboratory Sciences, University of Sebha, Tripoli, Libya
| | - Tahir Qayyum
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nicolas P. Bryan
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
20
|
Targeting the CD40-CD154 Signaling Pathway for Treatment of Autoimmune Arthritis. Cells 2019; 8:cells8080927. [PMID: 31426619 PMCID: PMC6721639 DOI: 10.3390/cells8080927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Full activation of T lymphocytes requires signals from both T cell receptors and costimulatory molecules. In addition to CD28, several T cell molecules could deliver costimulatory signals, including CD154, which primarily interacts with CD40 on B-cells. CD40 is a critical molecule regulating several B-cell functions, such as antibody production, germinal center formation and cellular proliferation. Upregulated expression of CD40 and CD154 occurs in immune effector cells and non-immune cells in different autoimmune diseases. In addition, therapeutic benefits have been observed by blocking the CD40-CD154 interaction in animals with collagen-induced arthritis. Given the therapeutic success of the biologics abatacept, which blocks CD28 costimulation, and rituximab, which deletes B cells in the treatment of autoimmune arthritis, the inhibition of the CD40-CD154 axis has two advantages, namely, attenuating CD154-mediated T cell costimulation and suppressing CD40-mediated B-cell stimulation. Furthermore, blockade of the CD40-CD154 interaction drives the conversion of CD4+ T cells to regulatory T cells that mediate immunosuppression. Currently, several biological products targeting the CD40-CD154 axis have been developed and are undergoing early phase clinical trials with encouraging success in several autoimmune disorders, including autoimmune arthritis. This review addresses the roles of the CD40-CD154 axis in the pathogenesis of autoimmune arthritis and its potential as a therapeutic target.
Collapse
|
21
|
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019; 9:10862. [PMID: 31350431 PMCID: PMC6659676 DOI: 10.1038/s41598-019-47333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Combined agonist stimulation of the TNFR costimulatory receptors 4-1BB (CD137) and OX40(CD134) has been shown to generate supereffector CD8 T cells that clonally expand to greater levels, survive longer, and produce a greater quantity of cytokines compared to T cells stimulated with an agonist of either costimulatory receptor individually. In order to understand the mechanisms for this effect, we have created a mathematical model for the activation of the CD8 T cell intracellular signaling network by mono- or dual-costimulation. We show that supereffector status is generated via downstream interacting pathways that are activated upon engagement of both receptors, and in silico simulations of the model are supported by published experimental results. The model can thus be used to identify critical molecular targets of T cell dual-costimulation in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Anna Konstorum
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Reinhard C Laubenbacher
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.,Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
22
|
Arditi M, Shah PK. STOP the TRAFfic and Reduce the Plaque. J Am Coll Cardiol 2019; 71:543-546. [PMID: 29406860 DOI: 10.1016/j.jacc.2017.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Moshe Arditi
- Department of Biomedical Sciences, Division of Immunology, Infectious and Immunologic Diseases Research Center (IIDRC), Cedars-Sinai Medical Center, Los Angeles, California.
| | - Prediman Krishan Shah
- Department of Medicine, Division of Cardiology, Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
23
|
Bin W, Ming X, Wen-Xia C. TRAF1 meditates lipopolysaccharide-induced acute lung injury by up regulating JNK activation. Biochem Biophys Res Commun 2019; 511:49-56. [PMID: 30760405 DOI: 10.1016/j.bbrc.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is served as a severe life-threatening disease. However, the pathogenesis that contributes to ALI has not been fully understood. Tumor necrosis factor receptor-associated factor 1 (TRAF1) interacts with multiple regulators, performing its diverse role in biological functions. However, the effects of TRAF1 on ALI remain unknown. In this study, we attempted to explore the role of TRAF1 in ALI progression. The findings suggested that TRAF1-knockout (KO) markedly attenuated LPS-induced severe mortality rate in murine animals. LPS-elicited histological alterations in pulmonary tissues were significantly alleviated by TRAF1-deletion. Additionally, TRAF1 knockout effectively attenuated lung injury, as evidenced by the reduced lung wet/dry (W/D) weight ratio, as well as decreased bronchoalveolar lavage fluid (BALF) protein levels and neutrophil infiltration. Meanwhile, TRAF1 deletion markedly lessened inflammation, oxidative stress and apoptosis in BALF and/or lung tissues. The levels of pro-inflammatory cytokines stimulated by LPS were down-regulated by TRAF1 ablation, along with the inactivation of nuclear factor κB (NF-κB). LPS-promoted reactive oxygen species (ROS) generation was decreased in TRAF1-KO mice, partly through the improvement of anti-oxidants. Apoptosis was also inhibited by TRAF1 deletion in lung tissues of LPS-challenged mice through the suppression of cleaved Caspase-3. Moreover, TRAF1 knockout significantly decreased c-Jun N-terminal kinase (JNK) activation and its down-streaming signal of c-Jun in pulmonary samples of LPS-induced mice. Importantly, the in vitro study suggested that promoting JNK activation markedly abrogated TRAF1 knockdown-attenuated inflammation, ROS production and apoptosis in LPS-exposed A549 cells. Therefore, our experimental results provided evidence that TRAF1 suppression effectively protected LPS-induced ALI against inflammation, oxidative stress and apoptosis through the suppression of JNK activity.
Collapse
Affiliation(s)
- Wan Bin
- Department of Pediatrics, Renmin Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xue Ming
- Department of Pediatrics, Pediatrics of Traditional Chinese Medicine Hospital of Baoji City, Baoji, 721001, China
| | - Chen Wen-Xia
- Department of Pediatrics, Ankang Central Hospital, Ankang, 725000, China.
| |
Collapse
|
24
|
Edilova MI, Abdul-Sater AA, Watts TH. TRAF1 Signaling in Human Health and Disease. Front Immunol 2018; 9:2969. [PMID: 30619326 PMCID: PMC6305416 DOI: 10.3389/fimmu.2018.02969] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) is a signaling adaptor first identified as part of the TNFR2 signaling complex. TRAF1 plays a key role in pro-survival signaling downstream of TNFR superfamily members such as TNFR2, LMP1, 4-1BB, and CD40. Recent studies have uncovered another role for TRAF1, independent of its role in TNFR superfamily signaling, in negatively regulating Toll-like receptor and Nod-like receptor signaling, through sequestering the linear ubiquitin assembly complex, LUBAC. TRAF1 has diverse roles in human disease. TRAF1 is overexpressed in many B cell related cancers and single nucleotide polymorphisms (SNPs) in TRAF1 have been linked to non-Hodgkin's lymphoma. Genome wide association studies have identified an association between SNPs in the 5' untranslated region of the TRAF1 gene with increased incidence and severity of rheumatoid arthritis and other rheumatic diseases. The loss of TRAF1 from chronically stimulated CD8 T cells results in desensitization of the 4-1BB signaling pathway, thereby contributing to T cell exhaustion during chronic infection. These apparently opposing roles of TRAF1 as both a positive and negative regulator of immune signaling have led to some confusion in the literature. Here we review the role of TRAF1 as a positive and negative regulator in different signaling pathways. Then we discuss the role of TRAF1 in human disease, attempting to reconcile seemingly contradictory roles based on current knowledge of TRAF1 signaling and biology. We also discuss avenues for future research to further clarify the impact of TRAF1 in human disease.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
26
|
Autophagy differentially regulates TNF receptor Fn14 by distinct mammalian Atg8 proteins. Nat Commun 2018; 9:3744. [PMID: 30218067 PMCID: PMC6138730 DOI: 10.1038/s41467-018-06275-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Autophagy, a conserved membrane trafficking process, sequesters cytoplasmic components into autophagosomes and targets them for lysosomal degradation. The TNF receptor Fn14 participates in multiple intracellular signaling pathways and is strongly induced upon tissue injury and solid tumorigenesis. While Fn14 is a short-lived protein, the regulation of its levels is largely obscure. Here we uncover a role for autophagy in Fn14 turnover, wherein specific core autophagy Atg8 proteins play distinct roles: Fn14 accumulates in the ERGIC in absence of GABARAP but within endosomes in the vicinity of autophagic membranes in absence of GATE-16. Moreover, GABARAP regulates overall cellular levels of Fn14, whereas GATE-16 regulates TWEAK signaling by Fn14 and thereby NF-κB activity. These findings not only implicate different Atg8 proteins in distinct roles within the mechanism of selective autophagic regulation of Fn14, but may also provide a more general view of their role in mediating autophagosome biogenesis from different membrane sources.
Collapse
|
27
|
Wen X, Wang B, Feng T, Yuan W, Zhou J, Fang T. TNF receptor-associated factor 1 as a biomarker for assessment of non-small cell lung cancer metastasis and overall survival. CLINICAL RESPIRATORY JOURNAL 2018. [PMID: 29528567 DOI: 10.1111/crj.12789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC), which comprises 80%-85% of all lung cancer cases, is one of the most common human malignancies. Despite great improvements in diagnostic technology and the introduction of new therapeutic agents in recent years, the 5-year survival rate of NSCLC is still low. Tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) plays an important role in the TNF-related apoptosis-inducing ligand (TRAIL) associated signal pathway. METHODS In this study, we aim to illuminate the function of TRAF1 in NSCLC. Toward that end, TRAF1 expression was detected using immunohistochemistry (IHC) in specimens from 200 NSCLC patients. The function of TRAF1 in the A549 and H1299 cell lines was evaluated by colony formation and MTT assays. RESULTS Our data showed that TRAF1 was significantly upregulated in NSCLC tissues. TRAF1 expression was positively associated with NSCLC lymphatic metastasis and clinical stage and was negatively associated with overall patient survival. TRAF1 promoted NSCLC cell proliferation CONCLUSION: TRAF1 expression was positively associated with NSCLC lymphatic metastasis and histological grade and was negatively associated with overall patient survival. TRAF1 may be an important therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoxing Wen
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Bingping Wang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Tao Feng
- Department of Pulmonary Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Fang
- Department of Oncology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| |
Collapse
|
28
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
29
|
Roth H, Samereier M, Begandt D, Pick R, Salvermoser M, Brechtefeld D, Schleicher M, Walzog B, Müller-Taubenberger A. Filamin A promotes efficient migration and phagocytosis of neutrophil-like HL-60 cells. Eur J Cell Biol 2017; 96:553-566. [PMID: 28595776 DOI: 10.1016/j.ejcb.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/11/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023] Open
Abstract
The primary defense machinery to combat inflammation involves neutrophil granulocytes which in order to execute their functions rely on the efficiency of different cellular mechanisms including adhesion, spreading, migration in different environments, and phagocytosis. These functions require an accurately regulated actin network as well as the activation and adjustment of various signaling pathways. Mammalian filamins (FLNs) comprise three highly homologous large actin-binding proteins that are obvious candidates to control these processes as FLNs have been described to play a role in migration, spreading and adhesion in a variety of different cell types. The present study analyzed the role of filamin A (FLNa) in human neutrophil-like HL-60 cells. We found a strong enrichment of FLNa at the uropod of migrating neutrophils, and show that deficiency of FLNa caused a decrease in speed of migration both in 2D and 3D that is accompanied by a reduced activation of myosin-II. In addition, we show that FLNa plays a role in neutrophil phagocytosis. We also identified a hitherto unknown interaction of FLNa with coronin 1A that is mediated by FLNa repeats 9-18. FLNa deficiency had no or only minor effects on cell adhesion and spreading. In summary, deficiency of FLNa in human neutrophil-like HL-60 cells resulted in a surprisingly subtle phenotype. Our data indicate that FLNa is not essential for the regulation of mechanical properties during migration, but contributes to motility in a modulatory manner probably through its action at the uropod.
Collapse
Affiliation(s)
- Heike Roth
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthias Samereier
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Daniela Begandt
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Robert Pick
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Melanie Salvermoser
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Doris Brechtefeld
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
30
|
Tumour necrosis factor receptor-associated factor-1 (TRAF-1) expression is increased in renal cell carcinoma patient serum but decreased in cancer tissue compared with normal: potential biomarker significance. Pathology 2016; 46:518-22. [PMID: 25158810 DOI: 10.1097/pat.0000000000000145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cell carcinoma (RCC) generally has a poor prognosis because of late diagnosis and metastasis. We have previously described decreased tumour necrosis factor receptor-associated factor-1 (TRAF-1) in RCC compared with paired normal kidney in a patient cohort in Australia. In the present study, TRAF-1 expression in clear cell RCC (ccRCC) and normal kidney was again compared, but in a cohort from University Malaya Medical Centre. Serum TRAF-1 was also evaluated in RCC and normal samples.Immunohistochemistry with automated batch staining and Aperio ImageScope morphometry was used to compare TRAF-1 in 61 ccRCC with paired normal kidney tissue. Serum from 15 newly diagnosed and untreated ccRCC and 15 healthy people was tested for TRAF-1 using ELISA.In this cohort, TRAF-1 was highly expressed in proximal tubular epithelium of normal kidney, and significantly decreased in ccRCC tissue (p < 0.001). Conversely, TRAF-1 in serum from ccRCC patients was significantly increased over control serum (132 ± 30 versus 54 ± 14 pg/mL, respectively; p = 0.013).Decreased TRAF-1 in RCC tissue, reported previously, was confirmed. This, along with significantly increased serum TRAF-1 may indicate the protein is actively secreted during development and progression of ccRCC. Therefore, the increased serum TRAF-1 may be a useful non-invasive indicator of RCC development.
Collapse
|
31
|
The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease. Nat Immunol 2016; 18:26-35. [PMID: 27893701 DOI: 10.1038/ni.3618] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
TRAF1 is a signaling adaptor known for its role in tumor necrosis factor receptor-induced cell survival. Here we show that monocytes from healthy human subjects with a rheumatoid arthritis-associated single-nucleotide polymorphism (SNP) in the TRAF1 gene express less TRAF1 protein but greater amounts of inflammatory cytokines in response to lipopolysaccharide (LPS). The TRAF1 MATH domain binds directly to three components of the linear ubiquitination (LUBAC) complex, SHARPIN, HOIP and HOIL-1, to interfere with the recruitment and linear ubiquitination of NEMO. This results in decreased NF-κB activation and cytokine production, independently of tumor necrosis factor. Consistent with this, Traf1-/- mice show increased susceptibility to LPS-induced septic shock. These findings reveal an unexpected role for TRAF1 in negatively regulating Toll-like receptor signaling, providing a mechanistic explanation for the increased inflammation seen with a disease-associated TRAF1 SNP.
Collapse
|
32
|
Zhang R, Yang N, Ji C, Zheng J, Liang Z, Hou CY, Liu YY, Zuo PP. Neuroprotective effects of Aceglutamide on motor function in a rat model of cerebral ischemia and reperfusion. Restor Neurol Neurosci 2016; 33:741-59. [PMID: 26444640 DOI: 10.3233/rnn-150509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate the effect and underlying mechanism of Aceglutamide on motor dysfunction in rats after cerebral ischemia-reperfusion. METHODS Adult male Sprague-Dawley rats were subjected to 2 h transient middle cerebral artery occlusion (MCAO). Aceglutamide or vehicle was intraperitoneally given to rats at 24 h after reperfusion and lasted for 14 days. Subsequently functional recovery was assessed and number of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) was analyzed. Tumor necrosis factor receptor-associated factor 1(TRAF1), P-Akt and Bcl-2/Bax were determined in mesencephalic tissue by Western blot method. PC12 cells and primary cultured mesencephalic neurons were employed to further investigate the mechanism of Aceglutamide. RESULTS Aceglutamide treatment improved behavioral functions, reduced the infarction volume, and elevated the number of TH-positive neurons in the SN. Moreover, Aceglutamide significantly attenuated neuronal apoptosis in the SN. Meanwhile Aceglutamide treatment significantly inhibited the expression of TRAF1 and up-regulated the expression of P-Akt and Bcl-2/Bax ratio both in vitro and in vivo. CONCLUSIONS Aceglutamide ameliorated motor dysfunction and delayed neuronal death in the SN after ischemia, which involved the inhibition of pro-apoptotic factor TRAF1 and activation of Akt/Bcl-2 signaling pathway. These data provided experimental information for applying Aceglutamide to ischemic stroke treatment.
Collapse
|
33
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
34
|
Zhu S, Wan L, Yang H, Cheng J, Lu X. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris. Protein Expr Purif 2015; 119:19-26. [PMID: 26586612 DOI: 10.1016/j.pep.2015.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model.
Collapse
Affiliation(s)
- Shengyun Zhu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Seibold K, Ehrenschwender M. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6. Biochem Biophys Res Commun 2015; 464:330-5. [PMID: 26133577 DOI: 10.1016/j.bbrc.2015.06.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies.
Collapse
Affiliation(s)
- Kristina Seibold
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
36
|
Zarzycka B, Seijkens T, Nabuurs SB, Ritschel T, Grommes J, Soehnlein O, Schrijver R, van Tiel CM, Hackeng TM, Weber C, Giehler F, Kieser A, Lutgens E, Vriend G, Nicolaes GAF. Discovery of small molecule CD40-TRAF6 inhibitors. J Chem Inf Model 2015; 55:294-307. [PMID: 25622654 DOI: 10.1021/ci500631e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The CD154-CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins called tumor necrosis factor receptor-associated factors (TRAFs). CD40-TRAF6 interactions are known to play an essential role in several inflammatory diseases. We used in silico, in vitro, and in vivo experiments to identify and characterize compounds that block CD40-TRAF6 interactions. We present in detail our drug docking and optimization pipeline and show how we used it to find lead compounds that reduce inflammation in models of peritonitis and sepsis. These compounds appear to be good leads for drug development, given the observed absence of side effects and their demonstrated efficacy for peritonitis and sepsis in mouse models.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qi C, Tian S, Wang J, Ma H, Qian K, Zhang X. Co-expression of CD40/CD40L On XG1 Multiple Myeloma Cells Promotes IL-6 Autocrine Function. Cancer Invest 2014; 33:6-15. [DOI: 10.3109/07357907.2014.988340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
TRAF-mediated modulation of NF-kB AND JNK Activation by TNFR2. Cell Signal 2014; 26:2658-66. [DOI: 10.1016/j.cellsig.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
|
39
|
Wang F, Bu G, Feng Q, Liu Z, Xu C, Shen S, Yuan Y. The expression level of TRAF1 in human gastric mucosa is related to virulence genotypes of Helicobacter pylori. Scand J Gastroenterol 2014; 49:925-32. [PMID: 24852885 DOI: 10.3109/00365521.2014.919015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the expression level of tumor necrosis factor receptor-associated factor 1 (TRAF1) in gastric mucosa tissue in patients infected with Helicobacter pylori (H. pylori) and to analyze the relationship between TRAF1 expression and H. pylori virulence. METHODS Gastric tissue samples were collected from patients with gastritis, atrophic gastritis, intestinal metaplasia with atypical hyperplasia, and gastric cancer. The expression level of TRAF1 in each group was analyzed by real-time polymerase chain reaction (PCR) and Western blot analysis. Virulence genotypes of H. pylori were determined by PCR. RESULTS Significant differences in TRAF1 mRNA levels were observed between the gastritis and gastric cancer groups, and the atrophic gastritis and gastric cancer groups (p < 0.05). Moreover, significant differences in TRAF1 protein levels were observed between the gastritis and intestinal metaplasia with atypical hyperplasia groups, between the gastritis and gastric cancer groups, and between the atrophic gastritis and gastric cancer groups (all p < 0.05). The virulence genotypes of cytotoxin-associated gene A (cagA), vacAs1, and vacAm1 were more frequent in the TRAF1 high-level group than in the TRAF1 low-level group (p < 0.05). CONCLUSION Higher TARF1 expression level is associated with infection by CagA(+)/vacAs1(+)/m1(+) virulent H. pylori strains and may promote the proliferation of gastric mucosal cells and induce gastric cancer.
Collapse
Affiliation(s)
- Fen Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University , Changsha , China
| | | | | | | | | | | | | |
Collapse
|
40
|
Vuillier F, Gaud G, Guillemot D, Commere PH, Pons C, Favre M. Loss of the HPV-infection resistance EVER2 protein impairs NF-κB signaling pathways in keratinocytes. PLoS One 2014; 9:e89479. [PMID: 24586810 PMCID: PMC3929693 DOI: 10.1371/journal.pone.0089479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/21/2014] [Indexed: 02/02/2023] Open
Abstract
Homozygous mutations in EVER genes cause epidermodysplasia verruciformis (EV), characterized by an immune defect and the development of skin cancers associated with β-human papillomavirus (HPV) infections. The effects of EVER protein loss on the keratinocyte immune response remain unknown. We show here that EVER2 plays a critical role in the interplay between the NF-κB and JNK/AP-1 signaling pathways. EVER2-deficient cells overproduce IL-6 following the upregulation of JNK activation. They respond poorly to phorbol ester and TNF via the NF-κB pathway. They have lower levels of IKKα subunit, potentially accounting for impairments of p100 processing and the alternative NF-κB pathway. The loss of EVER2 is associated with an unusual TRAF protein profile. We demonstrate that EVER2 deficiency sustains TRAF2 ubiquitination and decreases the pool of TRAF2 available in the detergent-soluble fraction of the cell. Finally, we demonstrate that EVER2 loss induces constitutive PKCα-dependent c-jun phosphorylation and facilitates activation of the HPV5 long control region through a JNK-dependent pathway. These findings indicate that defects of the EVER2 gene may create an environment conducive to HPV replication and the persistence of lesions with the potential to develop into skin cancer.
Collapse
Affiliation(s)
- Françoise Vuillier
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Guillaume Gaud
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Delphine Guillemot
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | | | - Christian Pons
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| | - Michel Favre
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, Paris, France
| |
Collapse
|
41
|
Bou Khzam L, Boulahya R, Abou-Saleh H, Hachem A, Zaid Y, Merhi Y. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9. PLoS One 2013; 8:e84289. [PMID: 24358353 PMCID: PMC3865292 DOI: 10.1371/journal.pone.0084289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022] Open
Abstract
The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Rahma Boulahya
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Haissam Abou-Saleh
- Qatar Cardiovascular Research Center, Qatar Foundation-Education City, Doha, Qatar
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montréal, Québec, Canada
- Université de Montréal, Department of Medicine, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
43
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
44
|
So T, Croft M. Regulation of PI-3-Kinase and Akt Signaling in T Lymphocytes and Other Cells by TNFR Family Molecules. Front Immunol 2013; 4:139. [PMID: 23760533 PMCID: PMC3675380 DOI: 10.3389/fimmu.2013.00139] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/25/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B) is a common response triggered by a range of membrane-bound receptors on many cell types. In T lymphocytes, the PI3K-Akt pathway promotes clonal expansion, differentiation, and survival of effector cells and suppresses the generation of regulatory T cells. PI3K activation is tightly controlled by signals through the T cell receptor (TCR) and the co-stimulatory receptor CD28, however sustained and periodic signals from additional co-receptors are now being recognized as critical contributors to the activation of this pathway. Accumulating evidence suggests that many members of the Tumor Necrosis Factor receptor (TNFR) superfamily, TNFR2 (TNFRSF1B), OX40 (TNFRSF4), 4-1BB (TNFRSF9), HVEM (TNFRSF14), and DR3 (TNFRSF25), that are constitutive or inducible on T cells, can directly or indirectly promote activity in the PI3K-Akt pathway. We discuss recent data which suggests that ligation of one TNFR family molecule organizes a signalosome, via TNFR-associated factor (TRAF) adapter proteins in T cell membrane lipid microdomains, that results in the subsequent accumulation of highly concentrated depots of PI3K and Akt in close proximity to TCR signaling units. We propose this may be a generalizable mechanism applicable to other TNFR family molecules that will result in a quantitative contribution of these signalosomes to enhancing and sustaining PI3K and Akt activation triggered by the TCR. We also review data that other TNFR molecules, such as CD40 (TNFRSF5), RANK (TNFRSF11A), FN14 (TNFRSF12A), TACI (TNFRSF13B), BAFFR (TNFRSF13C), and NGFR (TNFRSF16), contribute to the activation of this pathway in diverse cell types through a similar ability to recruit PI3K or Akt into their signaling complexes.
Collapse
Affiliation(s)
- Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | |
Collapse
|
45
|
Workman LM, Habelhah H. TNFR1 signaling kinetics: spatiotemporal control of three phases of IKK activation by posttranslational modification. Cell Signal 2013; 25:1654-64. [PMID: 23612498 DOI: 10.1016/j.cellsig.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022]
Abstract
TNFα is a pleotropic cytokine that plays a central role in the inflammatory response by activating the NF-κB signaling pathway, and is targeted in a range of chronic inflammatory diseases, underscoring the therapeutic importance of understanding its underlying molecular mechanisms. Although K63-linked ubiquitination of RIP1 by TRAF2/5 and cIAP1/2 was thought to serve as a scaffold to activate the NF-κB pathway, the recent accumulation of conflicting results has challenged the necessity of these proteins in NF-κB activation. In addition, several serine/threonine kinases have been implicated in TNFα-induced IKK activation; however, the targeted disruption of these kinases had no effect on transient IKK activation. The recent discovery of RIP1-dependent and -independent activation of the early and delayed phases of IKK and TRAF2 phosphorylation-dependent activation of the prolonged phase of IKK offers a reconciliatory model for the interpretation of contradictory results in the field. Notably, the TNFα-induced inflammatory response is not exclusively controlled by the NF-κB pathway but is subject to regulatory crosstalk between NF-κB and other context-dependent pathways. Thus further elucidation of these spatiotemporally-coordinated signaling mechanisms has the potential to provide novel molecular targets and therapeutic strategies for NF-κB intervention.
Collapse
Affiliation(s)
- Lauren M Workman
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
46
|
Sabbagh L, Andreeva D, Laramée GD, Oussa NAE, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH. Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 2013; 93:713-21. [PMID: 23446150 DOI: 10.1189/jlb.1112579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
4-1BB is a member of the TNFR superfamily, which contributes to the activation of signaling pathways required for the survival of activated and memory T cells. We have shown previously that TRAF1, an adaptor protein recruited to 4-1BB, is required for 4-1BB-mediated CD8 T cell survival in vivo. With the use of a proteomics approach in primary T cells, we have identified LSP1 as a novel protein recruited to the 4-1BB signaling complex in a TRAF1-dependent manner. Further characterization of the interaction between TRAF1 and LSP1 revealed that LSP1 requires the TRAF-N domain of TRAF1 for direct association. Similarly to TRAF1(-/-) T cells, LSP1(-/-) T cells exhibit impaired ERK activation following stimulation through 4-1BB and consequently, are unable to down-modulate expression of the proapoptotic Bcl-2 family member Bim. Moreover, we demonstrate that the absence of LSP1 expression leads to defective expansion and survival of T cells in response to 4-1BB stimulation. Thus, we have identified LSP1 as a new mediator involved in 4-1BB signaling and T cell survival. Collectively, our work shows that TRAF1 and LSP1 cooperate downstream of 4-1BB to activate ERK signaling and down-modulate the levels of Bim leading to enhanced T cell survival.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oussa NAE, Soumounou Y, Sabbagh L. TRAF1 phosphorylation on Serine 139 modulates NF-κB activity downstream of 4-1BB in T cells. Biochem Biophys Res Commun 2013; 432:129-34. [PMID: 23376065 DOI: 10.1016/j.bbrc.2013.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
The Tumour Necrosis Factor (TNF) Receptor-associated factor-1 (TRAF1) adaptor protein is a key component in initiating intracellular signalling pathways downstream of TNF receptors (TNFR). More importantly, TRAF1 has a pattern of expression restricted primarily to lymphoid cells and plays an important role in lymphocyte survival. TRAF1 has been shown to be phosphorylated on Serine 139, consequently inhibiting NF-κB activation downstream of TNFR2 when expressed in HeLa cells. We have previously demonstrated that TRAF1 cooperates with the TNFR family member 4-1BB to mediate signalling in T cells. However, the impact of TRAF1 phosphorylation on events downstream of 4-1BB in T cells remained to be defined. Using a proteomics approach we demonstrate that TANK-binding kinase 1 (TBK1) preferentially associates with the TRAF1 Serine 139 to Alanine (S139A) mutant. TBK1 is a kinase that functions upstream of NIK and IKK in the activation of the NF-κB pathway. When TRAF1-deficient CD8 T cells were reconstituted with the TRAF1 S139A mutant, we observed more sustained levels of IκBα degradation in response to 4-1BB stimulation in contrast to cells expressing either TRAF1 wild-type or TRAF1 S139D phospho-mimetic mutant. Together, these findings define the importance of the basal phosphorylation state of the TRAF1 Serine 139 residue in coordinating signalling events downstream of 4-1BB in primary T cells.
Collapse
Affiliation(s)
- N A Eustache Oussa
- Maisonneuve-Rosemont Hospital Research Centre, 5415 l'Assomption Boulevard, Montreal, QC, Canada H1T 2M4
| | | | | |
Collapse
|
48
|
Lu YY, Li ZZ, Jiang DS, Wang L, Zhang Y, Chen K, Zhang XF, Liu Y, Fan GC, Chen Y, Yang Q, Zhou Y, Zhang XD, Liu DP, Li H. TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat Commun 2013; 4:2852. [PMID: 24284943 PMCID: PMC3868160 DOI: 10.1038/ncomms3852] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading global cause of mortality and disability. Less than 5% of patients are able to receive tissue plasminogen activator thrombolysis within the necessary timeframe. Focusing on the process of neuronal apoptosis in the penumbra, which lasts from hours to days after ischaemia, appears to be promising. Here we report that tumour necrosis factor receptor-associated factor 1 (TRAF1) expression is markedly induced in wild-type mice 6 h after stroke onset. Using genetic approaches, we demonstrate that increased neuronal TRAF1 leads to elevated neuronal death and enlarged ischaemic lesions, whereas TRAF1 deficiency is neuroprotective. In addition, TRAF1-mediated neuroapoptosis correlates with the activation of the JNK pro-death pathway and inhibition of the Akt cell survival pathway. Finally, TRAF1 is found to exert pro-apoptotic effects via direct interaction with ASK1. Thus, ASK1 positively and negatively regulates the JNK and Akt signalling pathways, respectively. Targeting the TRAF1/ASK1 pathway may provide feasible therapies for stroke long after onset.
Collapse
Affiliation(s)
- Yan-Yun Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Zuo-Zhi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- These authors contributed equally to this work
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
- These authors contributed equally to this work
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | - Yingjie Chen
- Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-3360, USA
| | - Yan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| |
Collapse
|
49
|
Scheinman R. NF-κB and Rheumatoid Arthritis: Will Understanding Genetic Risk Lead to a Therapeutic Reward? ACTA ACUST UNITED AC 2013; 4:93-110. [PMID: 24678426 DOI: 10.1615/forumimmundisther.2013008408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NF-κB has long been known to play an important role in autoimmune diseases such as rheumatoid arthritis (RA). Indeed, as our understanding of how NF-κB is utilized has increased, we have been hard put to find a process not associated with this transcription factor family in some way. However, new data originating, in part, from genome-wide association studies have demonstrated that very specific alterations in components of the NF-κB pathway are sufficient to confer increased risk of developing disease. Here we review the data which have identified specific components of the NF-κB pathway, and consider what is known of their mechanisms of action and how these mechanisms might play into the disease process. In addition, the use of genetic information to predict RA is considered.
Collapse
Affiliation(s)
- Robert Scheinman
- University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, Aurora, CO 80045;
| |
Collapse
|
50
|
Okamura D, Mochizuki K, Taniguchi H, Tokitake Y, Ikeda M, Yamada Y, Tournier C, Yamaguchi S, Tada T, Schöler HR, Matsui Y. REST and its downstream molecule Mek5 regulate survival of primordial germ cells. Dev Biol 2012; 372:190-202. [PMID: 23022299 DOI: 10.1016/j.ydbio.2012.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 01/09/2023]
Abstract
In mouse embryos, some primordial germ cells (PGCs) are eliminated by apoptosis, but the molecular pathways that lead to PGC survival versus apoptosis have not been fully characterized. Here, we found that REST (repressor element 1-silencing transcription factor), a transcription factor that binds a conserved regulatory element, NRSE/RE1, played a role in PGC survival. REST expression was higher in PGCs than in surrounding somatic cells. Moreover, in mouse embryos with a PGC-specific conditional REST mutation, the PGC population experienced more apoptosis and was significantly smaller than that in control embryos; these findings indicated that REST functioned in a cell-autonomous fashion that was critical for PGC survival. Several anti-apoptotic genes were among the previously identified REST-target gene candidates; moreover, some of these genes were downregulated in the REST-deficient PGCs. Mek5, which encodes a component in the a MAP kinase cascade, was one of these downregulated REST-target gene candidates, and a Mek5 mutation, like the REST mutation, caused an increase in PGC apoptosis; these finding suggested that REST promoted PGC survival via regulation of the Mek5 expression. Importantly, there were a normal number of PGCs in the REST mutants at birth, and both the male and female REST-mutant adults were fertile; these final observations revealed that the PGC population was very robust and could recover from a genetically induced reduction in cell number.
Collapse
Affiliation(s)
- Daiji Okamura
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|