1
|
Bata N, Cosford NDP. Cell Survival and Cell Death at the Intersection of Autophagy and Apoptosis: Implications for Current and Future Cancer Therapeutics. ACS Pharmacol Transl Sci 2021; 4:1728-1746. [PMID: 34927007 DOI: 10.1021/acsptsci.1c00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Autophagy and apoptosis are functionally distinct mechanisms for cytoplasmic and cellular turnover. While these two pathways are distinct, they can also regulate each other, and central components of the apoptosis or autophagy pathway regulate both processes directly. Furthermore, several upstream stress-inducing signaling pathways can influence both autophagy and apoptosis. The crosstalk between autophagy and apoptosis has an integral role in pathological processes, including those related to cancer, homeostasis, and aging. Apoptosis is a form of programmed cell death, tightly regulated by various cellular and biochemical mechanisms, some of which have been the focus of drug discovery efforts targeting cancer therapeutics. Autophagy is a cellular degradation pathway whereby cells recycle macromolecules and organelles to generate energy when subjected to stress. Autophagy can act as either a prodeath or a prosurvival process and is both tissue and microenvironment specific. In this review we describe five groups of proteins that are integral to the apoptosis pathway and discuss their role in regulating autophagy. We highlight several apoptosis-inducing small molecules and biologics that have been developed and advanced into the clinic and discuss their effects on autophagy. For the most part, these apoptosis-inducing compounds appear to elevate autophagy activity. Under certain circumstances autophagy demonstrates cytoprotective functions and is overactivated in response to chemo- or radiotherapy which can lead to drug resistance, representing a clinical obstacle for successful cancer treatment. Thus, targeting the autophagy pathway in combination with apoptosis-inducing compounds may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Nicole Bata
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas D P Cosford
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
3
|
Michie J, Beavis PA, Freeman AJ, Vervoort SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG, Johnstone RW, Silke J, Darcy PK, Voskoboinik I, Kearney CJ, Oliaro J. Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunol Res 2019; 7:183-192. [DOI: 10.1158/2326-6066.cir-18-0428] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
|
4
|
Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6121328. [PMID: 30647812 PMCID: PMC6311846 DOI: 10.1155/2018/6121328] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used metal nanoparticles in health care industries, particularly due to its unique physical, chemical, optical, and biological properties. It is used as an antibacterial, antiviral, antifungal, and anticancer agent. Camptothecin (CPT) and its derivatives function as inhibitors of topoisomerase and as potent anticancer agents against a variety of cancers. Nevertheless, the combined actions of CPT and AgNPs in apoptosis in human cervical cancer cells (HeLa) have not been elucidated. Hence, we investigated the synergistic combinatorial effect of CPT and AgNPs in human cervical cancer cells. We synthesized AgNPs using sinigrin as a reducing and stabilizing agent. The synthesized AgNPs were characterized using various analytical techniques. The anticancer effects of a combined treatment with CPT and AgNPs were evaluated using a series of cellular and biochemical assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. The findings from this study revealed that the combination of CPT and AgNPs treatment significantly inhibited cell viability and proliferation of HeLa cells. Moreover, the combination effect significantly increases the levels of oxidative stress markers and decreases antioxidative stress markers compared to single treatment. Further, the combined treatment upregulate various proapoptotic gene expression and downregulate antiapoptotic gene expression. Interestingly, the combined treatment modulates various cellular signaling molecules involved in cell survival, cytotoxicity, and apoptosis. Overall, these results suggest that CPT and AgNPs cause cell death by inducing the mitochondrial membrane permeability change and activation of caspase 9, 6, and 3. The synergistic cytotoxicity and apoptosis effect seems to be associated with increased ROS formation and depletion of antioxidant. Certainly, a combination of CPT and AgNPs could provide a beneficial effect in the treatment of cervical cancer compared with monotherapy.
Collapse
|
5
|
Murad H, Alghamian Y, Aljapawe A, Madania A. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. BMC Res Notes 2018; 11:330. [PMID: 29784026 PMCID: PMC5963135 DOI: 10.1186/s13104-018-3438-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023] Open
Abstract
Objective Radiotherapy is the traditional therapy for glioma patients. Glioma has poor response to ionizing radiation (IR). Studying radiation-induced cell death can help in understanding the cellular mechanisms underlying its radioresistance. T98G cell line was irradiated with Co60 source by 2 or 10 Gy. MTT assay was used to calculate the surviving fraction. Cell viability, cell cycle distribution and apoptosis assays were conducted by flow cytometry for irradiated and control cells for the 10 Gy dose.
Results The SF2 value for irradiated cells was 0.8. Cell viability was decreased from 93.29 to 73.61%, while, the Sub G0/G1 phase fraction was significantly increased at 10 Gy after 48 h. On the other hand, there was an increase in the percentage of apoptotic cells which reached 40.16% after 72 h at the same dose, while, it did not exceeds 2% for non-irradiated cells. Our results showed that, the T98G cells is radioresistant to IR up to 10 Gy. Effects of irradiation on the viability of T98G cells were relatively mild, since entering apoptosis was delayed for about 3 days after irradiation.
Collapse
Affiliation(s)
- Hossam Murad
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdulmunim Aljapawe
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ammar Madania
- Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
6
|
Ji J, Yu Y, Li ZL, Chen MY, Deng R, Huang X, Wang GF, Zhang MX, Yang Q, Ravichandran S, Feng GK, Xu XL, Yang CL, Qiu MZ, Jiao L, Yang D, Zhu XF. XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells. Am J Cancer Res 2018; 8:1494-1510. [PMID: 29556337 PMCID: PMC5858163 DOI: 10.7150/thno.21717] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale: Nasopharyngeal carcinoma (NPC) is the most frequent head and neck tumor in South China. The presence of cancer stem cells (CSCs) in NPC contributes to tumor maintenance and therapeutic resistance, while the ability of CSCs to escape from the apoptosis pathway may render them the resistant property to the therapies. Inhibitor of apoptosis proteins family proteins (IAPs), which are overexpressed in nasopharyngeal carcinoma stem cells, may play an important role in maintaining nasopharyngeal cancer stem cell properties. Here, we develop a novel CSC-targeting strategy to treat NPC through inhibiting IAPs. Methods: Human NPC S-18 and S-26 cell lines were used as the model system in vitro and in vivo. Fluorescence activated cell sorting (FACS) assay was used to detect nasopharyngeal SP cells and CD44+ cells. The characteristics of CSCs were defined by sphere suspension culture, colony formation assay and cell migration. The role of XIAP on the regulation of Sox2 protein stability and ERK1-mediated phosphorylation of Sox2 signaling pathway were analyzed using immunoblotting, immunoprecipitation, immunofluorescence, phosphorylation mass spectrometry, siRNA silencing and plasmid overexpression. The correlation between XIAP and Sox2 in NPC biopsies and their role in prognosis was performed by immunohistochemistry. APG-1387 or chemotherapies-induced cell death and apoptosis in S-18 and S-26 were determined by WST, immunoblotting and flow cytometry assay. Results: IAPs, especially X chromosome-linked IAP (XIAP), were elevated in CSCs of NPC, and these proteins were critically involved in the maintenance of CSCs properties by enhancing the stability of Sox2. Mechanistically, ERK1 kinase promoted autophagic degradation of Sox2 via phosphorylation of Sox2 at Ser251 and further SUMOylation of Sox2 at Lys245 in non-CSCs. However, XIAP blocked autophagic degradation of Sox2 by inhibiting ERK1 activation in CSCs. Additionally, XIAP was positively correlated with Sox2 expression in NPC tissues, which were associated with NPC progression. Finally, we discovered that a novel antagonist of IAPs, APG-1387, exerted antitumor effect on CSCs. Also, the combination of APG-1387 with CDDP /5-FU has a synergistic effect on NPC. Conclusion: Our study highlights the importance of IAPs in the maintenance of CSCs in NPC. Thus, XIAP is a promising therapeutic target in CSCs and suggests that NPC patients may benefit from a combination treatment of APG-1387 with conventional chemotherapy.
Collapse
|
7
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. Blood 2014; 125:753-61. [PMID: 25414442 DOI: 10.1182/blood-2014-08-593202] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.
Collapse
|
9
|
Usukura K, Kasamatsu A, Okamoto A, Kouzu Y, Higo M, Koike H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Tripeptidyl peptidase II in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 2013; 139:123-30. [PMID: 22986808 DOI: 10.1007/s00432-012-1307-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/03/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE Tripeptidyl peptidase II (TPP2), a member of the family of eukaryotic serine peptidase, has been implicated in DNA repair, cellular division, and apoptosis. The aim of this study was to examine TPP2 expression and its functional mechanisms in oral squamous cell carcinoma (OSCC). METHODS TPP2 mRNA and protein expression in seven OSCC-derived cells (Ca9-22, HSC-2, HSC-3, HSC-4, HO-1-N-1, H1, and Sa3) was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Since previous studies indicated that TPP2 might control chromosomal division, we investigated cellular proliferation and spindle assembly checkpoint (SAC) molecules, MAD2 and CCNB1. In addition, we evaluated the correlation between TPP2 expression levels in primary OSCCs (n = 108 specimens) and the clinicopathologic status by immunohistochemistry (IHC). RESULTS TPP2 mRNA and protein were significantly (P < 0.05) up-regulated in OSCC-derived cells compared with human normal oral keratinocytes. Suppression of TPP2 expression with shRNA significantly (P < 0.05) inhibited cellular proliferation compared with the control cells. In addition, appropriate localization of MAD2 and up-regulation of CCNB1 were observed in TPP2 knockdown OSCC cells. IHC showed that TPP2 expression in primary OSCCs was significantly (P < 0.001) greater than that in the normal oral counterparts, and the TPP2-positive cases were significantly (P < 0.05) correlated with tumor size. CONCLUSION The current study showed that overexpression of TPP2 occurs frequently during oral carcinogenesis and might be associated with OSCC progression via SAC activation.
Collapse
Affiliation(s)
- Katsuya Usukura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Eklund S, Dogan J, Jemth P, Kalbacher H, Tomkinson B. Characterization of the endopeptidase activity of tripeptidyl-peptidase II. Biochem Biophys Res Commun 2012; 424:503-7. [PMID: 22771804 DOI: 10.1016/j.bbrc.2012.06.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a giant cytosolic peptidase with a proposed role in cellular protein degradation and protection against apoptosis. Beside its well-characterised exopeptidase activity, TPP II also has an endopeptidase activity. Little is known about this activity, and since it could be important for the physiological role of TPP II, we have investigated it in more detail. Two peptides, Nef(69-87) and LL37, were incubated with wild-type murine TPP II and variants thereof as well as TPP II from human and Drosophila melanogaster. Two intrinsically disordered proteins were also included in the study. We conclude that the endopeptidase activity is more promiscuous than previously reported. It is also clear that TPP II can attack longer disordered peptides up to 75 amino acid residues. Using a novel FRET substrate, the catalytic efficiency of the endopeptidase activity could be determined to be 5 orders of magnitude lower than for the exopeptidase activity.
Collapse
Affiliation(s)
- Sandra Eklund
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Eklund S, Lindås AC, Hamnevik E, Widersten M, Tomkinson B. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:561-70. [DOI: 10.1016/j.bbapap.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
|
12
|
Rockel B, Kopec KO, Lupas AN, Baumeister W. Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:237-45. [PMID: 21771670 DOI: 10.1016/j.bbapap.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 01/25/2023]
Abstract
Tripeptidyl peptidase II is the largest known eukaryotic peptidase. It has been described as a multi-purpose peptidase, which, in addition to its house-keeping function in intracellular protein degradation, plays a role in several vital cellular processes such as antigen processing, apoptosis, or cell division, and is involved in diseases like muscle wasting, obesity, and in cancer. Biochemical studies and bioinformatics have identified TPPII as a subtilase, but its structure is very unusual: it forms a large homooligomeric complex (6 MDa) with a spindle-like shape. Recently, the high-resolution structure of TPPII homodimers (300 kDa) was solved and a hybrid structure of the holocomplex built of 20 dimers was obtained by docking it into the EM-density. Here, we summarize our current knowledge about TPPII with a focus on structural aspects. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Beate Rockel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | |
Collapse
|
13
|
van Endert P. Post-proteasomal and proteasome-independent generation of MHC class I ligands. Cell Mol Life Sci 2011; 68:1553-67. [PMID: 21390545 PMCID: PMC11115176 DOI: 10.1007/s00018-011-0662-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/18/2022]
Abstract
Peptide ligands presented by MHC class I molecules are produced by intracellular proteolysis, which often involves multiple steps. Initial antigen degradation seems to rely almost invariably on the proteasome, although tripeptidyl peptidase II (TPP II) and insulin-degrading enzyme (IDE) may be able to substitute for the proteasome in rare cases. Recent evidence suggests that the net effect of cytosolic aminopeptidases is destruction of potential class I ligands, although a positive role in selected cases has been documented. This may apply particularly to the trimming of long precursors by TPP II. In contrast, trimming of ligand precursors in the endoplasmic reticulum is essential for the generation of suitable peptides and has a substantial impact on the repertoire of ligands presented. Trimming by the ER aminopeptidase (ERAP) enzymes most likely acts on free precursors and is adapted to the needs of class I molecules by way of a molecular ruler mechanism. Trimming by ERAP enzymes also occurs for cross-presented ligands, which can alternatively be processed in a special endosomal compartment by insulin-regulated aminopeptidase.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris 75015, France.
| |
Collapse
|
14
|
Abstract
OBJECTIVES The role of proteases in the regulation of apoptosis is becoming increasingly apparent. Whilst many of these proteases are already characterised, some have yet to be identified. Traditionally caspases held the traditional role as the prime mediators of apoptosis; however, attention is now turning towards the contribution made by serine proteases. KEY FINDINGS As unregulated apoptosis is implicated in various disease states, the emergence of this proteolytic family as apoptotic regulators offers novel and alterative opportunities for therapeutic targets. SUMMARY This review presents a brief introduction and overview of proteases in general with particular attention given to those involved in apoptotic processing.
Collapse
Affiliation(s)
- Kelly L Moffitt
- Biomolecular Sciences Group, School of Pharmacy, Queen's University of Belfast, Belfast BT97BL, Northern Ireland, UK.
| | | | | |
Collapse
|
15
|
The Enigma of Tripeptidyl-Peptidase II: Dual Roles in Housekeeping and Stress. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20847939 PMCID: PMC2933905 DOI: 10.1155/2010/128478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 05/25/2010] [Accepted: 07/12/2010] [Indexed: 12/02/2022]
Abstract
The tripeptidyl-peptidase II complex consists of repeated 138 kDa subunits, assembled into two twisted strands that form a high molecular weight complex (>5 MDa). TPPII, like many other cytosolic peptidases, plays a role in the ubiquitin-proteasome pathway downstream of the proteasome as well as in the production and destruction of MHC class I antigens and degradation of neuropeptides. Tripeptidyl-peptidase II activity is increased in cells with an increased demand for protein degradation, but whether degradation of cytosolic peptides is the only cell biological role for TPPII has remained unclear. Recent data indicated that TPPII translocates into the nucleus to control DNA damage responses in malignant cells, supporting that cytosolic “housekeeping peptidases” may have additional roles in cell biology, besides their contribution to protein turnover. Overall, TPPII has an emerging importance in several cancer-related fields, such as metabolism, cell death control, and control of genome integrity; roles that are not understood in detail. The present paper reviews the cell biology of TPPII and discusses distinct roles for TPPII in the nucleus and cytosol.
Collapse
|
16
|
Preta G, de Klark R, Chakraborti S, Glas R. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress. Biochem Biophys Res Commun 2010; 399:324-30. [DOI: 10.1016/j.bbrc.2010.06.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/14/2023]
|
17
|
Villasevil EM, Guil S, López-Ferreras L, Sánchez C, Del Val M, Antón LC. Accumulation of polyubiquitylated proteins in response to Ala-Ala-Phe-chloromethylketone is independent of the inhibition of Tripeptidyl peptidase II. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1094-105. [PMID: 20553980 DOI: 10.1016/j.bbamcr.2010.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/26/2022]
Abstract
In the present study we have addressed the issue of proteasome independent cytosolic protein degradation. Tripeptidyl peptidase II (TPPII) has been suggested to compensate for a reduced proteasome activity, partly based on evidence using the inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk). Here we show that AAF-cmk induces the formation of polyubiquitin-containing accumulations in osteosarcoma and Burkitt's lymphoma cell lines. These accumulations meet many of the landmarks of the aggresomes that form after proteasome inhibition. Using a combination of experiments with chemical inhibitors and interference of gene expression, we show that TPPII inhibition is not responsible for these accumulations. Our evidence suggests that the relevant target(s) is/are in the ubiquitin-proteasome pathway, most likely upstream the proteasome. We obtained evidence supporting this model by inhibition of Hsp90, which also acts upstream the proteasome. Although our data suggest that Hsp90 is not a target of AAF-cmk, its inhibition resulted in accumulations similar to those obtained with AAF-cmk. Therefore, our results question the proposed role for TPPII as a prominent alternative to the proteasome in cellular proteolysis.
Collapse
Affiliation(s)
- Eugenia M Villasevil
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Cerruti F, Martano M, Morello E, Buracco P, Cascio P. Proteasomes are not a target for doxorubicin in feline injection-site sarcoma. J Comp Pathol 2010; 143:164-72. [PMID: 20427050 DOI: 10.1016/j.jcpa.2010.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 02/09/2010] [Accepted: 02/27/2010] [Indexed: 01/04/2023]
Abstract
The potent anti-cancer agent doxorubicin (DOX) induces apoptosis of rapidly proliferating cells by inhibiting cellular proteasomes. The aim of the present study was to determine whether DOX modulates the level of expression and function of proteasomes in feline injection-site sarcoma (FISS). Tissue extracts from primary sarcoma lesions and the related healthy subcutis of 18 cats affected by FISS were investigated. Nine of these cats had received neoadjuvant DOX treatment and nine cats did not receive this therapy. There was enhanced proteasome expression in FISS, but this was not affected by administration of DOX. This finding may account for the low clinical effectiveness of DOX therapy in FISS and provides the rationale for developing new therapeutic protocols aimed at achieving better proteasomal inhibition in FISS and other tumours that respond poorly to DOX therapy.
Collapse
Affiliation(s)
- F Cerruti
- Department of Veterinary Morphophysiology, University of Turin, Grugliasco, Italy
| | | | | | | | | |
Collapse
|
19
|
Tsurumi C, Firat E, Gaedicke S, Huai J, Mandal PK, Niedermann G. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts. Biochem Biophys Res Commun 2009; 386:563-8. [DOI: 10.1016/j.bbrc.2009.06.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/30/2022]
|
20
|
Abstract
Unfolded and misfolded proteins are inherently toxic to cells and have to be quickly and efficiently eliminated before they intoxicate the intracellular environment. This is of particular importance during proteotoxic stress when, as a consequence of intrinsic or extrinsic factors, the levels of misfolded proteins are transiently or persistently elevated. To meet this demand, metazoan cells have developed specific protein quality control mechanisms that allow the identification and proper handling of non-native proteins. An important defence mechanism is the specific destruction of these proteins by the ubiquitin-proteasome system (UPS). A number of studies have shown that various proteotoxic stress conditions can cause functional impairment of the UPS resulting in cellular dysfunction and apoptosis. In this review, we will summarize our current understanding of proteotoxic stress-induced dysfunction of the UPS and some of its implications for human pathologies.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3 S-17177, Stockholm, Sweden.
| | | |
Collapse
|
21
|
Bassi C, Mello SS, Cardoso RS, Godoy PDV, Fachin AL, Junta CM, Sandrin-Garcia P, Carlotti CG, Falcão RP, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Transcriptional changes in U343 MG-a glioblastoma cell line exposed to ionizing radiation. Hum Exp Toxicol 2009; 27:919-29. [PMID: 19273547 DOI: 10.1177/0960327108102045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Collapse
Affiliation(s)
- Cl Bassi
- Department of Genetics, University of Sao Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Firat E, Tsurumi C, Gaedicke S, Huai J, Niedermann G. Tripeptidyl Peptidase II Plays a Role in the Radiation Response of Selected Primary Cell Types but not Based on Nuclear Translocation and p53 Stabilization. Cancer Res 2009; 69:3325-31. [DOI: 10.1158/0008-5472.can-08-3269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Lopergolo A, Pennati M, Gandellini P, Orlotti NI, Poma P, Daidone MG, Folini M, Zaffaroni N. Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and caspase-3 activation. Br J Cancer 2009; 100:739-46. [PMID: 19223905 PMCID: PMC2653776 DOI: 10.1038/sj.bjc.6604927] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We analysed the effects of small interfering RNA (siRNA)-mediated silencing of Apollon, a member of the inhibitors of apoptosis protein family, on the proliferative potential and ability of human breast cancer cell lines to undergo apoptosis. In wild-type p53 ZR75.1 cells, Apollon knockdown resulted in a marked, time-dependent decline of cell growth and an increased rate of apoptosis, which was associated with p53 stabilisation and activation of the mitochondrial-dependent apoptotic pathway. Pre-incubation of cells with a p53-specific siRNA resulted in a partial rescue of cell growth inhibition, as well as in a marked reduction of the apoptotic response, indicating p53 as a major player in cell growth impairment consequent on Apollon silencing. Apollon knockdown induced consistently less pronounced anti-proliferative and pro-apoptotic effects in mutant p53 MDA-MB-231 cells than in ZR75.1 cells. Furthermore, the activation of caspase-3 seemed to be essential for the induction of apoptosis after Apollon knockdown, as the Apollon-specific siRNA had no effect on the viability of caspase-3-deficient, wild-type p53 MCF-7 cells or the ZR75.1 cells after RNA interference-mediated caspase-3 silencing. Our results indicate that p53 stabilisation and caspase-3 activation concur to determine the apoptotic response mediated by Apollon knockdown in breast cancer cells, and suggest Apollon to be a potential new therapeutic target for this malignancy.
Collapse
Affiliation(s)
- A Lopergolo
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Folini M, Pennati M, Zaffaroni N. RNA interference-mediated validation of genes involved in telomere maintenance and evasion of apoptosis as cancer therapeutic targets. Methods Mol Biol 2009; 487:303-30. [PMID: 19301654 DOI: 10.1007/978-1-60327-547-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of new cancer-related therapeutic targets is mainly based on the identification of genes involved in pathways selectively exploited in cancer cells, including those leading to unlimited replicative potential, evasion of apoptosis, angiogenesis, tissue invasion and metastatic spread. Potentially, a gene--or a gene product--is recognized as a cancer target whether its modulation in experimental models can specifically modify or revert the cancer phenotype. As soon as RNA interference (RNAi)--a natural gene silencing mechanism--was demonstrated in mammalian cells, it rapidly became an essential means for gene knockdown in preclinical models, making it possible to define the role of several human genes and to identify those specifically involved in the onset and progression of cancer. Owing to its powerful gene-silencing properties, RNAi has been proposed as a useful tool to validate new therapeutic targets and to develop innovative anticancer therapies. This chapter summarizes the findings from recent studies relying on the use of RNAi-based approaches to functionally validate therapeutic targets related to two tumor hallmarks: the unlimited replicative potential (i.e., activation of telomere maintenance mechanisms) and evasion of apoptosis (i.e., up-regulation of anti-apoptotic factors).
Collapse
Affiliation(s)
- Marco Folini
- Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | |
Collapse
|
25
|
Preta G, Marescotti D, Fortini C, Carcoforo P, Castelli C, Masucci M, Gavioli R. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells. Scand J Immunol 2008; 68:579-88. [PMID: 19000094 DOI: 10.1111/j.1365-3083.2008.02175.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.
Collapse
Affiliation(s)
- G Preta
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Endert PV. Role of tripeptidyl peptidase II in MHC class I antigen processing - the end of controversies? Eur J Immunol 2008; 38:609-13. [PMID: 18286570 DOI: 10.1002/eji.200838181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptide ligands presented by MHC class I molecules are generated in a cascade of proteolytic events starting with the proteasome in the cytosol and frequently terminating with trimming aminopeptidases in the endoplasmic reticulum. Several cytosolic proteases can carry out intermediate proteolytic steps between these start and endpoints. Among these, tripeptidyl peptidase II (TPP II), an exceptionally large homo-oligomeric protease, has been proposed to be involved in the generation of many or most MHC class I ligands by cleaving long precursor peptides. In this issue of the European Journal of Immunology, the effect of pharmacological or genetic TPP II inhibition on peptide loading of HLA-B27 and other HLA class I molecules is examined, and no evidence for a role of TPP II in this process is detected. Although further studies using more efficient inhibitors and focusing on HLA class I alleles such as HLA-A3 are warranted, these results, together with other recently published data, suggest that the role of TPP II in MHC class I processing may be much more limited than previously appreciated.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 580, Paris, France.
| |
Collapse
|
27
|
Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice. Proc Natl Acad Sci U S A 2008; 105:5177-82. [PMID: 18362329 DOI: 10.1073/pnas.0801413105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8(+) T cells. This coincides with up-regulation of p53 and dysregulation of NF-kappaB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors.
Collapse
|
28
|
Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C. Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 2008; 103:270-83. [PMID: 17516511 DOI: 10.1002/jcb.21405] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proteasome is the main protease for extralysosomal protein degradation in eukaryotic cells, and constitutes a sophisticated high molecular mass proteinase complex underlying a tightly coordinated expression and assembly of multiple subunits and subcomplexes. Here we show that continuous inhibition of proteasomal chymotrypsin-like peptidase activity by the proteasome inhibitor bortezomib induces in human Namalwa Burkitt lymphoma cells increased de novo biogenesis of proteasomes accompanied by increased expression of the proteasome maturation protein POMP, increased expression of 19S-20S-19S proteasomes, and abrogation of expression of beta 1i, beta 2i and beta 5i immunosubunits and PA28 in favor of increased expression of constitutive proteolytic beta1, beta2 and beta 5 subunits and 19S regulatory complexes. These alterations of proteasome expression and subunit composition are accompanied by an increase in proteasomal caspase-like, trypsin-like and chymotrypsin-like peptidase activities, not inhibitable by high doses of bortezomib. Cells harboring these proteasomal alterations display rapid proliferation and cell cycle progression, and acquire resistance to apoptosis induced by proteasome inhibitors, gamma-irradiation and staurosporine. This acquired apoptosis resistance is accompanied by de novo expression of anti-apoptotic Hsp27 protein and the loss of ability to accumulate and stabilize pro-apoptotic p53 protein. Thus, increased expression, altered subunit composition and increased activity of proteasomes constitute a hitherto unknown adaptive and autoregulatory feedback mechanism to allow cells to survive the lethal challenge of proteasome inhibition and to establish a hyperproliferative and apoptosis-resistant phenotype.
Collapse
Affiliation(s)
- Dominik Fuchs
- Institute of Immunology, Department of Transplantation Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Naujokat C, Fuchs D, Berges C. Adaptive modification and flexibility of the proteasome system in response to proteasome inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1389-97. [PMID: 17582523 DOI: 10.1016/j.bbamcr.2007.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 01/07/2023]
Abstract
The highly conserved ubiquitin-proteasome system is the principal machinery for extralysosomal protein degradation in eukaryotic cells. The 26S proteasome, a large multicatalytic multisubunit protease that processes cell proteins by limited and controlled proteolysis, constitutes the central proteolytic component of the ubiquitin-proteasome system. By processing cell proteins essential for development, differentiation, proliferation, cell cycling, apoptosis, gene transcription, signal transduction, senescence, and inflammatory and stress response, the 26S proteasome plays a key role in the regulation and maintenance of basic cellular processes. Various synthetic and biologic inhibitors with different inhibitory profiles towards the proteolytic activities of the 26S proteasome have been identified recently. Such proteasome inhibitors induce apoptosis and cell cycle arrest preferentially in neoplastic cells. Based on these findings proteasome inhibitors became useful in cancer therapy. However, under the pressure of continuous proteasome inhibition, eukaryotic cells can develop complex adaptive mechanisms to subvert the lethal attack of proteasome inhibitors. Such mechanisms include the adaptive modification of the proteasome system with increased expression, enhanced proteolytic activity and altered subcomplex assembly and subunit composition of proteasomes as well as the expression of a giant oligomeric protease complex, tripeptidyl peptidase II, which partially compensates for impaired proteasome function. Here we review the adaptive mechanisms developed by eukaryotic cells in response to proteasome inhibition. These mechanisms reveal enormous flexibility of the proteasome system and may have implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Cord Naujokat
- Institut of Immunology, Department of Transplantation Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Hong X, Lei L, Künert B, Naredla R, Applequist SE, Grandien A, Glas R. Tripeptidyl-peptidase II Controls DNA Damage Responses and In vivo γ-Irradiation Resistance of Tumors. Cancer Res 2007; 67:7165-74. [PMID: 17671184 DOI: 10.1158/0008-5472.can-06-4094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular responses to gamma-irradiation exposure are controlled by phosphatidylinositol 3-kinase-related kinases (PIKK) in the nucleus, and in addition, cytosolic PIKKs may have a role in such responses. Here, we show that the expression of tripeptidyl-peptidase II (TPPII), a high molecular weight cytosolic peptidase, required PIKK signaling and that TPPII was rapidly translocated into the nucleus of gamma-irradiated cells. These events were dependent on mammalian target of rapamycin, a cytosolic/mitochondrial PIKK that is activated by gamma-irradiation. Lymphoma cells with inhibited expression of TPPII failed to efficiently stabilize p53 and had reduced ability to arrest proliferation in response to gamma-irradiation. We observed that TPPII contains a BRCA COOH-terminal-like motif, contained within sequences of several proteins involved in DNA damage signaling pathways, and this motif was important for nuclear translocation of TPPII and stabilization of p53. Novel tripeptide-based inhibitors of TPPII caused complete in vivo tumor regression in mice in response to relatively low doses of gamma-irradiation (3-4 Gy/wk). This was observed with established mouse and human tumors of diverse tissue backgrounds, with no tumor regrowth after cancellation of treatment. These TPPII inhibitors had minor effects on tumor growth as single agent and had low cellular toxicity. Our data indicated that TPPII connects signaling by cytosolic/mitochondrial and nuclear PIKK-dependent pathways and that TPPII can be targeted for inhibition of tumor therapy resistance.
Collapse
Affiliation(s)
- Xu Hong
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge
| | | | | | | | | | | | | |
Collapse
|
31
|
Childs EW, Tharakan B, Hunter FA, Tinsley JH, Cao X. Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 2007; 292:H3179-89. [PMID: 17307990 DOI: 10.1152/ajpheart.01337.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemorrhagic shock (HS) disrupts the endothelial cell barrier, resulting in microvascular hyperpermeability. Recent studies have also demonstrated that activation of the apoptotic signaling cascade is involved in endothelial dysfunction, which may result in hyperpermeability. Here we report involvement of the mitochondrial "intrinsic" pathway in microvascular hyperpermeability following HS in rats. HS resulted in the activation of the mitochondrial intrinsic pathway, as is evident from an increase in the proapoptotic Bcl-2 family member BAK, release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. This, along with the in vivo transfection of the proapoptotic peptide BAK (BH3), resulted in hyperpermeability (as visualized by intravital microscopy), release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. Conversely, transfection of the BAK (BH3) mutant had no effect on hyperpermeability. Together, these results demonstrate involvement of the mitochondrial intrinsic apoptotic pathway in HS-induced hyperpermeability and that the attenuation of this pathway may provide an alternative strategy in preserving vascular barrier integrity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Capillary Permeability
- Caspase 3/metabolism
- Caspase Inhibitors
- Cysteine Proteinase Inhibitors/pharmacology
- Cytochromes c/metabolism
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Enzyme Activation
- Male
- Membrane Potential, Mitochondrial
- Mesentery/blood supply
- Microcirculation/metabolism
- Microcirculation/pathology
- Microcirculation/physiopathology
- Microscopy, Video
- Mitochondria/metabolism
- Mitochondria/pathology
- Oligopeptides/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Rats
- Rats, Sprague-Dawley
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/pathology
- Shock, Hemorrhagic/physiopathology
- Signal Transduction
- Transfection
- bcl-2 Homologous Antagonist-Killer Protein/genetics
- bcl-2 Homologous Antagonist-Killer Protein/metabolism
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- Ed W Childs
- Department of Surgery, The Texas A & M University, HSC College of Medicine, Scott & White Memorial Hospital, 2401 South 31st St., Temple, TX 76508, USA.
| | | | | | | | | |
Collapse
|
32
|
Lindås AC, Tomkinson B. Characterization of the promoter of the gene encoding human tripeptidyl-peptidase II and identification of upstream silencer elements. Gene 2007; 393:62-9. [PMID: 17343995 DOI: 10.1016/j.gene.2007.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 12/16/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is one of the many proteases involved in the important process of intracellular proteolysis. The widespread distribution and broad substrate specificity suggest that TPP II is encoded by a "house-keeping gene". However, both TPP II protein and mRNA levels vary in different cells. To investigate whether these variations are due to regulation on a genetic level, the promoter of the TPP2 gene has previously been identified. The promoter contains two inverted CCAAT-boxes and an E-box. By means of reporter assays and electrophoretic mobility shift assays the promoter has now been further characterized. It could be concluded that USF-1 (upstream stimulatory factor-1) binds to the E-box in the promoter. The transcription factors NF-Y and USF-1 are present in protein-DNA complexes of different sizes. Mutation of the E-box had no effect, indicating that only binding of NF-Y to the two CCAAT-boxes was important for activation of transcription. However, this does not exclude the possibility that USF-1 can play an important role in transcription in other types of cells. Furthermore, the region upstream of the promoter was investigated due to its ability to inhibit transcription. Several silencer elements were identified and we also showed that Oct-1 binds to one of these elements. Thus, this investigation reveals that TPP II expression could be regulated through both positive and negative regulatory elements. Further studies are required to establish the involvement of different genetic elements, and how the interplay between different transcription factors will affect the transcriptional rate in vivo.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Uppsala University, Biomedical Center, Department of Biochemistry and Organic Chemistry, Uppsala, Sweden
| | | |
Collapse
|
33
|
High Smac/DIABLO expression is associated with early local recurrence of cervical cancer. BMC Cancer 2006; 6:256. [PMID: 17067390 PMCID: PMC3225885 DOI: 10.1186/1471-2407-6-256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/26/2006] [Indexed: 11/12/2022] Open
Abstract
Background In a recent pilot report, we showed that Smac/DIABLO mRNA is expressed de novo in a subset of cervical cancer patients. We have now expanded this study and analyzed Smac/DIABLO expression in the primary lesions in 109 cervical cancer patients. Methods We used immunohistochemistry of formalin-fixed, paraffin-embedded tissue sections to analyze Smac/DIABLO expression in the 109 primary lesions. Seventy-eight samples corresponded to epidermoid cervical cancer and 31 to cervical adenocarcinoma. The median follow up was 46.86 months (range 10–186). Results Smac/DIABLO was expressed in more adenocarcinoma samples than squamous tumours (71% vs 50%; p = 0.037). Among the pathological variables, a positive correlation was found between Smac/DIABLO immunoreactivity and microvascular density, a marker for angiogenesis (p = 0.04). Most importantly, Smac/DIABLO immunoreactivity was associated with a higher rate of local recurrence in squamous cell carcinoma (p = 0.002, log rank test). No association was found between Smac/DIABLO and survival rates. Conclusion Smac/DIABLO expression is a potential marker for local recurrence in cervical squamous cell carcinoma patients.
Collapse
|
34
|
Olivier S, Robe P, Bours V. Can NF-κB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 2006; 72:1054-68. [PMID: 16973133 DOI: 10.1016/j.bcp.2006.07.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 12/23/2022]
Abstract
Since the discovery of the NF-kappaB transcription factor in 1986 and the cloning of the genes coding for NF-kappaB and IkappaB proteins, many studies demonstrated that this transcription factor can, in most cases, protect transformed cells from apoptosis and therefore participate in the onset or progression of many human cancers. Molecular studies demonstrated that ancient widely used drugs, known for their chemopreventive or therapeutic activities against human cancers, inhibit NF-kappaB, usually among other biological effects. It is therefore considered that the anti-cancer activities of NSAIDs (non-steroidal anti-inflammatory drugs) or glucocorticoids are probably partially related to the inhibition of NF-kappaB and new clinical trials are being initiated with old compounds such as sulfasalazine. In parallel, many companies have developed novel agents acting on the NF-kappaB pathway: some of these agents are supposed to be NF-kappaB specific (i.e. IKK inhibitors) while others have wide-range biological activities (i.e. proteasome inhibitors). Today, the most significant clinical data have been obtained with bortezomib, a proteasome inhibitor, for the treatment of multiple myeloma. This review discusses the preclinical and clinical data obtained with these various drugs and their putative future developments.
Collapse
Affiliation(s)
- Sabine Olivier
- Department of Rheumatology, Centre for Biomedical Integrative Genoproteomics, University of Liège, CHU B35, Sart-Tilman, 4000 Liège, Belgium
| | | | | |
Collapse
|
35
|
Seyit G, Rockel B, Baumeister W, Peters J. Size Matters for the Tripeptidylpeptidase II Complex from Drosophila. J Biol Chem 2006; 281:25723-33. [PMID: 16799156 DOI: 10.1074/jbc.m602722200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripeptidylpeptidase II (TPP II) is an exopeptidase of the subtilisin type of serine proteases, a key component of the protein degradation cascade in many eukaryotes, which cleaves tripeptides from the N terminus of proteasome-released products. The Drosophila TPP II is a large homooligomeric complex (approximately 6 MDa) that is organized in a unique repetitive structure with two strands each composed of ten stacked homodimers; two strands intertwine to form a spindle-shaped structure. We report a novel procedure of preparing an active, structurally homogeneous TPP II holo-complex overexpressed in Escherichia coli. Assembly studies revealed that the specific activity of TPP II increases with oligomer size, which in turn is strongly concentration-dependent. At a TPP II concentration such as prevailing in Drosophila, equilibration of size and activity proceeds on a time scale of hours and leads to spindle formation at a TPP II concentration of > or =0.03 mg/ml. Before equilibrium is reached, activation lags behind assembly, suggesting that activation occurs in a two-step process consisting of (i) assembly and (ii) a subsequent conformational change leading to a switch from basal to full activity. We propose a model consistent with the hyperbolic increase of activity with oligomer size. Spindle formation by strand pairing causes both significant thermodynamic and kinetic stabilization. The strands inherently heterogeneous in length are thus locked into a discrete oligomeric state. Our data indicate that the unique spindle form of the holo-complex represents an assembly motif stabilizing a highly active state.
Collapse
Affiliation(s)
- Gönül Seyit
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
36
|
Stavropoulou V, Vasquez V, Cereser B, Freda E, Masucci MG. TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochem Biophys Res Commun 2006; 346:415-25. [PMID: 16762321 DOI: 10.1016/j.bbrc.2006.05.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Overexpression of TPPII correlates with accelerated growth and the appearance of centrosome and chromosome aberrations, suggesting that the activity of this enzyme may be critical for the induction and/or maintenance of genetic instability in malignant cells. We now find that the length of mitosis and of the entire cell cycle is significantly reduced in TPPII overexpressing HEK293 cells compared to untransfected and control transfected cells. Functional TPPII knockdown by shRNA interference caused a significant slowdown in cell growth and the accumulation of cells that delayed or failed to complete mitosis. TPPII overexpressing cells evade mitotic arrest induced by spindle poisons and display high levels of polyploidy despite the constitutively high expression of major components of the spindle checkpoint. TPPII overexpression correlated with upregulation of IAPs and with resistance to mitochondria dependent apoptosis induced by p53 stabilization. Thus, TPPII appears to promote malignant cell growth by allowing exit from mitosis and the survival of cells with severe mitotic spindle damage.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Sohn D, Totzke G, Essmann F, Schulze-Osthoff K, Levkau B, Jänicke RU. The proteasome is required for rapid initiation of death receptor-induced apoptosis. Mol Cell Biol 2006; 26:1967-78. [PMID: 16479014 PMCID: PMC1430261 DOI: 10.1128/mcb.26.5.1967-1978.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Due to their tremendous apoptosis-inducing potential, proteasomal inhibitors (PIs) have recently entered clinical trials. Here we show, however, that various PIs rescued proliferating tumor cells from death receptor-induced apoptosis. This protection correlated with the stabilization of X-linked IAP (XIAP) and c-FLIP and the inhibition of caspase activation. Together with the observation that PIs could not protect cells expressing XIAP or c-FLIP short interfering RNAs (siRNAs) from death receptor-induced apoptosis, our results demonstrate that PIs mediate their protective effect via the stabilization of these antiapoptotic proteins. Furthermore, we show that once these proteins were eliminated, either by long-term treatment with death receptor ligands or by siRNA-mediated suppression, active caspases accumulated to an even larger extent in the presence of PIs. Together, our data support a biphasic role for the proteasome in apoptosis, as they show that its constitutive activity is crucial for the rapid initiation of the death program by eliminating antiapoptotic proteins, whereas at later stages, the proteasome acts in an antiapoptotic manner due to the proteolysis of caspases. Thus, for a successful PI-based tumor therapy, it is crucial to carefully evaluate basal proteasomal activity and the status of antiapoptotic proteins, as their PI-mediated prolonged stability might even cause adverse effects, leading to the survival of a tumor.
Collapse
Affiliation(s)
- Dennis Sohn
- Institute of Molecular Medicine, University of Düsseldorf, Building 23.12, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Saveanu L, Carroll O, Hassainya Y, van Endert P. Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol Rev 2005; 207:42-59. [PMID: 16181326 DOI: 10.1111/j.0105-2896.2005.00313.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vast majority of the peptides produced during protein degradation by the cytosolic proteasome-ubiquitin system are consecutively hydrolyzed to single amino acids by multiple cytosolic peptidases preferring intermediate length or short substrates. The small fraction of peptides surviving the aggressive cytosolic environment can be recruited for presentation by major histocompatibility complex (MHC) class I molecules. However, such peptides may frequently have to be adapted to the strict MHC class I-binding requirements by one or several N-terminal-trimming steps. A recent model proposes that an initial step, in which peptides of 15 or more residues are shortened by cytosolic tripeptidylpeptidase II, is followed by additional trimming by cytosolic or endoplasmic reticulum (ER) aminopeptidases. In humans, at least two ER resident aminopeptidases, ERAP1 and ERAP2, contribute to trimming of human leukocyte antigen class I ligands. These interferon-gamma-regulated metallopeptidases show distinct substrate preferences and may have to act in a concerted fashion to remove some complex or longer N-terminal extensions and to trim the full spectrum of precursor peptides. This task is likely facilitated by the formation of presumably heterodimeric ERAP1-2 complexes. RNA interference experiments suggest that both enzymes are important for normal antigen presentation, but precise determination of the extent and the cellular context of their requirement will be left to future experimentation.
Collapse
|
39
|
Tomkinson B, Lindås AC. Tripeptidyl-peptidase II: A multi-purpose peptidase. Int J Biochem Cell Biol 2005; 37:1933-7. [PMID: 16125107 DOI: 10.1016/j.biocel.2005.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/01/2004] [Accepted: 02/08/2005] [Indexed: 11/20/2022]
Abstract
Tripeptidyl-peptidase II is a high-molecular weight peptidase with a widespread distribution in eukaryotic cells. The enzyme sequentially removes tripeptides from a free N-terminus of longer peptides and also displays a low endopeptidase activity. A role for tripeptidyl-peptidase II in the formation of peptides for antigen presentation has recently become evident, and the enzyme also appears to be important for the degradation of some specific substrates, e.g. the neuropeptide cholecystokinin. However, it is likely that the main biological function of tripeptidyl-peptidase II is to participate in a general intracellular protein turnover. This peptidase may act on oligopeptides generated by the proteasome, or other endopeptidases, and the tripeptides formed would subsequently be good substrates for other exopeptidases. The fact that tripeptidyl-peptidase II activity is increased in sepsis-induced muscle wasting, a situation of enhanced protein turnover, corroborates this biological role.
Collapse
Affiliation(s)
- Birgitta Tomkinson
- Department of Biochemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden.
| | | |
Collapse
|
40
|
Rockel B, Peters J, Müller SA, Seyit G, Ringler P, Hegerl R, Glaeser RM, Baumeister W. Molecular architecture and assembly mechanism of Drosophila tripeptidyl peptidase II. Proc Natl Acad Sci U S A 2005; 102:10135-40. [PMID: 16006508 PMCID: PMC1177415 DOI: 10.1073/pnas.0504569102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, tripeptidyl peptidase II (TPPII) is a crucial component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway. It is an amino peptidase belonging to the subtilase family removing tripeptides from the free N terminus of oligopeptides. The 150-kDa subunits of Drosophila TPPII assemble into a giant proteolytic complex of 6 MDa with a remarkable architecture consisting of two segmented and twisted strands that form a spindle-shaped structure. A refined 3D model has been obtained by cryoelectron microscopy, which reveals details of the molecular architecture and, in conjunction with biochemical data, provides insight into the assembly mechanism. The building blocks of this complex are apparently dimers, within which the 150-kDa monomers are oriented head to head. Stacking of these dimers leads to the formation of twisted single strands, two of which comprise the fully assembled spindle. This spindle also forms when TPPII is heterologously expressed in Escherichia coli, demonstrating that no scaffolding protein is required for complex formation and length determination. Reciprocal interactions of the N-terminal part of subunits from neighboring strands are probably involved in the formation of the native quaternary structure, lending the TPPII spindle a stability higher than that of single strands.
Collapse
Affiliation(s)
- Beate Rockel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Stavropoulou V, Xie J, Henriksson M, Tomkinson B, Imreh S, Masucci MG. Mitotic Infidelity and Centrosome Duplication Errors in Cells Overexpressing Tripeptidyl-Peptidase II. Cancer Res 2005; 65:1361-8. [PMID: 15735022 DOI: 10.1158/0008-5472.can-04-2085] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oligopeptidase tripeptidyl-peptidase II (TPP II) is up-regulated Burkitt's lymphoma (BL) cells that overexpress the c-myc proto-oncogene and is required for their growth and survival. Here we show that overexpression of TPP II induces accelerated growth and resistance to apoptosis in human embryonic kidney 293 cells. This correlates with the appearance of multiple chromosomal aberrations, numerical and structural centrosome abnormalities, and multipolar cell divisions. Similar mitotic aberrations were also observed in a panel of BL lines and were suppressed, in parallel with TPP II down-regulation, upon reversion of BL-like characteristics in EBV-immortalized B lymphocytes carrying a tetracycline-regulated c-myc. Functional TPP II knockdown by small interfering RNA expression in BL cells caused the appearance of giant polynucleated cells that failed to complete cell division. Collectively, these data point to a role of TPP II in the regulation of centrosome homeostasis and mitotic fidelity suggesting that this enzyme may be a critical player in the induction and/or maintenance of genetic instability in malignant cells.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Microbiology and Tumor Biology Centre, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Lindås AC, Tomkinson B. Identification and characterization of the promoter for the gene encoding human tripeptidyl-peptidase II. Gene 2005; 345:249-57. [PMID: 15716107 DOI: 10.1016/j.gene.2004.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/26/2004] [Accepted: 11/24/2004] [Indexed: 11/22/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a ubiquitously expressed exopeptidase. The expression of this enzyme is increased, e.g. in some tumor cells, but the regulation of the expression of the gene has not been investigated previously. The gene encoding human TPP II (TPP2) is 82 kb and consists of 30 exons. An 8 kb NcoI fragment covering the 5'-flanking region of the TPP2 gene, including the initiation codon, was cloned into a luciferase-containing reporter vector. Human embryonic kidney cells (HEK-293 cells) and murine fibroblasts (NIH3T3 cells) were transiently transfected with the construct. Through sequential deletions and analysis of short PCR-fragments, the promoter could be localized to a 215 bp fragment upstream of the initiation codon. This region is GC-rich, lacks a TATA-box and contains two inverted CCAAT-boxes and a GC-box. Electrophoretic mobility shift assays showed that nuclear proteins bind to the promoter fragment. The 85 bp 5'-end of the promoter fragment is essential for transcriptional activation. Out of this a 44 bp fragment suffices to compete with binding of nuclear proteins to the 215 bp fragment. Supershift assays demonstrated that the CCAAT-binding factor (CBF; NF-Y) is involved in the formation of a complex with the 215 bp fragment. Although Sp1 binds to the promoter fragment in vitro, it was found to bind to the 3'-end of the 215 bp fragment which is not essential for transcription. The potential role of Sp1 in transcription of TPP2 therefore remains to be established.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Uppsala University, BMC, Department of Biochemistry, Box 576, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
43
|
SMAC is expressed de novo in a subset of cervical cancer tumors. BMC Cancer 2004; 4:84. [PMID: 15560849 PMCID: PMC535940 DOI: 10.1186/1471-2407-4-84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022] Open
Abstract
Background Smac/Diablo is a recently identified protein that is released from mitochondria after apoptotic stimuli. It binds IAPs, allowing caspase activation and cell death. In view of its activity it might participate in carcinogenesis. In the present study, we analyzed Smac expression in a panel of cervical cancer patients. Methods We performed semi quantitative RT-PCR on 41 cervical tumor and 6 normal tissue samples. The study included 8 stage I cases; 16 stage II; 17 stage III; and a control group of 6 samples of normal cervical squamous epithelial tissue. Results Smac mRNA expression was below the detection limit in the normal cervical tissue samples. In contrast, 13 (31.7%) of the 41 cervical cancer biopsies showed detectable levels of this transcript. The samples expressing Smac were distributed equally among the stages (5 in stage I, 4 in stage II and 4 in stage III) with similar expression levels. We found no correlation between the presence of Smac mRNA and histology, menopause, WHO stage or disease status. Conclusions Smac is expressed de novo in a subset of cervical cancer patients, reflecting a possible heterogeneity in the pathways leading to cervical cancer. There was no correlation with any clinical variable.
Collapse
|
44
|
Abstract
Mitochondria are central to many forms of cell death, usually via the release of pro-apoptotic proteins from the mitochondrial intermembrane space. Some intermembrane space proteins, including cytochrome c, Smac/DIABLO, and Omi/Htra2, can induce or enhance caspase activation, whereas others, such as AIF and endonuclease G, might act in a caspase-independent manner. Intermembrane space protein release is often regulated by Bcl-2-family proteins. Recent evidence suggests that pro-apoptotic members of this family, by themselves, can permeabilize the outer mitochondrial membrane without otherwise damaging mitochondria. Mitochondria can contribute to cell death in other ways. For example, they can respond to calcium release from the endoplasmic reticulum by undergoing the mitochondrial permeability transition, which in turn causes outer membrane rupture and the release of intermembrane space proteins. Bcl-2-family proteins can influence the levels of releasable Ca(2+) in the endoplasmic reticulum, and thus determine whether the released Ca(2+) is sufficient to overload mitochondria and induce cell death.
Collapse
Affiliation(s)
- Tomomi Kuwana
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
45
|
Li R, Rüttinger D, Urba W, Fox BA, Hu HM. Targeting and amplification of immune killing of tumor cells by pro-Smac. Int J Cancer 2003; 109:85-94. [PMID: 14735472 DOI: 10.1002/ijc.11655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of inhibitors of apoptosis (IAP) is one potential mechanism for tumor cells to evade immune surveillance. To determine whether immune-mediated killing of tumor cells can be enhanced by neutralization of IAP proteins, 2 novel eGFP-Smac fusion proteins (pro-Smac) were introduced into the poorly immunogenic mouse melanoma cell line, B16BL6-D5 (D5). Each fusion protein contained Smac and a cleavage site specific for granzyme B (GrB) or caspase 8, thereby targeting the 2 major killing mechanisms of cytotoxic T-lymphocyte (CTL) and NK cells. Expression of a pro-Smac fusion protein by D5 tumor cells greatly enhanced the susceptibility to killing by lymphokine-activated killer (LAK) cells or purified GrB. GrB-mediated killing was increased to a much greater extent when tumor cells expressed the eGFP-Smac fusion protein with a GrB cleavage site compared to a caspase 8 cleavage site. In contrast, perforin-deficient LAK cells, which lack GrB-mediated cytotoxicity but process normal ligands for death receptors, killed D5 tumor cells expressed pro-Smac with caspase 8 cleavage site more efficiently. Enhanced killing by GrB was also accompanied by processing of the fusion protein and increased caspase-3-like activity. These results indicate that killing of tumor cells can be amplified by targeting cell-mediated cytotoxic mechanisms via expression of pro-Smac fusion proteins.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Cancer Immunobiology, Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, OR 97213, USA
| | | | | | | | | |
Collapse
|