1
|
Ahmad S, Xing K, Rajakaruna H, Stewart WC, Beckwith KA, Nayak I, Kararoudi MN, Lee DA, Das J. A framework integrating multiscale in-silico modeling and experimental data predicts CD33CAR-NK cytotoxicity across target cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630941. [PMID: 39803543 PMCID: PMC11722217 DOI: 10.1101/2024.12.31.630941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics. The model trained with quantitative flow cytometry and in vitro cytotoxicity data accurately predicts the short- and long-term cytotoxicity of CD33CAR-NK cells against leukemia cell lines across multiple CAR designs. Furthermore, using Pareto optimization we explored the effect of CAR proportion and NK cell signaling on the differential cytotoxicity of CD33CAR-NK cells to cancer and healthy cells. This model can be extended to predict CAR-NK cytotoxicity across many antigens and tumor targets.
Collapse
Affiliation(s)
- Saeed Ahmad
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Kun Xing
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH
| | - Harshana Rajakaruna
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | | | - Kyle A. Beckwith
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Zhang Y, Ren Y, Zhou T, Qian Z, Bao Z. Vav family exchange factors: Potential regulator in atherosclerosis. Biochem Biophys Rep 2024; 40:101878. [PMID: 39649800 PMCID: PMC11625217 DOI: 10.1016/j.bbrep.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The Vav family of guanosine nucleotide exchange factors (GEFs) regulates the phosphorylation of tyrosinase, influencing various physiological and pathological processes by modulating the binding of Rho GTPases to GDP/GTP. Recent research has highlighted the critical role of Vav family activation in tumorigenesis, neurological disorders, immune-related dysfunctions, and other diseases. This review offers a comprehensive overview of the structure and function of Vav proteins and their significant impact on the pathophysiology of atherosclerosis. In addition, we pay attention to the development of diagnostic and therapeutic targets centered around Vav proteins.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Yongwei Ren
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Tao Zhou
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China
| | - Zhengyang Bao
- Department of Internal Medicine, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| |
Collapse
|
3
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
4
|
Pariani AP, Almada E, Hidalgo F, Borini-Etichetti C, Vena R, Marín L, Favre C, Goldenring JR, Cecilia Larocca M. Identification of a novel mechanism for LFA-1 organization during NK cytolytic response. J Cell Physiol 2023; 238:227-241. [PMID: 36477412 DOI: 10.1002/jcp.30921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.
Collapse
Affiliation(s)
- Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Evangelina Almada
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-UNR, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Carla Borini-Etichetti
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Leandra Marín
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - James R Goldenring
- Epithelial Biology Center and Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maria Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
5
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
6
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Grewal RK, Das J. Spatially resolved in silico modeling of NKG2D signaling kinetics suggests a key role of NKG2D and Vav1 Co-clustering in generating natural killer cell activation. PLoS Comput Biol 2022; 18:e1010114. [PMID: 35584138 PMCID: PMC9154193 DOI: 10.1371/journal.pcbi.1010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data. Natural Killer cells are lymphocytes of our innate immunity and provide important resistance against viral infections and tumors. NK cells scan the local environment with diverse activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized clusters (or microclusters) as they interact with cognate ligands, and mechanisms regarding how the formation and movements of these microclusters influence NK cell signaling and activation, specifically related to activating NKRs, are often unclear. To this end, we develop a predictive spatially resolved early-time NK cell signaling model to study the interplay between membrane-proximal biochemical signaling events and the kinetics of microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used published TIRF imaging data to validate our in silico models and estimate model parameters. Predictions from multiple in silico models are tested against a variety of data obtained from published imaging experiments and immunoassays. Our analysis suggests co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters plays a major role in enhancing downstream activating signals. The developed framework can be extended to describe spatiotemporal signaling for other activating NKRs including CD16.
Collapse
Affiliation(s)
- Rajdeep Kaur Grewal
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Witkowski M, Tizian C, Ferreira-Gomes M, Niemeyer D, Jones TC, Heinrich F, Frischbutter S, Angermair S, Hohnstein T, Mattiola I, Nawrath P, Mc Ewen S, Zocche S, Viviano E, Heinz GA, Maurer M, Kölsch U, Chua RL, Aschman T, Meisel C, Radke J, Sawitzki B, Roehmel J, Allers K, Moos V, Schneider T, Hanitsch L, Mall MA, Conrad C, Radbruch H, Duerr CU, Trapani JA, Marcenaro E, Kallinich T, Corman VM, Kurth F, Sander LE, Drosten C, Treskatsch S, Durek P, Kruglov A, Radbruch A, Mashreghi MF, Diefenbach A. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 2021; 600:295-301. [PMID: 34695836 DOI: 10.1038/s41586-021-04142-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 is a single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). Given its acute and often self-limiting course, components of the innate immune system are likely central in controlling virus replication thereby determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and 'adaptive' phenotype3,4. Here we show that viral load decline in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show remarkable defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA-sequencing (scRNA-seq) of NK cells along the time course of the entire COVID-19 disease spectrum reveals a unique gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant TGFβ response signature with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFβ peak during the first 2 weeks of infection, and serum obtained from these patients profoundly inhibits NK cell function in a TGFβ-dependent manner. Our data reveal that untimely production of TGFβ is a hallmark of severe COVID-19 and may inhibit NK cell function and early virus control.
Collapse
Affiliation(s)
- Mario Witkowski
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany. .,Department of Microbiology and Hygiene, Labor Berlin, Charité - Vivantes GmbH, Berlin, Germany.
| | - Caroline Tizian
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Marta Ferreira-Gomes
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany.,Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thordis Hohnstein
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Philipp Nawrath
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sophie Mc Ewen
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Silvia Zocche
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Edoardo Viviano
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gitta Anne Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany
| | - Uwe Kölsch
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz1, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz1, Berlin, Germany
| | - Kristina Allers
- Department of Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Verena Moos
- Department of Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schneider
- Department of Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Leif Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz1, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz1, Berlin, Germany.,German Center for Lung Research (DZL), associated partner, Berlin, Germany
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia U Duerr
- Laboratory of Mucosal Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Tilmann Kallinich
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,German Center for Lung Research (DZL), associated partner, Berlin, Germany.,Chronic inflammation in childhood, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andrey Kruglov
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andreas Radbruch
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,German Center for Lung Research (DZL), associated partner, Berlin, Germany.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany. .,Department of Microbiology and Hygiene, Labor Berlin, Charité - Vivantes GmbH, Berlin, Germany.
| |
Collapse
|
9
|
Inducible MyD88/CD40 synergizes with IL-15 to enhance antitumor efficacy of CAR-NK cells. Blood Adv 2021; 4:1950-1964. [PMID: 32384544 DOI: 10.1182/bloodadvances.2020001510] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells expressing chimeric antigen receptors (CARs) are a promising anticancer immunotherapy, leveraging both innate NK cell antitumor activity and target-specific cytotoxicity. Inducible MyD88/CD40 (iMC) is a potent, rimiducid-regulated protein switch that has been deployed previously as a T-cell activator to enhance proliferation and persistence of CAR-modified T cells. In this study, iMC was extended to CAR-NK cells to enhance their growth and augment cytotoxicity against tumor cells. iMC-activated NK cells substantially increased cytokine and chemokine secretion and displayed higher levels of perforin and granzyme B degranulation. In addition, iMC activation could be coupled with ectopic interleukin-15 (IL-15) to further enhance NK cell proliferation. When coexpressed with a target-specific CAR (CD123 or BCMA), this IL-15/iMC system showed further augmented antitumor activity through enhanced CAR-NK cell expansion and cytolytic activity. To protect against potential toxicity from engineered NK cells, an orthogonal rapamycin-regulated Caspase-9 (iRC9) was included in a 4-gene, dual-switch platform. After infusion of dual-switch NK cells, pharmacologic iRC9 dimerization led to rapid elimination of a majority of expanded transduced NK cells. Thus, CAR-NK cells utilizing dual molecular switches provide an innovative and effective approach to cancer immunotherapy with controlled specificity, efficacy, and safety.
Collapse
|
10
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
12
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
13
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
14
|
Wilton KM, Overlee BL, Billadeau DD. NKG2D-DAP10 signaling recruits EVL to the cytotoxic synapse to generate F-actin and promote NK cell cytotoxicity. J Cell Sci 2019; 133:jcs.230508. [PMID: 31235500 DOI: 10.1242/jcs.230508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells eliminate abnormal cells through the release of cytolytic granule contents. In this process, NK cells must adhere to target cells through integrin-mediated adhesion, which is highly dependent on the generation of F-actin. Ena/VASP-like (EVL) is an actin regulatory protein previously shown to regulate integrin-mediated adhesion in other cell types, but its role in NK cell biology is not known. Herein, we show that EVL is recruited to the NK cell cytotoxic synapse and is required for NK cell cytotoxicity. Significantly, EVL is involved in the generation of F-actin at the cytotoxic synapse, antibody-stimulated spreading, and NK cell-target cell adhesion. EVL interacts with WASP (also known as WAS) and VASP and is required for localization of both proteins to the synapse. Recruitment of EVL to points of cellular activation occurs through the receptor NKG2D-DAP10 (also known as KLRK1 and HCST, respectively) via a binding site previously implicated in VAV1 and Grb2 recruitment. Taken together, this study implicates DAP10-mediated Grb2 and VAV1 signaling in the recruitment of an EVL-containing actin regulatory complex to the cytotoxic synapse where it can promote F-actin nucleation leading to NK cell-mediated killing.
Collapse
Affiliation(s)
- Katelynn M Wilton
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Medical Scientist Training Program, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brittany L Overlee
- Division of Oncology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Division of Oncology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
NK cell recognition of hematopoietic cells by SLAM-SAP families. Cell Mol Immunol 2019; 16:452-459. [PMID: 30911116 DOI: 10.1038/s41423-019-0222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family of receptors (SFRs) are ubiquitously expressed on immune cells, and they regulate multiple immune events by recruiting SH2 (Src homology 2) domain-containing SAP family adapters, including SAP and its homologs, Ewing's sarcoma-associated transcript 2 (EAT-2) and EAT-2 related transducer (ERT). In human patients with X-linked lymphoproliferative (XLP) disease, which is caused by SAP mutations, SFRs alternatively bind other inhibitory SH2 domain-containing molecules to suppress immune cell activation and development. NK cells express multiple SFRs and all SAP family adapters. In recent decades, SFRs have been found to be critical for enhancing NK cell activation in response to abnormal hematopoietic cells in SAP-family-intact NK cells; however, SFRs might suppress NK cell activation in SAP-family-deficient mice or patients with XLP1. In this paper, we review how these two distinct SFR signaling pathways orchestrate NK cell activation and inhibition and highlight the importance of SFR regulation of NK cell biology and their physiological status and pathological relevance in patients with XLP1.
Collapse
|
16
|
Mody CH, Ogbomo H, Xiang RF, Kyei SK, Feehan D, Islam A, Li SS. Microbial killing by NK cells. J Leukoc Biol 2019; 105:1285-1296. [PMID: 30821868 DOI: 10.1002/jlb.mr0718-298r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 11/07/2022] Open
Abstract
It is now evident that NK cells kill bacteria, fungi, and parasites in addition to tumor and virus-infected cells. In addition to a number of recent publications that have identified the receptors and ligands, and mechanisms of cytotoxicity, new insights are reflected in the reports from researchers all over the world at the 17th Meeting of the Society for Natural Immunity held in San Antonio, TX, USA from May 28 through June 1, 2018. We will provide an overview of the field and discuss how the presentations at the meeting might shape our knowledge and future directions in the field.
Collapse
Affiliation(s)
- Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Stephen K Kyei
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David Feehan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anowara Islam
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Su H, Yang X, Wang S, Shi H, Liu X. Effect of annexin II-mediated conversion of plasmin from plasminogen on airborne transmission of H9N2 avian influenza virus. Vet Microbiol 2018; 223:100-106. [PMID: 30173734 DOI: 10.1016/j.vetmic.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022]
Abstract
Airborne transmission plays an important role in dissemination of H9N2 subtype avian influenza virus. Annexin II (A2)-mediated activation of plasminogen (PLG) promotes cleavage of the influenza virus HA protein and viral replication, resulting in enhanced pathogenesis. In this study, airborne transmission competent and defective strains of H9N2 influenza virus, SH7 and SH14, respectively, were used to investigate the effect of A2 on airborne spread. The results showed that A2 protein was increased in SH7 virions compared with SH14 particles, the binding ability of the SH7-infected MDCK cells to PLG was significantly higher than the SH14-infected cells, and influence efficiency of the PLG on replicated ability of SH7 virus was significantly stronger than that of SH14 virus, who spread without airborne route, indicating that the annexin 2 (A2) can bind PLG and contributes to SH7 with high replication ability. Furthermore, the copies of SH7 in the airborne infected chickens under inhibited by 6-AHA were significantly decreased, suggesting that the release of H9N2 avian influenza virus were reduced by inhibiting the conversion of PLG to PL, ultimately resulting in reduced airborne transmission of H9N2 avian influenza virus. In summary, A2-mediated conversion of PLG to PL plays a role in the airborne transmission capacity of H9N2 avian influenza viruses, and this interaction may represent potential targets for prevention and treatment of influenza virus infection.
Collapse
Affiliation(s)
- Hailong Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xueqin Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
18
|
Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses. Antiviral Res 2017; 143:252-261. [DOI: 10.1016/j.antiviral.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022]
|
19
|
Ogbomo H, Mody CH. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens. Front Immunol 2017; 7:692. [PMID: 28123389 PMCID: PMC5225108 DOI: 10.3389/fimmu.2016.00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Henry Ogbomo
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Christopher H Mody
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Internal Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Tcherniuk S, Cenac N, Comte M, Frouard J, Errazuriz-Cerda E, Galabov A, Morange PE, Vergnolle N, Si-Tahar M, Alessi MC, Riteau B. Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. J Infect Dis 2016; 214:237-47. [PMID: 27034344 DOI: 10.1093/infdis/jiw127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The pathogenesis of influenza A virus (IAV) infections is a multifactorial process that includes the replication capacity of the virus and a harmful inflammatory response to infection. Formyl peptide receptor 2 (FPR2) emerges as a central receptor in inflammatory processes controlling resolution of acute inflammation. Its role in virus pathogenesis has not been investigated yet. METHODS We used pharmacologic approaches to investigate the role of FPR2 during IAV infection in vitro and in vivo. RESULTS In vitro, FPR2 expressed on A549 cells was activated by IAV, which harbors its ligand, annexin A1, in its envelope. FPR2 activation by IAV promoted viral replication through an extracellular-regulated kinase (ERK)-dependent pathway. In vivo, activating FPR2 by administering the agonist WKYMVm-NH2 decreased survival and increased viral replication and inflammation after IAV infection. This effect was abolished by treating the mice with U0126, a specific ERK pathway inhibitor, showing that, in vivo, the deleterious role of FPR2 also occurs through an ERK-dependent pathway. In contrast, administration of the FPR2 antagonist WRW4 protected mice from lethal IAV infections. CONCLUSIONS These data show that viral replication and IAV pathogenesis depend on FPR2 signaling and suggest that FPR2 may be a promising novel strategy to treat influenza.
Collapse
Affiliation(s)
- Sergey Tcherniuk
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier
| | | | | | | | - Angel Galabov
- Bulgarian Academy of Sciences, Stephan Angeloff Institute of Microbiology, Sofia
| | - Pierre-Emmanuel Morange
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier
| | - Mustapha Si-Tahar
- Inserm U1100 - Centre d'études des pathologies respiratoires Université F. Rabelais, Tours, France
| | - Marie-Christine Alessi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| | - Béatrice Riteau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1062 INRA, UMR_INRA 1260, France Aix Marseille Université
| |
Collapse
|
21
|
Huranova M, Stepanek O. Role of actin cytoskeleton at multiple levels of T cell activation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Liu SD, Chalouni C, Young JC, Junttila TT, Sliwkowski MX, Lowe JB. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res 2014; 3:173-83. [PMID: 25387893 DOI: 10.1158/2326-6066.cir-14-0125] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a key mechanism by which therapeutic antibodies mediate their antitumor effects. The absence of fucose on the heavy chain of the antibody increases the affinity between the antibody and FcγRIIIa, which results in increased in vitro and in vivo ADCC compared with the fucosylated form. However, the cellular and molecular mechanisms responsible for increased ADCC are unknown. Through a series of biochemical and cellular studies, we find that human natural killer (NK) cells stimulated with afucosylated antibody exhibit enhanced activation of proximal FcγRIIIa signaling and downstream pathways, as well as enhanced cytoskeletal rearrangement and degranulation, relative to stimulation with fucosylated antibody. Furthermore, analysis of the interaction between human NK cells and targets using a high-throughput microscope-based antibody-dependent cytotoxicity assay shows that afucosylated antibodies increase the number of NK cells capable of killing multiple targets and the rate with which targets are killed. We conclude that the increase in affinity between afucosylated antibodies and FcγRIIIa enhances activation of signaling molecules, promoting cytoskeletal rearrangement and degranulation, which, in turn, potentiates the cytotoxic characteristics of NK cells to increase efficiency of ADCC.
Collapse
Affiliation(s)
- Scot D Liu
- Department of Pathology, Genentech, Inc., South San Francisco, California.
| | - Cecile Chalouni
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Judy C Young
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California
| | - Teemu T Junttila
- Department of Cancer Immunotherapy and Hematology, Genentech, Inc., South San Francisco, California
| | - Mark X Sliwkowski
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California
| | - John B Lowe
- Department of Pathology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
23
|
Kovács M, Németh T, Jakus Z, Sitaru C, Simon E, Futosi K, Botz B, Helyes Z, Lowell CA, Mócsai A. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. ACTA ACUST UNITED AC 2014; 211:1993-2011. [PMID: 25225462 PMCID: PMC4172222 DOI: 10.1084/jem.20132496] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Kovács et al. examine the role of the Src family kinases Hck, Fgr, and Lyn in immune cell–mediated inflammation. Using arthritis and skin inflammation models, the authors show that mice lacking hematopoietic Hck, Fgr, and Lyn are protected from these inflammatory diseases, showing loss of myeloid cell recruitment and lack of inflammatory mediator production. Unexpectedly, the three kinases are dispensable for the intrinsic migratory ability of myeloid cells. These finding may have clinical implications in rheumatic and skin diseases. Although Src family kinases participate in leukocyte function in vitro, such as integrin signal transduction, their role in inflammation in vivo is poorly understood. We show that Src family kinases play a critical role in myeloid cell–mediated in vivo inflammatory reactions. Mice lacking the Src family kinases Hck, Fgr, and Lyn in the hematopoietic compartment were completely protected from autoantibody-induced arthritis and skin blistering disease, as well as from the reverse passive Arthus reaction, with functional overlap between the three kinases. Though the overall phenotype resembled the leukocyte recruitment defect observed in β2 integrin–deficient (CD18−/−) mice, Hck−/−Fgr−/−Lyn−/− neutrophils and monocytes/macrophages had no cell-autonomous in vivo or in vitro migration defect. Instead, Src family kinases were required for the generation of the inflammatory environment in vivo and for the release of proinflammatory mediators from neutrophils and macrophages in vitro, likely due to their role in Fcγ receptor signal transduction. Our results suggest that infiltrating myeloid cells release proinflammatory chemokine, cytokine, and lipid mediators that attract further neutrophils and monocytes from the circulation in a CD18-dependent manner. Src family kinases are required for the generation of the inflammatory environment but not for the intrinsic migratory ability of myeloid cells.
Collapse
Affiliation(s)
- Miklós Kovács
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Cassian Sitaru
- Department of Dermatology, University Hospital Freiburg and BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
24
|
Annexin V incorporated into influenza virus particles inhibits gamma interferon signaling and promotes viral replication. J Virol 2014; 88:11215-28. [PMID: 25031344 DOI: 10.1128/jvi.01405-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes.
Collapse
|
25
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Serrano-Pertierra E, Cernuda-Morollón E, Brdička T, Hoøejši V, López-Larrea C. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration. J Leukoc Biol 2014; 96:437-45. [PMID: 24803550 DOI: 10.1189/jlb.2a1013-564r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.
Collapse
Affiliation(s)
| | - Eva Cernuda-Morollón
- Neurology Departments, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Tomáš Brdička
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Václav Hoøejši
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | | |
Collapse
|
27
|
Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, Weiss A, Griffiths GM. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 2014; 3:e01310. [PMID: 24596147 PMCID: PMC3936284 DOI: 10.7554/elife.01310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
T cell receptor (TCR) activation leads to a dramatic reorganisation of both membranes and receptors as the immunological synapse forms. Using a genetic model to rapidly inhibit Zap70 catalytic activity we examined synapse formation between cytotoxic T lymphocytes and their targets. In the absence of Zap70 catalytic activity Vav-1 activation occurs and synapse formation is arrested at a stage with actin and integrin rich interdigitations forming the interface between the two cells. The membranes at the synapse are unable to flatten to provide extended contact, and Lck does not cluster to form the central supramolecular activation cluster (cSMAC). Centrosome polarisation is initiated but aborts before reaching the synapse and the granules do not polarise. Our findings reveal distinct roles for Zap70 as a structural protein regulating integrin-mediated control of actin vs its catalytic activity that regulates TCR-mediated control of actin and membrane remodelling during formation of the immunological synapse. DOI: http://dx.doi.org/10.7554/eLife.01310.001.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Byron B Au-Yeung
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, United States
| | - Arthur Weiss
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, Forbes LR, Watkin LB, Orange JS. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol 2014; 92:245-55. [PMID: 24445602 PMCID: PMC3960583 DOI: 10.1038/icb.2013.96] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Prachi Dongre
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Shaina S Mann
- Case Western Reserve Medical School, Cleveland, OH, USA
| | - Lisa R Forbes
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Levi B Watkin
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
29
|
Berri F, Lê VB, Jandrot-Perrus M, Lina B, Riteau B. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci 2014; 71:885-98. [PMID: 24091817 PMCID: PMC11114008 DOI: 10.1007/s00018-013-1479-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses cause acute respiratory infections, which are highly contagious and occur as seasonal epidemic and sporadic pandemic outbreaks. Innate immune response is activated shortly after infection with influenza A viruses (IAV), affording effective protection of the host. However, this response should be tightly regulated, as insufficient inflammation may result in virus escape from immunosurveillance. In contrast, excessive inflammation may result in bystander lung tissue damage, loss of respiratory capacity, and deterioration of the clinical outcome of IAV infections. In this review, we give a comprehensive overview of the innate immune response to IAV infection and summarize the most important findings on how the host can inappropriately respond to influenza.
Collapse
Affiliation(s)
- Fatma Berri
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Vuong Ba Lê
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Martine Jandrot-Perrus
- Inserm, U698, Paris, France
- Université Paris 7, Paris, France
- AP-HP, Hôpital Xavier Bichat, Paris, France
| | - Bruno Lina
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Béatrice Riteau
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- INRA, Nouzilly, France
| |
Collapse
|
30
|
Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 2014; 5:2. [PMID: 24478771 PMCID: PMC3896857 DOI: 10.3389/fimmu.2014.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA ; Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
31
|
Xu T, Liu W, Luo J, Li C, Ba X, Ampah KK, Wang X, Jiang Y, Zeng X. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1. PLoS One 2013; 8:e81807. [PMID: 24312591 PMCID: PMC3849276 DOI: 10.1371/journal.pone.0081807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.
Collapse
Affiliation(s)
- Tingshuang Xu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Wenai Liu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Jixian Luo
- Department of Bioscience, Shanxi University, Taiyuan, China
| | - Chunfeng Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Teachers College, Changchun, China
- * E-mail: (XGW); (XLZ)
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail: (XGW); (XLZ)
| |
Collapse
|
32
|
James AM, Hsu HT, Dongre P, Uzel G, Mace EM, Banerjee PP, Orange JS. Rapid activation receptor- or IL-2-induced lytic granule convergence in human natural killer cells requires Src, but not downstream signaling. Blood 2013; 121:2627-37. [PMID: 23380740 PMCID: PMC3617630 DOI: 10.1182/blood-2012-06-437012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/20/2013] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells participate in host defense by surveying for and ultimately killing virally infected or malignant target cells. NK cell cytotoxicity is a tightly regulated process that proceeds stepwise from adhesion and activation to the secretion of preformed lytic granule contents onto a diseased or stressed cell. We previously characterized rapid dynein-dependent lytic granule convergence to the microtubule-organizing center (MTOC) as an early, prerequisite step in NK cell cytotoxicity. Although multiple activating receptors can trigger granule convergence, the specific signal or signals responsible remained unknown. Using live cell confocal microscopy, NK cell lytic granule movement after NK cell activation was captured and measured. Using inhibitors of common early signaling mediators, we show that Src kinases are required for lytic granule convergence, but downstream signals that promote actin rearrangement, MTOC polarization, and calcium mobilization are not. Exposure to interleukin 2 was also sufficient to induce lytic granule convergence, which required noncanonical Src-dependent signaling. Thus, NK cell lytic granule convergence, prompted by specific receptor-mediated and soluble cytokine signals, depends on a directly downstream early Src kinase-dependent signal and emphasizes the importance of this step in readying NK cells for cytotoxicity.
Collapse
Affiliation(s)
- Ashley Mentlik James
- Graduate Program in Cell Biology and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B. PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 2012. [PMID: 23202729 DOI: 10.1172/jci61667] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza causes substantial morbidity and mortality, and highly pathogenic and drug-resistant strains are likely to emerge in the future. Protease-activated receptor 1 (PAR1) is a thrombin-activated receptor that contributes to inflammatory responses at mucosal surfaces. The role of PAR1 in pathogenesis of virus infections is unknown. Here, we demonstrate that PAR1 contributed to the deleterious inflammatory response after influenza virus infection in mice. Activating PAR1 by administering the agonist TFLLR-NH2 decreased survival and increased lung inflammation after influenza infection. Importantly, both administration of a PAR1 antagonist and PAR1 deficiency protected mice from infection with influenza A viruses (IAVs). Treatment with the PAR1 agonist did not alter survival of mice deficient in plasminogen (PLG), which suggests that PLG permits and/or interacts with a PAR1 function in this model. PAR1 antagonists are in human trials for other indications. Our findings suggest that PAR1 antagonism might be explored as a treatment for influenza, including that caused by highly pathogenic H5N1 and oseltamivir-resistant H1N1 viruses.
Collapse
Affiliation(s)
- Khaled Khoufache
- Virologie et Pathologie Humaine, EA 4610, Université Lyon1, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
35
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
36
|
Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL. Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis. Immunity 2012; 36:1003-16. [PMID: 22683123 PMCID: PMC3389133 DOI: 10.1016/j.immuni.2012.05.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 02/01/2023]
Abstract
X-linked lymphoproliferative syndrome, characterized by fatal responses to Epstein-Barr virus infection, is caused by mutations affecting the adaptor SAP, which links SLAM family receptors to downstream signaling. Although cytotoxic defects in SAP-deficient T cells are documented, the mechanism remains unclear. We show that SAP-deficient murine CD8(+) T cells exhibited normal cytotoxicity against fibrosarcoma targets, yet had impaired adhesion to and killing of B cell and low-avidity T cell targets. SAP-deficient cytotoxic lymphocytes showed specific defects in immunological synapse organization with these targets, resulting in inefficient actin clearance. In the absence of SAP, signaling through the SLAM family members Ly108 and 2B4 resulted in increased recruitment of the SHP-1 phosphatase, associated with altered SHP-1 localization and decreased activation of Src kinases at the synapse. Hence, SAP and SLAM receptors regulate positive and negative signals required for organizing the T cell:B cell synapse and setting thresholds for cytotoxicity against distinct cellular targets.
Collapse
Affiliation(s)
- Fang Zhao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Jennifer L. Cannons
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mala Dutta
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gillian M. Griffiths
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
37
|
Liu D, Peterson ME, Long EO. The adaptor protein Crk controls activation and inhibition of natural killer cells. Immunity 2012; 36:600-11. [PMID: 22464172 PMCID: PMC3355982 DOI: 10.1016/j.immuni.2012.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/03/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Natural killer (NK) cell inhibitory receptors recruit tyrosine phosphatases to prevent activation, induce phosphorylation and dissociation of the small adaptor Crk from cytoskeleton scaffold complexes, and maintain NK cells in a state of responsiveness to subsequent activation events. How Crk contributes to inhibition is unknown. We imaged primary NK cells over lipid bilayers carrying IgG1 Fc to stimulate CD16 and human leukocyte antigen (HLA)-E to inhibit through receptor CD94-NKG2A. HLA-E alone induced Crk phosphorylation in NKG2A(+) NK cells. At activating synapses with Fc alone, Crk was required for the movement of Fc microclusters and their ability to trigger activation signals. At inhibitory synapses, HLA-E promoted central accumulation of both Fc and phosphorylated Crk and blocked the Fc-induced buildup of F-actin. We propose a unified model for inhibitory receptor function: Crk phosphorylation prevents essential Crk-dependent activation signals and blocks F-actin network formation, thereby reducing constraints on subsequent engagement of activation receptors.
Collapse
Affiliation(s)
- Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
38
|
Jaeger BN, Vivier E. Natural killer cell tolerance: control by self or self-control? Cold Spring Harb Perspect Biol 2012; 4:4/3/a007229. [PMID: 22383753 DOI: 10.1101/cshperspect.a007229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A major challenge for the immune system is to control pathogens and stressed cells, such as infected or tumors cells, while sparing healthy self-cells. To achieve this tolerance to self, immune cells must recognize and differentiate "self" versus "nonself" and "self" versus "altered self." In the absence of self-tolerance, cells of the adaptive immune system attack healthy cells and cause autoimmune diseases such as lupus, psoriasis, and type I diabetes. Mechanisms at work to ensure tolerance in the innate immune system are still poorly understood. Natural killer cells are innate immune lymphocytes, which have the capacity to kill cellular targets and produce cytokines without prior specific sensitization. Because of these intrinsic effector capacities, tolerance mechanisms must exist to prevent autoreactivity. Herein, we will review the present knowledge on NK cell tolerance.
Collapse
Affiliation(s)
- Baptiste N Jaeger
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
39
|
PIP2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway. Blood 2012; 119:2252-62. [PMID: 22271450 DOI: 10.1182/blood-2010-12-324160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic lymphocytes clear infected and transformed cells by releasing the content of lytic granules at cytolytic synapses, and the ability of cytolytic effectors to kill in an iterative manner has been documented previously. Although bidirectional trafficking of cytolytic machinery components along the endosomal pathway has begun to be elucidated, the molecular mechanisms coordinating granule retrieval remain completely unexplored. In the present study, we focus on the lytic granule priming factor Munc13-4, the mutation of which in familial hemophagocytic lymphohistiocytosis type 3 results in a profound defect of cytotoxic function. We addressed the role of phosphatidylinositol (4,5)-bisphosphate (PIP2) in the regulation of Munc13-4 compartmentalization. We observed that in human natural killer cells, PIP2 is highly enriched in membrane rafts. Granule secretion triggering induces a transient Munc13-4 raft recruitment, followed by AP-2/clathrin-dependent internalization. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) γ gene silencing leads to the impairment of granule secretion associated with increased levels of raft-associated Munc13-4, which is attributable to a defect in AP-2 membrane recruitment. In such conditions, the ability to subsequently kill multiple targets was significantly impaired. These observations indicate that Munc13-4 reinternalization is required for the maintenance of an intracellular pool that is functional to guarantee the serial killing potential.
Collapse
|
40
|
Abstract
Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anshu Malhotra
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Rahaman SO, Zhou G, Silverstein RL. Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes. J Biol Chem 2011; 286:36011-36019. [PMID: 21865158 DOI: 10.1074/jbc.m111.265082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, results in part from the accumulation of modified lipoproteins in the arterial wall and formation of lipid-laden macrophages, known as "foam cells." Recently, we reported that CD36, a scavenger receptor, contributes to activation of Vav-family guanine nucleotide exchange factors by oxidatively modified LDL in macrophages. We also discovered that CD36-dependent uptake of oxidized LDL (oxLDL) in vitro and foam cell formation in vitro and in vivo was significantly reduced in macrophages deficient of Vav proteins. The goal of the present study was to identify the mechanisms by which Vav proteins regulate CD36-dependent foam cell formation. We now show that a Vav-dynamin signaling axis plays a critical role in generating calcium signals in mouse macrophages exposed to CD36-specific oxidized phospholipid ligands. Chelation of intracellular Ca(2+) or inhibition of phospholipase C-γ (PLC-γ) inhibited Vav activation (85 and 70%, respectively, compared with vehicle control) and reduced foam cell formation (approximately 75%). Knockdown of expression by siRNA or inhibition of GTPase activity of dynamin 2, a Vav-interacting protein involved in endocytic vesicle fission, significantly blocked oxLDL uptake and inhibited foam cell formation. Immunofluorescence microscopy studies showed that Vav1 and dynamin 2 colocalized with internalized oxLDL in macrophages and that activation and mobilization of dynamin 2 by oxLDL was impaired in vav null cells. These studies identified previously unknown components of the CD36 signaling pathway, demonstrating that Vav proteins regulate oxLDL uptake and foam cell formation via calcium- and dynamin 2-dependent processes and thus represent novel therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- S Ohidar Rahaman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| | - Gang Zhou
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Roy L Silverstein
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195.
| |
Collapse
|
42
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
43
|
The natural killer cell cytotoxic function is modulated by HIV-1 accessory proteins. Viruses 2011; 3:1091-111. [PMID: 21994772 PMCID: PMC3185792 DOI: 10.3390/v3071091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.
Collapse
|
44
|
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
45
|
Foucault ML, Moules V, Rosa-Calatrava M, Riteau B. Role for proteases and HLA-G in the pathogenicity of influenza A viruses. J Clin Virol 2011; 51:155-9. [PMID: 21612979 DOI: 10.1016/j.jcv.2011.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.
Collapse
Affiliation(s)
- Marie-Laure Foucault
- CNRS FRE 3011 VirPath, Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, F-69008 Lyon, France
| | | | | | | |
Collapse
|
46
|
Abstract
The proliferation and differentiation of adult stem cells is balanced to ensure adequate generation of differentiated cells, stem cell homeostasis, and guard against malignant transformation. CD48 is broadly expressed on hematopoietic cells but excluded from quiescent long-term murine HSCs. Through its interactions with CD244 on progenitor cells, it influences HSC function by altering the BM cytokine milieu, particularly IFNγ. In CD48-null mice, the resultant misregulation of cytokine signaling produces a more quiescent HSC, a disproportionate number of short-term progenitors, and hyperactivation of Pak1, leading to hematologic malignancies similar to those found in patients with X-linked lymphoproliferative disease. CD48 plays a vital role as an environmental sensor for regulating HSC and progenitor cell numbers and inhibiting tumor development.
Collapse
|
47
|
Abeyweera TP, Merino E, Huse M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. ACTA ACUST UNITED AC 2011; 192:675-90. [PMID: 21339333 PMCID: PMC3044118 DOI: 10.1083/jcb.201009135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell-activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it.
Collapse
Affiliation(s)
- Thushara P Abeyweera
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
48
|
March ME, Long EO. β2 integrin induces TCRζ-Syk-phospholipase C-γ phosphorylation and paxillin-dependent granule polarization in human NK cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2998-3005. [PMID: 21270398 DOI: 10.4049/jimmunol.1002438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of lytic granules at the immunological synapse. In human NK cells, signals for granule polarization and for degranulation can be uncoupled: Binding of β(2) integrin LFA-1 to ICAM is sufficient to induce polarization but not degranulation, whereas CD16 binding to IgG triggers unpolarized degranulation. In this study, we investigated the basis for this difference. IL-2-expanded human NK cells were stimulated by incubation with plate-bound ligands of LFA-1 (ICAM-1) and CD16 (human IgG). Surprisingly, LFA-1 elicited signals similar to those induced by CD16, including tyrosine phosphorylation of the TCR ζ-chain, tyrosine kinase Syk, and phospholipase C-γ. Whereas CD16 activated Ca(2+) mobilization and LAT phosphorylation, LFA-1 did not, but induced strong Pyk2 and paxillin phosphorylation. LFA-1-dependent granule polarization was blocked by inhibition of Syk, phospholipase C-γ, and protein kinase C, as well as by paxillin knockdown. Therefore, common signals triggered by CD16 and LFA-1 bifurcate to provide independent control of Ca(2+)-dependent degranulation and paxillin-dependent granule polarization.
Collapse
Affiliation(s)
- Michael E March
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
49
|
Mace EM, Zhang J, Siminovitch KA, Takei F. Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 2010; 116:1272-9. [PMID: 20472831 DOI: 10.1182/blood-2009-12-261487] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukocyte integrin LFA-1 is critical for natural killer (NK) cell cytotoxicity as it mediates NK-cell adhesion to target cells and generates activating signals that lead to polarization of the actin cytoskeleton. However, the LFA-1-mediated signaling pathway is not fully understood. Here, we examined the subcellular localization of actin-associated proteins in wild-type, talin-deficient, and Wiskott-Aldrich Syndrome protein (WASP)-deficient NK cells bound to beads coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). In addition, we carried out coimmunoprecipitation analyses and also used a pharmacologic reagent to reduce the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)). The results revealed the following signaling pathways. Upon ICAM-1 binding to LFA-1, talin redistributes to the site of LFA-1 ligation and initiates 2 signaling pathways. First, talin recruits the actin nucleating protein complex Arp2/3 via constitutive association of vinculin with talin and Arp2/3. Second, talin also associates with type I phosphatidylinositol 4-phosphate 5-kinase (PIPKI) and binding of LFA-1 to ICAM-1 results in localized increase in PIP(2). This increase in PIP(2) recruits WASP to the site of LFA-1 ligation where WASP promotes Arp2/3-mediated actin polymerization. These processes are critical for the initiation of NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Emily M Mace
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC
| | | | | | | |
Collapse
|
50
|
LeBouder F, Lina B, Rimmelzwaan GF, Riteau B. Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase. J Gen Virol 2010; 91:2753-61. [DOI: 10.1099/vir.0.023804-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|