1
|
Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G. High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 2020; 21:702. [PMID: 33032522 PMCID: PMC7542741 DOI: 10.1186/s12864-020-07054-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and fragmented making the assembly of whole genomes with next-generation sequencing data a challenge. Results We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer, we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates. Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes ricinus in Europe and I. persulcatus in Asia). Conclusions We present the characterization of genomes of a large sample of B. bavariensis isolates and show that their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.
Collapse
Affiliation(s)
- Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Robert E Rollins
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Kateryna Nosenko
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Alexander Paulus
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Samantha Martin
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,University of Helsinki, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Helsinki, Finland
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Ai Takano
- Department of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
2
|
Abstract
Given the variable clinical signs attributed to Borrelia burgdorferi, including infectious arthritis, neurologic disease, and behavioral changes, B burgdorferi is an important differential for decreased performance in sport horses. The primary vectors (Ixodes tick species) are expanding their range and thus Borrelia species are located in a wider area, making exposure more likely. Due to regionally high seroprevalence and vague clinical signs, diagnosis of Lyme disease in the horse is believed overestimated. Antibiotics are first-line treatment of confirmed Lyme disease. A single positive serologic test, by itself, is not conformation of Lyme disease but is evidence of current or past infection.
Collapse
|
3
|
Lemgruber L, Sant'Anna C, Griffths C, Abud Y, Mhlanga M, Wallich R, Frischknecht F. Nanoscopic Localization of Surface-Exposed Antigens of Borrelia burgdorferi. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:680-688. [PMID: 25739645 DOI: 10.1017/s1431927615000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates' immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas.
Collapse
Affiliation(s)
- Leandro Lemgruber
- 1Department of Infectious Diseases - Parasitology,Im Neuenheimer Feld 324,University of Heidelberg Medical School,69120, Heidelberg,Germany
| | - Celso Sant'Anna
- 2Laboratory of Microscopy for Life Sciences,Diretoria de Metrologia Aplicada às Ciências da Vida - Dimav,Instituto Nacional de Metrologia,Qualidade e Tecnologia - Inmetro,25250-020,Duque de Caxias,Rio de Janeiro,Brazil
| | - Caron Griffths
- 4Gene Expression and Biophysics Group,Synthetic Biology Emerging Research Area,Council for Scientific and Industrial Research,Box 395,Pretoria 0001S,South Africa
| | - Yuri Abud
- 2Laboratory of Microscopy for Life Sciences,Diretoria de Metrologia Aplicada às Ciências da Vida - Dimav,Instituto Nacional de Metrologia,Qualidade e Tecnologia - Inmetro,25250-020,Duque de Caxias,Rio de Janeiro,Brazil
| | - Musa Mhlanga
- 4Gene Expression and Biophysics Group,Synthetic Biology Emerging Research Area,Council for Scientific and Industrial Research,Box 395,Pretoria 0001S,South Africa
| | - Reinhard Wallich
- 5Institute for Immunology,Im Neuenheimer Feld 305,University of Heidelberg Medical School,69120,Heidelberg,Germany
| | - Friedrich Frischknecht
- 1Department of Infectious Diseases - Parasitology,Im Neuenheimer Feld 324,University of Heidelberg Medical School,69120, Heidelberg,Germany
| |
Collapse
|
4
|
Wagner B, Goodman LB, Rollins A, Freer HS. Antibodies to OspC, OspF and C6 antigens as indicators for infection with Borrelia burgdorferi in horses. Equine Vet J 2013; 45:533-7. [PMID: 23432019 DOI: 10.1111/evj.12033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/07/2012] [Indexed: 11/29/2022]
Abstract
REASONS FOR PERFORMING STUDY Lyme disease is caused by Borrelia burgdorferi, which is transmitted by infected ticks (Ixodes spp.). Reports on Lyme disease in horses have increased in recent years. Nevertheless, the diagnosis of Lyme disease in horses is still challenging owing to its vague clinical presentation and the limitations of diagnostic tests. OBJECTIVES This study used a new serological Lyme multiplex assay to examine antibody responses to 3 antigens of B. burgdorferi, outer surface protein (Osp) C, OspF and C6, and to verify their use as markers for early and late infection stages in horses. METHODS Multiplex analysis of antibodies to OspC, OspF and C6 in equine patient sera (n = 191) was performed. A subset of the sera (n = 90) was also tested using a commercial C6-based Lyme test. RESULTS Antibodies to OspF and C6 highly correlate as reliable markers of infection with B. burgdorferi in horses. Antibodies to OspC, which have been confirmed as early infection markers in man and dogs, were only detected in some patient sera, suggesting that OspC antibodies are indicators of early infection in horses. Commercial C6 testing identified most infected horses but also resulted in false positive and false negative interpretations. CONCLUSIONS Serological multiplex testing is a rapid and quantitative diagnostic method to confirm infection with B. burgdorferi and to identify the stage of infection. In horses with risk of exposure and clinical signs, multiplex testing supports the diagnosis of Lyme disease. POTENTIAL RELEVANCE Antimicrobial treatment of B. burgdorferi is time sensitive. Treatment success decreases with time of persistent infection, while the risk of developing chronic disease increases. The ability to identify early infection with B. burgdorferi provides practitioners and clinicians with a tool to improve the diagnosis of equine Lyme disease and make treatment decisions.
Collapse
Affiliation(s)
- B Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, USA.
| | | | | | | |
Collapse
|
5
|
Antibodies to Borrelia burgdorferi OspA, OspC, OspF, and C6 antigens as markers for early and late infection in dogs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:527-35. [PMID: 22336289 DOI: 10.1128/cvi.05653-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lyme disease in the United States is caused by Borrelia burgdorferi sensu stricto, which is transmitted to mammals by infected ticks. Borrelia spirochetes differentially express immunogenic outer surface proteins (Osp). Our aim was to evaluate antibody responses to Osp antigens to aid the diagnosis of early infection and the management of Lyme disease. We analyzed antibody responses during the first 3 months after the experimental infection of dogs using a novel multiplex assay. Results were compared to those obtained with two commercial assays detecting C6 antigen. Multiplex analysis identified antibodies to OspC and C6 as early as 3 weeks postinfection (p.i.) and those to OspF by 5 weeks p.i. Antibodies to C6 and OspF increased throughout the study, while antibodies to OspC peaked between 7 and 11 weeks p.i. and declined thereafter. A short-term antibody response to OspA was observed in 3/8 experimentally infected dogs on day 21 p.i. Quant C6 enzyme-linked immunosorbent assay (ELISA) results matched multiplex results during the first 7 weeks p.i.; however, antibody levels subsequently declined by up to 29%. Immune responses then were analyzed in sera from 125 client-owned dogs and revealed high agreement between antibodies to OspF and C6 as robust markers for infection. Results from canine patient sera supported that OspC is an early infection marker and antibodies to OspC decline over time. The onset and decline of antibody responses to B. burgdorferi Osp antigens and C6 reflect their differential expression during infection. They provide valuable tools to determine the stage of infection, treatment outcomes, and vaccination status in dogs.
Collapse
|
6
|
Wagner B, Freer H, Rollins A, Erb H. A fluorescent bead-based multiplex assay for the simultaneous detection of antibodies to B. burgdorferi outer surface proteins in canine serum. Vet Immunol Immunopathol 2011; 140:190-8. [DOI: 10.1016/j.vetimm.2010.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 11/16/2022]
|
7
|
Krupka I, Straubinger RK. Lyme borreliosis in dogs and cats: background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet Clin North Am Small Anim Pract 2011; 40:1103-19. [PMID: 20933139 DOI: 10.1016/j.cvsm.2010.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lyme borreliosis (LB), synonymous with the often-used term Lyme disease, is an infectious disease caused by the spirochetal bacterium Borrelia burgdorferi. LB is the most frequent vector-borne disease in humans in the Northern Hemisphere. In animals, clinically apparent disease is found primarily in dogs. Severe polyarthritis, fever and lameness in dogs are reported from the main endemic areas of North America: the New England States, and eastern parts of the United States; several cases of LB are also seen in California and the Midwest. Because of the difficulties in finding sufficient indicative clinical signs, additional information (detailed case history, laboratory testing for antibodies) is especially important to make the clinical diagnosis of Lyme borreliosis. This article reviews the etiology, diagnosis, therapy, and prevention of LB.
Collapse
Affiliation(s)
- Inke Krupka
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-University, Veterinärstraße 13, 80539 Munich, Germany
| | | |
Collapse
|
8
|
Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2010; 78:2910-8. [PMID: 20421380 DOI: 10.1128/iai.00372-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen, dramatically alters its protein profile when it is transmitted between ticks and mammals. Several differentially expressed proteins have been shown to be critical for the enzootic cycle of B. burgdorferi. In this study, we demonstrated that expression of the surface lipoprotein-encoding gene bba07 is induced by an elevated temperature and a reduced pH during in vitro cultivation, as well as during nymphal tick feeding. Expression of bba07 is regulated by the Rrp2-RpoN-RpoS pathway, a central regulatory network that is activated during nymphal feeding. By generating a bba07 mutant of an infectious strain of B. burgdorferi, we demonstrated that although BBA07-deficient spirochetes were capable of infecting mice via needle inoculation and surviving in ticks, they were defective in infection of mammals via tick transmission. Complementation of the bba07 mutant with a wild-type copy of bba07 partially restored the transmission defect of the bba07 mutant. Based on these findings, we concluded that the surface lipoprotein BBA07 is produced during tick feeding and facilitates optimal transmission of B. burgdorferi from the tick vector to a mammalian host.
Collapse
|
9
|
Krupka M, Raska M, Belakova J, Horynova M, Novotny R, Weigl E. Biological aspects of Lyme disease spirochetes: unique bacteria of the Borrelia burgdorferi species group. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:175-86. [PMID: 18345249 DOI: 10.5507/bp.2007.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi sensu lato is a group of at least twelve closely related species some of which are responsible for Lyme disease, the most frequent zoonosis in Europe and the USA. Many of the biological features of Borrelia are unique in prokaryotes and very interesting not only from the medical viewpoint but also from the view of molecular biology. METHODS Relevant recent articles were searched using PubMed and Google search tools. RESULTS AND CONCLUSION This is a review of the biological, genetic and physiological features of the spirochete species group, Borrelia burgdorferi sensu lato. In spite of a lot of recent articles focused on B. burgdorferi sensu lato, many features of Borrelia biology remain obscure. It is one of the main reasons for persisting problems with prevention, diagnosis and therapy of Lyme disease. The aim of the review is to summarize ongoing current knowledge into a lucid and comprehensible form.
Collapse
Affiliation(s)
- Michal Krupka
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
10
|
A conserved and immunodominant lipoprotein of Francisella tularensis is proinflammatory but not essential for virulence. Microb Pathog 2008; 44:512-23. [PMID: 18304778 DOI: 10.1016/j.micpath.2008.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a highly virulent bacterium that causes tularemia, a disease that is often fatal if untreated. A live vaccine strain (LVS) of this bacterium is attenuated for virulence in humans but produces lethal disease in mice. F. tularensis has been classified as a Category A agent of bioterrorism. Despite this categorization, little is known about the components of the organism that are responsible for causing disease in its hosts. Here, we report the deletion of a well-characterized lipoprotein of F. tularensis, designated LpnA (also known as Tul4), in the LVS. An LpnA deletion mutant was comparable to the wild-type strain in its ability to grow intracellularly and cause lethal disease in mice. Additionally, mice inoculated with a sublethal dose of the mutant strain were afforded the same protection against a subsequent lethal challenge with the LVS as were mice initially administered a sublethal dose of the wild-type bacterium. The LpnA-deficient strain showed an equivalent ability to promote secretion of chemokines by human monocyte-derived macrophages as its wild-type counterpart. However, recombinant LpnA potently stimulated primary cultures of human macrophages in a Toll-like receptor 2-dependent manner. Although human endothelial cells were also activated by recombinant LpnA, their response was relatively modest. LpnA is clearly unnecessary for multiple functions of the LVS, but its inflammatory capacity implicates it and other Francisella lipoproteins as potentially important to the pathogenesis of tularemia.
Collapse
|
11
|
Hartiala P, Hytönen J, Suhonen J, Leppäranta O, Tuominen-Gustafsson H, Viljanen MK. Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect 2007; 10:60-8. [PMID: 18068388 DOI: 10.1016/j.micinf.2007.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/04/2007] [Accepted: 10/11/2007] [Indexed: 01/17/2023]
Abstract
Outer surface proteins OspA and OspB are among the most prominent Borrelia burgdorferi surface molecules. We constructed OspAB and OspA complementation mutants of B. burgdorferi Osp-less strain B313 and investigated the role of these surface proteins in the interactions of B. burgdorferi, human neutrophils and the complement system. We found that (1) OspB inhibits the phagocytosis and oxidative burst of human neutrophils at low serum concentrations, whereas OspA induces the oxidative burst in neutrophils; (2) OspB may have an inhibiting role in serum sensitivity and complement activation; (3) all studied strains inhibit the chemotaxis of human neutrophils specifically towards fMLP but not towards C5a, regardless of their Osp expression. These results suggest that although OspA and OspB are co-ordinately transcribed, they differ in their effects on human neutrophil functions. Our findings suggest that B. burgdorferi exploits a wide variety of immune evasion mechanisms, besides previously documented complement resistance, to survive in the vertebrate host.
Collapse
Affiliation(s)
- Pauliina Hartiala
- Department of Medical Microbiology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Stevenson B, von Lackum K, Riley SP, Cooley AE, Woodman ME, Bykowski T. Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr 2007; 118:643-52. [PMID: 17160602 DOI: 10.1007/s00508-006-0690-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The spirochete Borrelia burgdorferi, the causative agent of Lyme disease (Lyme borreliosis), is well-adapted to maintain a natural cycle of alternately infecting vertebrates and blood-sucking ticks. During this cycle, B. burgdorferi interacts with a broad spectrum of vertebrate and arthropod tissues, acquires nutrients in diverse environments and evades killing by vertebrate and tick immune systems. The bacterium also senses when situations occur that necessitate transmission between hosts, such as when an infected tick is taking a blood meal from a potential host. To accurately accomplish the requirements necessary for survival in nature, B. burgdorferi must be keenly aware of its surroundings and respond accordingly. In this review, we trace studies performed to elucidate regulatory mechanisms employed by B. burgdorferi to control gene expression, and the development of models or "paradigms" to explain experimental results. Through comparisons of five borrelial gene families, it is readily apparent that each is controlled through a distinct mechanism. Furthermore, those results indicate that current models of interpreting in vitro data cannot accurately predict all aspects of B. burgdorferi environmental sensing and gene regulation in vivo.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
14
|
Salazar JC, Pope CD, Moore MW, Pope J, Kiely TG, Radolf JD. Lipoprotein-dependent and -independent immune responses to spirochetal infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:949-58. [PMID: 16085913 PMCID: PMC1182186 DOI: 10.1128/cdli.12.8.949-958.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we used the epidermal suction blister technique, in conjunction with multiparameter flow cytometry, to analyze the cellular and cytokine responses elicited by intradermal injection of human volunteers with synthetic analogs for spirochetal lipoproteins and compared the responses to findings previously reported from patients with erythema migrans (EM). Compared with peripheral blood (PB), lipopeptides derived from the N termini of the Borrelia burgdorferi outer surface protein C and the 17-kDa lipoprotein of Treponema pallidum (OspC-L and 17-L, respectively) elicited infiltrates enriched in monocytes/macrophages and dendritic cells (DCs) but also containing substantial percentages of neutrophils and T cells. Monocytoid (CD11c(+)) and plasmacytoid (CD11c(-)) DCs were selectively recruited to the skin in ratios similar to those in PB, but only the former expressed the activation/maturation surface markers CD80, CD83, and DC-SIGN. Monocytes/macrophages and monocytoid DCs, but not plasmacytoid DCs, displayed significant increases in surface expression of Toll-like receptor 1 (TLR1), TLR2, and TLR4. Staining for CD45RO and CD27 revealed that lipopeptides preferentially recruited antigen-experienced T-cell subsets; despite their lack of antigenicity, these agonists induced marked T-cell activation, as evidenced by surface expression of CD69, CD25, and CD71. Lipopeptides also induced significant increases in interleukin 12 (IL-12), IL-10, gamma interferon, and most notably IL-6 without corresponding increases in serum levels of these cytokines. Although lipopeptides and EM lesional infiltrates shared many similarities, differences were noted in a number of immunologic parameters. These studies have provided in situ evidence for a prominent "lipoprotein effect" during human infection while at the same time helping to pinpoint aspects of the cutaneous response that are uniquely driven by spirochetal pathogens.
Collapse
Affiliation(s)
- Juan C Salazar
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, 282 Washington Street, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Yang XF, Lybecker MC, Pal U, Alani SM, Blevins J, Revel AT, Samuels DS, Norgard MV. Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 2005; 187:4822-9. [PMID: 15995197 PMCID: PMC1169512 DOI: 10.1128/jb.187.14.4822-4829.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer surface lipoprotein C (OspC) is a key virulence factor of Borrelia burgdorferi. ospC is differentially regulated during borrelial transmission from ticks to rodents, and such regulation is essential for maintaining the spirochete in its natural enzootic cycle. Recently, we showed that the expression of ospC in B. burgdorferi is governed by a novel alternative sigma factor regulatory network, the RpoN-RpoS pathway. However, the precise mechanism by which the RpoN-RpoS pathway controls ospC expression has been unclear. In particular, there has been uncertainty regarding whether ospC is controlled directly by RpoS (sigma(s)) or indirectly through a transactivator (induced by RpoS). Using deletion analyses and genetic complementation in an OspC-deficient mutant of B. burgdorferi, we analyzed the cis element(s) required for the expression of ospC in its native borrelial background. Two highly conserved upstream inverted repeat elements, previously implicated in ospC regulation, were not required for ospC expression in B. burgdorferi. Using similar approaches, a minimal promoter that contained a canonical -35/-10 sequence necessary and sufficient for sigma(s)-dependent regulation of ospC was identified. Further, targeted mutagenesis of a C at position -15 within the extended -10 region of ospC, which is postulated to function like the strategic C residue important for Esigma(s) binding in Escherichia coli, abolished ospC expression. The minimal ospC promoter also was responsive to coumermycin A(1), further supporting its sigma(s) character. The combined data constitute a body of evidence that the RpoN-RpoS regulatory network controls ospC expression by direct binding of sigma(s) to a sigma(s)-dependent promoter of ospC. The implication of our findings to understanding how B. burgdorferi differentially regulates ospC and other ospC-like genes via the RpoN-RpoS regulatory pathway is discussed.
Collapse
Affiliation(s)
- Xiaofeng F Yang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, 75390-9048, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Koide S, Yang X, Huang X, Dunn JJ, Luft BJ. Structure-based Design of a Second-generation Lyme Disease Vaccine Based on a C-terminal Fragment of Borrelia burgdorferi OspA. J Mol Biol 2005; 350:290-9. [PMID: 15935380 DOI: 10.1016/j.jmb.2005.04.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/25/2005] [Accepted: 04/27/2005] [Indexed: 11/30/2022]
Abstract
Here, we describe a structure-based approach to reduce the size of an antigen protein for a subunit vaccine. Our method consists of (i) determining the three-dimensional structure of an antigen, (ii) identifying protective epitopes, (iii) generation of an antigen fragment that contains the protective epitope, and (iv) rational design to compensate for destabilization caused by truncation. Using this approach we have successfully developed a second-generation Lyme disease vaccine. Outer surface protein A (OspA) from the Lyme disease spirochete Borrelia burgdorferi elicits protective immunity that blocks transmission of Borrelia from the tick vector to the vaccinated animal, and thus has been a focus of vaccine development. OspA has two globular domains that are connected via a unique single-layer beta-sheet. All anti-OspA monoclonal antibodies that block Borrelia transmission bind to conformational epitopes in the C-terminal domain of OspA, suggesting the possibility of using the C-terminal domain alone as a recombinant protein-based vaccine. The removal of ineffective parts from the OspA antigen may reduce side effects and lead to a safer vaccine. We prepared a C-terminal fragment of OspA by removing approximately 45% of residues from the N terminus. Although the fragment retained the native conformation and affinity to a protective antibody, its vaccine efficacy and conformational stability were significantly reduced with respect to full-length OspA. We successfully stabilized the fragment by replacing amino acid residues involved in buried salt-bridges with residues promoting hydrophobic interactions. The mutations promoted the vaccine efficacy of the redesigned fragment to a level comparable to that of the full-length protein, demonstrating the importance of the antigen stability for OspA's vaccine efficacy. Our strategy should be useful for further refining OspA-based vaccines and developing recombinant vaccines for other diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/immunology
- Antibody Affinity
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Surface/chemistry
- Antigens, Surface/immunology
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines
- Borrelia burgdorferi/chemistry
- Borrelia burgdorferi/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Female
- Hydrophobic and Hydrophilic Interactions
- Lipoproteins/chemistry
- Lipoproteins/immunology
- Lyme Disease Vaccines/chemistry
- Lyme Disease Vaccines/immunology
- Magnetic Resonance Spectroscopy
- Mice
- Mice, Inbred C3H
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Protein Conformation
- Static Electricity
- Structure-Activity Relationship
- Vaccination
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Shohei Koide
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
17
|
Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 2005; 22:2073-83. [PMID: 15972845 DOI: 10.1093/molbev/msi199] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular parasitic alpha-proteobacteria that includes human pathogens responsible for the typhus disease and various types of spotted fevers. rOmpA and rOmpB are two members of the "surface cell antigen" (Sca) autotransporter (AT) protein family that may play key roles in the adhesion of the Rickettsia cells to the host tissue. These molecules are likely determinants for the pathogenicity of the Rickettsia and represent good candidates for vaccine development. We identified the 17 members of this family of outer-membrane proteins in nine fully sequenced Rickettsia genomes. The typical architecture of the Sca proteins is composed of an N-terminal signal peptide and a C-terminal AT domain that promote the export of the central passenger domain to the outside of the bacteria. A characteristic of this family is the frequent degradation of the genes, which results in different subsets of the sca genes being expressed among Rickettsia species. Here, we present a detailed analysis of their phylogenetic relationships and evolution. We provide strong evidence that rOmpA and rOmpB as well as three other members of the Sca protein family--Sca1, Sca2, and Sca4--have evolved under positive selection. The exclusive distribution of the predicted positively selected sites within the passenger domains of these proteins argues that these regions are involved in the interaction with the host and may be locked in "arms race" coevolutionary conflicts.
Collapse
Affiliation(s)
- Guillaume Blanc
- Information Génomique et Structurale, UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
18
|
Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD. RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 2004; 72:6433-45. [PMID: 15501774 PMCID: PMC523033 DOI: 10.1128/iai.72.11.6433-6445.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease spirochete, undergoes dramatic changes in antigenic composition as it cycles between its arthropod and mammalian hosts. A growing body of evidence suggests that these changes reflect, at least in part, the need for spirochetes to adapt to the physiological stresses imposed by abrupt changes in environmental conditions and nutrient availability. In many microorganisms, global responses are mediated by master regulators such as alternative sigma factors, with Escherichia coli RpoS (sigmaS) serving as a prototype. The importance of this transcriptional activator in other bacteria, coupled with the report by Hubner et al. (A. Hubner, X. Yang, D. M. Nolen, T. G. Popova, F. C. Cabello, and M. V. Norgard, Proc. Natl. Acad. Sci. USA 98:12724-12729, 2001) demonstrating that the borrelial RpoS ortholog controls expression of OspC and decorin-binding protein A (DbpA), prompted us to examine more closely the roles of RpoS-dependent and -independent differential gene expression in physiological adaptation by the Lyme disease spirochete. We observed that B. burgdorferi rpoS (rpoSBb) was induced following temperature shift and transcript levels were further enhanced by reduced pH (pH 6.8). Using quantitative real-time reverse transcription-PCR (RT-PCR), we demonstrated that, in contrast to its ortholog (rpoSEc) in Escherichia coli, rpoSBb was expressed at significant levels in B. burgdorferi throughout all phases of growth following temperature shift. By comparing a B. burgdorferi strain 297 rpoSBb mutant to its wild-type counterpart, we determined that RpoSBb was not required for survival following exposure to a wide range of environmental stresses (i.e., temperature shift, serum starvation, increased osmolality, reactive oxygen intermediates, and increased or reduced oxygen tension), although the mutant was more sensitive to extremes of pH. While B. burgdorferi strains lacking RpoS were able to survive within intraperitoneal dialysis membrane chambers at a level equivalent to that of the wild type, they were avirulent in mice. Lastly, RT-PCR analysis of the ospE-ospF-elp paralogous lipoprotein families complements earlier findings that many temperature-inducible borrelial loci are controlled in an RpoSBb-independent manner. Together, these data point to fundamental differences between the role(s) of RpoS in B. burgdorferi and that in E. coli. Rather than functioning as a master regulator, RpoSBb appears to serve as a stress-responsive activator of a subset of virulence determinants that, together with the RpoS-independent, differentially expressed regulon, encompass the spirochete's genetic programs required for mammalian host adaptation.
Collapse
Affiliation(s)
- Melissa J Caimano
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Ave., Farmington 06030-3710, USA.
| | | | | | | |
Collapse
|