1
|
Pae J, Schwan N, Ottino-Loffler B, DeWitt WS, Garg A, Bortolatto J, Vora AA, Shen JJ, Hobbs A, Castro TBR, Mesin L, Matsen FA, Meyer-Hermann M, Victora GD. Transient silencing of hypermutation preserves B cell affinity during clonal bursting. Nature 2025; 641:486-494. [PMID: 40108454 PMCID: PMC12058519 DOI: 10.1038/s41586-025-08687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
In the course of antibody affinity maturation, germinal centre (GC) B cells mutate their immunoglobulin heavy- and light-chain genes in a process known as somatic hypermutation (SHM)1-4. Panels of mutant B cells with different binding affinities for antigens are then selected in a Darwinian manner, which leads to a progressive increase in affinity among the population5. As with any Darwinian process, rare gain-of-fitness mutations must be identified and common loss-of-fitness mutations avoided6. Progressive acquisition of mutations therefore poses a risk during large proliferative bursts7, when GC B cells undergo several cell cycles in the absence of affinity-based selection8-13. Using a combination of in vivo mouse experiments and mathematical modelling, here we show that GCs achieve this balance by strongly suppressing SHM during clonal-burst-type expansion, so that a large fraction of the progeny generated by these bursts does not deviate from their ancestral genotype. Intravital imaging and image-based cell sorting of a mouse strain carrying a reporter of cyclin-dependent kinase 2 (CDK2) activity showed that B cells that are actively undergoing proliferative bursts lack the transient CDK2low 'G0-like' phase of the cell cycle in which SHM takes place. We propose a model in which inertially cycling B cells mostly delay SHM until the G0-like phase that follows their final round of division in the GC dark zone, thus maintaining affinity as they clonally expand in the absence of selection.
Collapse
Affiliation(s)
- Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Niklas Schwan
- Department of Systems Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - William S DeWitt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amar Garg
- Department of Systems Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ashni A Vora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Jin-Jie Shen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alvaro Hobbs
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Frederick A Matsen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Lower Saxony Center for Artificial Intelligence and Causal Methods in Medicine (CAIMed), Hannover, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
2
|
Petrova IO, Smirnikhina SA. Prime Editing in Dividing and Quiescent Cells. Int J Mol Sci 2025; 26:3596. [PMID: 40332080 PMCID: PMC12026808 DOI: 10.3390/ijms26083596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Prime editing is a method of genome editing based on reverse transcription. Recent results have shown its elevated efficiency in dividing cells, which raises some questions regarding the mechanism of this effect, because prime editing does not employ homology-driven repair. This mini review aims to identify the reason for this phenomenon and find a possible solution to the problems that it poses. In dividing cells, prime editing takes advantage of high levels of dNTPs and active endonuclease and ligase machinery, such as FEN1 endonuclease and LIG1 ligase, but DNA mismatch repair, which is closely associated with replication, works against prime editing. Prime editing is a method which relies on retroviral reverse transcription, so mechanisms of intrinsic anti-retroviral defense should also work against editing. One of the factors which drastically reduce the efficiency of reverse translation is SAMHD1, which maintains low levels of dNTPs in non-dividing cells. Recent works aimed at the mitigation of SAMHD1 function demonstrated a significant increase in prime editing efficiency.
Collapse
Affiliation(s)
- Irina O. Petrova
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, 115478 Moscow, Russia
| | | |
Collapse
|
3
|
Steele EJ, Lindley RA. Deaminase-Driven Reverse Transcription Mutagenesis in Oncogenesis: Critical Analysis of Transcriptional Strand Asymmetries of Single Base Substitution Signatures. Int J Mol Sci 2025; 26:989. [PMID: 39940758 PMCID: PMC11817618 DOI: 10.3390/ijms26030989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
This paper provides a critical analysis of the molecular mechanisms presently used to explain transcriptional strand asymmetries of single base substitution (SBS) signatures observed in cancer genomes curated at the Catalogue of Somatic Mutations in Cancer (COSMIC) database (Wellcome Trust Sanger Institute). The analysis is based on a deaminase-driven reverse transcriptase (DRT) mutagenesis model of cancer oncogenesis involving both the cytosine (AID/APOBEC) and adenosine (ADAR) mutagenic deaminases. In this analysis we apply what is known, or can reasonably be inferred, of the immunoglobulin somatic hypermutation (Ig SHM) mechanism to the analysis of the transcriptional stand asymmetries of the COSMIC SBS signatures that are observed in cancer genomes. The underlying assumption is that somatic mutations arising in cancer genomes are driven by dysregulated off-target Ig SHM-like mutagenic processes at non-Ig loci. It is reasoned that most SBS signatures whether of "unknown etiology" or assigned-molecular causation, can be readily understood in terms of the DRT-paradigm. These include the major age-related "clock-like" SBS5 signature observed in all cancer genomes sequenced and many other common subset signatures including SBS1, SBS3, SBS2/13, SBS6, SBS12, SBS16, SBS17a/17b, SBS19, SBS21, as well as signatures clearly arising from exogenous causation. We conclude that the DRT-model provides a plausible molecular framework that augments our current understanding of immunogenetic mechanisms driving oncogenesis. It accommodates both what is known about AID/APOBEC and ADAR somatic mutation strand asymmetries and provides a fully integrated understanding into the molecular origins of common COSMIC SBS signatures. The DRT-paradigm thus provides scientists and clinicians with additional molecular insights into the causal links between deaminase-associated genomic signatures and oncogenic processes.
Collapse
Affiliation(s)
- Edward J. Steele
- Melville Analytics Pty Ltd. and Immunomics, Kangaroo Point, Brisbane 4169, Australia
| | - Robyn A. Lindley
- Department Clinical Pathology, Victorian Comprehensive Cancer Centre (VCCC), University of Melbourne, Melbourne 3052, Australia;
| |
Collapse
|
4
|
Bedaiwi S, Usmani A, Carty MP. Canonical and Non-Canonical Roles of Human DNA Polymerase η. Genes (Basel) 2024; 15:1271. [PMID: 39457395 PMCID: PMC11507097 DOI: 10.3390/genes15101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
DNA damage tolerance pathways that allow for the completion of replication following fork arrest are critical in maintaining genome stability during cell division. The main DNA damage tolerance pathways include strand switching, replication fork reversal and translesion synthesis (TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered DNA structures during DNA synthesis, and are important in allowing replication to proceed after fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV). Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced by anti-cancer drugs including cisplatin. We review the current understanding of the canonical role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging non-canonical roles of the protein in other aspects of DNA metabolism.
Collapse
Affiliation(s)
| | | | - Michael P. Carty
- DNA Damage Response Laboratory, Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland; (S.B.); (A.U.)
| |
Collapse
|
5
|
Mu Y, Chen Z, Plummer JB, Zelazowska MA, Dong Q, Krug LT, McBride KM. UNG-RPA interaction governs the choice between high-fidelity and mutagenic uracil repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591927. [PMID: 38746347 PMCID: PMC11092621 DOI: 10.1101/2024.04.30.591927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.
Collapse
|
6
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
7
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
8
|
Meas R, Nititham J, Taylor KE, Maher S, Clairmont K, Carufe KEW, Kashgarian M, Nottoli T, Cheong A, Nagel ZD, Gaffney PM, Criswell LA, Sweasy JB. A Human MSH6 Germline Variant Associated With Systemic Lupus Erythematosus Induces Lupus-like Disease in Mice. ACR Open Rheumatol 2022; 4:760-770. [PMID: 35708944 PMCID: PMC9469486 DOI: 10.1002/acr2.11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Cheong
- Harvard School of Public HealthBostonMassachusettsUSA
| | | | | | - Lindsey A. Criswell
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesBethesdaMarylandUSA
| | | |
Collapse
|
9
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
In crystallo observation of three metal ion promoted DNA polymerase misincorporation. Nat Commun 2022; 13:2346. [PMID: 35487947 PMCID: PMC9054841 DOI: 10.1038/s41467-022-30005-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
Error-free replication of DNA is essential for life. Despite the proofreading capability of several polymerases, intrinsic polymerase fidelity is in general much higher than what base-pairing energies can provide. Although researchers have investigated this long-standing question with kinetics, structural determination, and computational simulations, the structural factors that dictate polymerase fidelity are not fully resolved. Time-resolved crystallography has elucidated correct nucleotide incorporation and established a three-metal-ion-dependent catalytic mechanism for polymerases. Using X-ray time-resolved crystallography, we visualize the complete DNA misincorporation process catalyzed by DNA polymerase η. The resulting molecular snapshots suggest primer 3´-OH alignment mediated by A-site metal ion binding is the key step in substrate discrimination. Moreover, we observe that C-site metal ion binding preceded the nucleotidyl transfer reaction and demonstrate that the C-site metal ion is strictly required for misincorporation. Our results highlight the essential but separate roles of the three metal ions in DNA synthesis. By observing DNA polymerase misincorporation with time-resolved crystallography, the authors visualize three-metal ion dependent polymerase catalysis and identify A-site metal-mediated primer alignment as a key step in nucleotide discrimination.
Collapse
|
11
|
IRF4 deficiency vulnerates B-cell progeny for leukemogenesis via somatically acquired Jak3 mutations conferring IL-7 hypersensitivity. Cell Death Differ 2022; 29:2163-2176. [PMID: 35459909 PMCID: PMC9613660 DOI: 10.1038/s41418-022-01005-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4−/− mice as prone to developing BCP-ALL with age. Irf4−/− preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4−/− leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.
Collapse
|
12
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Gu S, Bodai Z, Cowan QT, Komor AC. Base Editors: Expanding the Types of DNA Damage Products Harnessed for Genome Editing. ACTA ACUST UNITED AC 2021; 1. [PMID: 34368792 DOI: 10.1016/j.ggedit.2021.100005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Base editors are an innovative addition to the genome editing toolbox that introduced a new genome editing strategy to the field. Instead of using double-stranded DNA breaks, base editors use nucleobase modification chemistry to efficiently and precisely incorporate single nucleotide variants (SNVs) into the genome of living cells. Two classes of DNA base editors currently exist: deoxycytidine deamination-derived editors (CBEs, which facilitate C•G to T•A mutations) and deoxyadenosine deamination-derived base editors (ABEs, which facilitate A•T to G•C mutations). More recently, the development of mitochondrial base editors allowed the introduction of C•G to T•A mutations into mitochondrial DNA as well. Base editors show great potential as therapeutic agents and research tools, and extensive studies have been carried out to improve upon the original base editor constructs to aid researchers in a variety of disciplines. Despite their widespread use, there are few publications that focus on elucidating the biological pathways involved during the processing of base editor intermediates. Because base editors introduce unique types of DNA damage products (a U•G mismatch with a DNA backbone nick for CBEs, and an I•T mismatch with a DNA backbone nick for ABEs) to facilitate genome editing, a deep understanding of the DNA damage repair pathways that facilitate or impede base editing represents an important aspect for the further expansion and improvement of the technologies. Here, we first review canonical deoxyuridine, deoxyinosine, and single-stranded break repair. Then, we discuss how interactions among these different repair processes can lead to different base editing outcomes. Through this review, we hope to promote thoughtful discussions on the DNA repair mechanisms of base editing, as well as help researchers in the improvement of the current base editors and the development of new base editors.
Collapse
Affiliation(s)
- Sifeng Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
15
|
Jaiswal A, Singh AK, Tamrakar A, Kodgire P. Unfolding the Role of Splicing Factors and RNA Debranching in AID Mediated Antibody Diversification. Int Rev Immunol 2020; 40:289-306. [PMID: 32924658 DOI: 10.1080/08830185.2020.1815725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin (Ig) genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell. AID catalyzes the deamination of cytidine (C) into uracil (U) at Ig genes. Subsequently, low fidelity repair of U:G mismatches may lead to mutations. Transcription is essential for the AID action, as it provides a transient single-strand DNA substrate. Since splicing is a co-transcriptional event, various splicing factors or regulators influence the transcription. Numerous splicing factors are known to regulate the AID targeting, function, Ig transcription, and AID splicing, which eventually influence antibody diversification processes. Splicing regulator SRSF1-3, a splicing isoform of serine arginine-rich splicing factor (SRSF1), and CTNNBL1, a spliceosome interacting factor, interact with AID and play a critical role in SHM. Likewise, a splicing regulator polypyrimidine tract binding protein-2 (PTBP2) and the debranching enzyme (DBR1) debranches primary switch transcripts which later forms G-quadruplex structures, and the S region guide RNAs direct AID to S region DNA. Moreover, AID shows several alternate splicing isoforms, like AID devoid of exon-4 (AIDΔE4) that is expressed in various pathological conditions. Interestingly, RBM5, a splicing regulator, is responsible for the skipping of AID exon 4. In this review, we discuss the role and significance of splicing factors in the AID mediated antibody diversification.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Amit Kumar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Anubhav Tamrakar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
16
|
Ling AK, Munro M, Chaudhary N, Li C, Berru M, Wu B, Durocher D, Martin A. SHLD2 promotes class switch recombination by preventing inactivating deletions within the Igh locus. EMBO Rep 2020; 21:e49823. [PMID: 32558186 DOI: 10.15252/embr.201949823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The newly identified shieldin complex, composed of SHLD1, SHLD2, SHLD3, and REV7, lies downstream of 53BP1 and acts to inhibit DNA resection and promote NHEJ. Here, we show that Shld2-/- mice have defective class switch recombination (CSR) and that loss of SHLD2 can suppress the embryonic lethality of a Brca1Δ11 mutation, highlighting its role as a key effector of 53BP1. Lymphocyte development and RAG1/2-mediated recombination were unaffected by SHLD2 deficiency. Interestingly, a significant fraction of Shld2-/- primary B-cells and 53BP1- and shieldin-deficient CH12F3-2 B-cells permanently lose expression of immunoglobulin upon induction of CSR; this population of Ig-negative cells is also seen in other NHEJ-deficient cells and to a much lesser extent in WT cells. This loss of Ig is due to recombination coupled with overactive resection and loss of coding exons in the downstream acceptor constant region. Collectively, these data show that SHLD2 is the key effector of 53BP1 and critical for CSR in vivo by suppressing large deletions within the Igh locus.
Collapse
Affiliation(s)
- Alexanda K Ling
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Meagan Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Brendan Wu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Franklin A, Steele EJ, Lindley RA. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases. Heliyon 2020; 6:e03258. [PMID: 32140575 PMCID: PMC7044655 DOI: 10.1016/j.heliyon.2020.e03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of (CAG)n repeat generation, and related expandable repeat diseases in non-dividing cells, is currently understood in terms of a DNA template-based DNA repair synthesis process involving hairpin stabilized slippage, local error-prone repair via MutSβ (MSH2-MSH3) hairpin protective stabilization, then nascent strand extension by DNA polymerases-β and -δ. We advance a very similar slipped hairpin-stabilized model involving MSH2-MSH3 with two key differences: the copying template may also be the nascent pre-mRNA with the repair pathway being mediated by the Y-family error-prone enzymes DNA polymerase-η and DNA polymerase-κ acting as reverse transcriptases. We argue that both DNA-based and RNA-based mechanisms could well be activated in affected non-dividing brain cells in vivo. Here, we compare the advantages of the RNA/RT-based model proposed by us as an adjunct to previously proposed models. In brief, our model depends upon dysregulated innate and adaptive immunity cascades involving AID/APOBEC and ADAR deaminases that are known to be involved in normal locus-specific immunoglobulin somatic hypermutation, cancer progression and somatic mutations at many off-target non-immunoglobulin sites across the genome: we explain how these processes could also play an active role in repeat expansion diseases at RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
- Andrew Franklin
- Medical Department, Novartis Pharmaceuticals UK Limited, 200 Frimley Business Park, Frimley, Surrey, GU16 7SR, United Kingdom
| | - Edward J. Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, 3004, Australia
- CYO’Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A. Lindley
- GMDxgenomics, Melbourne, Vic, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
19
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
20
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. Lamarck and Panspermia - On the Efficient Spread of Living Systems Throughout the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:10-32. [PMID: 31445944 DOI: 10.1016/j.pbiomolbio.2019.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
We review the main lines of evidence (molecular, cellular and whole organism) published since the 1970s demonstrating Lamarckian Inheritance in animals, plants and microorganisms viz. the transgenerational inheritance of environmentally-induced acquired characteristics. The studies in animals demonstrate the genetic permeability of the soma-germline Weismann Barrier. The widespread nature of environmentally-directed inheritance phenomena reviewed here contradicts a key pillar of neo-Darwinism which affirms the rigidity of the Weismann Barrier. These developments suggest that neo-Darwinian evolutionary theory is in need of significant revision. We argue that Lamarckian inheritance strategies involving environmentally-induced rapid directional genetic adaptations make biological sense in the context of cosmic Panspermia allowing the efficient spread of living systems and genetic innovation throughout the Universe. The Hoyle-Wickramasinghe Panspermia paradigm also developed since the 1970s, unlike strictly geocentric neo-Darwinism provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance - it provides its raison d'être. Under a terrestrially confined neo-Darwinian viewpoint such an association may have been thought spurious in the past. Our aim is to outline the conceptual links between rapid Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others and the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system travelling through space in a protective matrix will need of necessity to rapidly adapt and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under a traditional neo-Darwinian evolutionary paradigm.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, 6112, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, Vic, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of MelbourneVic, Australia; GMDx Group Ltd, Melbourne, Vic, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Dayal T Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan; Buckingham Centre for Astrobiology, University of Buckingham, UK
| |
Collapse
|
21
|
Determination of Mismatch Repair Status in Human Cancer and Its Clinical Significance: Does One Size Fit All? Adv Anat Pathol 2019; 26:270-279. [PMID: 30932972 DOI: 10.1097/pap.0000000000000234] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clinical management of cancers has progressed rapidly into the immunopathology era, with the unprecedented histology-agnostic approval of pembrolizumab in mismatch repair (MMR) deficient tumors. Despite the significant recent achievements in the treatment of these patients, however, the identification of clinically relevant subclasses of cancers based on the MMR status remains a major challenge. Many investigations have assessed the role of different diagnostic tools, including immunohistochemistry, microsatellite instability, and tumor mutational burden in both prognostic and therapeutic settings, with heterogenous results. To date, there are no tumor-specific guidelines or companion diagnostic tests for MMR assessment, and this analysis is often performed with locally developed methods. In this review, we provide a comprehensive overview of the current state-of-knowledge of MMR alterations in syndromic and sporadic tumors and discuss the available armamentarium for MMR pathologic characterization, from morphology to high-throughput molecular tools.
Collapse
|
22
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
23
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
24
|
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P. Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis. Curr Genet 2018; 65:649-656. [PMID: 30535880 DOI: 10.1007/s00294-018-0918-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
DNA polymerases are evolved to extend the 3'-OH of a growing primer annealed to a template DNA substrate. Since replicative DNA polymerases have a limited role while replicating structurally distorted template, translesion DNA polymerases mostly from Y-family come to the rescue of stalled replication fork and maintain genome stability. DNA polymerase eta is one such specialized enzyme whose function is directly associated with casual development of certain skin cancers and chemo-resistance. More than 20 years of extensive studies are available to support TLS activities of Polη in bypassing various DNA lesions, in addition, limited but crucial growing evidence also exist to suggest Polη possessing TLS-independent cellular functions. In this review, we have mostly focused on non-TLS activities of Polη from different organisms including our recent findings from pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
25
|
Abstract
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given datasets. This procedure is well developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper, we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency but also discrete objects such as B-cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective, the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B-cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Collapse
Affiliation(s)
- Branden Olson
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| | - Frederick A. Matsen
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| |
Collapse
|
26
|
Deficiency in the DNA glycosylases UNG1 and OGG1 does not potentiate c-Myc-induced B-cell lymphomagenesis. Exp Hematol 2018; 61:52-58. [PMID: 29496532 DOI: 10.1016/j.exphem.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
C-Myc overexpression mediates lymphomagenesis; however, secondary genetic lesions are required for its full oncogenic potential. The origin and the mechanism of formation of these mutations are unclear. Using the lacI mutation detection system, we show that secondary mutations occur early in B-cell development and are repaired by Msh2. The mutations at the lacI gene were predominantly at C:G base pairs and CpG motifs, suggesting that they were formed due to cytosine deamination or oxidative damage of G. Therefore, we investigated the role of Ogg1 and UNG glycosylases in c-Myc-driven lymphomagenesis but found that their deficiencies did not influence disease outcome in the Eµ c-Myc mouse model. We also show that Rag proteins do not contribute to secondary lesions in this model. Our work suggests that mutations at C:G base pairs that are repaired primarily by the mismatch repair system arise early in B-cell ontogeny to promote c-Myc-driven lymphomagenesis.
Collapse
|
27
|
Steele EJ. Reverse Transcriptase Mechanism of Somatic Hypermutation: 60 Years of Clonal Selection Theory. Front Immunol 2017; 8:1611. [PMID: 29218047 PMCID: PMC5704389 DOI: 10.3389/fimmu.2017.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/07/2017] [Indexed: 01/24/2023] Open
Abstract
The evidence for the reverse transcriptase mechanism of somatic hypermutation is substantial and multifactorial. In this 60th anniversary year of the publication of Sir MacFarlane Burnet's Clonal Selection Theory, the evidence is briefly reviewed and updated.
Collapse
Affiliation(s)
- Edward J. Steele
- CYO’Connor ERADE Village Foundation Inc., Piara Waters, WA, Australia
| |
Collapse
|
28
|
In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities. Proc Natl Acad Sci U S A 2017; 114:E10379-E10388. [PMID: 29122935 DOI: 10.1073/pnas.1712032114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The integrity of our DNA is challenged with at least 100,000 lesions per cell on a daily basis. Failure to repair DNA damage efficiently can lead to cancer, immunodeficiency, and neurodegenerative disease. Base excision repair (BER) recognizes and repairs minimally helix-distorting DNA base lesions induced by both endogenous and exogenous DNA damaging agents. Levels of BER-initiating DNA glycosylases can vary between individuals, suggesting that quantitating and understanding interindividual differences in DNA repair capacity (DRC) may enable us to predict and prevent disease in a personalized manner. However, population studies of BER capacity have been limited because most methods used to measure BER activity are cumbersome, time consuming and, for the most part, only allow for the analysis of one DNA glycosylase at a time. We have developed a fluorescence-based multiplex flow-cytometric host cell reactivation assay wherein the activity of several enzymes [four BER-initiating DNA glycosylases and the downstream processing apurinic/apyrimidinic endonuclease 1 (APE1)] can be tested simultaneously, at single-cell resolution, in vivo. Taking advantage of the transcriptional properties of several DNA lesions, we have engineered specific fluorescent reporter plasmids for quantitative measurements of 8-oxoguanine DNA glycosylase, alkyl-adenine DNA glycosylase, MutY DNA glycosylase, uracil DNA glycosylase, and APE1 activity. We have used these reporters to measure differences in BER capacity across a panel of cell lines collected from healthy individuals, and to generate mathematical models that predict cellular sensitivity to methylmethane sulfonate, H2O2, and 5-FU from DRC. Moreover, we demonstrate the suitability of these reporters to measure differences in DRC in multiple pathways using primary lymphocytes from two individuals.
Collapse
|
29
|
Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Biology: A pathological and clinical perspective. Int Rev Immunol 2017; 37:37-56. [PMID: 28933967 DOI: 10.1080/08830185.2017.1369980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.
Collapse
Affiliation(s)
- Meenal Choudhary
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Anubhav Tamrakar
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Amit Kumar Singh
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Monika Jain
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Ankit Jaiswal
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Prashant Kodgire
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| |
Collapse
|
30
|
Thientosapol ES, Sharbeen G, Lau KKE, Bosnjak D, Durack T, Stevanovski I, Weninger W, Jolly CJ. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2. Nucleic Acids Res 2017; 45:3146-3157. [PMID: 28039326 PMCID: PMC5389528 DOI: 10.1093/nar/gkw1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.
Collapse
Affiliation(s)
- Eddy Sanchai Thientosapol
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - George Sharbeen
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - K K Edwin Lau
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Daniel Bosnjak
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Timothy Durack
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Igor Stevanovski
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Christopher J Jolly
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
31
|
Polyzos AA, McMurray CT. Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair (Amst) 2017; 56:144-155. [PMID: 28690053 PMCID: PMC5558859 DOI: 10.1016/j.dnarep.2017.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expansion of simple triplet repeats (TNR) underlies more than 30 severe degenerative diseases. There is a good understanding of the major pathways generating an expansion, and the associated polymerases that operate during gap filling synthesis at these "difficult to copy" sequences. However, the mechanism by which a TNR is repaired depends on the type of lesion, the structural features imposed by the lesion, the assembled replication/repair complex, and the polymerase that encounters it. The relationships among these parameters are exceptionally complex and how they direct pathway choice is poorly understood. In this review, we consider the properties of polymerases, and how encounters with GC-rich or abnormal structures might influence polymerase choice and the success of replication and repair. Insights over the last three years have highlighted new mechanisms that provide interesting choices to consider in protecting genome stability.
Collapse
Affiliation(s)
- Aris A Polyzos
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States
| | - Cynthia T McMurray
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States.
| |
Collapse
|
32
|
Abstract
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. "Hassle-free" DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is "Translesion DNA Synthesis (TLS)". TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the "Y-family" of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein-protein interactions with other critical factors affecting TLS regulation.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
33
|
Sheng Z, Schramm CA, Kong R, Mullikin JC, Mascola JR, Kwong PD, Shapiro L. Gene-Specific Substitution Profiles Describe the Types and Frequencies of Amino Acid Changes during Antibody Somatic Hypermutation. Front Immunol 2017; 8:537. [PMID: 28539926 PMCID: PMC5424261 DOI: 10.3389/fimmu.2017.00537] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022] Open
Abstract
Somatic hypermutation (SHM) plays a critical role in the maturation of antibodies, optimizing recognition initiated by recombination of V(D)J genes. Previous studies have shown that the propensity to mutate is modulated by the context of surrounding nucleotides and that SHM machinery generates biased substitutions. To investigate the intrinsic mutation frequency and substitution bias of SHMs at the amino acid level, we analyzed functional human antibody repertoires and developed mGSSP (method for gene-specific substitution profile), a method to construct amino acid substitution profiles from next-generation sequencing-determined B cell transcripts. We demonstrated that these gene-specific substitution profiles (GSSPs) are unique to each V gene and highly consistent between donors. We also showed that the GSSPs constructed from functional antibody repertoires are highly similar to those constructed from antibody sequences amplified from non-productively rearranged passenger alleles, which do not undergo functional selection. This suggests the types and frequencies, or mutational space, of a majority of amino acid changes sampled by the SHM machinery to be well captured by GSSPs. We further observed the rates of mutational exchange between some amino acids to be both asymmetric and context dependent and to correlate weakly with their biochemical properties. GSSPs provide an improved, position-dependent alternative to standard substitution matrices, and can be utilized to developing software for accurately modeling the SHM process. GSSPs can also be used for predicting the amino acid mutational space available for antigen-driven selection and for understanding factors modulating the maturation pathways of antibody lineages in a gene-specific context. The mGSSP method can be used to build, compare, and plot GSSPs1; we report the GSSPs constructed for 69 common human V genes (DOI: 10.6084/m9.figshare.3511083) and provide high-resolution logo plots for each (DOI: 10.6084/m9.figshare.3511085).
Collapse
Affiliation(s)
- Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Steele EJ, Lindley RA. ADAR deaminase A-to-I editing of DNA and RNA moieties of RNA:DNA hybrids has implications for the mechanism of Ig somatic hypermutation. DNA Repair (Amst) 2017; 55:1-6. [PMID: 28482199 DOI: 10.1016/j.dnarep.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/16/2022]
Abstract
The implications are discussed of recently published biochemical studies on ADAR-mediated A-to-I DNA and RNA deamination at RNA:DNA hybrids. The significance of these data are related to previous work on strand-biased and codon-context mutation signatures in B lymphocytes and cancer genomes. Those studies have established that there are two significant strand biases at A:T and G:C base pairs, A-site mutations exceed T-site mutations (A>>T) by 2.9 fold and G-site mutations exceed C-site mutations (G>>C) by 1.7 fold. Both these strand biases are inconsistent with alternative "DNA Deamination" mechanisms, yet are expected consequences of the RNA/RT-based "Reverse Transcriptase" mechanism of immunoglobulin (Ig) somatic hypermutation (SHM). The A-to-I DNA editing component at RNA:DNA hybrids that is likely to occur in Transcription Bubbles, while important, is of far lower A-to-I editing efficiency than in dsRNA substrates. The RNA moiety of RNA:DNA hybrids is also edited at similar lower frequencies relative to the editing rate at dsRNA substrates. Further, if the A-to-I DNA editing at RNA:DNA hybrids were the sole cause of A-to-I (read as A-to-G) mutation events for Ig SHM in vivo then the exact opposite strand biases at A:T base pairs (T>>A) of what is actually observed (A>>T) would be predicted. It is concluded that the strand-biased somatic mutation patterns at both A:T and G:C base pairs in vivo are best interpreted by the sequential steps of the RNA/RT-based mechanism. Further, the direct DNA A-to-I deamination at Transcription Bubbles is expected to contribute to the T-to-C component of the strand-biased Ig SHM spectrum.
Collapse
Affiliation(s)
- Edward J Steele
- CYO'Connor ERADE Village Foundation Inc., Piara Waters, WA, Australia.
| | - Robyn A Lindley
- GMDxCo Pty Ltd., Hawthorn Vic, Australia; Department of Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne Vic, Australia
| |
Collapse
|
35
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
36
|
Shimizu T, Tateishi S, Tanoue Y, Azuma T, Ohmori H. Somatic hypermutation of immunoglobulin genes in Rad18 knockout mice. DNA Repair (Amst) 2016; 50:54-60. [PMID: 28082021 DOI: 10.1016/j.dnarep.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8505, Japan.
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuki Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takachika Azuma
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Haruo Ohmori
- Departments of Gene Information Analysis, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
37
|
Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst) 2016; 45:1-24. [DOI: 10.1016/j.dnarep.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
|
38
|
GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo. Blood 2016; 127:2723-31. [PMID: 26989201 DOI: 10.1182/blood-2015-07-659938] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/21/2016] [Indexed: 11/20/2022] Open
Abstract
GNA13 is the most frequently mutated gene in germinal center (GC)-derived B-cell lymphomas, including nearly a quarter of Burkitt lymphoma and GC-derived diffuse large B-cell lymphoma. These mutations occur in a pattern consistent with loss of function. We have modeled the GNA13-deficient state exclusively in GC B cells by crossing the Gna13 conditional knockout mouse strain with the GC-specific AID-Cre transgenic strain. AID-Cre(+) GNA13-deficient mice demonstrate disordered GC architecture and dark zone/light zone distribution in vivo, and demonstrate altered migration behavior, decreased levels of filamentous actin, and attenuated RhoA activity in vitro. We also found that GNA13-deficient mice have increased numbers of GC B cells that display impaired caspase-mediated cell death and increased frequency of somatic hypermutation in the immunoglobulin VH locus. Lastly, GNA13 deficiency, combined with conditional MYC transgene expression in mouse GC B cells, promotes lymphomagenesis. Thus, GNA13 loss is associated with GC B-cell persistence, in which impaired apoptosis and ongoing somatic hypermutation may lead to an increased risk of lymphoma development.
Collapse
|
39
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
40
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
41
|
Tsaalbi-Shtylik A, Jansen JG, de Wind N. When mismatch repair met translesion synthesis. Cell Cycle 2015; 14:2377-8. [PMID: 26102362 DOI: 10.1080/15384101.2015.1063288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Blombery PA, Wall M, Seymour JF. The molecular pathogenesis of B-cell non-Hodgkin lymphoma. Eur J Haematol 2015; 95:280-93. [DOI: 10.1111/ejh.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service; St Vincent's Hospital Melbourne; University of Melbourne; Fitzroy Vic. Australia
| | | |
Collapse
|
43
|
Su Y, Patra A, Harp JM, Egli M, Guengerich FP. Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase η in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2'-deoxyguanosine. J Biol Chem 2015; 290:15921-33. [PMID: 25947374 DOI: 10.1074/jbc.m115.653691] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 11/06/2022] Open
Abstract
Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Amritraj Patra
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Joel M Harp
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
44
|
Overlapping hotspots in CDRs are critical sites for V region diversification. Proc Natl Acad Sci U S A 2015; 112:E728-37. [PMID: 25646473 DOI: 10.1073/pnas.1500788112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) mediates the somatic hypermutation (SHM) of Ig variable (V) regions that is required for the affinity maturation of the antibody response. An intensive analysis of a published database of somatic hypermutations that arose in the IGHV3-23*01 human V region expressed in vivo by human memory B cells revealed that the focus of mutations in complementary determining region (CDR)1 and CDR2 coincided with a combination of overlapping AGCT hotspots, the absence of AID cold spots, and an abundance of polymerase eta hotspots. If the overlapping hotspots in the CDR1 or CDR2 did not undergo mutation, the frequency of mutations throughout the V region was reduced. To model this result, we examined the mutation of the human IGHV3-23*01 biochemically and in the endogenous heavy chain locus of Ramos B cells. Deep sequencing revealed that IGHV3-23*01 in Ramos cells accumulates AID-induced mutations primarily in the AGCT in CDR2, which was also the most frequent site of mutation in vivo. Replacing the overlapping hotspots in CDR1 and CDR2 with neutral or cold motifs resulted in a reduction in mutations within the modified motifs and, to some degree, throughout the V region. In addition, some of the overlapping hotspots in the CDRs were at sites in which replacement mutations could change the structure of the CDR loops. Our analysis suggests that the local sequence environment of the V region, and especially of the CDR1 and CDR2, is highly evolved to recruit mutations to key residues in the CDRs of the IgV region.
Collapse
|
45
|
Ciccarese S, Vaccarelli G, Lefranc MP, Tasco G, Consiglio A, Casadio R, Linguiti G, Antonacci R. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:300-13. [PMID: 24836674 DOI: 10.1016/j.dci.2014.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 05/05/2023]
Abstract
In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the γδ subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Camelus/genetics
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Models, Molecular
- Molecular Sequence Data
- Mutation Rate
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
| | - Giovanna Vaccarelli
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Marie-Paule Lefranc
- IMGT, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2, 34396 Montpellier Cedex 5, France
| | - Gianluca Tasco
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Arianna Consiglio
- CNR, Institute for Biomedical Technologies of Bari, via Amendola, 70125 Bari, Italy
| | - Rita Casadio
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Rachele Antonacci
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
46
|
Supek F, Lehner B, Hajkova P, Warnecke T. Hydroxymethylated cytosines are associated with elevated C to G transversion rates. PLoS Genet 2014; 10:e1004585. [PMID: 25211471 PMCID: PMC4161303 DOI: 10.1371/journal.pgen.1004585] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022] Open
Abstract
It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however, extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly, hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2, MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at hydroxymethylated cytosines. Most cytosines that occur in a CpG context in mammalian genomes are methylated. Methylation has important functional consequences in the cell but also affects genome evolution. Notably, methylated cytosines are prone to deaminate and constitute mutational hotspots in mammalian genomes. Recently, a series of other modifications, derived from the oxidation of methylated cytosines, was shown to exist in various mammalian cell types including embryonic stem cells. The most abundant of these modifications is 5-hydroxymethylcytosine. In this work, we ask whether methylated and hydroxymethylated cytosines are subject to the same mutational biases or lead to distinct patterns of genome evolution. To do so, we examine differences between individuals, between species, and between normal and cancer tissues alongside high-resolution maps of DNA methylation and hydroxymethylation in the human and mouse genomes. Unexpectedly, we find that hydroxymethylated cytosines are associated with more cytosine to guanine changes in both human and mouse populations, in closely related species, and in the context of somatic evolution in tumors. Based on multiple lines of evidence, we suggest that the different patterns of sequence evolution at methylated and hydroxymethylated sites are owing to differences in how these sites are handled by the DNA repair machinery.
Collapse
Affiliation(s)
- Fran Supek
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ben Lehner
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain
| | - Petra Hajkova
- Reprogramming and Chromatin Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Campus, London, United Kingdom
| | - Tobias Warnecke
- Molecular Systems Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Dingler FA, Kemmerich K, Neuberger MS, Rada C. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation. Eur J Immunol 2014; 44:1925-35. [PMID: 24771041 PMCID: PMC4158878 DOI: 10.1002/eji.201444482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022]
Abstract
Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil‐DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung−/− mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung−/− mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung−/− mice depends upon the endogenous SMUG1 uracil‐DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung−/−Smug1−/− mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2‐dependent mechanism, Ung−/−Smug1−/− mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung−/− background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.
Collapse
|
48
|
van Zelm MC, Bartol SJW, Driessen GJ, Mascart F, Reisli I, Franco JL, Wolska-Kusnierz B, Kanegane H, Boon L, van Dongen JJM, van der Burg M. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. J Allergy Clin Immunol 2014; 134:135-44. [PMID: 24418477 DOI: 10.1016/j.jaci.2013.11.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Individuals with genetic defects in CD40 ligand (CD40L) or B-cell antigen receptor coreceptor molecules CD19 and CD81 suffer from an antibody deficiency. Still, these patients carry low levels of memory B cells and serum antibodies. OBJECTIVE We sought to assess why the remaining memory B cells and antibodies in the blood of these patients do not provide functional immunity. METHODS We included CD19-deficient patients (n = 8), CD40L-deficient patients (n = 8), and healthy controls (n = 50) to perform detailed flow cytometry on blood B cells, molecular analysis of IgA and IgG transcripts, as well as functional analysis of B-cell activation. RESULTS CD19-deficient and CD40L-deficient patients carried reduced numbers of all memory B-cell subsets except CD27(-)IgA(+) B cells. Their immunoglobulin heavy chain class-switched transcripts contained less somatic mutations and reduced usage of IgM-distal IgG2 and IgA2 subclasses. The selection strength of mutations for antigen binding was significantly lower than in controls, whereas selection to maintain superantigen binding was normal. Furthermore, the patients showed impaired selection against inherently autoreactive properties of their immunoglobulins. Somatic hypermutation analysis revealed decreased activation-induced cytidine deaminase and uracil-DNA glycosylase 2 activity in CD40L deficiency and increased uracil-DNA glycosylase 2 but decreased mismatch repair in CD19 deficiency. B-cell activation studies revealed that this was at least in part due to transcriptional regulation of DNA repair genes. CONCLUSIONS This study on CD19 and CD40L deficiencies illustrates that both the B-cell antigen receptor and CD40 signaling pathways are required for the selection of immunoglobulin reactivity. Still, they differentially mediate DNA repair pathways during somatic hypermutation, thereby together shaping the human in vivo antigen-experienced B-cell repertoire.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| | | | - Gertjan J Driessen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Françoise Mascart
- Immunobiology Clinic, Hôpital Erasme, and Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Ismail Reisli
- Meram Medical Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Jose L Franco
- Group of Primary Immunodeficiencies, University of Antioquia, Medellín, Colombia
| | | | - Hirokazu Kanegane
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | |
Collapse
|
49
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
50
|
Haque S, Yan XJ, Rosen L, McCormick S, Chiorazzi N, Mongini PKA. Effects of prostaglandin E2 on p53 mRNA transcription and p53 mutagenesis during T-cell-independent human B-cell clonal expansion. FASEB J 2013; 28:627-43. [PMID: 24145719 DOI: 10.1096/fj.13-237792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Within T-cell-dependent germinal centers, p53 gene transcription is repressed by Bcl-6 and is thus less vulnerable to mutation. Malignant lymphomas within inflamed extranodal sites exhibit a relatively high incidence of p53 mutations. The latter might originate from normal B-cell clones manifesting activation-induced cytosine deaminase (AID) and up-regulated p53 following T-cell-independent (TI) stimulation. We here examine p53 gene transcription in such TI clones, with a focus on modulatory effects of prostaglandin E2 (PGE2), and evaluate progeny for p53 mutations. Resting IgM(+)IgD(+)CD27(-) B cells from human tonsils were labeled with CFSE and stimulated in vitro with complement-coated antigen surrogate, IL-4, and BAFF ± exogenous PGE2 (50 nM) or an analog specific for the EP2 PGE2 receptor. We use flow cytometry to measure p53 and AID protein within variably divided blasts, qRT-PCR of p53 mRNA from cultures with or without actinomycin D to monitor mRNA transcription/stability, and single-cell p53 RT-PCR/sequencing to assess progeny for p53 mutations. We report that EP2 signaling triggers increased p53 gene transcriptional activity in AID(+) cycling blasts (P<0.01). Progeny exhibit p53 mutations at a frequency (8.5 × 10(-4)) greater than the baseline error rate (<0.8 × 10(-4)). We conclude that, devoid of the repressive influences of Bcl-6, dividing B lymphoblasts in inflamed tissues should display heightened p53 transcription and increased risk of p53 mutagenesis.
Collapse
Affiliation(s)
- Shabirul Haque
- 1Laboratory of B-Cell Biology, Karches Center for CLL Research and Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | | | | | | | | | | |
Collapse
|