1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Gordon KS, Perez CR, Garmilla A, Lam MSY, Aw JJY, Datta A, Lauffenburger DA, Pavesi A, Birnbaum ME. Pooled screening for CAR function identifies novel IL-13Rα2-targeted CARs for treatment of glioblastoma. J Immunother Cancer 2025; 13:e009574. [PMID: 39933837 PMCID: PMC11815465 DOI: 10.1136/jitc-2024-009574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) therapies have demonstrated potent efficacy in treating B-cell malignancies, but have yet to meaningfully translate to solid tumors. Nonetheless, they are of particular interest for the treatment of glioblastoma, which is an aggressive form of brain cancer with few effective therapeutic options, due to their ability to cross the highly selective blood-brain barrier. METHODS Here, we use our pooled screening platform, CARPOOL, to expedite the discovery of CARs with antitumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×106 third generation CARs targeting IL-13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence on repeated antigen challenge. RESULTS Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation on in vitro tumor rechallenge. It also showed significantly improved persistence and comparable tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma, but also demonstrated increased off-target recognition of IL-13Rα1. CONCLUSION Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.
Collapse
Affiliation(s)
- Khloe S Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Caleb R Perez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Andrea Garmilla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxine S Y Lam
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Joey J Y Aw
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Anisha Datta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| |
Collapse
|
3
|
Chen SW, Chu Y, Chu CH, Pham XDT, Ng HP, Guo CL, Cheng PL. ECM29/proteasome-mediated self-antigen generation by CNS-resident neuroglia promotes regulatory T cell activation. Cell Rep 2025; 44:115161. [PMID: 39786996 DOI: 10.1016/j.celrep.2024.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations. We demonstrate that loss of the proteasome adaptor protein Ecm29 alters the efficacy and accuracy of antigen generation. Inducible oligodendroglia- or microglia-conditional Ecm29 knockout mice exhibit higher susceptibility to experimental autoimmune encephalomyelitis (EAE) than control counterparts do, coincident with reduced Treg cell populations in the spinal cord. Immunopeptidome profiling identifies self-antigens that modulate myelin-reactive T cell responses. Intraspinal adeno-associated virus (AAV)/Olig001-mediated expression of the self-antigen NDUFA1p ameliorates EAE and expands NDUFA1p-recognizing CD103+CD8+CD122+ Treg cells. Thus, Ecm29/proteasome-controlled, neuroglia-derived self-antigens modulate CNS immune tolerance.
Collapse
Affiliation(s)
- Sheng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Hang Pong Ng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
5
|
Wang X, Campbell B, Bodogai M, McDevitt RA, Patrikeev A, Gusev F, Ragonnaud E, Kumaraswami K, Shirenova S, Vardy K, Alameh MG, Weissman D, Ishikawa-Ankerhold H, Okun E, Rogaev E, Biragyn A. CD8 + T cells exacerbate AD-like symptoms in mouse model of amyloidosis. Brain Behav Immun 2024; 122:444-455. [PMID: 39191349 PMCID: PMC11409913 DOI: 10.1016/j.bbi.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Alzheimer's disease (AD) is linked to toxic Aβ plaques in the brain and activation of innate responses. Recent findings however suggest that the disease may also depend on the adaptive immunity, as B cells exacerbate and CD8+ T cells limit AD-like pathology in mouse models of amyloidosis. Here, by artificially blocking or augmenting CD8+ T cells in the brain of 5xFAD mice, we provide evidence that AD-like pathology is promoted by pathogenic, proinflammatory cytokines and exhaustion markers expressing CXCR6+ CD39+CD73+/- CD8+ TRM-like cells. The CD8+ T cells appear to act by targeting disease associated microglia (DAM), as we find them in tight complexes with microglia around Aβ plaques in the brain of mice and humans with AD. We also report that these CD8+ T cells are induced by B cells in the periphery, further underscoring the pathogenic importance of the adaptive immunity in AD. We propose that CD8+ T cells and B cells should be considered as therapeutic targets for control of AD, as their ablation at the onset of AD is sufficient to decrease CD8+ T cells in the brain and block the amyloidosis-linked neurodegeneration.
Collapse
Affiliation(s)
- Xin Wang
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Britney Campbell
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Anton Patrikeev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fedor Gusev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Konda Kumaraswami
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Karin Vardy
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | | | - Drew Weissman
- Institute of RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA.
| |
Collapse
|
6
|
Taranov A, Bedolla A, Iwasawa E, Brown FN, Baumgartner S, Fugate EM, Levoy J, Crone SA, Goto J, Luo Y. The choroid plexus maintains adult brain ventricles and subventricular zone neuroblast pool, which facilitates poststroke neurogenesis. Proc Natl Acad Sci U S A 2024; 121:e2400213121. [PMID: 38954546 PMCID: PMC11252789 DOI: 10.1073/pnas.2400213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.
Collapse
Affiliation(s)
- Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Alicia Bedolla
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Farrah N. Brown
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Sarah Baumgartner
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Joel Levoy
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH45229
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH45267
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, College of Medicine, University of Cincinnati, Cincinnati, OH45229
| |
Collapse
|
7
|
Gordon KS, Perez CR, Garmilla A, Lam MSY, Aw JJ, Datta A, Lauffenburger DA, Pavesi A, Birnbaum ME. Pooled screening for CAR function identifies novel IL13Rα2-targeted CARs for treatment of glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.586240. [PMID: 38766252 PMCID: PMC11100612 DOI: 10.1101/2024.04.04.586240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor therapies have demonstrated potent efficacy in treating B cell malignancies, but have yet to meaningfully translate to solid tumors. Here, we utilize our pooled screening platform, CARPOOL, to expedite the discovery of CARs with anti-tumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×10 6 3 rd generation CARs targeting IL13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence upon repeated antigen challenge. Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation upon in vitro tumor rechallenge. It also showed significantly improved persistence and comparable antigen-specific tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma. Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.
Collapse
|
8
|
Sarchi PV, Gomez Cuautle D, Rossi A, Ramos AJ. Participation of the spleen in the neuroinflammation after pilocarpine-induced status epilepticus: implications for epileptogenesis and epilepsy. Clin Sci (Lond) 2024; 138:555-572. [PMID: 38602323 DOI: 10.1042/cs20231621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Collapse
Affiliation(s)
- Paula Virginia Sarchi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Dante Gomez Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| |
Collapse
|
9
|
Peplow PV. Reprogramming T cells as an emerging treatment to slow human age-related decline in health. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1384648. [PMID: 38666066 PMCID: PMC11043517 DOI: 10.3389/fmedt.2024.1384648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Tozuka T, Minegishi Y, Yamaguchi O, Watanabe K, Toi Y, Saito R, Nagai Y, Tamura Y, Shoji T, Odagiri H, Ebi N, Sakai K, Kanaji N, Izumi M, Soda S, Watanabe S, Morita S, Kobayashi K, Seike M. Immunotherapy With Radiotherapy for Brain Metastases in Patients With NSCLC: NEJ060. JTO Clin Res Rep 2024; 5:100655. [PMID: 38706978 PMCID: PMC11069015 DOI: 10.1016/j.jtocrr.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Immune checkpoint inhibitor (ICI)-based treatment has become standard treatment for patients with advanced NSCLC. We aimed to determine the survival benefit of upfront radiotherapy for brain metastases (BMs) in patients with NSCLC who received ICI alone (ICI-alone) or with chemotherapy (ICI-chemo). Methods This study included consecutive patients with NSCLC having BMs who received ICI alone or ICI-chemo at 50 institutes between February 2017 and September 2021. The presence of BMs was confirmed by imaging before treatment. Treatment outcomes were compared between patients who did and did not receive upfront radiotherapy for BMs. Potential confounding factors were adjusted between the groups through inverse probability treatment weighting (IPTW) analysis and overlap weighting (OW) analysis with propensity scores. Results Patients were grouped as ICI-alone cohort, 224 patients (upfront-radiotherapy group, 135 patients; no-radiotherapy group, 89 patients) and ICI-chemo cohort, 367 patients (upfront-radiotherapy group, 212 patients; no-radiotherapy group, 155 patients). In the ICI-alone cohort, the overall survival of the upfront-radiotherapy group was significantly longer than that of the no-radiotherapy group (IPTW-adjusted hazards ratio [HR] = 0.45 [95% confidence interval [CI]: 0.29-0.72], OW-adjusted HR = 0.52 [95% CI: 0.35-0.77]). In contrast, in the ICI-chemo cohort, the OS of the upfront-radiotherapy group was not significantly different from that of the no-radiotherapy group (IPTW-adjusted HR = 1.02 [95% CI: 0.70-1.48], OW-adjusted HR = 0.93 [95% CI: 0.65-1.33]). Conclusions Upfront radiotherapy for BMs was associated with longer overall survival in patients with NSCLC who received ICI alone; however, it did not exhibit survival benefits in the patients who received ICI-chemo.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuji Minegishi
- Department of Respiratory Medicine, Mitsui. Memorial Hospital, Tokyo, Japan
| | - Ou Yamaguchi
- Department of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kana Watanabe
- Department of Respiratory Medicine, Miyagi Cancer Center, Miyagi, Japan
| | - Yukihiro Toi
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Nagai
- Department of Respiratory Medicine, Jichi Medical University, Saitama Medical Center, Saitama, Japan
| | - Yosuke Tamura
- Department of Respiratory Medicine and Thoracic Oncology, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Tetsuaki Shoji
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Haruka Odagiri
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Noriyuki Ebi
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kosuke Sakai
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology, and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Makoto Izumi
- Department of Chemotherapy, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sayo Soda
- Department of Pulmonary and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunihiko Kobayashi
- Department of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
11
|
Kallal N, Hugues S, Garnier L. Regulation of autoimmune-mediated neuroinflammation by endothelial cells. Eur J Immunol 2024; 54:e2350482. [PMID: 38335316 DOI: 10.1002/eji.202350482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.
Collapse
Affiliation(s)
- Neil Kallal
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
12
|
Zeng J, Liao Z, Yang H, Wang Q, Wu Z, Hua F, Zhou Z. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiol Dis 2024; 193:106461. [PMID: 38437992 DOI: 10.1016/j.nbd.2024.106461] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with pathological features of β-amyloid (Aβ) and hyperphosphorylated tau protein accumulation in the brain, often accompanied by cognitive decline. So far, our understanding of the extent and role of adaptive immune responses in AD has been quite limited. T cells, as essential members of the adaptive immune system, exhibit quantitative and functional abnormalities in the brains of AD patients. Dysfunction of the blood-brain barrier (BBB) in AD is considered one of the factors leading to T cell infiltration. Moreover, the degree of neuronal loss in AD is correlated with the quantity of T cells. We first describe the differentiation and subset functions of peripheral T cells in AD patients and provide an overview of the key findings related to BBB dysfunction and how T cells infiltrate the brain parenchyma through the BBB. Furthermore, we emphasize the risk factors associated with AD, including Aβ, Tau protein, microglial cells, apolipoprotein E (ApoE), and neuroinflammation. We discuss their regulation of T cell activation and proliferation, as well as the connection between T cells, neurodegeneration, and cognitive decline. Understanding the innate immune response is crucial for providing comprehensive personalized therapeutic strategies for AD.
Collapse
Affiliation(s)
- Junjian Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiqiang Liao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Hanqin Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Qiong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiyong Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| |
Collapse
|
13
|
Denes A, Hansen CE, Oezorhan U, Figuerola S, de Vries HE, Sorokin L, Planas AM, Engelhardt B, Schwaninger M. Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathol 2024; 147:38. [PMID: 38347307 PMCID: PMC10861611 DOI: 10.1007/s00401-024-02695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.
Collapse
Affiliation(s)
- Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Uemit Oezorhan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sara Figuerola
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Munster, Germany
- Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, Germany.
| |
Collapse
|
14
|
Faure F, Yshii L, Renno T, Coste I, Joubert B, Desestret V, Liblau R, Honnorat J. A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:181-196. [PMID: 36729270 DOI: 10.1007/s12311-023-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.
Collapse
Affiliation(s)
- Fabrice Faure
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
| | - Lidia Yshii
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
- Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
| | - Toufic Renno
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Isabelle Coste
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Bastien Joubert
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Virginie Desestret
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France.
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France.
| |
Collapse
|
15
|
Wassmer SC, de Koning-Ward TF, Grau GER, Pai S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends Parasitol 2024; 40:28-44. [PMID: 38065791 PMCID: PMC11072469 DOI: 10.1016/j.pt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia; Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
16
|
Matsui Y, Miura Y. Advancements in Cell-Based Therapies for HIV Cure. Cells 2023; 13:64. [PMID: 38201268 PMCID: PMC10778010 DOI: 10.3390/cells13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV-1) has evolved since the establishment of combination antiretroviral therapy (ART) in the 1990s, providing HIV-infected individuals with approaches that suppress viral replication, prevent acquired immunodeficiency syndrome (AIDS) throughout their lifetime with continuous therapy, and halt HIV transmission. However, despite the success of these regimens, the global HIV epidemic persists, prompting a comprehensive exploration of potential strategies for an HIV cure. Here, we offer a consolidated overview of cell-based therapies for HIV-1, focusing on CAR-T cell approaches, gene editing, and immune modulation. Persistent challenges, including CAR-T cell susceptibility to HIV infection, stability, and viral reservoir control, underscore the need for continued research. This review synthesizes current knowledge, highlighting the potential of cellular therapies to address persistent challenges in the pursuit of an HIV cure.
Collapse
Affiliation(s)
- Yusuke Matsui
- Gladstone Institute of Virology, Gladstone Institutes, 1650 Owens St., San Francisco, CA 941578, USA
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
17
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Vizcarra EA, Ulu A, Landrith TA, Qiu X, Godzik A, Wilson EH. Group 1 metabotropic glutamate receptor expression defines a T cell memory population during chronic Toxoplasma infection that enhances IFN-gamma and perforin production in the CNS. Brain Behav Immun 2023; 114:131-143. [PMID: 37604212 DOI: 10.1016/j.bbi.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.
Collapse
Affiliation(s)
- Edward A Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xinru Qiu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
19
|
Amin J, Gee C, Stowell K, Coulthard D, Boche D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023; 12:2283. [PMID: 37759503 PMCID: PMC10528562 DOI: 10.3390/cells12182283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia. People with DLB have an inferior prognosis compared to Alzheimer's disease (AD), but the diseases overlap in their neuropathology and clinical syndrome. It is imperative that we enhance our understanding of the aetiology and pathogenesis of DLB. The impact of peripheral inflammation on the brain in dementia has been increasingly explored in recent years, with T lymphocyte recruitment into brain parenchyma identified in AD and Parkinson's disease. There is now a growing range of literature emerging on the potential role of innate and adaptive immune cells in DLB, including T lymphocytes. In this review, we examine the profile of T lymphocytes in DLB, focusing on studies of post-mortem brain tissue, cerebrospinal fluid, and the blood compartment. We present an integrated viewpoint on the results of these studies by proposing how changes to the T lymphocyte profile in the brain and periphery may relate to each other. Improving our understanding of T lymphocytes in DLB has the potential to guide the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Claire Gee
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Kiran Stowell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Daisy Coulthard
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
20
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Gonzalez-Fierro C, Fonte C, Dufourd E, Cazaentre V, Aydin S, Engelhardt B, Caspi RR, Xu B, Martin-Blondel G, Spicer JA, Trapani JA, Bauer J, Liblau RS, Bost C. Effects of a Small-Molecule Perforin Inhibitor in a Mouse Model of CD8 T Cell-Mediated Neuroinflammation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200117. [PMID: 37080596 PMCID: PMC10119812 DOI: 10.1212/nxi.0000000000200117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.
Collapse
Affiliation(s)
- Carmen Gonzalez-Fierro
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Coralie Fonte
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Eloïse Dufourd
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Vincent Cazaentre
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Sidar Aydin
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Britta Engelhardt
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Rachel R Caspi
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Biying Xu
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Guillaume Martin-Blondel
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Julie A Spicer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Joseph A Trapani
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France.
| | - Chloé Bost
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| |
Collapse
|
22
|
Aydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, Bouillet E, Blanchard N, Liblau R, Körbelin J, Schwaninger M, Johnson AJ, Schenk M, Deutsch U, Merkler D, Engelhardt B. Antigen recognition detains CD8 + T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun 2023; 14:3106. [PMID: 37253744 PMCID: PMC10229608 DOI: 10.1038/s41467-023-38703-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions, and antigen (Ag) presentation at the BBB has been proposed to promote CD8+ T cell entry into the CNS. Here, we show that brain endothelial cells process and cross-present Ag, leading to effector CD8+ T cell differentiation. Under physiological flow in vitro, endothelial Ag presentation prevented CD8+ T cell crawling and diapedesis resulting in brain endothelial cell apoptosis and BBB breakdown. Brain endothelial Ag presentation in vivo was limited due to Ag uptake by CNS-resident macrophages but still reduced motility of Ag-specific CD8+ T cells within CNS microvessels. MHC class I-restricted Ag presentation at the BBB during neuroinflammation thus prohibits CD8+ T cell entry into the CNS and triggers CD8+ T cell-mediated focal BBB breakdown.
Collapse
Affiliation(s)
- Sidar Aydin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Javier Pareja
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nicolas Blanchard
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Aaron J Johnson
- Mayo Clinic Graduate School of Biomedical Sciences, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
23
|
Calvillo-Robledo A, Ramírez-Farías C, Valdez-Urias F, Huerta-Carreón EP, Quintanar-Stephano A. Arginine vasopressin hormone receptor antagonists in experimental autoimmune encephalomyelitis rodent models: A new approach for human multiple sclerosis treatment. Front Neurosci 2023; 17:1138627. [PMID: 36998727 PMCID: PMC10043225 DOI: 10.3389/fnins.2023.1138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease that affects the central nervous system. MS is a heterogeneous disorder of multiple factors that are mainly associated with the immune system including the breakdown of the blood-brain and spinal cord barriers induced by T cells, B cells, antigen presenting cells, and immune components such as chemokines and pro-inflammatory cytokines. The incidence of MS has been increasing worldwide recently, and most therapies related to its treatment are associated with the development of several secondary effects, such as headaches, hepatotoxicity, leukopenia, and some types of cancer; therefore, the search for an effective treatment is ongoing. The use of animal models of MS continues to be an important option for extrapolating new treatments. Experimental autoimmune encephalomyelitis (EAE) replicates the several pathophysiological features of MS development and clinical signs, to obtain a potential treatment for MS in humans and improve the disease prognosis. Currently, the exploration of neuro-immune-endocrine interactions represents a highlight of interest in the treatment of immune disorders. The arginine vasopressin hormone (AVP) is involved in the increase in blood−brain barrier permeability, inducing the development and aggressiveness of the disease in the EAE model, whereas its deficiency improves the clinical signs of the disease. Therefore, this present review discussed on the use of conivaptan a blocker of AVP receptors type 1a and type 2 (V1a and V2 AVP) in the modulation of immune response without completely depleting its activity, minimizing the adverse effects associated with the conventional therapies becoming a potential therapeutic target in the treatment of patients with multiple sclerosis.
Collapse
|
24
|
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, Chand D, Stupp R, Sonabend AM. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest 2023; 133:e163447. [PMID: 36647828 PMCID: PMC9843050 DOI: 10.1172/jci163447] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.
Collapse
Affiliation(s)
- Víctor A. Arrieta
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Program of Combined Studies in Medicine (PECEM), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology and
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dhan Chand
- Agenus Bio, Lexington, Massachusetts, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
25
|
Del Baldo G, Del Bufalo F, Pinacchio C, Carai A, Quintarelli C, De Angelis B, Merli P, Cacchione A, Locatelli F, Mastronuzzi A. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Front Immunol 2023; 14:1142597. [PMID: 37025994 PMCID: PMC10072260 DOI: 10.3389/fimmu.2023.1142597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Claudia Pinacchio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
26
|
Princiotta Cariddi L, Mauri M, Cosentino M, Versino M, Marino F. Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. Int J Mol Sci 2022; 23:13008. [PMID: 36361799 PMCID: PMC9658357 DOI: 10.3390/ijms232113008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's Disease is the most common cause in the world of progressive cognitive decline. Although many modifiable and non-modifiable risk factors have been proposed, in recent years, neuroinflammation has been hypothesized to be an important contributing factor of Alzheimer's Disease pathogenesis. Neuroinflammation can occur through the combined action of the Central Nervous System resident immune cells and adaptive peripheral immune system. In the past years, immunotherapies for neurodegenerative diseases have focused wrongly on targeting protein aggregates Aβ plaques and NFT treatment. The role of both innate and adaptive immune cells has not been fully clarified, but several data suggest that immune system dysregulation plays a key role in neuroinflammation. Recent studies have focused especially on the role of the adaptive immune system and have shown that inflammatory markers are characterized by increased CD4+ Teff cells' activities and reduced circulating CD4+ Treg cells. In this review, we discuss the key role of both innate and adaptive immune systems in the degeneration and regeneration mechanisms in the pathogenesis of Alzheimer's Disease, with a focus on how the crosstalk between these two systems is able to sustain brain homeostasis or shift it to a neurodegenerative condition.
Collapse
Affiliation(s)
- Lucia Princiotta Cariddi
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
| | - Marco Mauri
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
27
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
28
|
Zheng L, Guo Y, Zhai X, Zhang Y, Chen W, Zhu Z, Xuan W, Li P. Perivascular macrophages in the CNS: From health to neurovascular diseases. CNS Neurosci Ther 2022; 28:1908-1920. [PMID: 36128654 PMCID: PMC9627394 DOI: 10.1111/cns.13954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Brain perivascular macrophages (PVMs) are attracting increasing attention as this emerging cell population in the brain has multifaced roles in supporting the central nervous system structure, brain development, and maintaining physiological functions. They also widely participate in neurological diseases such as neurodegeneration and ischemic stroke. Moreover, PVMs have been reported to have both beneficial and detrimental effects under different pathological contexts. Advanced research technologies allowed the further in-depth study of PVMs and revealed novel concepts in their origins, differentiation, and regulatory mechanisms. Deepened understanding of the roles of PVMs in different brain pathological conditions can reveal novel phenotypic changes and regulatory signaling, which might pave the way for the development of novel treatment strategies targeting PVMs.
Collapse
Affiliation(s)
- Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xuan
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Ibraheem Y, Bayarsaikhan G, Inoue SI. Host immunity to Plasmodium infection: Contribution of Plasmodium berghei to our understanding of T cell-related immune response to blood-stage malaria. Parasitol Int 2022; 92:102646. [PMID: 35998816 DOI: 10.1016/j.parint.2022.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Yarob Ibraheem
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan.
| |
Collapse
|
30
|
Aschman T, Mothes R, Heppner FL, Radbruch H. What SARS-CoV-2 does to our brains. Immunity 2022; 55:1159-1172. [PMID: 35777361 PMCID: PMC9212726 DOI: 10.1016/j.immuni.2022.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body’s local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host’s immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.
Collapse
|
31
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
32
|
Enhancement of CD70-specific CAR T treatment by IFN-γ released from oHSV-1-infected glioblastoma. Cancer Immunol Immunother 2022; 71:2433-2448. [PMID: 35249119 DOI: 10.1007/s00262-022-03172-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Even with progressive combination treatments, the prognosis of patients with glioblastoma (GBM) remains extremely poor. OV is one of the new promising therapeutic strategies to treat human GBM. OVs stimulate immune cells to release cytokines such as IFN-γ during oncolysis, further improve tumor microenvironment (TME) and enhance therapeutic efficacy. IFN-γ plays vital role in the apoptosis of tumor cells and recruitment of tumor-infiltrating T cells. We hypothesized that oncolytic herpes simplex virus-1 (oHSV-1) enhanced the antitumor efficacy of novel CD70-specific chimeric antigen receptor (CAR) T cells by T cell infiltration and IFN-γ release. In this study, oHSV-1 has the potential to stimulate IFN-γ secretion of tumor cells rather than T cell secretion and lead to an increase of T cell activity, as well as CD70-specific CAR T cells can specifically recognize and kill tumor cells in vitro. Specifically, combinational therapy with CD70-specific CAR T and oHSV-1 promotes tumor degradation by enhancing pro-inflammatory circumstances and reducing anti-inflammatory factors in vitro. More importantly, combined therapy generated potent antitumor efficacy, increased the proportion of T cells and natural killer cells in TME, and reduced regulatory T cells and transformed growth factor-β1 expression in orthotopic xenotransplanted animal model of GBM. In summary, we reveal that oHSV-1 enhance the therapeutic efficacy of CD70-spefific CAR T cells by intratumoral T cell infiltration and IFN-γ release, supporting the use of CAR T therapy in GBM therapeutic strategies.
Collapse
|
33
|
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog 2022; 61:153-164. [PMID: 34570920 PMCID: PMC9899420 DOI: 10.1002/mc.23354] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Presentation of tumor antigens is a critical step in producing a robust antitumor immune response. Classically tumor antigens are thought to be presented to both CD8 and CD4 T cells by professional antigen-presenting cells (pAPCs) like dendritic cells using major histocompatibility complexes (MHC) I and II. But recent evidence suggests that in the tumor microenvironment (TME) cells other than pAPCs are capable of presenting tumor antigens on both MHC I and II. The evidence currently available on tumor antigen presentation by epithelial cells, vascular endothelial cells (VECs), fibroblasts, and cancer cells is reviewed herein. We refer to these cell types in the TME as "amateur" APCs (aAPCs). These aAPCs greatly outnumber pAPCs in the TME and could, potentially, play a significant role in priming an antitumor immune response. This new evidence supports a different perspective on antigen presentation and suggests new approaches that can be taken in designing immunotherapies to increase T cell priming.
Collapse
Affiliation(s)
- Laurel B. Darragh
- Department of Immunology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Jansen JA, Omuro A, Lucca LE. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies. Curr Opin Neurol 2021; 34:827-833. [PMID: 34569985 PMCID: PMC8595795 DOI: 10.1097/wco.0000000000000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Immunotherapies such as immune checkpoint blockade have revolutionized cancer treatment, but current approaches have failed to improve outcomes in glioblastoma and other brain tumours. T cell dysfunction has emerged as one of the major barriers for the development of central nervous system (CNS)-directed immunotherapy. Here, we explore the unique requirements that T cells must fulfil to ensure immune surveillance in the CNS, and we analyse T cell dysfunction in glioblastoma (GBM) through the prism of CNS-resident immune responses. RECENT FINDINGS Using comprehensive and unbiased techniques such as single-cell RNA sequencing, multiple studies have dissected the transcriptional state of CNS-resident T cells that patrol the homeostatic brain. A similar approach has revealed that in GBM, tumour-infiltrating T cells lack the hallmarks of antigen-driven exhaustion typical of melanoma and other solid tumours, suggesting the need for better presentation of tumour-derived antigens. Consistently, in a mouse model of GBM, increasing lymphatic drainage to the cervical lymph node was sufficient to promote tumour rejection. SUMMARY For the success of future immunotherapy strategies, further work needs to explore the natural history of dysfunction in GBM tumour-infiltrating T cells, establish whether these originate from CNS-resident T cells and how they can be manipulated therapeutically.
Collapse
Affiliation(s)
- Josephina A. Jansen
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| | | | - Liliana E. Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| |
Collapse
|
35
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
36
|
Rivero-Hinojosa S, Grant M, Panigrahi A, Zhang H, Caisova V, Bollard CM, Rood BR. Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nat Commun 2021; 12:6689. [PMID: 34795224 PMCID: PMC8602676 DOI: 10.1038/s41467-021-26936-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Neoantigen discovery in pediatric brain tumors is hampered by their low mutational burden and scant tissue availability. Here we develop a proteogenomic approach combining tumor DNA/RNA sequencing and mass spectrometry proteomics to identify tumor-restricted (neoantigen) peptides arising from multiple genomic aberrations to generate a highly target-specific, autologous, personalized T cell immunotherapy. Our data indicate that aberrant splice junctions are the primary source of neoantigens in medulloblastoma, a common pediatric brain tumor. Proteogenomically identified tumor-specific peptides are immunogenic and generate MHC II-based T cell responses. Moreover, polyclonal and polyfunctional T cells specific for tumor-specific peptides effectively eliminate tumor cells in vitro. Targeting tumor-specific antigens obviates the issue of central immune tolerance while potentially providing a safety margin favoring combination with other immune-activating therapies. These findings demonstrate the proteogenomic discovery of immunogenic tumor-specific peptides and lay the groundwork for personalized targeted T cell therapies for children with brain tumors. Targeting tumor-associated antigens in paediatric medulloblastomas (MB) is challenging due to their low mutational burden. Here, the authors develop a sensitive proteogenomic approach to identify tumour specific neoantigens, which may enable personalised T cell immunotherapy in paediatric MB.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Aswini Panigrahi
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Huizhen Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Veronika Caisova
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,George Washington University Cancer Center, Washington, DC, USA
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA. .,George Washington University Cancer Center, Washington, DC, USA.
| |
Collapse
|
37
|
Velásquez E, Szeitz B, Gil J, Rodriguez J, Palkovits M, Renner É, Hortobágyi T, Döme P, Nogueira FC, Marko-Varga G, Domont GB, Rezeli M. Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer's Disease. Front Immunol 2021; 12:750665. [PMID: 34712240 PMCID: PMC8546208 DOI: 10.3389/fimmu.2021.750665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173.
Collapse
Affiliation(s)
- Erika Velásquez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Jeovanis Gil
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jimmy Rodriguez
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Döme
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Fábio Cs Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Proteomics, Laboratório de Apoio ao Desenvolvimento Tecnológico (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - György Marko-Varga
- Division of Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melinda Rezeli
- Division of Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
38
|
The Neuroinflammatory Role of Pericytes in Epilepsy. Biomedicines 2021; 9:biomedicines9070759. [PMID: 34209145 PMCID: PMC8301485 DOI: 10.3390/biomedicines9070759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pericytes are a component of the blood-brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.
Collapse
|
39
|
Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17:333-348. [PMID: 33927394 DOI: 10.1038/s41582-021-00487-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
The prevailing motor neuron-centric view of amyotrophic lateral sclerosis (ALS) pathogenesis could be an important factor in the failure to identify disease-modifying therapy for this neurodegenerative disorder. Non-neuronal cells have crucial homeostatic functions within the CNS and evidence of involvement of these cells in the pathophysiology of several neurodegenerative disorders, including ALS, is accumulating. Microglia and astrocytes, in crosstalk with peripheral immune cells, can exert both neuroprotective and adverse effects, resulting in a highly nuanced range of neuronal and non-neuronal cell interactions. This Review provides an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of ALS and the emerging potential of non-neuronal cell biomarkers to advance therapeutic development.
Collapse
|
40
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Tröscher AR, Sakaraki E, Mair KM, Köck U, Racz A, Borger V, Cloppenborg T, Becker AJ, Bien CG, Bauer J. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 2021; 62:1343-1353. [PMID: 33954995 DOI: 10.1111/epi.16914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (MTLE) is a drug-resistant focal epilepsy that can be caused by a broad spectrum of different inciting events, including tumors, febrile seizures, and viral infections. In human epilepsy surgical resections as well as in animal models, an involvement of the adaptive immune system was observed. We here analyzed the presence of T cells in various subgroups of MTLE. We aimed to answer the question of how much inflammation was present and whether the presence of T cells was associated with seizures or associated with hippocampal neurodegeneration. METHODS We quantified the numbers of CD3+ T cells and CD8+ cytotoxic T cells in the hippocampus of patients with gangliogliomas (GGs; intrahippocampal and extrahippocampal, with and without sclerosis), febrile seizures, and postinfectious encephalitic epilepsy and compared this with Rasmussen encephalitis, Alzheimer disease, and normal controls. RESULTS We could show that T cell numbers were significantly elevated in MTLE compared to healthy controls. CD3+ as well as CD8+ T cell numbers, however, varied highly among MTLE subgroups. By comparing GG patients with and without hippocampal sclerosis (HS), we were able to show that T-cell numbers were increased in extrahippocampal GG patients with hippocampal neuronal loss and HS, whereas extrahippocampal GG cases without hippocampal neuronal loss (i.e., absence of HS) did not differ from healthy controls. Importantly, T cell numbers in MTLE correlated with the degree of neuronal loss, whereas no correlation with seizure frequency or disease duration was found. Finally, we found that in nearly all MTLE groups, T cell numbers remained elevated even years after the inciting event. SIGNIFICANCE We here provide a detailed histopathological investigation of the involvement of T cells in various subgroups of MTLE, which suggests that T cell influx correlates to neuronal loss rather than seizure activity.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eirini Sakaraki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katharina M Mair
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Fakhoury KR, Ney DE, Ormond DR, Rusthoven CG. Immunotherapy and radiation for high-grade glioma: a narrative review. Transl Cancer Res 2021; 10:2537-2570. [PMID: 35116570 PMCID: PMC8797698 DOI: 10.21037/tcr-20-1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma and other high-grade gliomas (HGGs) are the most common and deadly primary brain tumors. Due to recent advances in immunotherapy and improved clinical outcomes in other disease sites, the study of immunotherapy in HGG has increased significantly. Herein, we summarize and evaluate existing evidence and ongoing clinical trials investigating the use of immunotherapy in the treatment of HGG, including therapeutic vaccination, immune checkpoint inhibition, adoptive lymphocyte transfer, and combinatorial approaches utilizing radiation and multiple modalities of immunotherapy. Special attention is given to the mechanisms by which radiation may improve immunogenicity in HGG, why this motivates the study of radiation in combination with immunotherapy, and how to determine optimal dosing and scheduling of radiation. Though larger randomized controlled trials have not consistently shown improvements in clinical outcomes, this area of research is still in its early stages and a number of important lessons can be taken away from the studies that have been completed to date. Many studies found a subset of patients who experienced durable responses, and analysis of their immune cells and tumor cells can be used to identify biomarkers that predict therapeutic response, as well as additional glioma-specific targets that can enhance therapeutic efficacy in a challenging tumor type.
Collapse
Affiliation(s)
- Kareem R. Fakhoury
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Douglas E. Ney
- Department of Neurology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - D. Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
43
|
Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094395. [PMID: 33922369 PMCID: PMC8122797 DOI: 10.3390/ijms22094395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.
Collapse
|
44
|
Qin J, Lovelace MD, Mitchell AJ, de Koning-Ward T, Grau GE, Pai S. Perivascular macrophages create an intravascular niche for CD8 + T cell localisation prior to the onset of fatal experimental cerebral malaria. Clin Transl Immunology 2021; 10:e1273. [PMID: 33854773 PMCID: PMC8026342 DOI: 10.1002/cti2.1273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when Plasmodium berghei ANKA (PbA)‐infected mice show only minor clinical signs. Methods A 2‐photon intravital microscopy (2P‐IVM) brain imaging model was used to study the spatiotemporal context of early immunological events in situ during ECM. Results Early in the disease course, antigen‐specific CD8+ T cells came in contact and arrested on the endothelium of post‐capillary venules. CD8+ T cells typically adhered adjacent to, or were in the near vicinity of, perivascular macrophages (PVMs) that line post‐capillary venules. Closer examination revealed that CD8+ T cells crawled along the inner vessel wall towards PVMs that lay on the abluminal side of large post‐capillary venules. ‘Activity hotspots’ in large post‐capillary venules were characterised by T‐cell localisation, activated morphology and clustering of PVM, increased abutting of post‐capillary venules by PVM and augmented monocyte accumulation. In the later stages of infection, when mice exhibited neurological signs, intravascular CD8+ T cells increased in number and changed their behaviour, actively crawling along the endothelium and displaying frequent, short‐term interactions with the inner vessel wall at hotspots. Conclusion Our study suggests an active interaction between PVM and CD8+ T cells occurs across the blood–brain barrier (BBB) in early ECM, which may be the initiating event in the inflammatory cascade leading to BBB alteration and neuropathology.
Collapse
Affiliation(s)
| | - Michael D Lovelace
- Applied Neurosciences Program Peter Duncan Neurosciences Research Unit St Vincent's Centre for Applied Medical Research Sydney NSW Australia.,UNSW St Vincent's Clinical School Faculty of Medicine UNSW Sydney Sydney NSW Australia
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform Department of Chemical Engineering University of Melbourne Parkville VIC Australia
| | | | - Georges Er Grau
- Vascular Immunology Unit Discipline of Pathology School of Medical Sciences University of Sydney Camperdown NSW Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia.,Faculty of Medicine and Health University of Sydney Sydney NSW Australia
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This review seeks to inform oncology clinicians and researchers about the development of novel immunotherapies for the treatment of glioblastoma. An enumeration of ongoing and recently completed clinical trials will be discussed with special attention given to current technologies implemented to overcome central nervous system-specific challenges including barriers to the peripheral immune system, impaired antigen presentation, and T cell dysfunction. RECENT FINDINGS The success of immunotherapy in other solid cancers has served as a catalyst to explore its application in glioblastoma, which has limited response to other treatments. Recent developments include multi-antigen vaccines that seek to overcome the heterogeneity of glioblastoma, as well as immune checkpoint inhibitors, which could amplify the adaptive immune response and may have promise in combinatorial approaches. Additionally, oncolytic and retroviruses have opened the door to a plethora of combinatorial approaches aiming to leverage their immunogenicity and/or ability to carry therapeutic transgenes. Treatment of glioblastoma remains a serious challenge both with regard to immune-based as well as other therapeutic strategies. The disease has proven to be highly resistant to treatment due to a combination of tumor heterogeneity, adaptive expansion of resistant cellular subclones, evasion of immune surveillance, and manipulation of various signaling pathways involved in tumor progression and immune response. Immunotherapeutics that are efficacious in other cancer types have unfortunately not enjoyed the same success in glioblastoma, illustrating the challenging and complex nature of this disease and demonstrating the need for development of multimodal treatment regimens utilizing the synergistic qualities of immune-mediated therapies.
Collapse
Affiliation(s)
- Abigail L. Mende
- Department of Neurological Surgery, University of California, Diller Family Cancer Research Building HD 472, Box 520, 1450 3rd Street San Francisco, Helen, CA 94158 USA
| | - Jessica D. Schulte
- Department of Neurological Surgery, University of California, Diller Family Cancer Research Building HD 472, Box 520, 1450 3rd Street San Francisco, Helen, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, Diller Family Cancer Research Building HD 472, Box 520, 1450 3rd Street San Francisco, Helen, CA 94158 USA
- The Parker Institute for Cancer Immunotherapy, Diller Family Cancer Research Building HD 472, Box 520, 1450 3rd Street San Francisco, Helen, CA 94158 USA
- Cancer Immunotherapy Program, University of California, San Francisco, CA USA
| | - Jennifer L. Clarke
- Department of Neurological Surgery, University of California, Diller Family Cancer Research Building HD 472, Box 520, 1450 3rd Street San Francisco, Helen, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA USA
- Department of Clinical Neurology and Neurological Surgery, University of California San Francisco, Box 0372, 400 Parnassus Avenue, A895F, San Francisco, CA 94143-0372 USA
| |
Collapse
|
46
|
Jhun M, Panwar A, Cordner R, Irvin DK, Veiga L, Yeager N, Pechnick RN, Schubloom H, Black KL, Wheeler CJ. CD103 Deficiency Promotes Autism (ASD) and Attention-Deficit Hyperactivity Disorder (ADHD) Behavioral Spectra and Reduces Age-Related Cognitive Decline. Front Neurol 2021; 11:557269. [PMID: 33424735 PMCID: PMC7786306 DOI: 10.3389/fneur.2020.557269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.
Collapse
Affiliation(s)
- Michelle Jhun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Akanksha Panwar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ryan Cordner
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dwain K Irvin
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,StemVax Therapeutics, Chesterland, OH, United States
| | - Lucia Veiga
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Nicole Yeager
- Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robert N Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hanna Schubloom
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Christopher J Wheeler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Society for Brain Mapping & Therapeutics, Brain Mapping Foundation, Santa Monica, CA, United States.,T-Neuro Pharma, Inc., Albuquerque, NM, United States
| |
Collapse
|
47
|
Melosky B, Cheema PK, Brade A, McLeod D, Liu G, Price PW, Jao K, Schellenberg DD, Juergens R, Leighl N, Chu Q. Prolonging Survival: The Role of Immune Checkpoint Inhibitors in the Treatment of Extensive-Stage Small Cell Lung Cancer. Oncologist 2020; 25:981-992. [PMID: 32860288 PMCID: PMC7648366 DOI: 10.1634/theoncologist.2020-0193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) represents approximately 15% of lung cancers, and approximately 70% are diagnosed as extensive-stage SCLC (ES-SCLC). Although ES-SCLC is highly responsive to chemotherapy, patients typically progress rapidly, and there is an urgent need for new therapies. Immune checkpoint inhibitors (ICIs) have recently been investigated in SCLC, and this review provides guidance on the use of these agents in ES-SCLC based on phase III evidence. METHODS Published and presented literature on phase III data addressing use of ICIs in ES-SCLC was identified using the key search terms "small cell lung cancer" AND "checkpoint inhibitors" (OR respective aliases). Directed searches of eligible studies were periodically performed to ensure capture of the most recent data. RESULTS Six phase III trials were identified, with four assessing the benefits of ICIs plus chemotherapy first-line, one evaluating ICIs as first-line therapy maintenance, and one assessing ICI monotherapy after progression on platinum-based chemotherapy. The addition of ipilimumab or tremelimumab to first-line treatment or as first-line maintenance did not improve survival. Two out of three studies combining PD-1/PD-L1 inhibitors with first-line platinum-based chemotherapy demonstrated significant long-lasting survival benefits and improved quality of life with no unexpected safety concerns. PD-1/PD-L1 inhibitors as first-line maintenance or in later lines of therapy did not improve survival. Biomarker research is ongoing as well as research into the role of ICIs in combination with radiation therapy in limited-stage SCLC. CONCLUSION The addition of atezolizumab or durvalumab to first-line platinum-based chemotherapy for ES-SCLC prolongs survival and improves quality of life. IMPLICATIONS FOR PRACTICE Platinum-based chemotherapy has been standard of care for extensive-stage small cell lung cancer (ES-SCLC) for more than a decade. Six recent phase III trials investigating immune checkpoint inhibitors (ICIs) have clarified the role of these agents in this setting. Although ICIs were assessed first-line, as first-line maintenance, and in later lines of therapy, the additions of atezolizumab or durvalumab to first-line platinum-based chemotherapy were the only interventions that significantly improved overall survival and increased quality of life. These combinations should therefore be considered standard therapy for first-line ES-SCLC. Biomarker research and investigations into the role of ICIs for limited-stage disease are ongoing.
Collapse
Affiliation(s)
- Barbara Melosky
- BC Cancer, Vancouver Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Parneet K. Cheema
- William Osler Health System, University of Toronto, Brampton and TorontoOntarioCanada
| | - Anthony Brade
- Trillium Health Partners, University of TorontoMississaugaOntarioCanada
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, University of TorontoTorontoOntarioCanada
| | | | - Kevin Jao
- Hôpital Sacré‐Cœur, Université de MontréalMontrealQuebecCanada
| | - Devin D. Schellenberg
- BC Cancer, Surrey Centre, University of British ColumbiaSurreyBritish ColumbiaCanada
| | - Rosalyn Juergens
- Juravinski Cancer Centre, McMaster UniversityHamiltonOntarioCanada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University of TorontoTorontoOntarioCanada
| | - Quincy Chu
- Cross Cancer Institute, University of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
48
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
Shi Q, Carman CV, Chen Y, Sage PT, Xue F, Liang XM, Gilbert GE. Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Adv 2020; 4:2272-2285. [PMID: 32453842 PMCID: PMC7252558 DOI: 10.1182/bloodadvances.2020001468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of inhibitory antibodies (inhibitors) in ∼30% of patients. Because endothelial cells (ECs) are the primary physiologic expression site, we probed the therapeutic potential of genetically restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ transduction (T2F8LV) or embryonic stem cell-mediated transgenesis (T2F8Tg). Both endothelial expression approaches were associated with a strikingly robust immune response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII immune response upon FVIII immunization. A single injection of FVIII with incomplete Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to undetectable levels. Because ECs are putative major histocompatibility complex class II (MHCII)-expressing nonhematopoietic, "semiprofessional" antigen-presenting cells (APCs), we asked whether they might directly influence the FVIII immune responses. Imaging and flow cytometric studies confirmed that both murine and human ECs express MHCII and efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs preconditioned ex vivo with inflammatory cytokines could functionally present exogenously taken-up FVIII to previously primed CD4+/CXCR5+ T follicular helper (Tfh) cells to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of inhibitors as auxiliary APCs for Tfh cells.
Collapse
Affiliation(s)
- Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Children's Research Institute, Children's Wisconsin, Milwaukee, WI
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI
| | - Christopher V Carman
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Yingyu Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Peter T Sage
- Renal Division, Transplant Research Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Feng Xue
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Xin M Liang
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| | - Gary E Gilbert
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci Rep 2020; 10:7979. [PMID: 32409672 PMCID: PMC7224383 DOI: 10.1038/s41598-020-64823-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Persistent inflammation has been identified as a contributor to aging-related neurodegenerative disorders such as Alzheimer's disease. Normal aging, in the absence of dementia, also results in gradual cognitive decline and is thought to arise, in part, because of a chronic pro-inflammatory state in the brain. Toxoplasma gondii is an obligate intracellular parasite that establishes a persistent, asymptomatic infection of the central nervous system (CNS) accompanied by a pro-inflammatory immune response in many of its hosts, including humans and rodents. Several studies have suggested that the inflammation generated by certain strains of T. gondii infection can be neuroprotective in the context of a secondary insult like beta-amyloid accumulation or stroke. Given these neuroprotective studies, we hypothesized that a prolonged infection with T. gondii may protect against age-associated decline in cognition. To test this hypothesis, we infected young adult mice with either of two genetically distinct, persistent T. gondii strains (Prugniaud/type II/haplogroup 2 and CEP/type III/haplogroup 3) and monitored mouse weight, survival, and learning and memory over the ensuing 20 months. At the end of the study, we evaluated CNS inflammation and parasite burden in the surviving mice. We found that parasite infection had no impact on age-associated decline in learning and memory and that by 20 months post infection, in the surviving mice, we found no evidence of parasite DNA, cysts, or inflammation in the CNS. In addition, we found that mice infected with type III parasites, which are supposed to be less virulent than the type II parasites, had a lower rate of long-term survival. Collectively, these data indicate that T. gondii may not cause a life-long CNS infection. Rather, parasites are likely slowly cleared from the CNS and infection and parasite clearance neither positively nor negatively impacts learning and memory in aging.
Collapse
|