1
|
Lu J, Xue X, Wang H, Hao Y, Yang Q. Notch1 activation and inhibition in T cell acute lymphoblastic leukemia subtypes. Exp Hematol 2025:104771. [PMID: 40348327 DOI: 10.1016/j.exphem.2025.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy caused by the accumulation of genomic lesions that affect the development of T cells. Notch1 signaling controls the expression of numerous T-lineage genes, thus playing essential parts in T cell differentiation. T-ALL can be classified into two subtypes according to the immunophenotypic and genetic makeup: early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and non-ETP ALL. The relationship between constitutive activation of Notch1 signaling and non-ETP ALL has been thoroughly studied, while how Notch1 signaling influences ETP ALL still remains unclear. Targeting Notch1 signaling is a promising treatment in T-ALL, and γ-secretase inhibitors (GSIs), which prevents Notch1 signaling from being activated, shows a degree of antineoplastic activity in previous clinical development. But these agents just have satisfactory effects in non-ETP ALL, further study should be carried out to investigate fitting targeting drugs.
Collapse
Affiliation(s)
- Jiawen Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- National Experimental Teaching Demonstration Center for Life Science and Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Translational Medicine Research Center, Medical Innovation Research Division and the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Hao
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Xian W, Chen Y, Yu S, Ye Z, Zhang Y, Yao D. Ubiquitination and ALL: Identifying FBXO8 as a prognostic biomarker and therapeutic target. Front Immunol 2025; 16:1554231. [PMID: 40375984 PMCID: PMC12078231 DOI: 10.3389/fimmu.2025.1554231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a hematological malignancy with high survival rates in children; however, certain high-risk subtypes pose significant challenges due to poor prognosis and frequent relapse. Ubiquitination, a post-translational modification critical for protein regulation, has been implicated in various cancer processes, yet its role in ALL remains poorly understood. Methods Using the TARGET database, we identified molecular subtypes of ALL through consensus clustering based on ubiquitination-related genes (URGs). A nine-gene prognostic model was constructed using LASSO and Cox regression analyses. The immunological landscape variations between high- and low-risk groups were assessed using immune cell infiltration analysis and functional enrichment studies. FBXO8 was further explored through functional experiments in vitro and in vivo. Results Four ALL subtypes with distinct survival outcomes were identified, with Cluster D representing the high-risk group. Patients were divided into high- and low-risk groups using the nine-gene predictive model, and FBXO8 was found to be a significant protective factor. According to immune landscape analysis, high-risk groups had an immunosuppressive microenvironment that was correlated with FBXO8 expression and marked by an increase in regulatory T cells and M2 macrophage infiltration. In vitro functional assays, FBXO8 knockdown notably enhanced cell proliferation and suppressed apoptosis in ALL cells. In FBXO8-knockdown mouse models, in vivo investigations demonstrated increased tumor growth, reduced apoptosis, and diminished survival rates. Conclusion This work identifies FBXO8 as a crucial therapeutic target and prognostic biomarker for ALL. Knockdown of FBXO8 led to the suppression of apoptosis and increased tumor growth, suggesting potential therapeutic applications. These results highlight the need for more investigation into ubiquitination-related pathways and offer important new insights into high-risk ALL.
Collapse
Affiliation(s)
- Wei Xian
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinting Chen
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuiqing Yu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhitao Ye
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Pediatric, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Danlin Yao
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ibrahim NK, Schreek S, Cinar B, Stasche AS, Lee SH, Zeug A, Dolgner T, Niessen J, Ponimaskin E, Shcherbata H, Fehlhaber B, Bourquin JP, Bornhauser B, Stanulla M, Pich A, Gutierrez A, Hinze L. SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response. Cell Rep 2025; 44:115434. [PMID: 40131931 PMCID: PMC12094083 DOI: 10.1016/j.celrep.2025.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Adaptation to changes in amino acid availability is crucial for cellular homeostasis, which requires an intricate orchestration of involved pathways. Some cancer cells can maintain cellular fitness upon amino acid shortage, which has a poorly understood mechanistic basis. Leveraging a genome-wide CRISPR-Cas9 screen, we find that superoxide dismutase 2 (SOD2) has a previously unrecognized dismutase-independent function. We demonstrate that SOD2 regulates global proteasomal protein degradation and promotes cell survival under conditions of metabolic stress in malignant cells through the E3 ubiquitin ligases UBR1 and UBR2. Consequently, inhibition of SOD2-mediated protein degradation highly sensitizes different cancer entities, including patient-derived xenografts, to amino acid depletion, highlighting the pathophysiological relevance of our findings. Our study reveals that SOD2 is a regulator of proteasomal protein breakdown upon starvation, which serves as an independent catabolic source of amino acids, a mechanism co-opted by cancer cells to maintain cellular fitness.
Collapse
Affiliation(s)
- Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Halyna Shcherbata
- Department of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Research Core Unit - Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
4
|
Solomon RN, Pittner NA, McCoy JR, Warwick PA, McBride JW. Cell signaling in Ehrlichia infection and cancer: Parallels in pathogenesis. Front Cell Infect Microbiol 2025; 15:1539847. [PMID: 40028182 PMCID: PMC11868041 DOI: 10.3389/fcimb.2025.1539847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) has recently emerged as an intracellular bacterial pathogen with sophisticated survival mechanisms that include repurposing evolutionarily conserved eukaryotic cell signaling pathways for immune evasion. E. chaffeensis exploits four major developmental signaling pathways (Wnt, Notch, Hedgehog, and Hippo) using short linear motif (SLiM) ligand mimicry to initiate signaling cascades. Dysregulation of these major signaling pathways leading to unchecked cell survival is implicated in various diseases, most notably cancer. E. chaffeensis exploits Wnt, Notch, Hedgehog and Hippo signaling pathways to inhibit apoptosis and co-opt other cellular functions to promote infection. This review will explore the signaling pathways exploited during Ehrlichia infection and the new discoveries that have illuminated this interesting example of the cell signaling convergence in cellular infection and cancer biology.
Collapse
Affiliation(s)
- Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jaclyn R. McCoy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Paityn A. Warwick
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Sergio I, Varricchio C, Squillante F, Cantale Aeo NM, Campese AF, Felli MP. Notch Inhibitors and BH3 Mimetics in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:12839. [PMID: 39684550 DOI: 10.3390/ijms252312839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with poor response to conventional therapy, derived from hematopoietic progenitors committed to T-cell lineage. Relapsed/Refractory patients account for nearly 20% of childhood and 45% of adult cases. Aberrant Notch signaling plays a critical role in T-ALL pathogenesis and therapy resistance. Notch inhibition is a promising therapeutic target for personalized medicine, and a variety of strategies to prevent Notch activation, including γ-secretase (GS) inhibitors (GSIs) and antibodies neutralizing Notch receptors or ligands, have been developed. Disruption of apoptosis is pivotal in cancer development and progression. Different reports evidenced the interplay between Notch and the anti-apoptotic Bcl-2 family proteins in T-ALL. Although based on early research data, this review discusses recent advances in directly targeting Notch receptors and the use of validated BH3 mimetics for the treatment of T-ALL and their combined action in light of current evidence of their use.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Squillante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
6
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024; 56:2337-2347. [PMID: 39482533 PMCID: PMC11612169 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
7
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
8
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
10
|
R P, Rakshit S, Shanmugam G, George M, Sarkar K. Wiskott Aldrich syndrome protein (WASp)-deficient Th1 cells promote R-loop-driven transcriptional insufficiency and transcription-coupled nucleotide excision repair factor (TC-NER)-driven genome-instability in the pathogenesis of T cell acute lymphoblastic leukemia. Clin Immunol 2024; 263:110204. [PMID: 38582251 DOI: 10.1016/j.clim.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND T-ALL is an aggressive hematological tumor that develops as the result of a multi-step oncogenic process which causes expansion of hematopoietic progenitors that are primed for T cell development to undergo malignant transformation and growth. Even though first-line therapy has a significant response rate, 40% of adult patients and 20% of pediatric patients will relapse. Therefore, there is an unmet need for treatment for relapsed/refractory T-ALL to develop potential targeted therapies. METHODS Pediatric T-ALL patient derived T cells were grown under either nonskewingTh0 or Th1-skewing conditions to further process for ChIP-qPCR, RDIP-qPCR and other RT-PCR assays. Endogenous WASp was knocked out using CRISPR-Cas9 and was confirmed using flow cytometry and western blotting. LC-MS/MS was performed to find out proteomic dataset of WASp-interactors generated from Th1-skewed, human primary Th-cells. DNA-damage was assessed by immunofluorescence confocal-imaging and single-cell gel electrophoresis (comet assay). Overexpression of RNaseH1 was also done to restore normal Th1-transcription in WASp-deficient Th1-skewed cells. RESULTS We discovered that nuclear-WASp is required for suppressing R-loop production (RNA/DNA-hybrids) at Th1-network genes by ribonucleaseH2 (RNH2) and topoisomerase1. Nuclear-WASp is associated with the factors involved in preventing and dissolving R-loops in Th1 cells. In nuclear- WASp-reduced malignant Th1-cells, R-loops accumulate in vivo and are processed into DNA-breaks by transcription-coupled-nucleotide-excision repair (TC-NER). Several epigenetic modifications were also found to be involved at Th1 gene locus which are responsible for active/repressive marks of particular genes. By demonstrating WASp as a physiologic regulator of programmed versus unprogrammed R-loops, we suggest that the transcriptional role of WASp in vivo extends also to prevent transcription-linked DNA damage during malignancy and through modification of epigenetic dysregulations. CONCLUSION Our findings present a provocative possibility of resetting R-loops as a therapeutic intervention to correct both immune deficiency and malignancy in T-cell acute lymphoblastic leukemia patients and a novel role of WASp in the epigenetic regulation of T helper cell differentiation in T-ALL patients, anticipating WASp's requirement for the suppression of T-ALL progression.
Collapse
Affiliation(s)
- Pradeep R
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
11
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Orlic-Milacic M, Rothfels K, Matthews L, Wright A, Jassal B, Shamovsky V, Trinh Q, Gillespie ME, Sevilla C, Tiwari K, Ragueneau E, Gong C, Stephan R, May B, Haw R, Weiser J, Beavers D, Conley P, Hermjakob H, Stein LD, D’Eustachio P, Wu G. Pathway-based, reaction-specific annotation of disease variants for elucidation of molecular phenotypes. Database (Oxford) 2024; 2024:baae031. [PMID: 38713862 PMCID: PMC11184451 DOI: 10.1093/database/baae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024]
Abstract
Germline and somatic mutations can give rise to proteins with altered activity, including both gain and loss-of-function. The effects of these variants can be captured in disease-specific reactions and pathways that highlight the resulting changes to normal biology. A disease reaction is defined as an aberrant reaction in which a variant protein participates. A disease pathway is defined as a pathway that contains a disease reaction. Annotation of disease variants as participants of disease reactions and disease pathways can provide a standardized overview of molecular phenotypes of pathogenic variants that is amenable to computational mining and mathematical modeling. Reactome (https://reactome.org/), an open source, manually curated, peer-reviewed database of human biological pathways, in addition to providing annotations for >11 000 unique human proteins in the context of ∼15 000 wild-type reactions within more than 2000 wild-type pathways, also provides annotations for >4000 disease variants of close to 400 genes as participants of ∼800 disease reactions in the context of ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, described in wild-type reactions and pathways, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Reactome's data model enables mapping of disease variant datasets to specific disease reactions within disease pathways, providing a platform to infer pathway output impacts of numerous human disease variants and model organism orthologs, complementing computational predictions of variant pathogenicity. Database URL: https://reactome.org/.
Collapse
Affiliation(s)
- Marija Orlic-Milacic
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Karen Rothfels
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Lisa Matthews
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Adam Wright
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Bijay Jassal
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Veronica Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Quang Trinh
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Marc E Gillespie
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Cristoffer Sevilla
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Krishna Tiwari
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eliot Ragueneau
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Chuqiao Gong
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Ralf Stephan
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE)
| | - Bruce May
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Robin Haw
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Joel Weiser
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Deidre Beavers
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lincoln D Stein
- Adaptive Oncology, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Room 4386, Toronto, ON M5S 1A8, Canada
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA
| |
Collapse
|
13
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
15
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 2024; 38:491-501. [PMID: 38155245 DOI: 10.1038/s41375-023-02123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Hegermiller
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Rosemary E Morman
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Cameron Frank
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Choi HY, Zhu Y, Zhao X, Mehta S, Hernandez JC, Lee JJ, Kou Y, Machida R, Giacca M, Del Sal G, Ray R, Eoh H, Tahara SM, Chen L, Tsukamoto H, Machida K. NOTCH localizes to mitochondria through the TBC1D15-FIS1 interaction and is stabilized via blockade of E3 ligase and CDK8 recruitment to reprogram tumor-initiating cells. Exp Mol Med 2024; 56:461-477. [PMID: 38409448 PMCID: PMC10907578 DOI: 10.1038/s12276-024-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024] Open
Abstract
The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yicheng Zhu
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Xuyao Zhao
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Simran Mehta
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yi Kou
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Risa Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ratna Ray
- Saint Louis University, School of Medicine, St Louis, MO, USA
| | - Hyungjin Eoh
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Stanley M Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Lin Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
18
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
19
|
Orlic-Milacic M, Rothfels K, Matthews L, Wright A, Jassal B, Shamovsky V, Trinh Q, Gillespie M, Sevilla C, Tiwari K, Ragueneau E, Gong C, Stephan R, May B, Haw R, Weiser J, Beavers D, Conley P, Hermjakob H, Stein LD, D'Eustachio P, Wu G. Pathway-based, reaction-specific annotation of disease variants for elucidation of molecular phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562964. [PMID: 37904913 PMCID: PMC10614924 DOI: 10.1101/2023.10.18.562964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Disease variant annotation in the context of biological reactions and pathways can provide a standardized overview of molecular phenotypes of pathogenic mutations that is amenable to computational mining and mathematical modeling. Reactome, an open source, manually curated, peer-reviewed database of human biological pathways, provides annotations for over 4000 disease variants of close to 400 genes in the context of ∼800 disease reactions constituting ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics (ACMG). Reactome's pathway-based, reaction-specific disease variant dataset and data model provide a platform to infer pathway output impacts of numerous human disease variants and model organism orthologs, complementing computational predictions of variant pathogenicity.
Collapse
|
20
|
Zhou N, Choi J, Grothusen G, Kim BJ, Ren D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, Tang HY, Perkey E, Maillard I, Bonasio R, Shi J, Ruella M, Wan L, Busino L. DLBCL-associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemoresistance. Blood 2023; 142:973-988. [PMID: 37235754 PMCID: PMC10656726 DOI: 10.1182/blood.2022018752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin-really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane-associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jaewoo Choi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Grant Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yiman Liu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas Beer
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Eric Perkey
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Liling Wan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
22
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
23
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T lymphocyte acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537993. [PMID: 37163059 PMCID: PMC10168235 DOI: 10.1101/2023.04.23.537993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.
Collapse
|
24
|
Issa N, Bjeije H, Wilson ER, Krishnan A, Dunuwille WMB, Parsons TM, Zhang CR, Han W, Young AL, Ren Z, Ge K, Wang ES, Weng AP, Cashen A, Spencer DH, Challen GA. KDM6B protects T-ALL cells from NOTCH1-induced oncogenic stress. Leukemia 2023; 37:728-740. [PMID: 36797416 PMCID: PMC10081958 DOI: 10.1038/s41375-023-01853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors. While activating NOTCH1 mutations are the dominant genetic drivers of T-ALL, epigenetic dysfunction plays a central role in the pathology of T-ALL and can provide alternative mechanisms to oncogenesis in lieu of or in combination with genetic mutations. The histone demethylase enzyme KDM6A (UTX) is also recurrently mutated in T-ALL patients and functions as a tumor suppressor. However, its gene paralog, KDM6B (JMJD3), is never mutated and can be significantly overexpressed, suggesting it may be necessary for sustaining the disease. Here, we used mouse and human T-ALL models to show that KDM6B is required for T-ALL development and maintenance. Using NOTCH1 gain-of-function retroviral models, mouse cells genetically deficient for Kdm6b were unable to propagate T-ALL. Inactivating KDM6B in human T-ALL patient cells by CRISPR/Cas9 showed KDM6B-targeted cells were significantly outcompeted over time. The dependence of T-ALL cells on KDM6B was proportional to the oncogenic strength of NOTCH1 mutation, with KDM6B required to prevent stress-induced apoptosis from strong NOTCH1 signaling. These studies identify a crucial role for KDM6B in sustaining NOTCH1-driven T-ALL and implicate KDM6B as a novel therapeutic target in these patients.
Collapse
Affiliation(s)
- Nancy Issa
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hassan Bjeije
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elisabeth R Wilson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aishwarya Krishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wangisa M B Dunuwille
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Parsons
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine R Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wentao Han
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Young
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhizhong Ren
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Amanda Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
26
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Zhang Z, Lu YX, Liu F, Sang L, Shi C, Xie S, Bian W, Yang JC, Yang Z, Qu L, Chen SY, Li J, Yang L, Yan Q, Wang W, Fu P, Shao J, Li X, Lin A. lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1. Proc Natl Acad Sci U S A 2023; 120:e2206694120. [PMID: 36795754 PMCID: PMC9974429 DOI: 10.1073/pnas.2206694120] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Yun-xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong510060, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Jie-cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shi-yi Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Li
- Department of Pathology School of Medicine, The First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Lu Yang
- Department of Radiotherapy, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine South China University of Technology, Guangzhou510080, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA92697
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang322000, China
| |
Collapse
|
28
|
Zhu XN, Wei YS, Yang Q, Liu HR, Zhi Z, Zhu D, Xia L, Hong DL, Yu Y, Chen GQ. FBXO22 promotes leukemogenesis by targeting BACH1 in MLL-rearranged acute myeloid leukemia. J Hematol Oncol 2023; 16:9. [PMID: 36774506 PMCID: PMC9922468 DOI: 10.1186/s13045-023-01400-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selectively targeting leukemia stem cells (LSCs) is a promising approach in treating acute myeloid leukemia (AML), for which identification of such therapeutic targets is critical. Increasing lines of evidence indicate that FBXO22 plays a critical role in solid tumor development and therapy response. However, its potential roles in leukemogenesis remain largely unknown. METHODS We established a mixed lineage leukemia (MLL)-AF9-induced AML model with hematopoietic cell-specific FBXO22 knockout mice to elucidate the role of FBXO22 in AML progression and LSCs regulation, including self-renewal, cell cycle, apoptosis and survival analysis. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry analysis, Western blotting and rescue experiments were performed to study the mechanisms underlying the oncogenic role of FBXO22. RESULTS FBXO22 was highly expressed in AML, especially in MLL-rearranged (MLLr) AML. Upon FBXO22 knockdown, human MLLr leukemia cells presented markedly increased apoptosis. Although conditional deletion of Fbxo22 in hematopoietic cells did not significantly affect the function of hematopoietic stem cells, MLL-AF9-induced leukemogenesis was dramatically abrogated upon Fbxo22 deletion, together with remarkably reduced LSCs after serial transplantations. Mechanistically, FBXO22 promoted degradation of BACH1 in MLLr AML cells, and overexpression of BACH1 suppressed MLLr AML progression. In line with this, heterozygous deletion of BACH1 significantly reversed delayed leukemogenesis in Fbxo22-deficient mice. CONCLUSIONS FBXO22 promotes MLLr AML progression by targeting BACH1 and targeting FBXO22 might be an ideal strategy to eradicate LSCs without influencing normal hematopoiesis.
Collapse
Affiliation(s)
- Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China.
| |
Collapse
|
29
|
IL-15 Prevents the Development of T-ALL from Aberrant Thymocytes with Impaired DNA Repair Functions and Increased NOTCH1 Activation. Cancers (Basel) 2023; 15:cancers15030671. [PMID: 36765626 PMCID: PMC9913776 DOI: 10.3390/cancers15030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
We previously reported that NOD.Scid mice lacking interleukin-15 (IL-15), or IL-15 receptor alpha-chain, develop T-acute lymphoblastic leukemia (T-ALL). To understand the mechanisms by which IL-15 signaling controls T-ALL development, we studied the thymocyte developmental events in IL-15-deficient Scid mice from NOD and C57BL/6 genetic backgrounds. Both kinds of mice develop T-ALL characterized by circulating TCR-negative cells expressing CD4, CD8 or both. Analyses of thymocytes in NOD.Scid.Il15-/- mice prior to T-ALL development revealed discernible changes within the CD4-CD8- double-negative (DN) thymocyte developmental stages and increased frequencies of CD4+CD8+ double-positive cells with a high proportion of TCR-negative CD4+ and CD8+ cells. The DN cells also showed elevated expressions of CXCR4 and CD117, molecules implicated in the expansion of DN thymocytes. T-ALL cell lines and primary leukemic cells from IL-15-deficient NOD.Scid and C57BL/6.Scid mice displayed increased NOTCH1 activation that was inhibited by NOTCH1 inhibitors and blockers of the PI3K/AKT pathway. Primary leukemic cells from NOD.Scid.Il15-/- mice survived and expanded when cultured with MS5 thymic stromal cells expressing Delta-like ligand 4 and supplemented with IL-7 and FLT3 ligand. These findings suggest that IL-15 signaling in the thymus controls T-ALL development from aberrant thymocytes with an impaired DNA repair capacity and increased NOTCH1 activation.
Collapse
|
30
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Mesini N, Fiorcari S, Atene CG, Maffei R, Potenza L, Luppi M, Marasca R. Role of Notch2 pathway in mature B cell malignancies. Front Oncol 2023; 12:1073672. [PMID: 36686759 PMCID: PMC9846264 DOI: 10.3389/fonc.2022.1073672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
In recent decades, the Notch pathway has been characterized as a key regulatory signaling of cell-fate decisions evolutionarily conserved in many organisms and different tissues during lifespan. At the same time, many studies suggest a link between alterations of this signaling and tumor genesis or progression. In lymphopoiesis, the Notch pathway plays a fundamental role in the correct differentiation of T and B cells, but its deregulated activity leads to leukemic onset and evolution. Notch and its ligands Delta/Jagged exhibit a pivotal role in the crosstalk between leukemic cells and their environment. This review is focused in particular on Notch2 receptor activity. Members of Notch2 pathway have been reported to be mutated in Chronic Lymphocytic Leukemia (CLL), Splenic Marginal Zone Lymphoma (SMZL) and Nodal Marginal Zone Lymphoma (NMZL). CLL is a B cell malignancy in which leukemic clones establish supportive crosstalk with non-malignant cells of the tumor microenvironment to grow, survive, and resist even the new generation of drugs. SMZL and NMZL are indolent B cell neoplasms distinguished by a distinct pattern of dissemination. In SMZL leukemic cells affect mainly the spleen, bone marrow, and peripheral blood, while NMZL has a leading nodal distribution. Since Notch2 is involved in the commitment of leukemic cells to the marginal zone as a major regulator of B cell physiological differentiation, it is predominantly affected by the molecular lesions found in both SMZL and NMZL. In light of these findings, a better understanding of the Notch receptor family pathogenic role, in particular Notch2, is desirable because it is still incomplete, not only in the physiological development of B lymphocytes but also in leukemia progression and resistance. Several therapeutic strategies capable of interfering with Notch signaling, such as monoclonal antibodies, enzyme or complex inhibitors, are being analyzed. To avoid the unwanted multiple "on target" toxicity encountered during the systemic inhibition of Notch signaling, the study of an appropriate pharmaceutical formulation is a pressing need. This is why, to date, there are still no Notch-targeted therapies approved. An accurate analysis of the Notch pathway could be useful to drive the discovery of new therapeutic targets and the development of more effective therapies.
Collapse
Affiliation(s)
- Nicolò Mesini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy,*Correspondence: Roberto Marasca,
| |
Collapse
|
32
|
Hall D, Giaimo BD, Park SS, Hemmer W, Friedrich T, Ferrante F, Bartkuhn M, Yuan Z, Oswald F, Borggrefe T, Rual JF, Kovall R. The structure, binding and function of a Notch transcription complex involving RBPJ and the epigenetic reader protein L3MBTL3. Nucleic Acids Res 2022; 50:13083-13099. [PMID: 36477367 PMCID: PMC9825171 DOI: 10.1093/nar/gkac1137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway transmits signals between neighboring cells to elicit downstream transcriptional programs. Notch is a major regulator of cell fate specification, proliferation, and apoptosis, such that aberrant signaling leads to a pleiotropy of human diseases, including developmental disorders and cancers. The pathway signals through the transcription factor CSL (RBPJ in mammals), which forms an activation complex with the intracellular domain of the Notch receptor and the coactivator Mastermind. CSL can also function as a transcriptional repressor by forming complexes with one of several different corepressor proteins, such as FHL1 or SHARP in mammals and Hairless in Drosophila. Recently, we identified L3MBTL3 as a bona fide RBPJ-binding corepressor that recruits the repressive lysine demethylase LSD1/KDM1A to Notch target genes. Here, we define the RBPJ-interacting domain of L3MBTL3 and report the 2.06 Å crystal structure of the RBPJ-L3MBTL3-DNA complex. The structure reveals that L3MBTL3 interacts with RBPJ via an unusual binding motif compared to other RBPJ binding partners, which we comprehensively analyze with a series of structure-based mutants. We also show that these disruptive mutations affect RBPJ and L3MBTL3 function in cells, providing further insights into Notch mediated transcriptional regulation.
Collapse
Affiliation(s)
- Daniel Hall
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, USA
| | | | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wiebke Hemmer
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine 1, Albert-Einstein-Allee 23, 89081Ulm, Germany
| | - Tobias Friedrich
- Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, University of Giessen, 35392 Giessen, Germany
| | - Zhenyu Yuan
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, USA
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine 1, Albert-Einstein-Allee 23, 89081Ulm, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rhett A Kovall
- To whom correspondence should be addressed. Tel: +1 513 558 4631;
| |
Collapse
|
33
|
Wan X, Guo W, Zhan Z, Bai O. Dysregulation of FBW7 in malignant lymphoproliferative disorders. Front Oncol 2022; 12:988138. [PMID: 36457505 PMCID: PMC9707496 DOI: 10.3389/fonc.2022.988138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in various aspects of cell processes, including cell proliferation, differentiation, and cell cycle progression. F-box and WD repeat domain-containing protein 7 (FBW7), as a key component of UPS proteins and a critical tumor suppressor in human cancers, controls proteasome-mediated degradation by ubiquitinating oncoproteins such as c-Myc, Mcl-1, cyclin E, and Notch. It also plays a role in the development of various cancers, including solid and hematological malignancies, such as T-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and multiple myeloma. This comprehensive review emphasizes the functions, substrates, and expression of FBW7 in malignant lymphoproliferative disorders.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
34
|
Ferrante F, Giaimo BD, Friedrich T, Sugino T, Mertens D, Kugler S, Gahr BM, Just S, Pan L, Bartkuhn M, Potente M, Oswald F, Borggrefe T. Hydroxylation of the NOTCH1 intracellular domain regulates Notch signaling dynamics. Cell Death Dis 2022; 13:600. [PMID: 35821235 PMCID: PMC9276811 DOI: 10.1038/s41419-022-05052-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Notch signaling plays a pivotal role in the development and, when dysregulated, it contributes to tumorigenesis. The amplitude and duration of the Notch response depend on the posttranslational modifications (PTMs) of the activated NOTCH receptor - the NOTCH intracellular domain (NICD). In normoxic conditions, the hydroxylase FIH (factor inhibiting HIF) catalyzes the hydroxylation of two asparagine residues of the NICD. Here, we investigate how Notch-dependent gene transcription is regulated by hypoxia in progenitor T cells. We show that the majority of Notch target genes are downregulated upon hypoxia. Using a hydroxyl-specific NOTCH1 antibody we demonstrate that FIH-mediated NICD1 hydroxylation is reduced upon hypoxia or treatment with the hydroxylase inhibitor dimethyloxalylglycine (DMOG). We find that a hydroxylation-resistant NICD1 mutant is functionally impaired and more ubiquitinated. Interestingly, we also observe that the NICD1-deubiquitinating enzyme USP10 is downregulated upon hypoxia. Moreover, the interaction between the hydroxylation-defective NICD1 mutant and USP10 is significantly reduced compared to the NICD1 wild-type counterpart. Together, our data suggest that FIH hydroxylates NICD1 in normoxic conditions, leading to the recruitment of USP10 and subsequent NICD1 deubiquitination and stabilization. In hypoxia, this regulatory loop is disrupted, causing a dampened Notch response.
Collapse
Affiliation(s)
- Francesca Ferrante
- grid.8664.c0000 0001 2165 8627Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Benedetto Daniele Giaimo
- grid.8664.c0000 0001 2165 8627Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tobias Friedrich
- grid.8664.c0000 0001 2165 8627Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany ,Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Aulweg 128, 35392 Giessen, Germany
| | - Toshiya Sugino
- grid.418032.c0000 0004 0491 220XMax Planck Institute for Heart and Lung Research, Angiogenesis and Metabolism Laboratory, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Daniel Mertens
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Bridging Group Mechanisms of Leukemogenesis, B061, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sabrina Kugler
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Bernd Martin Gahr
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Molecular Cardiology, Department of Internal Medicine II, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steffen Just
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Molecular Cardiology, Department of Internal Medicine II, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Leiling Pan
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Aulweg 128, 35392 Giessen, Germany ,Institute for Lung Health (ILH), Aulweg 132, 35392 Giessen, Germany
| | - Michael Potente
- grid.418032.c0000 0004 0491 220XMax Planck Institute for Heart and Lung Research, Angiogenesis and Metabolism Laboratory, Ludwigstr. 43, 61231 Bad Nauheim, Germany ,grid.484013.a0000 0004 6879 971XBerlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Franz Oswald
- grid.410712.10000 0004 0473 882XUniversity Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Tilman Borggrefe
- grid.8664.c0000 0001 2165 8627Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
35
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
36
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
37
|
Liu Q, Han C, Wu X, Zhou J, Zang W. F‑box and WD repeat‑containing protein 7 ameliorates angiotensin II‑induced myocardial hypertrophic injury via the mTOR‑mediated autophagy pathway. Exp Ther Med 2022; 24:464. [PMID: 35747152 PMCID: PMC9204530 DOI: 10.3892/etm.2022.11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
Myocardial hypertrophy is a common heart disease that is closely associated with heart failure. The expression of F-box and WD repeat-containing protein 7 (FBW7) is significantly downregulated in angiotensin (Ang) II-induced cardiac fibroblasts, suggesting that it may possess an important function in cardiac development. The present study attempted to explore the role of FBW7 in Ang II-induced myocardial hypertrophic injury and its associated mechanism of action. Reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of FBW7 in Ang II-induced H9C2 cells. The expression levels of autophagy-related and mTOR signaling pathway-related proteins were detected using western blotting. Cell viability was assessed using the Cell Counting Kit-8 assay. The apoptosis rate of H9C2 cells was detected using TUNEL assay and western blotting. Cellular hypertrophy and fibrosis were assessed using phalloidin staining and western blotting. Levels of inflammatory factors were examined using ELISA and western blotting, whereas levels of oxidative stress-related markers were detected by corresponding kits. The results indicated that FBW7 expression was downregulated in Ang II-induced H9C2 cells. FBW7 upregulation enhanced the expression levels of autophagy-related proteins and activated mTOR-mediated cellular autophagy. FBW7 overexpression promoted the cell viability, inhibited Ang II-induced apoptosis, cellular hypertrophy and fibrosis in H9C2 cells via the autophagic pathway, as well as inflammation and oxidative stress. Overall, the data indicated that FBW7 overexpression ameliorated Ang II-induced hypertrophic myocardial injury via the mTOR-mediated autophagic pathway.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Chenjun Han
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoyun Wu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jian Zhou
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wangfu Zang
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
38
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Li C, Zheng J, Deng G, Zhang Y, Du Y, Jiang H. Exosomal miR-106a-5p accelerates the progression of nasopharyngeal carcinoma through FBXW7-mediated TRIM24 degradation. Cancer Sci 2022; 113:1652-1668. [PMID: 35293097 PMCID: PMC9128160 DOI: 10.1111/cas.15337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in East Asia and causes increased health burden. Elucidating the regulatory mechanism of NPC progression is important for understanding the pathogenesis of NPC and developing novel therapeutic strategies. Nasopharyngeal carcinoma and normal tissues were collected. Nasopharyngeal carcinoma cell proliferation, migration, and invasion were evaluated using CCK-8, colony formation, wound healing, and transwell assays, respectively. A xenograft mouse model of NPC was established to analyze NPC cell growth and metastasis in vivo. The expression of miR-106a-5p, FBXW7, TRIM24, and SRGN was determined with RT-qPCR and Western blot. MiR-106a-5p, TRIM24, and SRGN were upregulated, and FBXW7 was downregulated in NPC tissues and cells. Exosomal miR-106a-5p could enter NPC cells, and its overexpression promoted the proliferation, migration, invasion, and metastasis of NPC cells, which were suppressed by knockdown of exosomal miR-106a-5p. MiR-106a-5p targeted FBXW7 to regulate FBXW7-mediated degradation of TRIM24. Furthermore, TRIM24 regulated SRGN expression by binding to its promoter in NPC cells. Suppression of exosomal miR-106a-5p attenuated NPC growth and metastasis through the FBXW7-TRIM24-SRGN axis in vivo. Exosomal miR-106a-5p accelerated the progression of NPC through the FBXW7-TRIM24-SRGN axis. Our study elucidates novel regulatory mechanisms of NPC progression and provides potential exosome-based therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Chang‐Wu Li
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Guo‐Qing Deng
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Yu‐Guang Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Yue Du
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Hong‐Yan Jiang
- Department of Otorhinolaryngology Head and Neck SurgeryHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| |
Collapse
|
40
|
Teo T, Kasirzadeh S, Albrecht H, Sykes MJ, Yang Y, Wang S. An Overview of CDK3 in Cancer: Clinical Significance and Pharmacological Implications. Pharmacol Res 2022; 180:106249. [DOI: 10.1016/j.phrs.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
41
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
42
|
Carr T, McGregor S, Dias S, Verykokakis M, Le Beau MM, Xue HH, Sigvardsson M, Bartom ET, Kee BL. Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:845488. [PMID: 35371057 PMCID: PMC8971981 DOI: 10.3389/fimmu.2022.845488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Stephanie McGregor
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
| | - Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Mihalis Verykokakis
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Michelle M. Le Beau
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, United States
| | - Barbara L. Kee
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
- *Correspondence: Barbara L. Kee,
| |
Collapse
|
43
|
Yin H, Hong M, Deng J, Yao L, Qian C, Teng Y, Li T, Wu Q. Prognostic Significance of Comprehensive Gene Mutations and Clinical Characteristics in Adult T-Cell Acute Lymphoblastic Leukemia Based on Next-Generation Sequencing. Front Oncol 2022; 12:811151. [PMID: 35280829 PMCID: PMC8908046 DOI: 10.3389/fonc.2022.811151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignant tumor with poor prognosis. However, accurate prognostic stratification factors are still unclear. Methods Data from 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients were collected. The association of gene mutations detected by next-generation sequencing and clinical characteristics with the outcomes of T-ALL/LBL patients were retrospectively analyzed to build three novel risk stratification models through Cox proportional hazards model. Results Forty-seven mutated genes were identified. Here, 73.3% of patients had at least one mutation, and 36.7% had ≥3 mutations. The genes with higher mutation frequency were NOTCH1, FBXW7, and DNMT3A. The most frequently altered signaling pathways were NOTCH pathway, transcriptional regulation pathway, and DNA methylation pathway. Age (45 years old), platelet (PLT) (50 G/L), actate dehydrogenase (LDH) (600 U/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and hematopoietic stem cell transplantation (HSCT) were integrated into a risk stratification model of event-free survival (EFS). Age (45 years old), white blood cell (WBC) count (30 G/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and HSCT were integrated into a risk stratification model of overall survival (OS). According to our risk stratification models, the 1-year EFS and OS rates in the low-risk group were significantly higher than those in the high-risk group. Conclusions Our risk stratification models exhibited good prognostic roles in adult T-ALL/LBL patients and might guide individualized treatment and ultimately improve their outcomes.
Collapse
Affiliation(s)
- Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Yuan Y, Li J, Xue TL, Hu HR, Lin W, Liu SG, Zhang RD, Zheng HY, Gao C. Prognostic significance of NOTCH1/FBXW7 mutations in pediatric T cell acute lymphoblastic leukemia: a study of minimal residual disease risk-directed CCLG-ALL 2008 treatment protocol. Leuk Lymphoma 2022; 63:1624-1633. [DOI: 10.1080/10428194.2022.2032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuan Yuan
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Jun Li
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Tian-Lin Xue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Hai-Rui Hu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Wei Lin
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Shu-Guang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Rui-Dong Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Hu-Yong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| |
Collapse
|
45
|
Ge Y, Wang J, Zhang H, Li J, Ye M, Jin X. Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 2022; 23:170. [PMID: 35069851 PMCID: PMC8764575 DOI: 10.3892/etm.2021.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self-renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T-cell acute lymphoblastic leukemia (T-ALL) was also examined, which provides a promising direction for clinical application.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
46
|
Liu J, Tokheim C, Lee JD, Gan W, North BJ, Liu XS, Pandolfi PP, Wei W. Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nat Commun 2021; 12:6704. [PMID: 34795215 PMCID: PMC8602260 DOI: 10.1038/s41467-021-26871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements can generate genetic fusions composed of two distinct gene sequences, many of which have been implicated in tumorigenesis and progression. Our study proposes a model whereby oncogenic gene fusions frequently alter the protein stability of the resulting fusion products, via exchanging protein degradation signal (degron) between gene sequences. Computational analyses of The Cancer Genome Atlas (TCGA) identify 2,406 cases of degron exchange events and reveal an enrichment of oncogene stabilization due to loss of degrons from fusion. Furthermore, we identify and experimentally validate that some recurrent fusions, such as BCR-ABL, CCDC6-RET and PML-RARA fusions, perturb protein stability by exchanging internal degrons. Likewise, we also validate that EGFR or RAF1 fusions can be stabilized by losing a computationally-predicted C-terminal degron. Thus, complementary to enhanced oncogene transcription via promoter swapping, our model of degron loss illustrates another general mechanism for recurrent fusion proteins in driving tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Brian J North
- Department of Biomedical Sciences, Creighton University, Omaha, NE, 68178, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10124, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
48
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
49
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
50
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|