1
|
Jan LY, Jan YN. Wide-ranging cellular functions of ion channels and lipid scramblases in the structurally related TMC, TMEM16 and TMEM63 families. Nat Struct Mol Biol 2025; 32:222-236. [PMID: 39715905 DOI: 10.1038/s41594-024-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/31/2024] [Indexed: 12/25/2024]
Abstract
Calcium (Ca2+)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes. Moreover, some members of the TMEM16 family and the TMC family perform dual functions of ion channel and lipid scramblase, leading to intriguing physiological implications. In addition to their physiological functions such as mediating phosphatidylserine exposure and facilitation of extracellular vesicle generation and cell fusion, scramblases are involved in the entry and replication of enveloped viruses. Comparisons of structurally diverse scramblases may uncover features in the lipid-scrambling mechanisms that are likely shared by scramblases.
Collapse
Affiliation(s)
- Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Wong M, Tu HF, Tseng SH, Mellinger-Pilgrim R, Best S, Tsai HL, Xing D, Hung CF, Lambert PF, Roden RBS. MmuPV1 infection of Tmc6/Ever1 or Tmc8/Ever2 deficient FVB mice as a model of βHPV in typical epidermodysplasia verruciformis. PLoS Pathog 2025; 21:e1012837. [PMID: 39813296 PMCID: PMC11734914 DOI: 10.1371/journal.ppat.1012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection. However, the complex is also present in lymphocytes and its loss may compromise cellular immune control of βHPV infection. Indeed, certain primary immunodeficiencies, iatrogenic immunosuppression and AIDS are associated with the atypical form of EV. While well controlled in immunocompetent mice, murine papillomavirus MmuPV1 was first isolated from immunodeficient mice with florid skin warts, modeling atypical EV. To examine their potential as a model of typical EV, Tmc6-/-, Tmc8-/- or wildtype FVB mice were challenged with MmuPV1. At day 16 post vaginal challenge with MmuPV1, the levels of viral transcripts were similar in Tmc6-/- and Tmc8-/- mice and wildtype FVB mice, arguing against Tmc6/8 acting as intracellular restriction factors. Thereafter, greater clearance of MmuPV1 by the wildtype that the Tmc6-/- and Tmc8-/- FVB mice was evident, supporting the hypothesis that typical EV reflects a subtle cellular immune deficit. Indeed, Tmc6-/- or Tmc8-/- mice exhibit partial CD8 T cell deficits and elevated Treg. While interferon-γ production and surface CD25 were similarly elevated in CD8 T cells upon in vitro stimulation with anti-CD3/CD28, the fraction of Tmc6-/- or Tmc8-/- CD8 T cells that were dividing was lower compared to wildtype. Typical EV patients exhibit normal control of most viral infections; Tmc6-/-, Tmc8-/- and wildtype FVB mice similarly controlled vaccinia virus after skin challenge and induced neutralizing antibodies.
Collapse
Affiliation(s)
- Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsieh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rebecca Mellinger-Pilgrim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institution, Baltimore, Maryland, United States of America
| | - Simon Best
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institution, Baltimore, Maryland, United States of America
| | - Hua-Ling Tsai
- Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chien-fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. S. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Long Y, Zhu Z, Zhou Z, Yang C, Chao Y, Wang Y, Zhou Q, Wang MW, Qu Q. Structural insights into human zinc transporter ZnT1 mediated Zn 2+ efflux. EMBO Rep 2024; 25:5006-5025. [PMID: 39390258 PMCID: PMC11549101 DOI: 10.1038/s44319-024-00287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Zinc transporter 1 (ZnT1), the principal carrier of cytosolic zinc to the extracellular milieu, is important for cellular zinc homeostasis and resistance to zinc toxicity. Despite recent advancements in the structural characterization of various zinc transporters, the mechanism by which ZnTs-mediated Zn2+ translocation is coupled with H+ or Ca2+ remains unclear. To visualize the transport dynamics, we determined the cryo-electron microscopy (cryo-EM) structures of human ZnT1 at different functional states. ZnT1 dimerizes via extensive interactions between the cytosolic (CTD), the transmembrane (TMD), and the unique cysteine-rich extracellular (ECD) domains. At pH 7.5, both protomers adopt an outward-facing (OF) conformation, with Zn2+ ions coordinated at the TMD binding site by distinct compositions. At pH 6.0, ZnT1 complexed with Zn2+ exhibits various conformations [OF/OF, OF/IF (inward-facing), and IF/IF]. These conformational snapshots, together with biochemical investigation and molecular dynamic simulations, shed light on the mechanism underlying the proton-dependence of ZnT1 transport.
Collapse
Affiliation(s)
- Yonghui Long
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Chuanhui Yang
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Yuwei Wang
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, 572025, Sanya, Hainan, China
- School of Pharmacy, Hainan Medical University, 570228, Haikou, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
4
|
Wang J, Yin Y, Yang L, Qin J, Wang Z, Qiu C, Gao Y, Lu G, Gao F, Chen ZJ, Zhang X, Liu H, Liu Z. TMC7 deficiency causes acrosome biogenesis defects and male infertility in mice. eLife 2024; 13:RP95888. [PMID: 39269275 PMCID: PMC11398861 DOI: 10.7554/elife.95888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1-TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7-/- mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Yingying Yin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Lei Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Chunhong Qiu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong KongHong KongChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| |
Collapse
|
5
|
Torres AD, King RE, Uberoi A, Buehler D, Yoshida S, Ward-Shaw E, Lambert PF. Deficiency in Ever2 does not increase susceptibility of mice to pathogenesis by the mouse papillomavirus, MmuPV1. J Virol 2024; 98:e0017424. [PMID: 38869286 PMCID: PMC11265430 DOI: 10.1128/jvi.00174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous β-genus human papillomaviruses (β-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with β-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with β-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with β-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent β-genus human papillomavirus (β-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and β-HPVs and/or between mouse and human EVER2.
Collapse
Affiliation(s)
- Alexandra D. Torres
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Renee E. King
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Godfred AC, Thomas Z, Peter D, Joseph A, Ravichandran L, George AA, Pulimood SA, Gaikwad P, Babu R, Thomas M, Thomas N, Chapla A. A Novel Large Deletion in the EVER1 Gene in a Family With Epidermodysplasia Verruciformis From India. Am J Dermatopathol 2024; 46:373-376. [PMID: 38574087 DOI: 10.1097/dad.0000000000002657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
ABSTRACT Epidermodysplasia verruciformis (EV) is a rare autosomal recessive genodermatosis due to mutations in EVER1 and EVER2 genes. The genetic profile of Indian patients with EV has not been previously studied. This report describes the clinical presentation and molecular analysis of a family with EV. Using genomic DNA from two affected probands and healthy controls (two other siblings), conventional polymerase chain reaction (PCR) was conducted with novel primer sets designed to amplify the coding and splice-site regions in the genes EVER1 and EVER 2 . This revealed no amplification with a primer set for exons 16 to 18 in the EVER1 gene of both the probands. Subsequently, long-range PCR spanning the length of exon 15-20 and next-generation sequencing demonstrated a homozygous deletion of 2078 bp in the EVER1 gene ( EVER1 :c.2072_2278del). Screening the family revealed the same homozygous deletion (similar to index cases) in two other affected siblings. The parents and two asymptomatic siblings were heterozygous carriers for the deletion while one healthy sibling was negative. These results were validated with Sanger sequencing. This deletion in exons 17 and 18 of the EVER1 gene results in a frameshift, followed by a premature termination resulting in a severe phenotype. The identification and validation of this large deletion was detected using stepwise amplicon-based target enrichment and long-range PCR, respectively. In this family, this simple strategy greatly enhanced genetic counseling as well as early genetic diagnosis and screening. However, functional assays and larger studies are required to characterize and validate the genetic diversity among Indians with EV.
Collapse
Affiliation(s)
- Adithya Christopher Godfred
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Zachariah Thomas
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Dincy Peter
- Department of Dermatology, Christian Medical College, Vellore, India
| | - Anjana Joseph
- Department of Dermatology, Christian Medical College, Vellore, India
| | - Lavanya Ravichandran
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Anu Anna George
- Department of Dermatology, Christian Medical College, Vellore, India
| | | | - Pranay Gaikwad
- Department of Surgery, Unit-1, Christian Medical College, Vellore, India; and
| | - Ramesh Babu
- Department of General Pathology, Christian Medical College, Vellore, India
| | - Meera Thomas
- Department of General Pathology, Christian Medical College, Vellore, India
| | - Nihal Thomas
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Aaron Chapla
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
7
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 PMCID: PMC11844209 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
8
|
Jiang L, Yi Q, Sun Z, Lin Y. ZNT1 Regulates the Proliferation, Migration and Invasion of HaCaT Cells Infected with HPV Through the PI3K/Akt Pathway. Indian J Dermatol 2024; 69:201. [PMID: 38841228 PMCID: PMC11149793 DOI: 10.4103/ijd.ijd_775_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Background Condyloma acuminatum (CA), which is a highly contagious sexually transmitted illness generated by human papillomavirus (HPV) infection, is characterized by abnormal proliferation of keratinocytes resulting in verrucous lesions. Although solute carrier family 30 member 1 (ZNT1) is highly expressed in CA tissues, the function of ZNT1 in CA remains unclear. Methods HPV transfection was performed in HaCaT to simulate the CA pathological environment. The mRNA and protein levels were monitored using RT-qPCR and immunoblotting. Cell viability was found using the MTT test. Cell invasion and migration were probed using the transwell and wound healing. Results ZNT1 expression was up-regulated in CA tissues, and HPV transfection increased the expression of ZNT1. Overexpression of ZNT1 promoted the proliferation, migration and invasion of Human immortalized keratinocyte (HaCaT) transfected with HPV. Meanwhile, ZNT1 knockdown repressed the proliferation, migration and invasion of HaCaT that HPV transfected. Further research displayed that ZNT1 promoted the proliferation, migration and invasion of HaCaT transfected with HPV through the PI3K/Akt pathway. Conclusion Our research confirmed that ZNT1 regulated the proliferation, migration and invasion of HaCaT transfected with HPV through the PI3K/Akt pathway, providing a new target for the effective remedy of CA.
Collapse
Affiliation(s)
- Liwei Jiang
- From the Dermatological STD Clinic, The First Hospital of Hunan University of Chinese Medicine, 1-1101 Juxiangxincheng, No. 109 Xiangyin Lane, Yuhua District, Changsha City, Hunan Province, People’s Republic of China
| | - Qian Yi
- From the Dermatological STD Clinic, The First Hospital of Hunan University of Chinese Medicine, 1-1101 Juxiangxincheng, No. 109 Xiangyin Lane, Yuhua District, Changsha City, Hunan Province, People’s Republic of China
| | - Zhizhong Sun
- Department of Dermatology, The First Hospital of Hunan University of Chinese Medicine, 1-1101 Juxiangxincheng, No. 109 Xiangyin Lane, Yuhua District, Changsha City, Hunan Province, People’s Republic of China
| | - Yasi Lin
- Department of Dermatology, The First Hospital of Hunan University of Chinese Medicine, 1-1101 Juxiangxincheng, No. 109 Xiangyin Lane, Yuhua District, Changsha City, Hunan Province, People’s Republic of China
| |
Collapse
|
9
|
An Y, Hu J, Hao H, Zhao W, Zhang X, Shao J, Wang C, Li X, Liu C, He J, Zhao Y, Zhang H, Du X. The transmembrane channel-like 6 (TMC6) in primary sensory neurons involving thermal sensation via modulating M channels. Front Pharmacol 2024; 15:1330167. [PMID: 38440182 PMCID: PMC10909837 DOI: 10.3389/fphar.2024.1330167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: The transmembrane channel-like (TMC) protein family contains eight members, TMC1-TMC8. Among these members, only TMC1 and TMC2 have been intensively studied. They are expressed in cochlear hair cells and are crucial for auditory sensations. TMC6 and TMC8 contribute to epidermodysplasia verruciformis, and predispose individuals to human papilloma virus. However, the impact of TMC on peripheral sensation pain has not been previously investigated. Methods: RNAscope was employed to detect the distribution of TMC6 mRNA in DRG neurons. Electrophysiological recordings were conducted to investigate the effects of TMC6 on neuronal characteristics and M channel activity. Zn2+ indicators were utilized to detect the zinc concentration in DRG tissues and dissociated neurons. A series of behavioural tests were performed to assess thermal and mechanical sensation in mice under both physiological and pathological conditions. Results and Discussion: We demonstrated that TMC6 is mainly expressed in small and medium dorsal root ganglion (DRG) neurons and is involved in peripheral heat nociception. Deletion of TMC6 in DRG neurons hyperpolarizes the resting membrane potential and inhibits neuronal excitability. Additionally, the function of the M channel is enhanced in TMC6 deletion DRG neurons owing to the increased quantity of free zinc in neurons. Indeed, heat and mechanical hyperalgesia in chronic pain are alleviated in TMC6 knockout mice, particularly in the case of heat hyperalgesia. This suggests that TMC6 in the small and medium DRG neurons may be a potential target for chronic pain treatment.
Collapse
Affiliation(s)
- Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyi Hu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jicheng Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- The Key Laboratory of Experimental Animal, Department of Animal Care, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
12
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
13
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Chen B, Zhao L, Yang R, Xu T. Advances in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch Biochem Biophys 2023; 745:109716. [PMID: 37553047 DOI: 10.1016/j.abb.2023.109716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
For a considerable duration, cervical cancer has posed a significant risk to the well-being and survival of women. The emergence and progression of cervical cancer have garnered extensive attention, with prolonged chronic infection of HPV serving as a crucial etiological factor. Consequently, investigating the molecular mechanism underlying HPV-induced cervical cancer has become a prominent research area. The HPV molecule is composed of a long control region (LCR), an early coding region and a late coding region.The early coding region encompasses E1, E2, E4, E5, E6, E7, while the late coding region comprises L1 and L2 ORF.The investigation into the molecular structure and function of HPV has garnered significant attention, with the aim of elucidating the carcinogenic mechanism of HPV and identifying potential targets for the treatment of cervical cancer. Research has demonstrated that the HPV gene and its encoded protein play a crucial role in the invasion and malignant transformation of host cells. Consequently, understanding the function of HPV oncoprotein is of paramount importance in comprehending the pathogenesis of cervical cancer. E6 and E7, the primary HPV oncogenic proteins, have been the subject of extensive study. Moreover, a number of contemporary investigations have demonstrated the significant involvement of HPV16 E5 oncoprotein in the malignant conversion of healthy cells through its regulation of cell proliferation, differentiation, and apoptosis via diverse pathways, albeit the precise molecular mechanism remains unclear. This manuscript aims to provide a comprehensive account of the molecular structure and life cycle of HPV.The HPV E5 oncoprotein mechanism modulates cellular processes such as proliferation, differentiation, apoptosis, and energy metabolism through its interaction with cell growth factor receptors and other cellular proteins. This mechanism is crucial for the survival, adhesion, migration, and invasion of tumor cells in the early stages of carcinogenesis. Recent studies have identified the HPV E5 oncoprotein as a promising therapeutic target for early-stage cervical cancer, thus offering a novel approach for treatment.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- The Second Hospital of Jilin University, Changchun, China
| | - Rulin Yang
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
15
|
Hewavisenti RV, Arena J, Ahlenstiel CL, Sasson SC. Human papillomavirus in the setting of immunodeficiency: Pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol 2023; 14:1112513. [PMID: 36960048 PMCID: PMC10027931 DOI: 10.3389/fimmu.2023.1112513] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal or cutaneous stratified epithelia, is implicated in the rising of associated cancers worldwide. While HPV infection can be cleared by an adequate immune response, immunocompromised individuals can develop persistent, treatment-refractory, and progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in defective cellular function. People living with secondary immunodeficiency (e.g. solid-organ transplants recipients of immunosuppression) and acquired immunodeficiency (e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant risk of HPV-related disease. Immunocompromised people are highly susceptible to the development of cutaneous and mucosal warts, and cervical, anogenital and oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-driven cancer development in immunocompromised hosts are not well understood. Current treatments for HPV-related cancers include surgery with adjuvant chemotherapy and/or radiotherapy, with clinical trials underway to investigate the use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting in an ongoing risk for transformation to overt malignancy. Although therapeutic vaccines against HPV are under development, the efficacy of these in the setting of PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based therapeutic targeting of the HPV genome or mRNA transcript has become a promising next-generation therapeutic avenue. In this review, we summarise the current understanding of HPV pathogenesis, immune evasion, and malignant transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV infection. Current management and vaccine regimes are outlined in relation to HPV-driven cancer, and specifically, the need for more effective therapeutic strategies for immunocompromised hosts. The recent advances in RNA-based gene targeting including CRISPR and short interfering RNA (siRNA), and the potential application to HPV infection are of great interest. An increased understanding of both the dysregulated immune responses in immunocompromised hosts and of viral persistence is essential for the design of next-generation therapies to eliminate HPV persistence and cancer development in the most at-risk populations.
Collapse
Affiliation(s)
- Rehana V. Hewavisenti
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Joshua Arena
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Chantelle L. Ahlenstiel
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Kondo M, Matsushima Y, Nakanishi T, Iida S, Habe K, Yamanaka K. Seborrheic Keratosis Caused by Human Papillomavirus Type 20 Ameliorated by Zinc Oxide Ointment. Clin Pract 2023; 13:367-371. [PMID: 36961058 PMCID: PMC10037649 DOI: 10.3390/clinpract13020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
A 91-year-old woman visited our department with scattered small nodule lesions and multiple pules or plaques with a stuck-on appearance. The lesions were intractable and resistant to several treatments. Immunodeficiency was excluded by examinations including a CT scan, white blood cell (WBC) counts, natural killer and neutrophil function assays, and IgG titers against human papillomavirus (HPV) 20. HPV20 was identified using the PCR method. The finding of the skin biopsy showed an irritated type of feature of seborrheic keratosis. Additionally, immunohistochemical staining of the lesion revealed that both TNF-α and IFN-ɤ were produced at the skin lesions. The patient's serum zinc level was slightly low. We noticed that zinc deficiency has been reported to decrease the cytotoxic activity of natural killer cells, which play an important role in eliminating virus-infected cells and tumor cells. Finally, zinc oxide ointment was found to improve the lesions dramatically. HPV20 causes tumors only in immunodeficient patients or in patients with epidermodysplasia verruciformis (EV). In EV, EVER1- or EVER2-encoding membrane proteins, of which are related to zinc transport protein-1 expressed on the membrane of the endoplasmic reticulum, were mutated, leading to increased susceptibility to various viral and bacterial infections due to the decreased intracellular zinc concentration. We speculated that the reduction in local zinc concentration was ameliorated by using zinc oxide ointment, resulting in the recovery from HPV20 infection.
Collapse
Affiliation(s)
- Makoto Kondo
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| | - Yoshiaki Matsushima
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| | - Takehisa Nakanishi
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| | - Shohei Iida
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| | - Koji Habe
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
17
|
Alturo-Pons A, Alamon-Reig F, Sanmartín Novell V, Vilardell F, Martí RM. [Translated article] Congenital and Acquired Epidermodysplasia Verruciformis: A Series of 7 Cases. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T179-T182. [PMID: 36464007 DOI: 10.1016/j.ad.2022.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- A Alturo-Pons
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - F Alamon-Reig
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - V Sanmartín Novell
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - F Vilardell
- Servicio de Anatomía Patológica, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - R M Martí
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
18
|
Alturo-Pons A, Alamon-Reig F, Sanmartín Novell V, Vilardell F, Martí RM. Congenital and Acquired Epidermodysplasia Verruciformis: A Series of 7 Cases. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:179-182. [PMID: 36055387 DOI: 10.1016/j.ad.2022.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- A Alturo-Pons
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, España
| | - F Alamon-Reig
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España
| | - V Sanmartín Novell
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, España
| | - F Vilardell
- Servicio de Anatomía Patológica, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, España
| | - R M Martí
- Servicio de Dermatología, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, España.
| |
Collapse
|
19
|
Zou P, Du Y, Yang C, Cao Y. Trace element zinc and skin disorders. Front Med (Lausanne) 2023; 9:1093868. [PMID: 36733937 PMCID: PMC9887131 DOI: 10.3389/fmed.2022.1093868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Zinc is a necessary trace element and an important constituent of proteins and other biological molecules. It has many biological functions, including antioxidant, skin and mucous membrane integrity maintenance, and the promotion of various enzymatic and transcriptional responses. The skin contains the third most zinc in the organism. Zinc deficiency can lead to a range of skin diseases. Except for acrodermatitis enteropathic, a rare genetic zinc deficiency, it has also been reported in other diseases. In recent years, zinc supplementation has been widely used for various skin conditions, including infectious diseases (viral warts, genital herpes, cutaneous leishmaniasis, leprosy), inflammatory diseases (hidradenitis suppurativa, acne vulgaris, rosacea, eczematous dermatitis, seborrheic dermatitis, psoriasis, Behcet's disease, oral lichen planus), pigmentary diseases (vitiligo, melasma), tumor-associated diseases (basal cell carcinoma), endocrine and metabolic diseases (necrolytic migratory erythema, necrolytic acral erythema), hair diseases (alopecia), and so on. We reviewed the literature on zinc application in dermatology to provide references for better use.
Collapse
Affiliation(s)
- Pan Zou
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Du
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Chunguang Yang ✉
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Yuchun Cao ✉
| |
Collapse
|
20
|
Cravero K, Chung M, Motaparthi K, Saikaly SK. Nonpruritic hypopigmented macules on an immunocompromised patient. JAAD Case Rep 2022; 27:143-146. [PMID: 36046807 PMCID: PMC9421168 DOI: 10.1016/j.jdcr.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Karen Cravero
- College of Medicine, University of Florida, Gainesville, Florida
| | - Michael Chung
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Kiran Motaparthi
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Sami K Saikaly
- Department of Dermatology, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
22
|
Gaburjakova J, Gaburjakova M. The Cardiac Ryanodine Receptor Provides a Suitable Pathway for the Rapid Transport of Zinc (Zn2+). Cells 2022; 11:cells11050868. [PMID: 35269490 PMCID: PMC8909583 DOI: 10.3390/cells11050868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
The sarcoplasmic reticulum (SR) in cardiac muscle is suggested to act as a dynamic storage for Zn2+ release and reuptake, albeit it is primarily implicated in the Ca2+ signaling required for the cardiac cycle. A large Ca2+ release from the SR is mediated by the cardiac ryanodine receptor (RYR2), and while this has a prominent conductance for Ca2+ in vivo, it also conducts other divalent cations in vitro. Since Zn2+ and permeant Mg2+ have similar physical properties, we tested if the RYR2 channel also conducts Zn2+. Using the method of planar lipid membranes, we evidenced that the RYR2 channel is permeable to Zn2+ with a considerable conductance of 81.1 ± 2.4 pS, which was significantly lower than the values for Ca2+ (127.5 ± 1.8 pS) and Mg2+ (95.3 ± 1.4 pS), obtained under the same asymmetric conditions. Despite similar physical properties, the intrinsic Zn2+ permeability (PCa/PZn = 2.65 ± 0.19) was found to be ~2.3-fold lower than that of Mg2+ (PCa/PMg = 1.146 ± 0.071). Further, we assessed whether the channel itself could be a direct target of the Zn2+ current, having the Zn2+ finger extended into the cytosolic vestibular portion of the permeation pathway. We attempted to displace Zn2+ from the RYR2 Zn2+ finger to induce its structural defects, which are associated with RYR2 dysfunction. Zn2+ chelators were added to the channel cytosolic side or strongly competing cadmium cations (Cd2+) were allowed to permeate the RYR2 channel. Only the Cd2+ current was able to cause the decay of channel activity, presumably as a result of Zn2+ to Cd2+ replacement. Our findings suggest that the RYR2 channel can provide a suitable pathway for rapid Zn2+ escape from the cardiac SR; thus, the channel may play a role in local and/or global Zn2+ signaling in cardiomyocytes.
Collapse
|
23
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
24
|
Stoehr R, Wendler O, Giedl J, Gaisa NT, Richter G, Campean V, Burger M, Wullich B, Bertz S, Hartmann A. Risk of penile tumor development in Caucasian individuals is independent of the coding variant rs7208422 in the TMC8 (EVER2) gene. Mol Clin Oncol 2021; 15:267. [PMID: 34790351 DOI: 10.3892/mco.2021.2429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022] Open
Abstract
Genetic variation in the transmembrane channel-like (TMC)6/TMC8 region has been linked to β-type human papillomavirus (HPV) infection and squamous cell carcinoma (SCC) of the skin and the head and neck, α-type HPV persistence and progression to cervical cancer. The functional variant rs7208422 of the TMC8 gene was suggested to have a high impact on susceptibility to β-papillomaviruses and their oncogenic potential and to also have an influence on α-type HPV-related disease. The aim of the present study was to evaluate a possible influence of rs7208422 on penile cancer risk, a known α-type HPV-related malignancy. Therefore, the distribution of rs7208422 was determined by direct Sanger sequencing of 104 Caucasian penile SCC cases and compared to data of 3,810 controls taken from the literature. HPV detection was performed by usage of GP5+/6+ primers and subtype-specific PCR. It was observed that the distribution of rs7208422 followed the Hardy-Weinberg equilibrium in both cases and controls. HPV DNA was detected in 39% of the penile SCC cases. Overall, there was no significant difference in the distribution of rs7208422 neither between cases and controls (P=0.726) nor between HPV-positive and -negative penile SCC cases (P=0.747). There was also no association between rs7208422 genotypes and age of disease onset (P=0.740). In conclusion, the present data argue against a significant impact of rs7208422 on the risk for the development of penile SCC in Caucasians. Even in combination with the HPV status, the SNP appears not to influence the risk of penile SCC in HPV-positive cases.
Collapse
Affiliation(s)
- Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| | - Olaf Wendler
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Johannes Giedl
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, D-52074 Aachen, Germany
| | | | | | - Maximilian Burger
- St. Josef Medical Centre, Department of Urology, University Regensburg, De-93053 Regensburg, Germany
| | - Bernd Wullich
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany.,Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| |
Collapse
|
25
|
Jalal Z, Bakour M, Lyoussi B. Medicinal Plants and Zinc: Impact on COVID-19 Pandemic. ScientificWorldJournal 2021; 2021:9632034. [PMID: 34602868 PMCID: PMC8483924 DOI: 10.1155/2021/9632034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The world is currently grappling with the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection can cause fever, a dry cough, fatigue, severe pneumonia, respiratory distress syndrome, and in some cases death. There is currently no effective antiviral SARS-CoV-2 drug. To reduce the number of infections and deaths, it is critical to focus on strengthening immunity. This review aims to conduct a comprehensive search on the previous studies using Google Scholar, ScienceDirect, Medline, PubMed, and Scopus for the collection of research papers based on the role of zinc in the immune system, the antiviral activity of zinc, the effect of zinc supplementation in respiratory infections, the therapeutic approaches against viral infections based on medicinal plants, and the role of plants' bioactive molecules in fighting viral infections. In conclusion, we highlighted the pivotal role of zinc in antiviral immunity and we suggested the bioactive molecules derived from medicinal plants as a search matrix for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Zineb Jalal
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
26
|
Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021; 10:cells10092280. [PMID: 34571929 PMCID: PMC8465836 DOI: 10.3390/cells10092280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
Collapse
|
27
|
Acquired Human Papilloma Virus Type 6-Associated Epidermodysplasia Verruciformis in a Patient With Systemic Lupus Erythematosus. Am J Dermatopathol 2021; 42:e156-e158. [PMID: 32675468 DOI: 10.1097/dad.0000000000001738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although historically known as a genetic disorder, epidermodysplasia verruciformis (EV) might be acquired in patients with a noninherited defective cell-mediated immunity. This article reports a case of EV in a patient with systemic lupus erythematosus and a history of 3 years immunosuppressive methylprednisolone treatment. The microscopic features of the skin biopsy showed morphologic changes of the keratinocytes characteristic of human papilloma virus (HPV) infections and immunoreactivity to p16. HPV genotyping demonstrated the presence of HPV 6 which belongs to a low-risk mucosal HPV group and has not been reported in EV previously. The clinical recognition of EV in immunocompromised patients and subsequent HPV typing is important because some patients will develop squamous cell carcinoma.
Collapse
|
28
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
29
|
Host genetic polymorphisms associated with beta human papillomavirus seropositivity. Arch Virol 2021; 166:2569-2572. [PMID: 34115212 DOI: 10.1007/s00705-021-05137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Human papillomaviruses (HPVs) cause superficial epidermal infections and are only cleared if they trigger an immunological response. We analysed SNPs that had previously been investigated for association with HPV infection to determine whether they play a role in the serological response to cutaneous beta-HPVs in an Australian population. Serum samples from 1,142 participants were analysed for seropositivity against the L1 protein of 21 beta-HPV types. Associations between seropositivity to beta-HPV types and the SNPs rs9264942 (HLA-C; HPV-9, p = 0.022, HPV-15, p = 0.043 and HPV-17, p = 0.004), rs12449858 (EVER1; HPV-23, p = 0.029), and rs2981451 (FGFR2; HPV-22, p = 0.049) were identified. We found that certain SNPs could be involved in the serological response to beta-HPVs.
Collapse
|
30
|
Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci Technol 2021; 110:66-77. [PMID: 33558789 PMCID: PMC7857987 DOI: 10.1016/j.tifs.2021.01.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The viral infections can be highly contagious and easily transmissible, which even can lead to a pandemic, like the recent COVID-19 outbreak, causing massive deaths worldwide. While, still the best practical way to prevent the transmission of viruses is to practice self-sanitation and follow social distancing principles, enhancing the individual's immunity through the consumption of proper foods containing balanced nutrients can have significant result against viral infections. Foods containing nutrients such as vitamins, minerals, fatty acids, few polysaccharides, and some non-nutrients (i.e. polyphenols) have shown therapeutic potential against the function of viruses and can increase the immunity of people. SCOPE AND APPROACH The results of conducted works aiming for studying the potential antiviral characteristics of diverse groups of foods and food's nutrients (in terms of polysaccharides, proteins, lipids, vitamins, and minerals) are critically discussed. KEY FINDINGS AND CONCLUSION Nutrients, besides playing an important role in maintaining normal physiology of human's body and healthiness, are also required for enhancing the immunity of the body and can be effective against viral infections. They can present antiviral capacity either by entering into the defensive mechanism directly through interfering with the target viruses, or indirectly through activating the cells associated with the adaptive immune system. During the current situation of COVID-19 pandemic (the lack of proper curative viral drug), enhancing the immunity of individual's body through proposing the appropriate diet (rich in both macro and micro-nutrients) is one of few practical preventive measures available in fighting against Coronaviruses, this significant health-threatening virus, as well as other viruses in general.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - Anjinelyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| |
Collapse
|
31
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
32
|
Gao YH, Yu L, Liu ZS, Li YF. Aristocratic human papillomavirus drove cervical cancer: a study of the therapeutic potential of the combination of interferon with zinc. Mol Cell Biochem 2021; 476:757-765. [PMID: 33099745 DOI: 10.1007/s11010-020-03941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) infection is related to cancer growth of vaginal, cervical, vulva, penile, anogenital, and non-genital oropharyngeal sites. HPV, as a sexually transmitted virus, infects all sexes similarly but with more significant pathological risks in women. This accounts for high mortality due to late detection and poor prognosis. The initial development and eventual progress of this cancer type depend entirely on three main oncogenes E5, E6 and E7, constitutively expressed to lead to carcinogenesis. Despite an opportunity for pharmacological therapy, there is still a shortage of medical treatment that may remove HPV from infected lesions. This study offers a concise summary of the nature of the issue and the current status of work on potential lead molecules and therapeutic approaches that show the capacity of HPV therapies to counteract the roles of deregulation of E5, E6, and E7.
Collapse
Affiliation(s)
- Yun-He Gao
- Department of Pathology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Lei Yu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Zhong-Shan Liu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Yun-Feng Li
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| |
Collapse
|
33
|
Micro x-ray fluorescence analysis of trace element distribution in frozen hydrated HeLa cells at the P06 beamline at Petra III. Biointerphases 2021; 16:011004. [PMID: 33706519 DOI: 10.1116/6.0000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray fluorescence analysis enables the study of trace element distributions in biological specimens. When this analysis is done under cryogenic conditions, cells are cryofixed as closely as possible to their natural physiological state, and the corresponding intracellular elemental densities can be analyzed. Details about the experimental setup used for analysis at the P06 beamline at Petra III, DESY and the used cryo-transfer system are described in this work. The system was applied to analyze the elemental distribution in single HeLa cells, a cell line frequently used in a wide range of biological applications. Cells adhered to silicon nitride substrates were cryoprotected within an amorphous ice matrix. Using a continuous scanning scheme and a KB x-ray focus, the distribution of elements in the cells was studied. We were able to image the intracellular potassium and zinc levels in HeLa cells as two key elements relevant for the physiology of cells.
Collapse
|
34
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
35
|
Mahdaviani A, Fallahpour M, Seif F, Alyasin S, Abolhassani H, Bousfiha A, Barbouche MR, Olbrich P. Defects in intrinsic and innate immunity. INBORN ERRORS OF IMMUNITY 2021:219-243. [DOI: 10.1016/b978-0-12-821028-4.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Singh AP, Jeffus SK, Shalin SC. Cervical dysplasia in a patient with inherited epidermodysplasia verruciformis-A mere coincidence? J Cutan Pathol 2020; 48:763-770. [PMID: 33319409 DOI: 10.1111/cup.13937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
Epidermodysplasia verruciformis (EV) is a rare inherited or acquired genodermatosis caused by increased susceptibility to infection by the beta subtypes of human papillomavirus (HPV). The co-occurrence of EV with high-risk (HR) HPV infection leading to cervical dysplasia is unreported in the literature to date. We report a patient with inherited EV who developed extensive anogenital and cervical dysplasia linked to concurrent HR-HPV infection. Literature review suggests that there is a negative correlation of cervical dysplasia and cervical cancer with EV, which suggests that this patient's presentation and course are exceptional.
Collapse
Affiliation(s)
- Amrit P Singh
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Susanne K Jeffus
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
37
|
Marcovich I, Holt JR. Evolution and function of Tmc genes in mammalian hearing. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Imahorn E, Aushev M, Herms S, Hoffmann P, Cichon S, Reichelt J, Itin PH, Burger B. Gene expression is stable in a complete CIB1 knockout keratinocyte model. Sci Rep 2020; 10:14952. [PMID: 32917957 PMCID: PMC7486891 DOI: 10.1038/s41598-020-71889-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is a genodermatosis characterized by the inability of keratinocytes to control cutaneous β-HPV infection and a high risk for non-melanoma skin cancer (NMSC). Bi-allelic loss of function variants in TMC6, TMC8, and CIB1 predispose to EV. The correlation between these proteins and β-HPV infection is unclear. Its elucidation will advance the understanding of HPV control in human keratinocytes and development of NMSC. We generated a cell culture model by CRISPR/Cas9-mediated deletion of CIB1 to study the function of CIB1 in keratinocytes. Nine CIB1 knockout and nine mock control clones were generated originating from a human keratinocyte line. We observed small changes in gene expression as a result of CIB1 knockout, which is consistent with the clearly defined phenotype of EV patients. This suggests that the function of human CIB1 in keratinocytes is limited and involves the restriction of β-HPV. The presented model is useful to investigate CIB1 interaction with β-HPV in future studies.
Collapse
Affiliation(s)
- Elias Imahorn
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Magomet Aushev
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Stefan Herms
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, Division of Genomics, Life & Brain Research Centre, University Hospital of Bonn, Bonn, Germany
| | - Per Hoffmann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, Division of Genomics, Life & Brain Research Centre, University Hospital of Bonn, Bonn, Germany.,Institute of Neuroscience and Medicine (INM-1), Genomic Imaging, Research Center Juelich, Juelich, Germany
| | - Sven Cichon
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine (INM-1), Genomic Imaging, Research Center Juelich, Juelich, Germany
| | - Julia Reichelt
- Department of Dermatology, Venereology and Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Peter H Itin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Bettina Burger
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Stocks CJ, von Pein JB, Curson JEB, Rae J, Phan MD, Foo D, Bokil NJ, Kambe T, Peters KM, Parton RG, Schembri MA, Kapetanovic R, Sweet MJ. Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli. J Leukoc Biol 2020; 109:287-297. [PMID: 32441444 PMCID: PMC7891337 DOI: 10.1002/jlb.2hi0420-160r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments. Since SLC30A zinc exporters can deliver zinc into the lumen of vesicles, we examined LPS-regulated mRNA expression of Slc30a/SLC30A family members in primary mouse and human macrophages. A number of these transporters were dynamically regulated in both cell populations. In human monocyte-derived macrophages, LPS strongly up-regulated SLC30A1 mRNA and protein expression. In contrast, SLC30A1 was not LPS-inducible in macrophage-like PMA-differentiated THP-1 cells. We therefore ectopically expressed SLC30A1 in these cells, finding that this was sufficient to promote zinc-containing vesicle formation. The response was similar to that observed following LPS stimulation. Ectopically expressed SLC30A1 localized to both the plasma membrane and intracellular zinc-containing vesicles within LPS-stimulated THP-1 cells. Inducible overexpression of SLC30A1 in THP-1 cells infected with the Escherichia coli K-12 strain MG1655 augmented the zinc stress response of intracellular bacteria and promoted clearance. Furthermore, in THP-1 cells infected with an MG1655 zinc stress reporter strain, all bacteria contained within SLC30A1-positive compartments were subjected to zinc stress. Thus, SLC30A1 marks zinc-containing compartments associated with TLR-inducible zinc toxicity in human macrophages, and its ectopic over-expression is sufficient to initiate this antimicrobial pathway in these cells. Finally, SLC30A1 silencing did not compromise E. coli clearance by primary human macrophages, suggesting that other zinc exporters may also contribute to the zinc toxicity response.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Darren Foo
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
40
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
41
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
42
|
The human papillomavirus 16 E5 gene potentiates MmuPV1-Dependent pathogenesis. Virology 2019; 541:1-12. [PMID: 31826841 DOI: 10.1016/j.virol.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
The papillomavirus E5 gene contributes to transformation and tumorigenesis; however, its exact function in these processes and viral pathogenesis is unclear. While E5 is present in high-risk mucosotropic HPVs that cause anogenital and head and neck cancers, it is absent in cutaneous HPVs and the recently discovered mouse papillomavirus (MmuPV1), which causes papillomas and squamous cell carcinomas of the skin and mucosal epithelia in laboratory mice. We infected K14E5 transgenic mice, which express the high-risk mucosotropic HPV16 E5 gene in stratified epithelia, with MmuPV1 to investigate the effects of E5 on papillomavirus-induced pathogenesis. Skin lesions in MmuPV1-infected K14E5 mice had earlier onset, higher incidence, and reduced frequency of spontaneous regression compared to those in non-transgenic mice. K14E5 mice were also more susceptible to cervicovaginal cancers when infected with MmuPV1 and treated with estrogen compared to non-transgenic mice. Our studies support the hypothesis that E5 contributes to papillomavirus-induced pathogenesis.
Collapse
|
43
|
Poropatich K, Paunesku T, Zander A, Wray B, Schipma M, Dalal P, Agulnik M, Chen S, Lai B, Antipova O, Maxey E, Brown K, Wanzer MB, Gursel D, Fan H, Rademaker A, Woloschak GE, Mittal BB. Elemental Zn and its Binding Protein Zinc-α2-Glycoprotein are Elevated in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Sci Rep 2019; 9:16965. [PMID: 31740720 PMCID: PMC6861298 DOI: 10.1038/s41598-019-53268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins—zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9—revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Kate Poropatich
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alia Zander
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian Wray
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark Agulnik
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Koshonna Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Beau Wanzer
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Demirkan Gursel
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hanli Fan
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gayle E Woloschak
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bharat B Mittal
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Yue X, Sheng Y, Kang L, Xiao R. Distinct functions of TMC channels: a comparative overview. Cell Mol Life Sci 2019; 76:4221-4232. [PMID: 31584127 PMCID: PMC11105308 DOI: 10.1007/s00018-019-03214-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
In the past two decades, transmembrane channel-like (TMC) proteins have attracted a significant amount of research interest, because mutations of Tmc1 lead to hereditary deafness. As evolutionarily conserved membrane proteins, TMC proteins are widely involved in diverse sensorimotor functions of many species, such as hearing, chemosensation, egg laying, and food texture detection. Interestingly, recent structural and physiological studies suggest that TMC channels may share a similar membrane topology with the Ca2+-activated Cl- channel TMEM16 and the mechanically activated OSCA1.2/TMEM63 channel. Namely, these channels form dimers and each subunit consists of ten transmembrane segments. Despite this important structural insight, a key question remains: what is the gating mechanism of TMC channels? The major technical hurdle to answer this question is that the reconstitution of TMC proteins as functional ion channels has been challenging in mammalian heterologous systems. Since TMC channels are conserved across taxa, genetic studies of TMC channels in model organisms such as C. elegans, Drosophila, and zebrafish may provide us critical information on the physiological function and regulation of TMCs. Here, we present a comparative overview on the diverse functions of TMC channels in different species.
Collapse
Affiliation(s)
- Xiaomin Yue
- Department of Neurosurgery of the First Affiliated Hospital, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Lijun Kang
- Department of Neurosurgery of the First Affiliated Hospital, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Nishito Y, Kambe T. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. J Biol Chem 2019; 294:15686-15697. [PMID: 31471319 DOI: 10.1074/jbc.ra119.010227] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Zinc transporter 1 (ZNT1) is the only zinc transporter predominantly located on the plasma membrane, where it plays a pivotal role exporting cytosolic zinc to the extracellular space. Numerous studies have focused on the physiological and pathological functions of ZNT1. However, its biochemical features remain poorly understood. Here, we investigated the regulation of ZNT1 expression in human and vertebrate cells, and found that ZNT1 expression is posttranslationally regulated by cellular zinc status. We observed that under zinc-sufficient conditions, ZNT1 accumulates on the plasma membrane, consistent with its zinc efflux function. In contrast, under zinc-deficient conditions, ZNT1 molecules on the plasma membrane were endocytosed and degraded through both the proteasomal and lysosomal pathways. Zinc-responsive ZNT1 expression corresponded with that of metallothionein, supporting the idea that ZNT1 and metallothionein cooperatively regulate cellular zinc homeostasis. ZNT1 is N-glycosylated on Asn299 in the extracellular loop between transmembrane domains V and VI, and this appears to be involved in the regulation of ZNT1 stability, as nonglycosylated ZNT1 is more stable. However, this posttranslational modification had no effect on ZNT1's ability to confer cellular resistance against high zinc levels or its subcellular localization. Our results provide molecular insights into ZNT1-mediated regulation of cellular zinc homeostasis, and indicate that the control of cellular and systemic zinc homeostasis via dynamic regulation of ZNT1 expression is more sophisticated than previously thought.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
46
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
47
|
da Cruz Silva LL, de Oliveira WRP, Sotto MN. Epidermodysplasia verruciformis: revision of a model of carcinogenic disease. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0046-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10:696-710. [PMID: 31305906 PMCID: PMC6628855 DOI: 10.1093/advances/nmz013] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common, affecting up to a quarter of the population in developing countries, but also affecting distinct populations in the developed world as a result of lifestyle, age, and disease-mediated factors. Consequently, zinc status is a critical factor that can influence antiviral immunity, particularly as zinc-deficient populations are often most at risk of acquiring viral infections such as HIV or hepatitis C virus. This review summarizes current basic science and clinical evidence examining zinc as a direct antiviral, as well as a stimulant of antiviral immunity. An abundance of evidence has accumulated over the past 50 y to demonstrate the antiviral activity of zinc against a variety of viruses, and via numerous mechanisms. The therapeutic use of zinc for viral infections such as herpes simplex virus and the common cold has stemmed from these findings; however, there remains much to be learned regarding the antiviral mechanisms and clinical benefit of zinc supplementation as a preventative and therapeutic treatment for viral infections.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie Obeid
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
49
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
50
|
Knowles DA, Bouchard G, Plevritis S. Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features. PLoS Comput Biol 2019; 15:e1006743. [PMID: 31136571 PMCID: PMC6555538 DOI: 10.1371/journal.pcbi.1006743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/07/2019] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Drug screening studies typically involve assaying the sensitivity of a range of cancer cell lines across an array of anti-cancer therapeutics. Alongside these sensitivity measurements high dimensional molecular characterizations of the cell lines are typically available, including gene expression, copy number variation and genomic mutations. We propose a sparse multitask regression model which learns discriminative latent characteristics that predict drug sensitivity and are associated with specific molecular features. We use ideas from Bayesian nonparametrics to automatically infer the appropriate number of these latent characteristics. The resulting analysis couples high predictive performance with interpretability since each latent characteristic involves a typically small set of drugs, cell lines and genomic features. Our model uncovers a number of drug-gene sensitivity associations missed by single gene analyses. We functionally validate one such novel association: that increased expression of the cell-cycle regulator C/EBPδ decreases sensitivity to the histone deacetylase (HDAC) inhibitor panobinostat.
Collapse
Affiliation(s)
- David A. Knowles
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gina Bouchard
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Sylvia Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|