1
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Sullivan LC, Nguyen THO, Harpur CM, Stankovic S, Kanagarajah AR, Koutsakos M, Saunders PM, Cai Z, Gray JA, Widjaja JML, Lin J, Pietra G, Mingari MC, Moretta L, Samir J, Luciani F, Westall GP, Malmberg KJ, Kedzierska K, Brooks AG. Natural killer cell receptors regulate responses of HLA-E-restricted T cells. Sci Immunol 2021; 6:eabe9057. [PMID: 33893172 DOI: 10.1126/sciimmunol.abe9057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (CMV) infection can stimulate robust human leukocyte antigen (HLA)-E-restricted CD8+ T cell responses. These T cells recognize a peptide from UL40, which differs by as little as a single methyl group from self-peptides that also bind HLA-E, challenging their capacity to avoid self-reactivity. Unexpectedly, we showed that the UL40/HLA-E T cell receptor (TCR) repertoire included TCRs that had high affinities for HLA-E/self-peptide. However, paradoxically, lower cytokine responses were observed from UL40/HLA-E T cells bearing TCRs with high affinity for HLA-E. RNA sequencing and flow cytometric analysis revealed that these T cells were marked by the expression of inhibitory natural killer cell receptors (NKRs) KIR2DL1 and KIR2DL2/L3. On the other hand, UL40/HLA-E T cells bearing lower-affinity TCRs expressed the activating receptor NKG2C. Activation of T cells bearing higher-affinity TCRs was regulated by the interaction between KIR2D receptors and HLA-C. These findings identify a role for NKR signaling in regulating self/non-self discrimination by HLA-E-restricted T cells, allowing for antiviral responses while avoiding contemporaneous self-reactivity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Christopher M Harpur
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Abbie R Kanagarajah
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Zhangying Cai
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - James A Gray
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jacqueline M L Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa 16132, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy
| | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Glen P Westall
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Karl J Malmberg
- KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo 0310, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Efforts toward rational design of Th2-bias immune stimulator through modification on D-Gal-C-4 of α-GalCer derivative. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
5
|
Lameris R, Shahine A, Pellicci DG, Uldrich AP, Gras S, Le Nours J, Groen RWJ, Vree J, Reddiex SJJ, Quiñones-Parra SM, Richardson SK, Howell AR, Zweegman S, Godfrey DI, de Gruijl TD, Rossjohn J, van der Vliet HJ. A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. ACTA ACUST UNITED AC 2020; 1:1054-1065. [DOI: 10.1038/s43018-020-00111-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
|
6
|
Almeida CF, Sundararaj S, Le Nours J, Praveena T, Cao B, Burugupalli S, Smith DGM, Patel O, Brigl M, Pellicci DG, Williams SJ, Uldrich AP, Godfrey DI, Rossjohn J. Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors. Nat Commun 2019; 10:5242. [PMID: 31748533 PMCID: PMC6868179 DOI: 10.1038/s41467-019-12941-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F’-pocket-docking mode that contrasts sharply with the previously determined A’-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens. Natural killer T (NKT) cells include type I that express semi-invariant T cell receptor (TCR), and type II that cover a broader repertoire. Here the authors describe the crystal structure of a type II NKT TCR complexed with CD1d/antigen to propose that type II NKT TCRs may adapt multiple CD1d docking modes to maximise antigen recognition efficacy.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Srinivasan Sundararaj
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - T Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Benjamin Cao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Satvika Burugupalli
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Onisha Patel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Manfred Brigl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel G Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.,School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia. .,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
7
|
Janssens J, Bitra A, Wang J, Decruy T, Venken K, van der Eycken J, Elewaut D, Zajonc DM, van Calenbergh S. 4"-O-Alkylated α-Galactosylceramide Analogues as iNKT-Cell Antigens: Synthetic, Biological, and Structural Studies. ChemMedChem 2018; 14:147-168. [PMID: 30556652 DOI: 10.1002/cmdc.201800649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 02/03/2023]
Abstract
Invariant natural killer T-cells (iNKT) are a glycolipid-responsive subset of T-lymphocytes that fulfill a pivotal role in the immune system. The archetypical synthetic glycolipid, α-galactosylceramide (α-GalCer), whose molecular framework is inspired by a group of amphiphilic natural products, remains the most studied antigen for iNKT-cells. Nonetheless, the potential of α-GalCer as an immunostimulating agent is compromised by the fact that this glycolipid elicits simultaneous secretion of Th1- and Th2-cytokines. This has incited medicinal chemistry efforts to identify analogues that are able to perturb the Th1/Th2 balance. In this work, we present the synthesis of an extensive set of 4"-O-alkylated α-GalCer analogues, which were evaluated in vivo for their cytokine induction. We have found that conversion of the 4"-OH group to ether moieties decreases the immunogenic potential in mice relative to α-GalCer. Yet, the benzyl-modified glycolipids are able to produce a distinct pro-inflammatory immune response. The crystal structures suggest an extra hydrophobic interaction between the benzyl moiety and the α2-helix of CD1d.
Collapse
Affiliation(s)
- Jonas Janssens
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tine Decruy
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Koen Venken
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Johan van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Janssens J, Decruy T, Venken K, Seki T, Krols S, Van der Eycken J, Tsuji M, Elewaut D, Van Calenbergh S. Efficient Divergent Synthesis of New Immunostimulant 4″-Modified α-Galactosylceramide Analogues. ACS Med Chem Lett 2017. [PMID: 28626526 PMCID: PMC5467197 DOI: 10.1021/acsmedchemlett.7b00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
![]()
A synthesis strategy
for the swift generation of 4″-modified
α-galactosylceramide (α-GalCer) analogues is described,
establishing a chemical platform to comprehensively investigate the
structure–activity relationships (SAR) of this understudied
glycolipid part. The strategy relies on a late-stage reductive ring-opening
of a p-methoxybenzylidene (PMP) acetal to regioselectively
liberate the 4″-OH position. The expediency of this methodology
is demonstrated by the synthesis of a small yet diverse set of analogues,
which were tested for their ability to stimulate invariant natural
killer T-cells (iNKT) in vitro and in vivo. The introduction of a p-chlorobenzyl
ether yielded an analogue with promising immunostimulating properties,
paving the way for further SAR studies.
Collapse
Affiliation(s)
- Jonas Janssens
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), B-9000 Ghent, Belgium
| | - Tine Decruy
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, B-9000 Ghent, Belgium
| | - Koen Venken
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, B-9000 Ghent, Belgium
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Simon Krols
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), B-9000 Ghent, Belgium
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Dirk Elewaut
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
- VIB Inflammation Research Center, Ghent University, B-9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Wu TN, Lin KH, Wu YT, Huang JR, Hung JT, Wu JC, Chen CY, Chu KC, Lin NH, Yu AL, Wong CH. Phenyl Glycolipids with Different Glycosyl Groups Exhibit Marked Differences in Murine and Human iNKT Cell Activation. ACS Chem Biol 2016; 11:3431-3441. [PMID: 27782396 DOI: 10.1021/acschembio.6b00650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) bearing the α-galactosyl headgroup and the acyl chain terminated with a phenyl derivative were found to be more potent than α-galactosyl ceramide (αGalCer) to stimulate both murine and human invariant natural killer T (iNKT) cells and to induce an antibody isotope switch to IgG. In this study, we replaced the galactosyl group with glucose (αGlc) and its fluoro-analogs and found that phenyl GSLs with αGlc (C34-Glc) and its fluoro-analog 6F-C34-Glc were stronger than those with αGal in stimulating human iNKT cells but weaker in mice. Their activities have a strong correlation with the binding avidities of the ternary interaction between the iNKT-cell receptor (iNKTCR) and CD1d-GSL complex. It was the iNKTCR rather than CD1d that dictated the species-specific responses. C34-Glc was further used as an adjuvant for a SSEA4-crm-197 vaccine, and after immunization in mice, the vaccine was highly effective against Lewis lung carcinoma.
Collapse
Affiliation(s)
- Tai-Na Wu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Lin
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ying-Ta Wu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
| | - Jing-Rong Huang
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Chine Wu
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | | | | | - Alice L. Yu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan
- Department
of Chemistry, the Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Krovi SH, Gapin L. Structure and function of the non-classical major histocompatibility complex molecule MR1. Immunogenetics 2016; 68:549-59. [PMID: 27448212 DOI: 10.1007/s00251-016-0939-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/30/2023]
Abstract
Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these "classical" MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other "non-classical" MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells.
Collapse
Affiliation(s)
- S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, USA.
| |
Collapse
|
11
|
Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 2016; 68:561-76. [PMID: 27368414 DOI: 10.1007/s00251-016-0931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA. .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Guo T, Chamoto K, Nakatsugawa M, Ochi T, Yamashita Y, Anczurowski M, Butler MO, Hirano N. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors. PLoS One 2016; 11:e0156114. [PMID: 27213277 PMCID: PMC4877060 DOI: 10.1371/journal.pone.0156114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 02/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs.
Collapse
Affiliation(s)
- Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marcus O. Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun 2016; 7:10570. [PMID: 26875526 PMCID: PMC4756352 DOI: 10.1038/ncomms10570] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/29/2015] [Indexed: 11/25/2022] Open
Abstract
Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. The invariant αβTCR of type I NKT cells recognizes a lipid α-GalCer presented by CD1d. Here the authors describe atypical α-GalCer-reactive NKT cells with diverse TCRs, which bind to CD1d-α-GalCer in a manner distinct from type I NKT cells, thus unveiling greater diversity in lipid antigen recognition.
Collapse
|
14
|
Jarrett R, Salio M, Lloyd-Lavery A, Subramaniam S, Bourgeois E, Archer C, Cheung KL, Hardman C, Chandler D, Salimi M, Gutowska-Owsiak D, de la Serna JB, Fallon PG, Jolin H, Mckenzie A, Dziembowski A, Podobas EI, Bal W, Johnson D, Moody DB, Cerundolo V, Ogg G. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci Transl Med 2016; 8:325ra18. [PMID: 26865566 PMCID: PMC4872823 DOI: 10.1126/scitranslmed.aad6833] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis is a common pruritic skin disease in which barrier dysfunction and cutaneous inflammation contribute to pathogenesis. Mechanisms underlying the associated inflammation are not fully understood, and although Langerhans cells expressing the nonclassical major histocompatibility complex (MHC) family member CD1a are known to be enriched within lesions, their role in clinical disease pathogenesis has not been studied. We observed that house dust mite (HDM) allergen generates neolipid antigens presented by CD1a to T cells in the blood and skin lesions of affected individuals. HDM-responsive CD1a-reactive T cells increased in frequency after birth in individuals with atopic dermatitis and showed rapid effector function, consistent with antigen-driven maturation. In HDM-challenged human skin, we observed phospholipase A2 (PLA2) activity in vivo. CD1a-reactive T cell activation was dependent on HDM-derived PLA2, and such cells infiltrated the skin after allergen challenge. Moreover, we observed that the skin barrier protein filaggrin, insufficiency of which is associated with atopic skin disease, inhibited PLA2 activity and decreased CD1a-reactive PLA2-generated neolipid-specific T cell activity from skin and blood. The most widely used classification schemes of hypersensitivity suggest that nonpeptide stimulants of T cells act as haptens that modify peptides or proteins; however, our results show that HDM proteins may also generate neolipid antigens that directly activate T cells. These data define PLA2 inhibition as a function of filaggrin, supporting PLA2 inhibition as a therapeutic approach.
Collapse
Affiliation(s)
- Rachael Jarrett
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Antonia Lloyd-Lavery
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Sumithra Subramaniam
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Elvire Bourgeois
- Division of Rheumatology, Immunology and Allergy, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts, 02114, USA
| | - Charles Archer
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Ka Lun Cheung
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Clare Hardman
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - David Chandler
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Maryam Salimi
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Institute of Molecular Medicine, St James’s Hospital, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Childrens Hospital, Dublin, Ireland
| | - Helen Jolin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Izabela Podobas
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - David Johnson
- Department of Plastic and Reconstructive Surgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, UK
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts, 02114, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| | - Graham Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, UK
| |
Collapse
|
15
|
Species Specific Differences of CD1d Oligomer Loading In Vitro. PLoS One 2015; 10:e0143449. [PMID: 26599805 PMCID: PMC4657966 DOI: 10.1371/journal.pone.0143449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
CD1d molecules are MHC class I-like molecules that present glycolipids to iNKT cells. The highly conserved interaction between CD1d:α-Galactosylceramide (αGC) complexes and the iNKT TCR not only defines this population of αβ T cells but can also be used for its direct identification. Therefore, CD1d oligomers are a widely used tool for iNKT cell related investigations. To this end, the lipid chains of the antigen have to be inserted into the hydrophobic pockets of the CD1d binding cleft, often with help of surfactants. In this study, we investigated the influence of different surfactants (Triton X-100, Tween 20, Tyloxapol) on in vitro loading of CD1d molecules derived from four different species (human, mouse, rat and cotton rat) with αGC and derivatives carrying modifications of the acyl-chain (DB01-1, PBS44) and a 6-acetamido-6-deoxy-addition at the galactosyl head group (PBS57). We also compared rat CD1d dimers with tetramers and staining of an iNKT TCR transductant was used as readout for loading efficacy. The results underlined the importance of CD1d loading efficacy for proper analysis of iNKT TCR binding and demonstrated the necessity to adjust loading conditions for each oligomer/glycolipid combination. The efficient usage of surfactants as a tool for CD1d loading was revealed to be species-specific and depending on the origin of the CD1d producing cells. Additional variation of surfactant-dependent loading efficacy between tested glycolipids was influenced by the acyl-chain length and the modification of the galactosyl head group with PBS57 showing the least dependence on surfactants and the lowest degree of species-dependent differences.
Collapse
|
16
|
Cameron G, Pellicci DG, Uldrich AP, Besra GS, Illarionov P, Williams SJ, La Gruta NL, Rossjohn J, Godfrey DI. Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity. THE JOURNAL OF IMMUNOLOGY 2015; 195:4604-14. [DOI: 10.4049/jimmunol.1501222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
|
17
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Zajonc DM, Girardi E. Recognition of Microbial Glycolipids by Natural Killer T Cells. Front Immunol 2015; 6:400. [PMID: 26300885 PMCID: PMC4523824 DOI: 10.3389/fimmu.2015.00400] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
19
|
McEwen-Smith RM, Salio M, Cerundolo V. CD1d-dependent endogenous and exogenous lipid antigen presentation. Curr Opin Immunol 2015; 34:116-25. [PMID: 25805574 DOI: 10.1016/j.coi.2015.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipids in the context of CD1d molecules, and through the activation and maturation of dendritic cells and B cells, can significantly enhance priming of antigen-specific T and B cell responses. Recent findings have provided important insights into the recognition of several novel endogenous lipids by iNKT cells, and into the mechanisms controlling their generation and loading onto CD1d molecules. In this review we discuss these latest findings and describe the role of autophagy in iNKT cell development and activation.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
20
|
Paletta D, Fichtner AS, Hahn AM, Starick L, Beyersdorf N, Monzon-Casanova E, Mueller TD, Herrmann T. The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1d-glycolipid binding of iNKT TCRs. Eur J Immunol 2015; 45:2122-33. [PMID: 25900449 DOI: 10.1002/eji.201545534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/08/2022]
Abstract
TCRs of invariant NKT (iNKT) cells bind α-galactosylceramide (αGC) loaded CD1d in a highly conserved fashion and show a characteristic TCR gene usage: An "invariant" α chain with a canonical AV14/AJ18 rearrangement in mice (AV24/AJ18 in humans) is paired with β chains containing characteristic Vβ segments. In the rat, a multimember AV14 gene family increases the variability within this system. This study characterizes CD1d binding of rat AV14 gene segments in TCR transductants as well as CD1d binding and iNKT TCR expression of expanded polyclonal F344 rat iNKT populations. It defines an important role of position 93 at the V-J transition for TCR avidity and species cross-reactivity of the rat iNKT TCR. Furthermore, for the first time we identified variability within the fourth hypervariable loop (HV4) of the α chain as a modulator of CD1d:αGC binding in rat and mouse. Additionally, we confirmed the importance of the CDR2β for CD1d:αGC binding, but also show that the CDR3β may even have opposite effects on binding depending on the pairing α chain. Altogether, we characterized naturally occurring sources of variability for the iNKT TCR and speculate that they rather level than increase the largely germline encoded differences of iNKT TCR ligand avidity.
Collapse
Affiliation(s)
- Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Anne Maria Hahn
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Abstract
Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anticancer therapeutics. Indeed, the identification of strong iNKT-cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids that have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article, we discuss these latest findings and summarize the major discoveries in iNKT-cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
22
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
23
|
Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. Proc Natl Acad Sci U S A 2014; 111:E4648-57. [PMID: 25298532 DOI: 10.1073/pnas.1408549111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens.
Collapse
|
24
|
Thakur MS, Khurana A, Kronenberg M, Howell AR. Synthesis of a 2"-deoxy-β-GalCer. Molecules 2014; 19:10090-102. [PMID: 25014535 PMCID: PMC4409828 DOI: 10.3390/molecules190710090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022] Open
Abstract
Structural studies of ternary complexes of CD1d/glycosyl ceramides/iNKT cells and CD1d/sulfatide/sulfatide reactive Type II NKT cells have shown how the polar moieties on the glycolipids interact with both the antigen presenting protein (CD1d) and the T cell receptors. However, these structures alone do not reveal the relative importance of these interactions. This study focuses on the synthesis of the previously unknown 2"-deoxy-β-galactosyl ceramide 2. This glycolipid is also evaluated for its ability to stimulate iNKT cells and sulfatide-reactive Type II NKT cells.
Collapse
Affiliation(s)
- Meena S Thakur
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269, USA
| | - Archana Khurana
- La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269, USA.
| |
Collapse
|
25
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
26
|
Bhati M, Cole DK, McCluskey J, Sewell AK, Rossjohn J. The versatility of the αβ T-cell antigen receptor. Protein Sci 2014; 23:260-72. [PMID: 24375592 DOI: 10.1002/pro.2412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
The T-cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T-lymphocytes, with each chain of the TCR comprising three complementarity-determining regions (CDRs) that collectively form the antigen-binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR-pMHC interaction is crucially important in cell-mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR-pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T-cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC-related molecules that instead of presenting peptides are ideally suited to bind lipid-based antigens. Structural studies within the CD1-lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1-lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC-like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.
Collapse
Affiliation(s)
- Mugdha Bhati
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
27
|
Birkinshaw RW, Kjer-Nielsen L, Eckle SBG, McCluskey J, Rossjohn J. MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol 2013; 26:7-13. [PMID: 24556396 DOI: 10.1016/j.coi.2013.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
αβT-cell mediated immunity is traditionally characterised by recognition of peptides or lipids presented by the major histocompatibility complex (MHC) or the CD1 family respectively. Recently the antigenic repertoire of αβT-cells has been expanded with the observation that mucosal-associated invariant T-cells (MAIT cells), an abundant population of innate-like T-cells, can recognise metabolites of vitamin B, when presented by the MHC-related protein, MR1. The semi-invariant MAIT T-cell antigen receptor (TCR) recognises riboflavin and folic acid metabolites bound by MR1 in a conserved docking mode, and thus acts like a pattern recognition receptor. Here we review and discuss the recent observations concerning antigen presentation by MR1, the advent of MR1-Ag tetramers that specifically stain MAIT cells, recognition by the MAIT TCR, and our emerging understanding of MAIT cells in disease.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
28
|
CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14:1137-45. [DOI: 10.1038/ni.2713] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 02/08/2023]
|
29
|
Venturi V, Rudd BD, Davenport MP. Specificity, promiscuity, and precursor frequency in immunoreceptors. Curr Opin Immunol 2013; 25:639-45. [PMID: 23880376 DOI: 10.1016/j.coi.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
The immune system is comprised of various immune cell populations that utilize a spectrum of immunoreceptors characterized by different levels of specificity, diversity, and prevalence within a host and across a population. These range from the universal receptors employed by both innate cells and innate-like cells, such as NKT and MAIT cells, through to receptors expressed on T cells with sporadic incidence. Here we review recent advances in understanding the molecular mechanisms that drive the observed spectra of T cell receptors in vivo.
Collapse
Affiliation(s)
- Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia.
| | | | | |
Collapse
|
30
|
A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 2013; 14:706-13. [PMID: 23727893 PMCID: PMC3723453 DOI: 10.1038/ni.2630] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
T cell receptors (TCRs) pair in millions of combinations to create complex and personally unique T cell repertoires. Using tetramers to analyze CD1b-reactive TCRs, we detected T cells with highly stereotyped TCR α chains present among genetically unrelated tuberculosis patients. These germline-encoded mycolyl-reactive (GEM) T cells were defined by CD4 expression and rearrangement of TRAV1-2 to TRAJ9 with few N-region additions. TCR analysis by high throughput sequencing, binding and crystallography showed linkage of TCR α sequence motifs to high affinity antigen recognition. Thus, the CD1-reactive TCR repertoire is composed of at least two compartments, high affinity GEM TCRs and more diverse TCRs with low affinity for CD1b-lipid complexes. These data demonstrate high inter-donor conservation of TCRs, which likely results from selection by a non-polymorphic antigen presenting molecule and an immunodominant antigen.
Collapse
|
31
|
Fox LM, Miksanek J, May NA, Scharf L, Lockridge JL, Veerapen N, Besra GS, Adams EJ, Hudson AW, Gumperz JE. Expression of CD1c enhances human invariant NKT cell activation by α-GalCer. CANCER IMMUNITY 2013; 13:9. [PMID: 23885215 PMCID: PMC3721260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate T lymphocytes that specifically recognize α-linked glycosphingolipids (α-GSLs) as antigens presented by CD1d molecules. Activating iNKT cells by administering α-GSLs improves disease outcomes in murine cancer models and, thus, there is great interest in the clinical potential of these lipids for treating human cancers. However, humans possess several other CD1 isoforms that are not present in mice and it is not clear whether these CD1 molecules, which also bind lipids, affect human iNKT cell responses. We demonstrate here that CD1c, which is co-expressed with CD1d on blood dendritic cells and on a fraction of B cells, is able to present α-galactosylceramide (α-GalCer) as a weak agonist to human iNKT cells, and that the presence of CD1c synergistically enhances α-GalCerdependent activation of iNKT cells by CD1d. Primary human B cells expressing CD1c induced stronger iNKT cell responses to α-GalCer than the CD1c- subset, and an antibody against CD1c inhibited iNKT cell cytokine secretion. These results suggest that therapeutic activation of human iNKT cells by α-GSLs will be driven preferentially by CD1c+ cell types. Thus, B cell neoplasias that co-express CD1c and CD1d may be particularly susceptible to α-GSL therapy, and cancer vaccines using α-GSLs as adjuvants may be most effective when presented by CD1c+ antigen-presenting cells.
Collapse
Affiliation(s)
- Lisa M. Fox
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI,USA
| | - Jennifer Miksanek
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI,USA
| | - Nathan A. May
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Louise Scharf
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jennifer L. Lockridge
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI,USA
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI,USA
| |
Collapse
|
32
|
Gapin L, Godfrey DI, Rossjohn J. Natural Killer T cell obsession with self-antigens. Curr Opin Immunol 2013; 25:168-73. [PMID: 23384972 DOI: 10.1016/j.coi.2013.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/04/2013] [Indexed: 01/08/2023]
Abstract
Natural Killer T (NKT) cells are distinct lymphocyte lineages that recognize lipid antigens presented by the non-classical Major Histocompatibility Complex molecule CD1d. Two categories of NKT cells, type I and type II, have been described based on T-cell receptor expression and antigenic specificity. In both cases, increasing evidence suggest that recognition of self-antigens by these cells plays an important role not only in their development but also in their regulation of a broad range of immune responses. Here we review recent advances in our understanding of how and when NKT cell autoreactivity manifests itself, how the NKT T cell receptor engages self-antigens and the nature of these self-antigens.
Collapse
Affiliation(s)
- Laurent Gapin
- Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| | | | | |
Collapse
|
33
|
Sanderson JP, Brennan PJ, Mansour S, Matulis G, Patel O, Lissin N, Godfrey DI, Kawahara K, Zähringer U, Rossjohn J, Brenner MB, Gadola SD. CD1d protein structure determines species-selective antigenicity of isoglobotrihexosylceramide (iGb3) to invariant NKT cells. Eur J Immunol 2013; 43:815-25. [PMID: 23280365 DOI: 10.1002/eji.201242952] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 11/07/2022]
Abstract
Isoglobotrihexosylceramide (iGb3) has been identified as a potent CD1d-presented self-antigen for mouse invariant natural killer T (iNKT) cells. The role of iGb3 in humans remains unresolved, however, as there have been conflicting reports about iGb3-dependent human iNKT-cell activation, and humans lack iGb3 synthase, a key enzyme for iGb3 synthesis. Given the importance of human immune responses, we conducted a human-mouse cross-species analysis of iNKT-cell activation by iGb3-CD1d. Here we show that human and mouse iNKT cells were both able to recognise iGb3 presented by mouse CD1d (mCD1d), but not human CD1d (hCD1d), as iGb3-hCD1d was unable to support cognate interactions with the iNKT-cell TCRs tested in this study. The structural basis for this discrepancy was identified as a single amino acid variation between hCD1d and mCD1d, a glycine-to-tryptophan modification within the α2-helix that prevents flattening of the iGb3 headgroup upon TCR ligation. Mutation of the human residue, Trp153, to the mouse ortholog, Gly155, therefore allowed iGb3-hCD1d to stimulate human iNKT cells. In conclusion, our data indicate that iGb3 is unlikely to be a major antigen in human iNKT-cell biology.
Collapse
Affiliation(s)
- Joseph P Sanderson
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome and Hope Laboratories, Southampton Musculoskeletal BRU, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13:101-17. [PMID: 23334244 DOI: 10.1038/nri3369] [Citation(s) in RCA: 646] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invariant natural killer T (iNKT) cells exist in a 'poised effector' state, which enables them to rapidly produce cytokines following activation. Using a nearly monospecific T cell receptor, they recognize self and foreign lipid antigens presented by CD1d in a conserved manner, but their activation can catalyse a spectrum of polarized immune responses. In this Review, we discuss recent advances in our understanding of the innate-like mechanisms underlying iNKT cell activation and describe how lipid antigens, the inflammatory milieu and interactions with other immune cell subsets regulate the functions of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
36
|
Abstract
Natural killer T (NKT) cells are innate-like T cells that rapidly produce a variety of cytokines following T cell receptor (TCR) activation and can shape the immune response in many different settings. There are two main NKT cell subsets: type I NKT cells are typically characterized by the expression of a semi-invariant TCR, whereas the TCRs expressed by type II NKT cells are more diverse. This Review focuses on the defining features and emerging generalities regarding how NKT cells specifically recognize self, microbial and synthetic lipid-based antigens that are presented by CD1d. Such information is vitally important to better understand, and fully harness, the therapeutic potential of NKT cells.
Collapse
|
37
|
Girardi E, Zajonc DM. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 2012; 250:167-79. [PMID: 23046129 PMCID: PMC3471380 DOI: 10.1111/j.1600-065x.2012.01166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Binding Sites
- Epitopes
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lipids/chemistry
- Lipids/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA, USA
| | | |
Collapse
|
38
|
Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology 2012; 137:20-7. [PMID: 22734667 DOI: 10.1111/j.1365-2567.2012.03612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.
Collapse
|
39
|
López-Sagaseta J, Kung JE, Savage PB, Gumperz J, Adams EJ. The molecular basis for recognition of CD1d/α-galactosylceramide by a human non-Vα24 T cell receptor. PLoS Biol 2012; 10:e1001412. [PMID: 23109910 PMCID: PMC3479090 DOI: 10.1371/journal.pbio.1001412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/12/2012] [Indexed: 11/27/2022] Open
Abstract
Human Vα24− CD1d-restricted T cells use variation in their CDR1α loop to respond to lipid antigens presented by CD1d, altering their specificities from that of invariant natural killer T cells. CD1d-mediated presentation of glycolipid antigens to T cells is capable of initiating powerful immune responses that can have a beneficial impact on many diseases. Molecular analyses have recently detailed the lipid antigen recognition strategies utilized by the invariant Vα24-Jα18 TCR rearrangements of iNKT cells, which comprise a subset of the human CD1d-restricted T cell population. In contrast, little is known about how lipid antigens are recognized by functionally distinct CD1d-restricted T cells bearing different TCRα chain rearrangements. Here we present crystallographic and biophysical analyses of α-galactosylceramide (α-GalCer) recognition by a human CD1d-restricted TCR that utilizes a Vα3.1-Jα18 rearrangement and displays a more restricted specificity for α-linked glycolipids than that of iNKT TCRs. Despite having sequence divergence in the CDR1α and CDR2α loops, this TCR employs a convergent recognition strategy to engage CD1d/αGalCer, with a binding affinity (∼2 µM) almost identical to that of an iNKT TCR used in this study. The CDR3α loop, similar in sequence to iNKT-TCRs, engages CD1d/αGalCer in a similar position as that seen with iNKT-TCRs, however fewer actual contacts are made. Instead, the CDR1α loop contributes important contacts to CD1d/αGalCer, with an emphasis on the 4′OH of the galactose headgroup. This is consistent with the inability of Vα24− T cells to respond to α-glucosylceramide, which differs from αGalCer in the position of the 4′OH. These data illustrate how fine specificity for a lipid containing α-linked galactose is achieved by a TCR structurally distinct from that of iNKT cells. Certain lineages of T cells can recognize lipids as stimulatory antigens when presented in the context of CD1 molecules. We know how most Natural Killer T (NKT) cells react with this unusual ligand because they use a single invariant T cell receptor (TCR) alpha chain to do the job. NKT cells place particular emphasis on their CDR3α and CDR2β loops in recognition of antigen—these complementarity determining regions (CDRs) are the hypervariable parts of the TCR that “complement” an antigen's shape. How do these other T cells recognize closely related yet distinct lipid antigens? Here we show that human CD1d-restricted T cells, typically called Vα24− T cells due to their use of diverse Vα domains in their TCRs, use similar molecular strategies to respond to lipid antigens presented by CD1d. To this end we present a 2.5 Å complex structure of a Vα24− TCR complexed with CD1d presenting the protypical lipid, α-galactosylceramide (αGalCer). The TCR examined in this study notably shifts its binding slightly, placing more emphasis on the interaction with the CDR1α loop as revealed through alanine scanning mutagenesis. This shift explains the inability of these T cells to respond to lipids that vary at this site of contact (the 4'OH), like the related α-linked glucosylceramide. These results provide a molecular basis for the fine-specificity of different CD1d-restricted T cell lineages.
Collapse
Affiliation(s)
- Jacinto López-Sagaseta
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer E. Kung
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Paul B. Savage
- Department of Chemistry, Brigham Young University, Provo, Utah, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wun KS, Ross F, Patel O, Besra GS, Porcelli SA, Richardson SK, Keshipeddy S, Howell AR, Godfrey DI, Rossjohn J. Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J Biol Chem 2012; 287:39139-48. [PMID: 22995911 DOI: 10.1074/jbc.m112.412320] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and mouse type I natural killer T (NKT) cells respond to a variety of CD1d-restricted glycolipid antigens (Ags), with their NKT cell antigen receptors (NKT TCRs) exhibiting reciprocal cross-species reactivity that is underpinned by a conserved NKT TCR-CD1d-Ag docking mode. Within this common docking footprint, the NKT TCR recognizes, to varying degrees of affinity, a range of Ags. Presently, it is unclear whether the human NKT TCRs will mirror the generalities underpinning the fine specificity of the mouse NKT TCR-CD1d-Ag interaction. Here, we assessed human NKT TCR recognition against altered glycolipid ligands of α-galactosylceramide (α-GalCer) and have determined the structures of a human NKT TCR in complex with CD1d-4',4″-deoxy-α-GalCer and CD1d-α-GalCer with a shorter, di-unsaturated acyl chain (C20:2). Altered glycolipid ligands with acyl chain modifications did not affect the affinity of the human NKT TCR-CD1d-Ag interaction. Surprisingly, human NKT TCR recognition is more tolerant to modifications at the 4'-OH position in comparison with the 3'-OH position of α-GalCer, which contrasts the fine specificity of the mouse NKT TCR-CD1d-Ag recognition (4'-OH > 3'-OH). The fine specificity differences between human and mouse NKT TCRs was attributable to differing interactions between the respective complementarity-determining region 1α loops and the Ag. Accordingly, germline encoded fine-specificity differences underpin human and mouse type I NKT TCR interactions, which is an important consideration for therapeutic development and NKT cell physiology.
Collapse
Affiliation(s)
- Kwok S Wun
- Australian Research Council (ARC) Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.
Collapse
Affiliation(s)
- Jennifer A. Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
42
|
Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 2012; 13:857-63. [DOI: 10.1038/ni.2372] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
|
43
|
Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, Kostenko L, Bharadwaj M, Meehan B, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. ACTA ACUST UNITED AC 2012; 209:761-74. [PMID: 22412157 PMCID: PMC3328369 DOI: 10.1084/jem.20112095] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crystal structure and mutagenesis analyses suggest a MAIT TCR–MR1 docking mode distinct from the NKT TCR-CD1d docking mode. Mucosal-associated invariant T (MAIT) cells express a semiinvariant αβ T cell receptor (TCR) that binds MHC class I–like molecule (MR1). However, the molecular basis for MAIT TCR recognition by MR1 is unknown. In this study, we present the crystal structure of a human Vα7.2Jα33-Vβ2 MAIT TCR. Mutagenesis revealed highly conserved requirements for the MAIT TCR–MR1 interaction across different human MAIT TCRs stimulated by distinct microbial sources. Individual residues within the MAIT TCR β chain were dispensable for the interaction with MR1, whereas the invariant MAIT TCR α chain controlled specificity through a small number of residues, which are conserved across species and located within the Vα-Jα regions. Mutagenesis of MR1 showed that only two residues, which were centrally positioned and on opposing sides of the antigen-binding cleft of MR1, were essential for MAIT cell activation. The mutagenesis data are consistent with a centrally located MAIT TCR–MR1 docking that was dominated by the α chain of the MAIT TCR. This candidate docking mode contrasts with that of the NKT TCR–CD1d-antigen interaction, in which both the α and β chain of the NKT TCR is required for ligation above the F′-pocket of CD1d.
Collapse
Affiliation(s)
- Rangsima Reantragoon
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Towards multivalent CD1d ligands: synthesis and biological activity of homodimeric α-galactosyl ceramide analogues. Carbohydr Res 2012; 356:152-62. [PMID: 22445102 PMCID: PMC3413882 DOI: 10.1016/j.carres.2012.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/28/2012] [Indexed: 11/21/2022]
Abstract
A library of dimeric CD1d ligands, containing two α-galactosyl ceramide (α-GalCer) units linked by spacers of varying lengths has been synthesised. The key dimerisation reactions were carried out via copper-catalysed click reactions between a 6"-azido-6"-deoxy-α-galactosyl ceramide derivative and various diynes. Each α-GalCer dimer was tested for its ability to stimulate iNKT cells.
Collapse
|
45
|
López-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor. EMBO J 2012; 31:2047-59. [PMID: 22395072 DOI: 10.1038/emboj.2012.54] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/06/2012] [Indexed: 11/09/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.
Collapse
Affiliation(s)
- Jacinto López-Sagaseta
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
46
|
Sanderson JP, Waldburger-Hauri K, Garzón D, Matulis G, Mansour S, Pumphrey NJ, Lissin N, Villiger PM, Jakobsen B, Faraldo-Gómez JD, Gadola SD. Natural variations at position 93 of the invariant Vα24-Jα18 α chain of human iNKT-cell TCRs strongly impact on CD1d binding. Eur J Immunol 2011; 42:248-55. [PMID: 21956730 DOI: 10.1002/eji.201141956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/23/2011] [Accepted: 09/20/2011] [Indexed: 01/17/2023]
Abstract
Human invariant natural killer T (NKT) cell TCRs bind to CD1d via an "invariant" Vα24-Jα18 chain (iNKTα) paired to semi-invariant Vβ11 chains (iNKTβ). Single-amino acid variations at position 93 (p93) of iNKTα, immediately upstream of the "invariant" CDR3α region, have been reported in a substantial proportion of human iNKT-cell clones (4-30%). Although p93, a serine in most human iNKT-cell TCRs, makes no contact with CD1d, it could affect CD1d binding by altering the conformation of the crucial CDR3α loop. By generating recombinant refolded iNKT-cell TCRs, we show that natural single-nucleotide variations in iNKTα, translating to serine, threonine, asparagine or isoleucine at p93, exert a powerful effect on CD1d binding, with up to 28-fold differences in affinity between these variants. This effect was observed with CD1d loaded with either the artificial α-galactosylceramide antigens KRN7000 or OCH, or the endogenous glycolipid β-galactosylceramide, and its importance for autoreactive recognition of endogenous lipids was demonstrated by the binding of variant iNKT-cell TCR tetramers to cell surface expressed CD1d. The serine-containing variant showed the strongest CD1d binding, offering an explanation for its predominance in vivo. Complementary molecular dynamics modeling studies were consistent with an impact of p93 on the conformation of the CDR3α loop.
Collapse
Affiliation(s)
- Joseph P Sanderson
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yu ED, Girardi E, Wang J, Mac TT, Yu KOA, Van Calenbergh S, Porcelli SA, Zajonc DM. Structural basis for the recognition of C20:2-αGalCer by the invariant natural killer T cell receptor-like antibody L363. J Biol Chem 2011; 287:1269-78. [PMID: 22110136 DOI: 10.1074/jbc.m111.308783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natural killer T (NKT) cells express a semi-invariant Vα14 T cell receptor (TCR) and recognize structurally diverse antigens presented by the antigen-presenting molecule CD1d that range from phosphoglycerolipids to α- and β-anomeric glycosphingolipids, as well as microbial α-glycosyl diacylglycerolipids. Recently developed antibodies that are specific for the complex of the prototypical invariant NKT (iNKT) cell antigen αGalCer (KRN7000) bound to mouse CD1d have become valuable tools in elucidating the mechanism of antigen loading and presentation. Here, we report the 3.1 Å resolution crystal structure of the Fab of one of these antibodies, L363, bound to mCD1d complexed with the αGalCer analog C20:2, revealing that L363 is an iNKT TCR-like antibody that binds CD1d-presented αGalCer in a manner similar to the TCR. The structure reveals that L363 depends on both the L and H chains for binding to the glycolipid-mCD1d complex, although only the L chain is involved in contacts with the glycolipid antigen. The H chain of L363 features residue Trp-104, which mimics the TCR CDR3α residue Leu-99, which is crucial for CD1d binding. We characterized the antigen-specificity of L363 toward several different glycolipids, demonstrating that whereas the TCR can induce structural changes in both antigen and CD1d to recognize disparate lipid antigens, the antibody L363 can only induce the F' roof formation in CD1d but fails to reorient the glycolipid headgroup necessary for binding. In summary, L363 is a powerful tool to study mechanism of iNKT cell activation for structural analogs of KRN7000, and our study can aid in the design of antibodies with altered antigen specificity.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Vβ2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen. Proc Natl Acad Sci U S A 2011; 108:19007-12. [PMID: 22065767 DOI: 10.1073/pnas.1109066108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Natural killer T cell antigen receptors (NKT TCRs) recognize lipid-based antigens (Ags) presented by CD1d. Although the TCR α-chain is invariant, NKT TCR Vβ exhibits greater diversity, with one (Vβ11) and three (Vβ8, Vβ7, and Vβ2) Vβ chains in humans and mice, respectively. With the exception of the Vβ2 NKT TCR, NKT TCRs possess canonical tyrosine residues within complementarity determining region (CDR) 2β that are critical for CD1d binding. Thus, how Vβ2 NKT TCR docks with CD1d-Ag was unclear. Despite the absence of the CDR2β-encoded tyrosine residues, we show that the Vβ2 NKT TCR engaged CD1d-Ag in a similar manner and with a comparable affinity and energetic footprint to the manner observed for the Vβ8.2 and Vβ7 NKT TCRs. Accordingly, the germline-encoded regions of the TCR β-chain do not exclusively dictate the innate NKT TCR-CD1d-Ag docking mode. Nevertheless, clear fine specificity differences for the CD1d-Ag existed between the Vβ2 NKT TCR and the Vβ8.2 and Vβ7 NKT TCRs, with the Vβ2 NKT TCR exhibiting greater sensitivity to modifications to the glycolipid Ag. Furthermore, within the Vβ2 NKT TCR-CD1d-αGalCer complex, the CDR2β loop mediated fewer contacts with CD1d, whereas the CDR1β and CDR3β loops contacted CD1d to a much greater extent compared with most Vβ11, Vβ8.2, and Vβ7 NKT TCRs. Accordingly, there is a greater interplay between the germline- and nongermline-encoded loops within the TCR β-chain of the Vβ2 NKT TCR that enables CD1d-Ag ligation.
Collapse
|
49
|
Patel O, Cameron G, Pellicci DG, Liu Z, Byun HS, Beddoe T, McCluskey J, Franck RW, Castaño AR, Harrak Y, Llebaria A, Bittman R, Porcelli SA, Godfrey DI, Rossjohn J. NKT TCR recognition of CD1d-α-C-galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2011; 187:4705-13. [PMID: 21964029 DOI: 10.4049/jimmunol.1100794] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells respond to a variety of CD1d-restricted glycolipid Ags that are structurally related to the prototypic Ag α-galactosylceramide (α-GalCer). A modified analog of α-GalCer with a carbon-based glycosidic linkage (α-C-GalCer) has generated great interest because of its apparent ability to promote prolonged, Th1-biased immune responses. In this study, we report the activation of spleen NKT cells to α-C-GalCer, and related C-glycoside ligands, is weaker than that of α-GalCer. Furthermore, the Vβ8.2 and Vβ7 NKT TCR affinity for CD1d-α-C-GalCer, and some related analogs, is ∼10-fold lower than that for the NKT TCR-CD1d-α-GalCer interaction. Nevertheless, the crystal structure of the Vβ8.2 NKT TCR-CD1d-α-C-GalCer complex is similar to that of the corresponding NKT TCR-CD1d-α-GalCer complex, although subtle differences at the interface provide a basis for understanding the lower affinity of the NKT TCR-CD1d-α-C-GalCer interaction. Our findings support the concept that for CD1d-restricted NKT cells, altered glycolipid ligands can promote markedly different responses while adopting similar TCR-docking topologies.
Collapse
Affiliation(s)
- Onisha Patel
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Harrak Y, Barra CM, Delgado A, Castaño AR, Llebaria A. Galacto-Configured Aminocyclitol Phytoceramides Are Potent in Vivo Invariant Natural Killer T Cell Stimulators. J Am Chem Soc 2011; 133:12079-84. [DOI: 10.1021/ja202610x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Youssef Harrak
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carolina M. Barra
- Grupo de Inmunología Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Delgado
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Unitat de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona (UB), Avgda. Joan XXIII, s/n, 08028 Barcelona, Spain
| | - A. Raúl Castaño
- Grupo de Inmunología Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Amadeu Llebaria
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|